
Math. Struct. in Comp. Science (2006), vol. 16, pp. 1–39. c© 2006 Cambridge University Press

doi:10.1017/S0960129505004810 Printed in the United Kingdom

Termination of processes†

DAVIDE SANGIORGI

University of Bologna, Italy

Email: davide.sangiorgi@cs.unibo.it

Received 15 September 2003; revised 20 November 2004

A process M terminates if it cannot produce an infinite sequence of reductions

M
τ−→ M1

τ−→ M2. . .. Termination is a useful property in concurrency. For instance, a

terminating applet, when loaded on a machine, will not run for ever, possibly absorbing all

computing resources (a ‘denial of service’ attack). Similarly, termination guarantees that

queries to a given service originate only finite computations.

We ensure termination of a non-trivial subset of the π-calculus by a combination of

conditions on types and on the syntax. The proof of termination is in two parts. The first

uses the technique of logical relations – a well-know technique of λ-calculi – on a small set

of non-deterministic ‘functional’ processes. The second part of the proof uses techniques of

process calculi, in particular, techniques of behavioural preorders.

1. Introduction

The last ten years have seen a lot of work on calculi for process mobility, such as the π-

calculus (Milner 1999; Sangiorgi and Walker 2001). With respect to previous formalisms

for concurrency, perhaps the most novel aspect of these calculi is the rich theory of

types. Typically, types are used to guarantee safety properties, such as the absence of

communication errors (for instance, agreement between values emitted and values expected

along a given link), the absence of certain interferences among processes, deadlock

freedom. A safety property expresses a condition that is invariant under reduction. In

type systems, the invariance is expressed by the fundamental theorem of types, subject

reduction. In this paper, by contrast, we consider liveness properties.

One of the most important liveness properties is termination. A term M terminates if

all internal runs of M are finite; that is, M has no infinite computation

M
τ−→ M1

τ−→ M2
τ−→

If such an infinite computation exists, then M is non-terminating (or diverges).

‘Terminating’ is different from ‘convergent’. A convergent term has at least one finite

(complete) internal run; in a terminating term, by contrast, all internal runs are finite

(there may even be an infinity of internal runs, and of unbounded length). For instance,

the process

(a. c + !a. a) | a

† This work was supported by the EC project ‘PROFUNDIS’.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 2

is convergent but non-terminating. (When the values communicated are not important,

we abbreviate inputs a(x).M and outputs a〈v〉.M as a.M and a.M. The replication

operator !π.M can be thought of as an infinite number of copies of π.M in parallel;

in a language with recursion, it can be taken as an abbreviation for µX. (π. (M | X)).)

The difference between ‘terminating’ and ‘convergent’ has deep consequences in proofs.

For instance, in simply-typed λ-calculi a combinatorial proof of convergence – also

called weak normalisation – is easy (see, for instance, Turing’s proof in Gandy (1980a)),

whereas a combinatorial proof of termination – also called strong normalisation – is much

harder (Gandy 1980b; Lévy 1977; Joachimski and Matthes 1998). Also, ‘terminating’ is

different from ‘finite’. In a terminating process, only the internal runs are required to

be finite. In a finite process, by contrast, all runs are finite, including runs consisting of

external actions such as inputs and outputs. For instance, !a. b is terminating but is not

finite.

In the π-calculus, as well as the λ-calculus, termination is an undecidable property.

Termination has been studied extensively in the λ-calculus (Girard et al. 1988; Mitchell

1996). Termination is also important in concurrency. For instance, if we interrogate a

process, we may want to know that an answer is eventually produced (termination alone

does not guarantee this, but termination would be the main ingredient in a proof).

Similarly, when we load an applet we may like to know that the applet will not run for

ever on our machine, possibly absorbing all the computing resources (a ‘denial of service’

attack). In general, if the lifetime of a process can be infinite, we may want to know that

the process does not remain alive simply because of non-terminating internal activity,

and that, therefore, the process will always accept interactions with the environment. For

similar reasons of protection, all programs of languages used for active networks such as

Plan (Hicks et al. 1999) must terminate.

The π-calculus is a very expressive formalism. In it, a number of programming language

features can be encoded, including functions, objects, and state (in the sense of imperative

languages) (Sangiorgi and Walker 2001). As a consequence, however, the notoriously-hard

problems of termination for these features hit the π-calculus too.

We ensure termination in the π-calculus by a combination of conditions based on

types and the syntax. This allows us to use standard type constructs and to have simple

syntactic conditions. We have not succeeded in finding powerful conditions that are purely

syntactic, or operational. We give an informal explanation below.

In first-order process calculi such as CCS (Milner 1989), a subclass of processes widely

used for analysis and verification is that of regular processes. This class is defined,

syntactically, by the constraint that no parallel composition appears inside recursive

definitions. Regular processes are precisely the finite-state processes (possibly up to

injective substitutions and bisimilarity). In the π-calculus, the class of regular processes is

not very interesting, at least as far as termination is concerned:

— The class has a limited expressive power. In the π-calculus it is common to use

replicated processes of the form !a(x̃).M, and these processes are non-regular, unless

M is trivial. For instance, !a. b. 0 is non-regular but terminates. We are after conditions

that ensure termination also for processes that are non-regular.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 3

— Regular processes may not terminate, an example being νa (!a | !a.).

The termination problem is much harder in the π-calculus than in CCS. Consider, for

instance, the process language given by the grammar production

M ::= (νa1, . . . , an)(!a1(x).M1 | . . . | !an(x).Mn | b1〈v1〉 | . . . | br〈vr〉) (1)

where n, r � 0. This language includes non-terminating processes, such as νa (a | !a. a),

and

(νa, b)(a | !a. b | !b. a),

in which the inputs at a and b are mutually recursive. Furthermore, regardless of what

the values vj are, the size of a process may grow with reduction, because replications are

persistent and reductions may liberate new processes (which can themselves be replicated).

We can avoid mutual recursions by imposing an order on the inputs by requiring that in

any term

(νa1, . . . , an)(!a1(x).M1 | . . . | !an(x).Mn | b1〈v1〉 | . . . | br〈vr〉),
process Mi only uses names aj with j < i. This condition does indeed guarantee termination

if, as in CCS, values are first order and therefore cannot be links.† A combinatorial proof

of termination, based on a measure that decreases after each reduction, is not hard. The

measure is simple because a process liberated by a replication satisfies the same condition

on the usage of names as the replication itself.

This argument fails if values can be links, as in the π-calculus. For example, the process

liberated by a replication !ai(x).Mi can be Mi{vj/x} with vj = aj and j > i. Indeed, if

values can be links, the language (1) does include non-terminating processes even if inputs

are ordered; an example is

R
def
= νa (!a(x). x〈x〉 | a〈a〉) .

Modulo structural congruence (≡), a relation that allows us some simple rearrangements

of the structure of a process R reduces to itself. To ensure termination in the π-calculus,

we need more sophisticated conditions. Termination is indeed a good example of the

difference between CCS with value passing and the π-calculus.

Intuitively, R does not terminate because it has self-applications, that is, outputs in

which the value emitted is related to the link along which the output occurs. A discussion

on the (very subtle) problems given by self-application is worthwhile. These problems

are well known in the λ-calculus. The process R, as well as the other examples of

self-applications below, are not translations of λ-expressions, but are inspired by the

λ-calculus.

In R, the self-applications are syntactic: in x〈x〉 and a〈a〉 the link of the output and

the value emitted are identical. If all self-applications were syntactic, then termination

could be ensured, operationally, by checking that after each reduction no output of

the form a〈a〉 exists. Unfortunately, non-termination may also arise because of ‘implicit’

self-applications: these are outputs a〈b〉 in which the link b emitted is different from

† We prefer the word ‘link’ to ‘channel’ because the latter has a more restrictive connotation.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 4

the link a of the output, but b may be used by a recipient to access a. An example of

implicit self-application is the process a〈b〉. !b(x). a〈x〉. Indeed, under certain hypotheses

the process is behaviourally equivalent to a〈a〉 (Merro 2001). (The main hypothesis is

locality, see below.) This form of implicit self-application is the reason for the divergence

of

Q
def
= νb (a〈b〉 | !b(z). a〈z〉) | !a(x). (νy (x〈y〉 | !y(z). x〈z〉)) ,

which can reduce in two steps to a process weakly bisimilar to Q itself.

However, the following is an example of a process that does not terminate because

of self-application but that cannot possibly be considered behaviourally equivalent to a

process with syntactic self-applications:

M
def
= !a(x). νb (x〈b〉 | b(y). y〈x〉)

| !v(z). z〈a〉
| a〈v〉 .

M has the following divergent computation:

M = !a(x). νb (x〈b〉 | b(y). y〈x〉) | !v(z). z〈a〉 | a〈v〉
τ−→ νb (v〈b〉 | b(y). y〈v〉) | !a(x). νb (x〈b〉 | b(y). y〈x〉) | !v(z). z〈a〉 [av]
τ−→ νb (b(y). y〈v〉 | !a(x). νb (x〈b〉 | b(y). y〈x〉) | b〈a〉) | !v(z). z〈a〉 [vb]
τ−→ a〈v〉 | !a(x). νb (x〈b〉 | b(y). y〈x〉) | !v(z). z〈a〉 [ba]

≡ M
τ−→ . . .

where the column on the right indicates the action performed in the reduction, that is, the

link along which the reduction occurs and the value is exchanged. The culprit of the non-

termination of M is the subterm x〈b〉 | b(y). y〈x〉. This process, although behaviourally

quite different from a syntactic self-application, does represent a self-application because

the name b transmitted at x is used in an input inside which x appears in an output.

But self-applications can be even nastier. They can arise in processes that, at the

beginning, contain no patterns of dependencies between inputs and outputs – not even a

‘weak’ patterns such as the one of M above. An example is the process N below. It is hard

to see where an implicit self-application is located in the syntax of N. For instance, there

is an output a2〈a1〉 but the input at a1 does not use a2. However, recursive dependencies

among names can arise dynamically in N at run time.

N
def
= !a(x). (νa1, a2)(a2〈a1〉 | !a1(y). x〈y〉 | !a2(y). x〈y〉)

| !a0(z). a〈z〉
| a〈a0〉 .

Moreover, whereas the divergent run of M has at least one action – [av] – that repeats

itself an infinite number of times, N has a divergent computation in which all actions

performed are different. The infinite computation of N consists of cycles of increasing

length; a cycle begins with a reduction at a and ends with a reduction at a0. These are

the actions for the first three cycles (where the new names generated by the restrictions

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 5

νa1, a2 are a1, a2 first, then a3, a4, then a5, a6):

[a a0], [a2 a1], [a0 a1],

[a a1], [a4 a3], [a1 a3], [a0 a3],

[a a3], [a6 a5], [a3 a5], [a1 a5], [a0 a5] .

Following typed λ-calculi, we shall avoid the problems given by self-applications by

means of types, moving to the simply-typed π-calculus (Section 3).

Besides mutual recursion and self-application, the other major issue for the termination

of π-calculus processes is state. In all the examples of processes we have given so far, all

links are functional, in the sense that each link appears only once in the input, and the

input is replicated. In other words, the service offered by the link is always available and

does not change over time. Here are examples of stateful terms:

N1
def
= a(x).M

N2
def
= !a(x).M + N

N3
def
= a(x). (N | a(y).M)

N4
def
= !b(x). (N | !a(y).M)

N5
def
= µX(y). a(x). y〈v〉.X�x�

(where µX(y).M is a recursive definition with formal parameter y and body M, and X�v�
is a recursive call with actual parameter v). In N1, the input at a is ephemeral and can

therefore vanish. In N2, the input at a vanishes if the summand N is used first. In N3 and

N5, different outputs at a may activate different processes (in N5 this happens because the

continuation of the input uses the parameter y of the recursive definition). Finally, in N4

the input at a is not immediately available.

It is known that in imperative sequential languages higher-order references can break

termination (Honsell et al. 1995). Since higher-order references can be modelled in π-

calculus, using recursion, some constraints on state are expected. It is not sufficient,

however, to transport the conditions for imperative sequential languages into the π-

calculus, which has more diverse forms of state. We defer discussions and counterexamples

to Sections 4 and 11, as the problems raised by state are quite technical. We only anticipate

that we will impose two constraints on state: the parameters of recursive definitions should

be first order; certain forms of nesting between inputs are disallowed.

Two remarks should be made on the π-calculus language we use. First, the π-calculus

is localised, in the sense of Merro (2001); that is, the recipient of a link cannot use it

in input. This feature has been found useful in practice – it is adopted by a number

of experimental languages derived from the π-calculus, most notably Join (Fournet and

Gonthier 1996) – and also has useful consequences for the theory (Merro 2001). In our

work, locality is essential: most of our results rely on it.

Second, our π-calculus language includes first-order values, that is, values that do not

contain links, and operations for manipulating them. Examples of first-order values are

integers, booleans, pairs of booleans, lists of integers. We do not give a concrete syntax

for first-order values. To increase the generality, we only give abstract conditions (on the

syntax, and on the operational and typing rules) that first-order values should satisfy. For

the same reason, we do not commit ourselves to a specific reduction strategy for evaluation

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 6

of values. (Encodings of values as processes exist, but only for some concrete examples,

and assume specific evaluation strategies (Milner 1999; Sangiorgi and Walker 2001).) We

decided to take first-order values into account from the very beginning, and in the most

general form, because

(i) depending on the applications in which π-calculus is used, the first-order values needed

might be very different, and

(ii) checking that a termination theorem applies to one such π-calculus extension is tedious

and error prone.

In summary, our language P of terminating processes is the localised π-calculus with

the addition of arbitrary first-order expressions, subject to the constraints on recursive

inputs, self-applications, and state mentioned above.

The proof of termination of (the processes in) P is in two parts. The first part uses the

technique of logical relations. Logical relations are well known in functional languages

and are used, in particular, to prove the termination of typed λ-calculi. We have not been

able to apply the technique to the whole language P. We have only been able to apply it

to a small sublanguage, P0. This is a non-deterministic language, with only asynchronous

outputs, and in which all names are functional. One of the reasons for restricting the

logical-relation technique to P0 is that on several occasions we will need to use the

Replication Theorems (laws for the distributivity of replicated processes). These theorems

hold only if the names are functional.

The language P0 is not very expressive. It is, however, a powerful language for the

termination property. The second part of our proof shows how the termination of P
is derived from that of P0. For this, we use process calculus techniques, most notably

techniques for behavioural preorders. An unusual feature of P0 that we exploit are infinite

sums, that is, sums over a possibly infinite set of summands. In the π-calculus literature,

sum operators – let alone infinite sums – are usually omitted.

Structure of the paper

Sections 2 and 3 contain background material on the π-calculus. Exceptions are the

abstract conditions on syntax, transitions, and types (Conditions 2.1, 2.2, and 3.1) that

define first-order values and boolean expressions, which are new. In Section 4 we define

termination and the language P.

The proof of termination of P is developed in Sections 5–10. First we prove the termin-

ation of a language P− of monadic functional non-deterministic processes (Sections 5–7).

Then, in Section 8, we extend P− with polyadicity and arbitrary first-order values, thus

obtaining the language P0. The proof is concluded in Sections 9 and 10, where we prove

that the termination of P0 implies that of P.

In Section 11 we justify, by means of counterexamples, the termination conditions

on state. In Section 12 we discuss our termination conditions on the Join calculus.

Finally, in Section 13 we report some conclusions and give some suggestions for future

work.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 7

Related work

Termination has been widely studied in sequential languages (Girard et al. 1988; Mitchell

1996), but very little has been done in the field of concurrency. Kobayashi’s type system

(Kobayashi 2000) ensures that in every fair reduction sequence a process trying to perform

a communication will eventually succeed. Types can express causality, obligation and time

limit on the usage of a link. The main differences with our work are: the types of

Kobayashi (2000) are rather sophisticated; the properties guaranteed are different (a well-

typed process in Kobayashi (2000) may still have a divergent computation); the system

of Kobayashi (2000) cannot handle various forms of replications, for instance, it cannot

handle the processes encoding the simply-typed λ-calculus.

The closest to our work is Yoshida et al. (2001), which is the first study of termination in

the π-calculus. The main differences with our work are the following. First, the conditions

that Yoshida et al. (2001) impose for termination are almost entirely expressed by means

of graph types (Yoshida 1996). By contrast, we separate typing and syntactic conditions.

This allows us, for instance, to use more standard notions of types. Second, the language

PBHY of Yoshida et al. (2001) is a language of functional processes. For instance, every

name has only one input occurrence, and reduction is confluent. It is, indeed, close to the

subset of P− (Section 5) without sums. Thus, the λ-calculus with resources (see Section 13

and Boudol and Laneve (2000)), or deterministic subsets of it, such as the λ-calculus with

multiplicities, cannot be encoded in PBHY. Also, in PBHY all outputs are bound, that is,

only private names can be transmitted (this condition is probably not necessary, though

it does simplify proofs). Third, the encoding of the simply-typed (call-by-name) λ-calculus

into the π-calculus is fully abstract if the π-calculus language is taken to be PBHY. By

contrast, the encoding is not fully abstract with respect to P: standard counterexamples

to full abstraction of λ-calculus encodings (Sangiorgi and Walker 2001) live in P. Fourth,

the technique of logical relations is used by both us and Yoshida et al. (2001), but the

details are quite different. For instance, the proof in Yoshida et al. (2001) exploits the

property that the processes are confluent, by also allowing certain outputs underneath

prefixes to be consumed. Finally, the types of Yoshida et al. (2001) also guarantee that

certain visible actions will eventually be performed. This property does not hold in our

case.

2. The process calculus

The syntax of the calculus, which is given in Table 1, has all the process constructs of

the standard polyadic π-calculus (Milner 1999; Sangiorgi and Walker 2001), with the

addition of first-order values, which are explained later. The calculus is localised (Merro

2001), that is, the recipient of a link cannot use it in input. Formally, in an input a(x̃).M,

names x̃ cannot appear free in M as the subject of an input. (The subject of an input is

the name at which the input is performed; for instance, the subject of a(x̃).M is a.)

As usual in the π-calculus, we make no syntactic difference between links and variables:

they are all names. We use the words ‘name’ and ‘link’ with a different meaning. A link

is a name that can be used to perform communications. Names used as variables for

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 8

first-order values, however, are not links. (Formally, a link is a name of connection type,

see Section 3.)

Bound names, free names and the names of a process M, written bn(M), fn(M), and

n(M), respectively, are defined in the usual way. Similarly, the names of a value v and of

a boolean expression B, written n(v) and n(B), are the names that appear in v and in B.

We do not distinguish α-convertible terms. Unless otherwise stated, we also assume that,

in any term, each bound name is different from the free names of the term and from the

other bound names. In a statement, we sometimes say that a name is fresh to mean that

it does not occur in the objects of the statement, like processes and actions. A name a is

fresh for M if a does not occur in M. If R′ is a subterm of R, we say that R′ is guarded

in R if R′ is underneath a prefix of R; otherwise R′ is unguarded in R. We use a tilde to

indicate a tuple. All notations are extended to tuples in the usual way.

In a recursive definition µX(x̃).M, the recursion variable is X and the formal parameters

are x̃. The actual parameters of a recursion are supplied in a recursion call H�ṽ�. We

require that, in a recursive definition µX(x̃).M, the only free recursion variable of M is X.

This constraint simplifies some of our proofs, but can be lifted. Moreover, the recursion

variable X should be guarded in the body M of the recursion.

When a recursion has no parameters, we abbreviate µX().R by µX.R, and calls

(µX.R)� � and X� � by µX.R and X, respectively. For technical reasons, we find it

convenient to use a restriction operator that introduces several names at once.

Intuitively, a first-order value is a value that does not contain links – examples are: an

integer; a boolean value; a pair of booleans; and a list of integers (note that a first-order

value need not be atomic). We also allow operations on first-order values – examples

are addition and predecessor on integers, and boolean negation. An expression f() is

an atomic value. An expression f(̃v), for ṽ non-empty, can represent a composite value,

such as a pair or a list, or a non-reduced value expression such as 3 + 4. We also allow

the testing of values in the construct if B then M else N. Here, the condition B

is a boolean expression on values; as such, B may contain values but may not contain

processes. We do not provide a grammar for either values or boolean expressions. Instead,

to gain generality, we state some abstract conditions that values and boolean expressions

have to satisfy. Below are some syntactic conditions; other conditions, on evaluation and

types, will be given in Sections 2.1 and 3.

Condition 2.1 (Syntactic conditions on values and boolean expressions).

1 The set of names in a value or a boolean expression is finite.

2 First-order values can be tested for equality (in the if-then-else construct).

3 Values and boolean expressions are closed under substitution; that is, v{w/x} is a value,

for all values v, w and name x, and similarly for a boolean expression B{w/x}.
4 If x ∈ n(v), then n(v{w/x}) = (n(v) − {x}) ∪ n(w); otherwise, if x �∈ n(v), then n(v{w/x}) =

n(v); and similarly for n(B{w/x}).
5 The set of closed first-order values (that is, the first-order values that do not contain

names) is countable.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 9

Table 1. Syntax of processes

Values

v, w ::= x name

| f (̃v) first-order values

Boolean expressions on values

B

Processes

M,N ::= 0 nil process

| H �̃v� recursion call

| a(x̃).M input

| v〈w̃〉.M output

| M | M parallel

| M + M sum

| if B then M else M if-then-else

| νã M restriction

H ::= X recursion variable

| µX(x̃).M recursive definition

2.1. Transition relation

We do not give the rules for the evaluation relation of values and boolean expressions. We

simply assume that there is such a relation, �→, and that it satisfies the conditions below. A

value v does not reduce if there is no v′ such that v �→ v′. Value v has a reduction sequence

of length n if there are v1, . . . , vn such that v �→ v1 �→ v2 . . . �→ vn. Similar terminology

applies to boolean expressions.

Condition 2.2 (Operational conditions on values and boolean expressions).

1 Names cannot reduce.

2 For every value or boolean expression e there is a bound on the length of reduction

sequences that e may have.

3 For every value or boolean expression e, if e �→ e′, then n(e′) ⊆ n(e).

Note that the evaluation relation on values and boolean expressions need not be

deterministic. The SOS rules for the transition relation of the processes of the calculus are

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 10

Table 2. Transition rules

inp: a(x̃).M
a〈̃v〉

−−→ M{̃v/̃x}

out-1: a〈̃v〉.M
a〈̃v〉

−−→ M

out-2:
w �→ w′

a〈̃v, w, ũ〉.M τ−→ a〈̃v, w′, ũ〉.M

sum-1:
M

α−→ M′

M + N
α−→ M′

par-1:
M

α−→ M′

M | N α−→ M′ | N
if bn(α) ∩ fn(N) = �

com-1:
M

a〈̃v〉
−−→ M′ N

νb̃ a〈̃v〉
−−−−→ N′

M | N τ−→ νb̃ (M′ | N′)
if b̃ �∈ fn(M)

res:
νb̃ M

α−→ M′

(νa, b̃)M
α−→ νa M′

a �∈ n(α)

open:
νb̃ M

ν c̃ x〈̃v〉
−−−−→ M′

(νa, b̃)M
(νa,̃c)x〈̃v〉

−−−−−−→ M′
x �= a , a ∈ n(̃v) − c̃

rec:
M{µX(x̃).M/X}{̃v/̃x} α−→ M′

(µX(x̃).M)�̃v� α−→ M′

if-1:
B �→ B′

if B then M else N
τ−→ if B′ then M else N

if-2:
[[B]] = true, M

α−→ M′

if B then M else N
α−→ M′

if-3:
[[B]] = false, N

α−→ N′

if B then M else N
α−→ N′

presented in Table 2, where α ranges over actions. (The symmetric counterparts of par-1,

com-1 and sum-1 have been omitted.) These are the usual transition rules for π-calculus,

in the early style. In the table, [[]] is a partial function on boolean expressions with its

result in the ordinary two-valued boolean domain {true, false}. Rules out-1, out-2, if-1,

if-2, if-3 make no obligations on when values should reduce. For instance, in

a〈3 + 4〉 | a(x).M

the reduction 3 + 4 �→ 7 could take place before or after the communication at a. More

specific reduction strategies are obtained by adding side conditions to the rules. Again, the

reason for this choice is generality: side conditions decrease the possibilities of reduction,

and the termination of processes with unconstrained rules implies that of the processes

with constrained rules.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 11

2.2. Other process operators

For the proofs in the paper, we consider various π-calculus languages. They are defined

from the operators introduced above, with transition rules given by Table 2, plus:

— asynchronous output, v〈w̃〉, that is, output without continuation;

— replication, !M, which represents an infinite parallel composition of copies of M; and

— indexed sum,
∑

i Mi, that is, a sum with countably-many summands.

Their transition rules are:

a〈ṽ〉
a〈̃v〉

−−→ 0
M | !M

α−→ M ′

!M
α−→ M ′

Mi
α−→ M ′

i∑
i Mi

α−→ M ′
i

3. The simply-typed π-calculus

The grammar of types for the simply-typed (polyadic) π-calculus is

T ::= � 〈T̃ 〉 | t

where the connection type � 〈T̃ 〉 is the type of a link that carries tuples of values of type

T̃ , and t ranges over first-order types, that is, the types of first-order values.

A link is a name of a connection type. A link is first order if it only carries first-order

values. It is higher order if it may also carry higher-order values (that is, links). Note that

‘first-order name’ is different from ‘first-order link’: a first-order name has a type t (for

some t), whereas a first-order link has a type � 〈̃t〉 (for some t̃).

Our type system is à la Church, thus each name has a predefined type. We assume that

for each type there is an infinite number of names with that type. We write x ∈ T to

mean that the name x has type T . Similarly, each recursion variable X has a predefined

tuple of types, written X ∈ 〈T̃ 〉, indicating the types of the arguments of the recursion. A

judgment � M says that M is a well-typed process; a judgment � v : T says that v is a

well-typed value of type T . For values v, w we write v : w to mean that v and w have the

same type.

An expression is closed if all names it contains have a connection type (that is, they

are links). Therefore, since first-order values do not contain links, a closed first-order

value is simply one that does not contain names (in accordance with what we stated in

Condition 2.1(5)). Similarly a process is closed if all its free names have a connection type.

The closed processes are the ‘real’ processes, those that, for instance, are supposed to be

run, or to be tested. If a process is not closed, it has some names yet to be instantiated.

A closing substitution for a process R is a substitution σ such that Rσ is closed (note that

R may already be closed, and σ may just rename some of its links).

The typing rules are given in Table 3. Once more, the rules for first-order values and

boolean expressions do not interest us. We therefore assume an oracle to infer judgements

� v : T and � B : Bool, subject only to the conditions below, where we use e for a value

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 12

Table 3. Typing rules

T-Par :
� M � N

� M | N T-Sum :
� M � N

� M + N

T-Rvar :
X ∈ 〈T̃ 〉 � ṽ : T̃

� X�̃v� T-Rec :
X ∈ 〈T̃ 〉 x̃ ∈ T̃ � ṽ : T̃ � M

� (µX(x̃).M)�̃v�

T-Res :
xi ∈ � 〈T̃i〉 for some Ti (1 � i � n) � M

� (νx1, . . . , xn)M

T-Out :
� v : � 〈T̃ 〉 � w̃ : T̃ � M

� v〈w̃〉.M T-Inp :
� v : � 〈T̃ 〉 x̃ ∈ T̃ � M

� v(x̃).M

T-if :
� B : Bool � M � N

� if B then M else N
T-Nil : � 0

or a boolean expression. (We also assume that first-order types include the boolean type

Bool.)

Condition 3.1 (Type conditions on values and boolean expressions).

1 For any name x, we have � x : T iff x ∈ T .

2 A value f(̃v), if typed, has a first-order type.

3 If � v : t, then v does not contain links.

4 If � e : T and x : w, then � e{w/x} : T .

5 If e �→ e′ and � e : T , then � e′ : T also.

Lemma 3.2. Let e be a value or a boolean expression, and suppose e �→ e′. If e is closed,

then e′ is closed also.

The typing rules for the operators of Section 2.2 (asynchronous output, replication,

indexed sum) are similar to those of (standard) output, parallel composition, and sum.

4. Terminating processes

Our goal in this paper is to isolate as large as possible a subset of processes that terminate.

Definition 4.1. A process M diverges (or is divergent) if there is an infinite sequence of

processes M1, . . . ,Mn, . . . with M1 = M, such that, for all i,

Mi
τ−→ Mi+1.

M terminates (or is terminating), written M ∈ TER, if M is not divergent.

We explained in Section 1 what makes termination hard: self-applications, recursive

inputs, state. Our language of terminating processes is defined by four constraints. Three

of them, mostly syntactic, are given in Condition 4.2. The first condition is for recursive

inputs; the second and third conditions control state. The last constraint is expressed

using types, as condition 1 of Definition 4.3, and controls self-applications.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 13

Before giving the conditions, we need to explain the new terminology we will use. A

name a appears free in output position in N if N has a free occurrence of a in an output

prefix. For instance, if N is νb (a〈b〉 | c〈d〉 | e(z). (d | z)), then a, c, d appear free in output

position in N. An input is replicated if the input is inside the body of a recursive definition.

Thus, a process M has free replicated first-order inputs if M contains a free first-order

input inside the body of a recursive definition. For instance, if a is a first-order link, then

µX. a(ỹ). (0 | X)

has free replicated first-order inputs, whereas

νa (µX. a(ỹ). (0 | X)) | b(z̃). 0

does not.

Condition 4.2 (Termination constraints on the grammar).

1 Let ã = a1, . . . , an. In a process νã M, if ai(x̃).N is a free input of M, then the following

hold:

(a) ai ∈ ã.

(b) Names aj with j � i do not appear free in output position in N.

2 In a higher-order input a(x̃).M, the continuation M does not contain free higher-order

inputs, and does not contain free replicated first-order inputs.

3 In a recursive definition µX(x̃).M:

(a) x̃ are first order.

(b) M has no unguarded output and no unguarded if-then-else.

Condition (1b) poses no constraints on occurrences of names not in ã. The condition

can be made simpler, but weaker, by requiring that names ã do not appear free in output

position in M. For condition (2), if b is a higher-order name and c a first-order name, the

following processes do not respect the condition:

a(x̃). b(y).P a(x̃). !c(z).P .

On the other hand, a(x̃). c(y). (x1〈y〉 | x2〈x3〉), where x1, x2 and x3 are components of x̃, is

correct because the first-order input at c is not replicated.

To illustrate the meaning of condition (3a), consider a 1-place buffer that receives values

at a link a and retransmits them at a link b:

µX. a(x). b〈x〉.X.

This process respects the condition regardless of whether the values transmitted are first

order or higher order. By contrast, a delayed 1-place buffer

µX(x). a(y). b〈x〉.X�y� ,

which emits at b the second last value received by a, respects the condition only if the

values transmitted are first order.

When we say that a process M respects the constraints of Condition 4.2, we mean that

M itself and all its process subterms respect the constraints.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 14

Definition 4.3 (Language P). P is the set of processes such that M ∈ P implies:

1 M is typable in the simply-typed π-calculus.

2 νã M respects the constraints of Condition 4.2, where ã = fn(M).

Theorem 4.4. All processes in P terminate.

Most of the paper is devoted to proving this theorem. The proof is in two parts: the first

in Sections 5–8; the second in Sections 9–10. We do not know the precise expressiveness

of P: we leave this issue for future investigations. Some comments can, however, be found

in Section 13.

In the remainder of the paper, all processes and values are well typed, and substitutions

map names onto values of the same type. Moreover, processes have no free recursion

variables.

5. P−: Monadic functional non-deterministic processes

We define a very constrained calculus P− whose processes will be proved to terminate

using the technique of logical relations. We will then use P− (more precisely its extension

P0 in Section 8) to derive the termination of the processes of the main language we are

interested in, namely the language P of Theorem 4.4.

The processes of P− are functional, that is, the input end of each link occurs only

once, is replicated, and is immediately available (cf., the uniform-receptiveness discipline,

(Sangiorgi 1999)). To emphasise the ‘functional’ nature of these processes, we use the

(input-guarded) replication operator !a(x).M instead of recursion. Processes can, however,

exhibit non-determinism, due to the presence of a sum operator. For technical reasons, we

allow sums with countably-many summands (indexed sums): this feature will be essential

in proofs of Section 9 involving stateful processes. (We did not introduce indexed sums

from the beginning because they are non-standard in calculi of mobile processes; in this

paper indexed sums are only a tool that we employ for the proof of the main theorem.)

Outputs are asynchronous, that is, they have no continuations. The behaviour of these

operators was defined in Section 2.2.

To facilitate the reading of the proofs, the calculus is monadic and unit is the only

first-order type. (The extension of P− with polyadicity and arbitrary first-order values is

studied in Section 8). Therefore, the grammar for the types of values is

T ::= � 〈T 〉 | unit. (2)

As the calculus is monadic, we omit angle brackets in output prefixes, and in input and

output actions. We assume that for each type there is an uncountable set of names with

that type. This form of ‘infinity’ on names, and that on sums, are the only features of P−

that go beyond the π-calculus of Section 2.

For the definition of P−, and elsewhere in the paper, it is useful to work up to structural

congruence, a relation that allows us to abstract from certain details of the syntax of

processes.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 15

Definition 5.1 (Structural congruence). Let R be a process of a language L whose

operators include parallel composition, restriction, replication and 0. We write R ≡1 R
′ if

R′ is obtained from R by rewriting, in one step, a subterm of R using one of the rules

below (from left to right, or from right to left)

!R = R | !R

νã νb̃ R = (νã, b̃)R

(νã, a, b, b̃)R = (νã, b, a, b̃)R

R1 | R2 = R2 | R1

R1 | (R2 | R3) = (R1 | R2) | R3

R | 0 = R.

(Note that if R ≡1 R
′, then R′ need not be in L.) Structural congruence, ≡, is the reflexive

and transitive closure of ≡1.

The definition of P− uses the syntactic categories of processes, pre-processes and

resources. The normal forms for processes, pre-processes and resources of P− are given in

Table 4, where L is a countable indexing set and in(P) are the names that appear free

in P in input position. Each new (that is, restricted) name is introduced with a construct

of the form νa (!a(x).N | P) where the resource !a(x).N is the only process that can ever

input at a. In the definition of resources, the constraint a �∈ fn(MNF) prevents mutual

recursion (calls of the replication from within its body).

Normal forms are not closed under reduction. For example, if MNF τ−→ N, then N may

not be a process of the grammar in the table. However, N is structurally congruent to

a normal form. We therefore define processes, resources and pre-processes by closing the

normal forms with structural congruence. We will need the reduction-closure property

(Lemma 7.9) in later proofs.

Definition 5.2 (Language P−). The sets PR of processes, RES of resources and P−

of pre-processes are obtained by closing under ≡ the corresponding (well-typed) normal

forms in Table 4.

Thus M ∈ PR if there is MNF with M ≡ MNF. Pre-processes include resources and

processes (which explains why pre-processes are represented by the symbol P−), but

not the other way round: for instance, νa (!a(x). . 0 | !b(y). . 0) is a pre-process but not a

resource or a process. Pre-processes are ranged over by P ,Q, resources by Ia and processes

by M,N. If ã is a1, . . . , an, then νã (Iã | P) abbreviates νa1 (Ia1
| . . . νan (Ian | P) . . .), and

similarly for νã (INF
ã | P).

6. Logical relations on processes

We recall the main steps of the technique of logical relations in the λ-calculus:

1 assignment of types to terms;

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 16

Table 4. The normal forms for the language P−

Pre-processes

PNF ::= νa (INF
a | PNF) with fn(INF

a) ∩ in(PNF) = �

| MNF

| INF
a

Resources

INF
a ::= !a(x).MNF with a �∈ fn(MNF)

Processes

MNF ::= νa (INF
a | MNF)

| ∑
i∈L MNF

i

| MNF | MNF

| vw

| 0

Values

v ::= a name

| � unit value

2 definition of a typed logical predicate on terms, by induction on the structure of types

– the base case uses the termination property of interest;

3 proof that the logical terms (that is, those in the logical predicate) terminate;

4 proof, by structural induction, that all well-typed terms are logical.

In order to apply logical relations to the π-calculus we follow a similar structure, though

some of the details are rather different. For instance, in the π-calculus an important role

is played by a closure property of the logical predicate with respect to bisimilarity, and by

the (Sharpened) Replication Theorems. Furthermore, in the λ-calculus typing rules assign

types to terms; in the π-calculus, by contrast, types are assigned to names. Therefore, to

start off the technique (step 1), we force an assignment of types to the pre-processes. We

use A to range over the types for pre-processes:

A ::= ♦ | b � 〈T 〉

where T is an ordinary type, as given by grammar (2) in Section 5. If R,R′ ∈ P−, then R′

is a normal form of R if R′ is a normal form and R ≡ R′.

Definition 6.1 (Assignment of types to pre-processes). A normal form of a (well-typed)

pre-process P is either of the form

— νã (Iã | M),

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 17

or

— νã (Iã | Ib), with b �∈ ã.

In the first case we write P : ♦, in the latter case we write P : b T , where T is the type

of b.

Lemma 6.2. A pre-process has a unique type.

Proof. The normal forms of a process are structurally congruent.

We define the logical predicate LA by induction on A.

Definition 6.3 (Logical relations).

— P ∈ L♦ if P : ♦ and P ∈ TER.

— P ∈ La � 〈unit〉 if P : a � 〈unit〉, and for all v : unit,

νa (P | av) ∈ L♦ .

— P ∈ La � 〈T 〉, where T is a connection type, if P : a � 〈T 〉 and, for all b fresh for P

and for all Ib ∈ Lb T ,

νb (Ib | νa (P | ab)) ∈ L♦ . (3)

We write P ∈ L if P ∈ LA for some A.

In Definition 6.3, the most important clause is the last one. The process in (3) is

similar to those used for translating function application into π-calculus (Sangiorgi and

Walker 2001). Therefore, a possible reading of (3) is that P is a function and Ib is its

argument. In (3), P does not know b (because it is fresh), and Ib does not know a (because

it is restricted). However, P and Ib may have common free names in output position.

Lemma 6.4. P ∈ La � 〈T 〉, where T is a connection type, if P : a � 〈T 〉 and there exists b

fresh for P such that for all Ib ∈ Lb T ,

νb (Ib | νa (P | ab)) ∈ L♦ .

Proof. The set TER of terminating processes is closed under α-conversion substitutions.

7. Termination of P−

We first present (Sections 7.1 and 7.2) some general results on the π-calculus. We present

them on AπΣ: this is the π-calculus of Section 2, well-typed, without recursion and if-

then-else, with asynchronous outputs only, and with the addition of indexed sum and

replication. Here is the grammar of AπΣ:

M ::= a(x̃).M | v〈w̃〉 | ∑
i∈L

Mi | M | M | !M | νã M

where values v, w, . . . and the index L are as in Table 4.

Later (Sections 7.3-7.5), we will derive the termination of P−.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 18

7.1. The Replication Theorems

In the proofs with the logical relations we make extensive use of the Sharpened Replication

Theorems (Sangiorgi and Walker 2001). These express distributivity properties of private

replications, and are valid for (strong) barbed congruence. We write M ↓a if M
α−→ M ′

where α is an input or an output along link a.

Definition 7.1 (Barbed congruence).

A relation R on closed processes is a barbed bisimulation if whenever (M,N) ∈ R,

1 M ↓a implies N ↓a, for all links a.

2 M
τ−→ M ′ implies N

τ−→ N ′ for some N ′ with (M ′, N ′) ∈ R.

3 The variants of (1) and (2) in which the roles of M and N are swapped.

Two closed processes M and N are barbed bisimilar if (M,N) ∈ R for some barbed

bisimulation R.

Two processes M and N are barbed congruent, M ∼ N, if C[M] and C[N] are barbed

bisimilar, for every context C such that C[M] and C[N] are closed.

Lemma 7.2. Relation ∼ is a congruence on AπΣ.

Lemma 7.3 (Sharpened Replication Theorems for AπΣ). Suppose a does not appear free

in input position in M,N,N1, N2, π.N. We have:

1 νa (!a(x̃).M | !N) ∼ !νa (!a(x̃).M | N).

2 νa (!a(x̃).M | N1 | N2) ∼ νa (!a(x̃).M | N1) | νa (!a(x̃).M | N2).

3 νa (!a(x̃).M | π.N) ∼ π. νa (!a(x̃).M | N), where π is any input or output prefix.

4 νa (!a(x̃).M |
∑

i Ni) ∼
∑

i νa (!a(x̃).M | Ni).

7.2. Wires

A wire is a process of the form !a(x). bx. The main result in this section says that, under

certain conditions, wires do not affect termination.

We write R −→E R′ if a transition R
τ−→ R′ can be inferred using the transition rules of

AπΣ plus the rule

sum-int:
∑
i∈L

Mi
τ−→ Mi.

We say that R E-diverges if R has a divergent computation R −→E R1 −→E R2

Lemma 7.4. Suppose R −→E R1
τ−→ R2 where R −→E R1 uses rule sum-int. Then either

R
τ−→ R2, or there is R′ such that R

τ−→ R′ −→E R2.

Lemma 7.5 (in AπΣ). If R E-diverges, then R diverges.

Proof. Each process R ∈ AπΣ has only a finite number of unguarded sums. As a

consequence, R can only have finite sequences of reductions in which each step uses rule

sum-int. Therefore, if R E-diverges, R has a divergent computation in which an infinite

number of steps do not use rule sum-int. From this and Lemma 7.4 we conclude that R

diverges.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 19

Lemma 7.6 (in AπΣ). Suppose c′ is a name that does not occur free in R in input position,

and that R only uses input-guarded replications. If R | !c′(x). cx diverges, then R{c/c′}
E-diverges.

Proof. In this proof, for any process R, we write Rc for the process R{c/c′}.
Consider a reduction R | !c′(x). cx

τ−→ R′ | !c′(x). cx (the case of a reduction R |
!c′(x). cx

τ−→ νb (R′ | !c′(x). cx) is similar). This is either given by a reduction R
τ−→ R′

(which cannot be a communication along c′), or by a communication between R and

c′(x). cx in which an output c′b of R is consumed. In the first case there is also a reduction

Rc −→E R′c.

In the second case, we have R
c′b−→ R′′ for some R′′ and R′ = R′′ | cb. In the derivation

proof of this transition, the output c′b consumed can be part of some sums, which

disappear as an effect of rules sum-1 and sum-2; the communication (rule com-2) then

liberates the output cb. The same effect is obtained in Rc by using the rule sum-int, once

for each sum that has to be eliminated. The resulting process is ≡ with R′.

This explains why a reduction for R | !c′(x). cx
τ−→ R′ | !c′(x). cx can be mimicked by

a sequence of reductions Rc(−→E)
� ≡ R′c. This sequence can, however, be empty if the

reduction from R | !c′(x). cx is a communication at c′ (and the output consumed is not

part of a sum); the sequence is non-empty otherwise.

It therefore remains to show that in a divergent computation from R | !c′(x). cx there

are an infinite number of steps that are not communications at c′. This would imply, by

the arguments above, that Rc also E-diverges. We now consider this remaining property.

Let R be any process in AπΣ. We say that two outputs in R are independent if they are

not subterms of different summands of a sum (thus if two outputs are not independent,

when one is consumed the other is lost). Process R may only have a finite number of

unguarded outputs that are pairwise independent. As a consequence, and since R only

uses input-guarded replication, if R does not have inputs at c′, then R | !c′(x). cx may

only have finite sequences of reductions in which each step is a communication at c′.

We conclude that in a divergent computation of R | !c′(x). cx there must be an infinite

number of steps that are not communications at c′.

Lemma 7.7 (in AπΣ). Suppose c′ is a name that does not occur free in R in input

position, and R only uses input-guarded replication. Then νc′ (R | !c′(x). cx) diverges iff

R{c/c′} diverges.

Proof. The hard implication is the one from left to right, and follows from Lemmas 7.6

and 7.5, and the fact that a top restriction preserves divergences.

7.3. Closure properties

Lemma 7.8. Suppose R ∈ P−. If R ≡ α−→ R′, then R
α−→≡ R′.

Lemma 7.9 (Closure under reduction for P−). R ∈ P− and R
τ−→ R′ imply R′ ∈ P−.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 20

Proof. Because of Lemma 7.8, it is sufficient to prove the result when R is a normal

form. Moreover, it suffices to prove it for processes, since resources have no reductions,

and only pre-processes of type ♦ can reduce, and these are also processes.

The proof is by structural induction. The interesting case is given by the production

MNF ::= νa (INF
a | MNF),

which is the only production in which there are two parallel processes one of which can

have a free input. We need the following easy facts, where P−NF
,RESNF,PRNF are the

subset of normal forms for P−,RES,PR:

— The set PR of processes is closed under substitution.

— If MNF av−→ R, then R ≡ M ′, for some M ′ ∈ PRNF.

— If MNF νb ab−−−→ R, then R ≡ ν c̃ (Ĩc | Ib | M ′), for some Ĩc, Ib ∈ RESNF,M ′ ∈ PRNF with

b �∈ fn(Ĩc).

— If INF
a

av−→ R, then R ≡ INF
a | M, for some M ∈ PRNF.

We can then finish off the proof. Suppose INF
a

ab−→ R and MNF νb ab−−−→ R′ (the case of

free output is simpler) and νa (INF
a | MNF)

τ−→ R′′ def
= νa (νb (R | R′)). We have to prove

R′′ ∈ PR. Using the previous facts, we have

R ≡ INF
a | N for some N ∈ PRNF

R′ ≡ ν c̃ (Ĩc | Ib | M ′) for some Ĩc, Ib ∈ RESNF,M ′ ∈ PRNF with b �∈ fn(Ĩc)

Therefore,

R′′ = (νa , b)(INF
a | N | ν c̃ (Ĩc | Ib | M ′))

≡ νa (INF
a | ν c̃ (Ĩc | νb (Ib | (M ′ | N))))

def
= R′′′

and R′′′ is a process in normal form. Hence R′′ ∈ PR.

Lemma 7.10 (Closure under ∼ for the logical relations). Suppose P ,Q ∈ P−, and P ∼ Q.

If P ∈ LA, then also Q ∈ LA.

Proof. First note that if P and Q are barbed congruent, then they must have the same

type. Then the thesis for A = ♦ follows from the fact that ∼ preserves termination.

Suppose A = a � 〈T 〉 and T is a connection type (the case of unit type is simpler). We

have to show that if b is a fresh name, for any Ib ∈ Lb T ,

νb (Ib | νa (Q | ab)) ∈ L♦ .

We can assume that b is also fresh for P , and therefore, since P ∈ La � 〈T 〉,

νb (Ib | νa (P | ab)) ∈ L♦ .

But since ∼ is a congruence, we are done, using the result of the lemma for A = ♦.

Lemma 7.11. If P ∈ L, then P ∈ TER.

Proof. If P ∈ L♦, the result follows by the definition of L♦. Otherwise, we have

P ∈ La T for some a, T , and then P cannot reduce.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 21

We write R
τ−→d R′ if R

τ−→ R′ and this is the only possible transition for R (that is, for

all α, R′′ such that R
α−→ R′′, we have α = τ and R′ ≡ R′′).

Lemma 7.12. If R
τ−→d R′ and R′ ∈ TER, then R ∈ TER also.

Lemma 7.13. If a, b : T , then !a(x). bx ∈ La T .

Proof. Suppose T = � 〈unit〉. Then

νa (!a(x). bx | av) τ−→d ∼ bv

(it terminates after one step), therefore, by Lemmas 7.12 and 7.10, νa(!a(x). bx | av) ∈ TER.

Otherwise, take a fresh c and any Ic, and consider the process

P
def
= νc (Ic | νa (!a(x). bx | ac)).

We have P
τ−→d ∼ νc (Ic | bc), and the latter process cannot reduce further, therefore,

reasoning as above, P ∈ TER.

Lemma 7.14. Let c be a higher-order name. We have

νb (Ib | bc) ∈ TER iff (νb , c′)(Ib | bc′ | !c′(x). cx) ∈ TER,

where c′ is fresh.

Proof. The result follows from Lemma 7.7.

Lemma 7.15.
∑

i Mi ∈ TER iff, for each i, Mi ∈ TER.

Lemma 7.16. M1 | M2 ∈ TER iff, for each i, Mi ∈ TER.

Proof. M1 and M2 have no free input. This means that M1 and M2 cannot interact.

7.4. Relatively independent resources

Definition 7.17. Resources Ia1
, . . . , Ian are relatively independent if none of the names

a1, . . . , an appears free in output position in any of the resources Ia1
, . . . , Ian .

A term P ∈ P− has relatively independent resources if, for all subterms P ′ of P , the

resources that are unguarded in P ′ are relatively independent.

Lemma 7.18. Suppose !a(x).M ∈ RES, Ib ∈ RES and a �∈ fn(Ib). Then !a(x). νb (Ib |
M) ∈ RES also.

Lemma 7.19. For each Ia ∈ RES there is Ja ∈ RES with Ia ∼ Ja and Ja has relatively

independent resources.

Proof. Suppose there are resources Ia1
, . . . , Ian in Ia that are not relatively independent.

For instance, suppose a1 appears free in output position in Ia1
, . . . , Ian . To remedy this, it

is sufficient to make copies of Ia1
and push them inside Ia1

, . . . , Ian . This is achieved using

the Sharpened Replication Theorems (Lemma 7.3). Furthermore, with this transformation

we remain within the class of the resources (the only delicate point is when Ia1
is pushed

inside some Iai , but Lemma 7.18 takes care of this case).

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 22

Lemma 7.20. For each P ∈ P− there is Q ∈ P− with P ∼ Q and Q has relatively

independent resources.

Proof. The proof is similar to the proof of the previous lemma.

Lemma 7.21. For each P ∈ P− there is a normal form Q ∈ P− with P ∼ Q and Q has

relatively independent resources.

Proof. If in the previous lemmas the initial process is in normal form, then the

transformed process is also. The result then follows from the fact that ≡⊆∼.

7.5. Main theorem

Theorem 7.22. Let ã = a1, . . . , an and P ∈ P−. Suppose that resources Ia1
, . . . , Ian are

relatively independent, and Iai ∈ L for each i. Then P : A and in(P) ∩ fn(Iã) = � imply

νã (Iã | P) ∈ LA.

Proof. By Lemmas 7.21 and 7.10, we can assume that P is a normal form and has

relatively independent resources. We proceed by induction on the structure of P . We call

Q the process νã (Iã | P).

— P = bc.

In this case, A = ♦. We have to show that Q ∈ TER. We have

Q = νã (Iã | P) ∼ νã′ (I
ã′ | P)

def
= Q′

where ã′ = ã ∩ {b, c} (here we exploit the fact that the resources are relatively

independent).

There are 4 subcases:

– ã′ = �. Then Q′ ∼ bc, which is in TER.

– ã′ = {b}. Then Q′ ∼ νb (Ib | bc) and the latter process is in TER iff the process

(νb , c′)(Ib | !c′(x). cx | bc′) is in TER (Lemma 7.14), where c′ is fresh. And now

we are done, exploiting the definition of L on the type of b, for !c′(x). cx ∈ L
(Lemma 7.13), and because we know that Ib ∈ L.

– ã′ = {c}. Then Q′ ∼ νc (Ic | bc) and the latter process is in TER because it cannot

reduce.

– ã′ = {b, c}. Then

Q′ ∼ (νb, c)(Ib | Ic | bc)
∼ νc (Ic | νb (Ib | bc)) def

= Q′′

since c is fresh for Ib (the relatively-independence hypothesis). Hence Q′′ is in TER

by definition of L on higher types (precisely, the type of b).

— P = bv and v : unit.

This is similar to the previous case.

— P =
∑

i Mi. (Thus P : ♦).

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 23

We have to show that Q = νã (Iã |
∑

i Mi) ∈ TER. Using the Replication Theorems

we have

Q ∼
∑
i

νã (Iã | Mi) .

By Lemma 7.15, this process is in TER iff each component is also. The latter is true

by induction on the structure. Hence Q ∈ TER also.

— P = M1 | M2. (Thus P : ♦).

We have to show that Q = νã (Iã | M1 | M2) ∈ TER. Using the Replication Theorems

we have

Q ∼ Q1 | Q2

where

Qi
def
= νã (Iã | Mi) .

By Lemma 7.16, Q ∈ TER iff each Qi is so. The latter is true by induction on the

structure.

— P = !b(x).M.

Then Q : b � 〈T 〉. We assume that T is a connection type. Then Q ∈ L if for a fresh

c and for any Ic ∈ Lc T ,

R
def
= νc (Ic | νb (Q | bc)) ∈ TER .

Since c is fresh, we can assume c = x. We thus have

R = νx (Ix | νb (νã (Iã | !b(x).M) | bx))

≡ (νx, b, ã)(Ix | Iã | !b(x).M | bx)

and

R
τ−→d∼ (νx, ã)(Ix | Iã | M)

def
= R′

(here we exploit the fact that replications are not recursive, and that b �∈ fn(Iã)).

Using induction on the structure, we derive R′ ∈ TER (note that Ix, Iã are relatively

independent).

— P = νx (Ix | P ′), where Ix = !x(y).M.

We have, using the Replication Theorems,

Q = νã (Iã | νx (Ix | P ′))

∼ νx (νã (Iã | Ix) | νã (Iã | P ′))
def
= Q′

Call R
def
= νã (Iã | Ix). Then R ∈ L using the induction hypothesis. Moreover, using

the Replication Theorems,

R ∼ !x(y). νã (Iã | M)
def
= Jx

and Jx ∈ L by Lemmas 7.10 and 7.18. Thus we have

Q′ ∼ (νx, ã)(Jx | Iã | P ′)
def
= Q′′

where Jx, Iã are relatively independent. Finally, we can apply the induction hypothesis

to P ′ and infer Q′′ ∈ TER.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 24

Corollary 7.23. If P ∈ P−, then P ∈ L.

8. Arbitrary first-order types and polyadicity

The language P− of Section 2 has unit as the only first-order type, and is monadic.

Extending the definition of logical relations and the proof of termination to allow arbitrary

first-order values (subject to Conditions 2.1, 2.2 and 3.1), meaning polyadicity is easy. We

only show the modifications to Definition 6.3 of logical relations. We call P0 such an

extension of P−.

First, we take the case of a pre-process P : a � 〈t〉 where t is an arbitrary first-order

type.

— P ∈ La � 〈t〉, where t is a first-order type, if P : a � 〈t〉, and for all v : t,

νa (P | av) ∈ L♦ .

Now we consider polyadicity. We show the clause of a process P : a � 〈T̃ 〉 where all Ti

are connection types. The case when all Ti are first order is simpler, and the case where

T̃ is a mixture of first-order and connection types is the expected combination of clauses.

— P ∈ La � 〈T̃ 〉, where T̃ = T1, . . . , Tn, if P : a � 〈T̃ 〉, and, for all b̃ = b1, . . . , bn fresh, and

for all Ib1
: b1 T1, . . . , Ibn : bn Tn, with I

b̃
relatively independent,

νb̃ (I
b̃

| νa (P | ab̃)) ∈ L♦ .

The hypothesis of relative independence can be dropped, but simplifies the proofs of a

few lemmas.

9. Proofs based on simulation

The language P0 of Section 8 is non-trivial, but not very expressive. It is, however, a

powerful language for the termination property, in the sense that the termination of the

processes in P0 implies that of a much broader language. This is what we are going to

show now.

We consider below a number of extensions. The technique for proving termination of

the extensions is as follows. The extensions define a sequence of languages P0, . . . ,P11,

with Pi ⊂ Pi+1 for all 0 � i < 11. For each i, we exhibit a transformation [[·]]i, defined on

the normal forms of Pi+1, with the property that a transformed process [[M]]i belongs to

Pi and [[M]] ∈ TER implies M ∈ TER. We then infer the termination of the processes in

Pi+1 from that of the processes in Pi.

For this kind of proof we use process calculus techniques, especially techniques for

simulation. If R′ simulates R, then R′ can do everything R can, but the other way round

may not be true. For instance, a. (b. c + d) simulates a. b, but the other way round is

false. In process calculi, simulation is not very interesting as a behavioural equivalence.

Simulation is, however, interesting for reasoning about termination, and is handy to use

because of its co-inductive definition.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 25

Definition 9.1. A relation R on closed processes is a strong simulation if (M,N) ∈ R
implies:

— Whenever M
α−→ M ′ there is N ′ such that N

α−→ N ′ and (M ′, N ′) ∈ R.

A process N simulates M, written M � N, if for all closing substitutions σ there is a

strong simulation R such that (Mσ,Nσ) ∈ R.

Relation � is reflexive and transitive, and is preserved by all operators of the π-calculus

(as well as the other operators of Section 2.2). Hence � is a precongruence in all the

languages Pi we shall consider. An important property of � for us is given by the

following lemma.

Lemma 9.2. If M � M ′, then M ′ ∈ TER implies M ∈ TER.

Each language Pi (i > 0) is defined by exhibiting the additional productions for the

normal forms of the processes and the resources of the language; P0 is the language

of Section 8 (whose normal forms are those of Table 4 with the extension to arbitrary

first-order values and polyadicity). Processes and resources are then obtained by closing

the corresponding normal forms under ≡ in the same way as we did for P− and P0. From

now on, we will no longer need pre-processes, since pre-processes were only introduced

to define logical relations in Section 6.

For each Pi, it is sufficient to prove that the normal forms of the processes in Pi

terminate. By Lemma 9.3, this implies the termination of all Pi processes.

Lemma 9.3. M ≡ M ′ and M ′ ∈ TER imply M ∈ TER.

9.1. Synchronous outputs

Language P1

MNF ::= . . . | a〈ṽ〉.MNF

Proof of termination of P1. The transformation [[·]]0 : P1 → P0 acts on outputs thus:

[[b〈ṽ〉.M]]0
def
= b〈ṽ〉 | [[M]]0 .

The transformation is a homomorphism elsewhere. Its correctness is given by the law

b〈ṽ〉.M � b〈ṽ〉 | M

and Lemma 9.2.

9.2. Non-functional resources

In P1 all resources are functional. We now consider extensions of the language that allow

us to have non-functional resources.

Language P2

INF
a ::= . . . | MNF

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 26

Proof of termination of P2. The transformation [[·]]1 : P2 → P1 replaces a process

νa (M1 | M2) with νa (!a(x). 0 | M1 | M2). The correctness of the transformation is given

by the property

νa (M1 | M2) � νa (!a(x). 0 | M1 | M2)

where a is any name.

Language P3

INF
a ::= . . . | INF

a | INF
a

Proof of termination of P3. The difference between P3 and P2 is that in the former

there can be several input-replicated processes at the same link. The correctness of P3 is

then inferred from that of P2 and the law

!a(x).R | !a(x).R′ � !a(x). (R | R′) .

Now we consider the simultaneous creation of resources on different links.

Language P4

MNF ::= . . . | νã (INF
ã | MNF)

INF
ã ::= . . .

| !ai(x̃).MNF if ai ∈ ã, and aj �∈ fn(MNF) for all j � i

| INF
ã | INF

ã

| MNF

The side condition ‘aj �∈ fn(MNF) for all j � i’ says that ã is an ordered set of names

and the body of an input at ai can only use names that are below ai in the order. This

condition is a generalisation of the condition on non-recursive replications in the previous

languages.

Since multiple resources (INF
ã) include single resources (INF

a), all productions for single

resources can now be dropped from the grammar.

Proof of termination of P4. A process νã (Iã | M) is structurally congruent to a process

of the form

νa1 (Ia1
| νa2 (Ia2

| . . . | νan (Ian | M)) .

Therefore for each term R in P4 there is a term R′ in P3 with R ≡ R′.

We now continue with additions to INF
ã .

Language P5

INF
ã ::= . . . | ai(x̃).MNF with ai ∈ ã and aj �∈ fn(MNF) for all j � i

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 27

Table 5. Normal forms for the resources in P7

INF
ã

::= !Iã

| Iã

| MNF

| INF
ã

| INF
ã

| INF
ã

+ INF
ã

| b〈̃v〉. INF
ã

Iã ::= ai(x̃).MNF with ai ∈ ã and aj �∈ fn(MNF) for all j � i

Proof of termination of P5. The proof follows from the proof of P4 and the law

a(x̃).R � !a(x̃).R.

Language P6

INF
ã ::= . . . | b〈ṽ〉. INF

ã

Proof of termination of P6. We use the law a〈ṽ〉.R � a〈ṽ〉 | R.

Language P7

INF
ã ::= . . . | INF

ã + INF
ã

Proof of termination of P7. We use the law R1 + R2 � R1 | R2.

Table 5 shows the final grammar for resources in normal form.

9.3. If-then-else

We recall that B is a generic boolean expression on values, subject to Conditions 2.1, 2.2

and 3.1.

Language P8

MNF ::= . . . | if B then MNF else MNF

INF
ã ::= . . . | if B then INF

ã else INF
ã

Proof of termination of P8. Consider a term if B then R1 else R2. Let x̃ be the

free variables of B, and V
def
= {ṽ | x̃ : ṽ and ṽ is closed}.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 28

For each ṽ, there is a bound nṽ on the number of reduction steps that an expression

B{ṽ/̃x} can perform. For each nṽ , let Rṽ be a term such that

Rṽ (
τ−→)nṽ ∼ 0.

Therefore, we have

if B then R1 else R2 � R1 | R2 |
∑
ṽ∈V

Rṽ .

Using this transformation, each if-then-else can be removed.

9.4. Nested inputs

We show that the nesting of inputs is possible for (certain) first-order links. In a later

section we show that, surprisingly, input nesting in general destroys termination. In the

new production below, Iã is the grammar symbol of Table 5 and on(R) are the names

that appear free in R in output prefixes. Recall that a replicated input is an input that

is underneath a replication (in later languages, which will also include the recursion

operator, an input is also considered replicated if it is in the body of a recursion).

Language P9

Iã ::= . . . | ai(x̃). INF
ã

where

— ai ∈ ã

— aj �∈ on(INF
ã) for all j � i

— if ai is higher order, then INF
ã does not contain free higher-order inputs or free

replicated first-order inputs.

The condition on the occurrence of names in ã in output position in the body of the

input was also present in the previous language P8. The distinction between first-order and

higher-order links in the last condition says that a first-order input gives no constraints

on nesting, whereas underneath a higher-order input we can only have non-replicated

first-order inputs. The proof of the correctness of P9 requires some preliminary work.

Let AπΣ be the π-calculus defined in Section 7 (the simply-typed π-calculus, without

recursion and if-then-else, and with only asynchronous outputs, but with indexed sum

and replication). We use a few results for this calculus in the correctness proof of P9.

Lemma 9.4 (in AπΣ). Suppose C is any context where the hole is not in the scope of a

binder, and R is any process. We have

C[R] � C[0] | !R.

Proof. The proof is by induction on C .

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 29

For a generic process R of AπΣ and first-order names x̃, we define the process R{x̃},
writing W for the set {w̃ | w̃ is closed and x̃ : w̃}.

a〈ṽ〉{x̃} def
=

∑
w̃∈W a〈ṽ{w̃/̃x}〉

(R1 | R2){x̃} def
= R1{x̃} | R2{x̃}

(
∑

i Ri){x̃} def
=

∑
i(Ri{x̃})

(νã R){x̃} def
= νã (R{x̃})

(b(ỹ).R){x̃} def
= b(ỹ).R{x̃}

(!R){x̃} def
= !R{x̃}

Intuitively, R{x̃} eliminates x̃ from the free names of R, by replacing all output expressions

in which x̃ could appear free with a summation on all possible closed values that x̃ could

take.

Lemma 9.5 (in AπΣ). Suppose x̃ are first-order names, C is any context where the hole

is not in the scope of a binder, and R is any process. We have

a(x̃).C[R] � a(x̃).C[0] | !R{x̃}.

Proof. Below V is the set {ṽ | ṽ is closed and x̃ : ṽ}.

a(x̃).C[R] � a(x̃).C[
∑

ṽ∈V R{ṽ/̃x}]
� a(x̃). (C[0] | !

∑
ṽ∈V R{ṽ/̃x})

� a(x̃). (C[0] | !
∑

ṽ∈V (R{x̃}))
� a(x̃). (C[0] | !(R{x̃}))
� a(x̃).C[0] | !(R{x̃})

where we use, in the sequence, the laws:

— P �
∑

ṽ∈V P {ṽ/̃x}
— Lemma 9.4

— P {ṽ/̃x} � P {x̃}
—

∑
i P � P

— a(x̃). (P | Q) � a(x̃).P | Q, if x̃ not free in Q.

Lemma 9.6. Suppose M,M1,M2 and Mi (i ∈ L) are in P9, and x̃ : ṽ. Then if x̃ = ṽ

then M1 else M2, M{ṽ/̃x} and
∑

i∈L Mi are also in P9.

Lemma 9.7. Suppose R ∈ P9, where R has no if-then-else construct and just uses

asynchronous outputs. Then, for all first-order names x̃, we have R{x̃} ∈ P9 also.

Moreover, if R is a resource, R{x̃} is a resource also.

Proof. The proof is by induction on the structure of R.

Proof of termination of P9. By appealing to the transformations we used to prove

the correctness of P1 and P8, it suffices to consider normal forms without if-then-else

constructs and with asynchronous outputs only. These are processes that are also in AπΣ.

We prove that each such normal form Q (resource or process) in P9 is simulated by

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 30

another process of P9 that has no nesting of free inputs. The latter process is also in P8

(because nesting of free inputs is the only difference between P9 and P8), and is in AπΣ.

We proceed by induction on the maximum depth n of nesting of free inputs. For n = 1,

there is nothing to prove. For n > 1, consider an input !a(x̃).R in Q that has depth n (the

case where the input is not replicated is similar). By induction, we can transform R into a

process R′ in which there is no nesting of free inputs and such that R′ is both in P9 and

in AπΣ, and R � R′.

We distinguish 2 cases, depending on whether a is a first-order or a higher-order link.

— Suppose that a is first order. We show how to eliminate any free input underneath the

input at a. First we consider the case of a replicated input. Thus the continuation R′

is of the form C[!b(ỹ).N], where C is a context in which the hole is not in the scope

of a binder. Using Lemma 9.5,

!a(x̃).C[!b(ỹ).N] � !a(x̃).C[0] | !(b(ỹ).N){x̃} .

The case when the input at b is not replicated is similar.

— Suppose now that a is a higher-order name. According to the grammar of P9, all free

inputs underneath a are first order and are not replicated. We consider one of these

inputs and show how to eliminate it. Thus, let R′ = C[b(ỹ).N], where C is a context

that does not bind the hole. We have, for V
def
= {ṽ | ṽ is closed and ỹ : ṽ},

!a(x̃).C[b(ỹ).N] � !a(x̃).C[b(ỹ).
∑

ṽ∈V N{ṽ/̃y}]
� !a(x̃).C[b(ỹ). 0 |

∑
ṽ∈V N{ṽ/̃y}]

� !a(x̃).C[
∑

ṽ∈V N{ṽ/̃y}] | !b(ỹ). 0

where we use:

– P �
∑

ṽ∈V [x̃= ṽ]P {ṽ/̃x};
– π.P � π | P if π does not bind P ;

– Lemma 9.5.

The final result of the transformation is a process in P9, which can be proved from

Lemmas 9.6 and 9.7, and the fact that the grammar of resources P9 has parallel

composition, and that resources include processes. Moreover, this process is also in

AπΣ.

Iterating this procedure, all free inputs underneath the input at a can be eliminated,

and the result is a process both in P9 and in AπΣ.

9.5. Recursion

We show that we can add some forms of recursion, with first-order state.

Language P10

INF
ã ::= . . . | (µX(x̃). INF

ã)�ṽ�

MNF ::= . . . | X�ṽ�
where, in µX(x̃). INF

ã :

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 31

— x̃ are first-order names;

— INF
ã does not have unguarded outputs and unguarded if-then-else.

The conditions on recursion are related to those for input nesting in P9: in both cases

severe constraints are placed on higher-order state.

Recursion implicitly allows us to write forms of input nesting that go beyond those

allowed in P9. For instance, consider the process

R
def
= µX. a(y, z). y〈z〉.X

where a is a higher-order link. Unfolding the recursion, we obtain

a(y, z). y〈z〉. a(y, z). y〈z〉.R ,

which has a nesting of two free higher-order inputs – a structure not allowed in P9. Note

also that R is not behaviourally equivalent to a replicated process !a(y, z).R′, since in

the latter process the input at a is always available. (The recursion defining R has no

parameters, but R has a state.)

To prove the correctness of P10, we need some auxiliary π-calculus results. Let π�

be the π-calculus of Section 2, simply-typed, and with the addition of indexed sum and

replication. If R is a process that contains at most the recursion variable X free in it, then

R[X] is the process obtained from R by replacing all calls X�ṽ� with 0.

Lemma 9.8 (in π�). Suppose X is free in R and is not underneath a replication, H
def
=

µY (ỹ).M, and bn(R) ∩ fn(H) = �. Also, let V
def
= {ṽ | ṽ is closed and ỹ : ṽ}. Then

R{H/X} � R[X] | !
∑

ṽ∈V H�ṽ�.

Proof. The proof is by induction on R.

Definition 9.9. A relation R on closed processes is a simulation up to � and up to context

if M R N implies:

— Whenever M
α−→ M ′ there is N ′ such that N

α−→ N ′ and there are a context C (with

possibly infinitely-many holes) and tuples M̃ and Ñ (of possibly infinite length) such

that

– M ′ � C[M̃],

– C[Ñ] � N ′,

– M̃ R Ñ,

where the grammar for the context C is

C ::= [·] | C1 | C2 | ∑
i∈L

Ci | !C .

Lemma 9.10. If R is closed under substitutions (that is, Mσ R Nσ, for all M,N, and

closing substitutions σ with M R N) and is a simulation up to � and up to context, then

R⊆�.

Proof. The proof is similar to analogous proofs of soundness of ‘up-to context’

techniques (Sangiorgi 1998).

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 32

Lemma 9.11 (in π�). Suppose R does not contain replications. Then (µX(x̃).R)�ṽ� �
!R[X]{x̃}.

Proof. We prove that the relation R consisting of all pairs of closed processes of the

form

((µX(x̃).R)�ṽ�, !R[X]{x̃})
where R does not contain replications, is a simulation up to � and up to context. By

Lemma 9.10, this will prove the result. Take any pair of processes in R, say (M1,M2) with

M1
def
= (µX(x̃).R)�ṽ� and M2

def
= !R[X]{x̃}, and suppose M1

α−→ M ′
1. This means that

R{ṽ/̃x}{µX(x̃).R/X} α−→ M ′
1 .

Since recursions are guarded, this also implies that there is R′ such that

M ′
1 = R′{µX(x̃).R/X}

R{ṽ/̃x}[X]
α−→ R′[X]

where fn(µX(x̃).R) ∩ bn(R′) = � and R′ contains no replications. By Lemma 9.8,

M ′
1 � R′[X] | !

∑
ṽ∈V

(µX(x̃).R)�ṽ�

where V
def
= {ṽ | ṽ is closed and x̃ : ṽ}. Moreover, since R{ṽ/̃x}[X] � R[X]{x̃},

R[X]{x̃} α−→ R′′ � R′[X] .

Hence

M2 = !R[X]{x̃} α−→ R′′ | !R[X]{x̃}
� R′′ | !!R[X]{x̃}
� R′′ | !

∑
ṽ∈V !R[X]{x̃} .

Concluding, we have

M1
α−→� R′[X] | !

∑
ṽ∈V

(µX(x̃).R)�ṽ�

and

M2
α−→� R′[X] | !

∑
ṽ∈V

!R[X]{x̃},

and we are done, up to context.

Proof of termination of P10. We show how to eliminate all recursions in such a way

that the resulting process still belongs to P10. The result therefore also belongs to P9.

A resource (µX(x̃). Iã)�ṽ� of P10 is also a process of π�. Applying Lemma 9.11, we have

(µX(x̃). Iã)�ṽ� � !Iã[X]{x̃}.

The process !Iã[X]{x̃} may not be an input-guarded replication (for instance, the

outermost operator in !Iã[X]{x̃} may be a parallel composition), and therefore may not

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 33

be in P9. The process can be transformed into one with only input-guarded replication

reasoning by induction on Iã. We consider all the cases below:

— Iã = !I ′
ã.

Use the law !!R � !R and induction.

— Iã = I ′
ã | I ′′

ã or Iã = I ′
ã + I ′′

ã

Use the laws I ′
ã + I ′′

ã � I ′
ã | I ′′

ã and !(I ′
ã | I ′′

ã) � !I ′
ã | !I ′′

ã , plus induction.

— Otherwise, Iã = M, for some M. Since M cannot have unguarded outputs or

conditionals, M � 0.

No other cases are possible, because recursions are guarded and because recursions in

P10 have no unguarded outputs or conditionals.

9.6. Restrictions on resources

Language P11

MNF ::= . . . | νã (INF
ã)

Proof of termination of P11. Any term νã (INF
ã) obtained with the new production can

be replaced by a term νã (INF
ã | 0) obtained with the production

MNF ::= νã (INF
ã | MNF).

In this way a term in P11 can be transformed into a term in P10 and the latter simulates

the former.

10. Proof of Theorem 4.4

Here is the complete grammar of the normal forms of the final language P11.

Resources

INF
ã ::= !Iã

| Iã

| MNF

| INF
ã | INF

ã

| INF
ã + INF

ã

| b〈ṽ〉. INF
ã

| if B then INF
ã else INF

ã

| (µX(x̃). INF
ã)�ṽ�

Iã ::= ai(x̃). INF
ã with ai ∈ ã and aj �∈ on(INF

ã) for all j � i

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 34

Processes

MNF ::= νã (INF
ã | MNF)

| νã (INF
ã)

| ∑
i∈L M

NF
i

| MNF | MNF

| v〈w̃〉.MNF

| 0

| if B then MNF else MNF

| X�ṽ�

with the conditions:

— In a higher-order input a(x̃). INF
ã , the continuation INF

ã does not contain free higher-

order inputs, and does not contain free replicated first-order inputs.

— The parameters of a recursion are first order.

— The body of a recursion has no unguarded outputs and no unguarded if-then-else.

We prove that the language P of Theorem 4.4 is contained in the resources of P11.

The following modifications to the grammar of P11 may only decrease the set of defined

resources:

1 Remove the production MNF ::= νã (INF
ã | MNF).

2 Replace indexed sum with binary sum.

3 Having the production INF
ã ::= MNF, we can add some of the productions for processes

to the productions for resources: in particular,

INF
ã ::= 0 | X�ṽ� | νã INF

ã .

4 Remove the production

INF
ã ::= M .

5 Remove the production

INF
ã ::= !Iã .

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 35

After all these steps, the grammar for resources is

INF
ã ::= ai(x̃). INF

ã

| INF
ã | INF

ã

| INF
ã + INF

ã

| b〈ṽ〉. INF
ã

| if B then INF
ã else INF

ã

| (µX(x̃). INF
ã)�ṽ�

| νã (INF
ã)

| X�ṽ�

| 0

subject to the same conditions on nesting of inputs and recursion as before. If we now

replace the symbols INF
ã with M, we have the same grammar and the same conditions as

in the processes of P.

11. Counterexamples for nested inputs and recursion

The counterexamples in this section show the importance of the clauses (2) and (3) of

Condition 4.2 (on nesting of inputs and on state) for the termination of the processes of

P. For readability, we use input-guarded replications rather than recursion. Recall that

an input-guarded replication !a(x̃).M can be written with recursion as µX. a(x̃). (X | M).

First we show why nesting of higher-order inputs can be dangerous. Consider the process

R1
def
= !a(x,−).

(
x | a(−, p). p〈x〉

)
| !c. νp (a〈−, p〉. p(x). a〈x,−〉)
| a〈c,−〉.

(We use a hyphen in places where the value emitted or received is unimportant, and we

abbreviate a〈v〉.R and a(x).R by a.R and a.R when v and x are of unit type.) This process

is typable in the simply-typed π-calculus, with these types for the names, abbreviating

� 〈unit〉 by T ,

x, c : T

p : � 〈T 〉
a : � 〈T × � 〈T 〉〉.

R1 has one divergent computation: letting

A
def
= !a(x,−). (x | a(−, p). p〈x〉)

and

V
def
= !c. νp a〈−, p〉. p(x). a〈x,−〉,

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 36

we have

R1
τ−→≡ c | a(−, p). p〈c〉 | A | V [a〈c,−〉]
τ−→≡ a(−, p). p〈c〉 | νp (a〈−, p〉. p(x). a〈x,−〉 | A | V [c]
τ−→ νp (p〈c〉 | p(x). a〈x,−〉) | A | V [a〈−, p〉]

τ−→≡ a〈c,−〉 | A | V [pc]

∼ R1

where the column on the right indicates the action performed in the reduction.

In R1, the two inputs at a are not ‘simply nested’: the second input runs in parallel

with an output that depends on the first input. Replacing R1 with R2 below, we obtain a

counterexample that uses simple nesting:

R2
def
= !a(x,−). a(−, p). p〈x〉

| !c. νp (a〈−, p〉. p(x). (x | a〈x,−〉))
| a〈c,−〉 | c.

The types for the names of R2 are the same as those of R1. Here is a divergent computation

of R2, where A
def
= !a(x,−). a(−, p). p〈x〉 and V

def
= !c. νp (a〈−, p〉. p(x). (x | a〈x,−〉)):

R2
τ−→ a(−, p). p〈c〉 | A | V | c [a〈c,−〉]

τ−→≡ a(−, p). p〈c〉 | νp (a〈−, p〉. p(x). (x | a〈x,−〉)) | A | V [c]
τ−→ νp (p〈c〉 | p(x). (x | a〈x,−〉)) | A | V [a〈−, p〉]

τ−→≡ νp ((c | a〈c,−〉)) | A | V [p〈c〉]
∼ R2.

The same counterexamples can be repeated using nesting of free inputs at two different

higher-order links. For instance, replacing the second input at a with an input at a name

b, R2 becomes

!a(x,−). b(−, p). p〈x〉
| !c. νp (b〈−, p〉. p(x). (x | a〈x,−〉))
| a〈c,−〉 | c.

(4)

The next example has nesting of free higher-order inputs in which the second input,

rather than the first, is replicated. Name z has type � 〈unit〉, and a has type � 〈� 〈unit〉〉.

R3
def
= a(z). !a(−). z

| νz a〈z〉. (a〈−〉 | !z. a〈−〉).

R3 reduces to a process bisimilar to

R′
3

def
= νz (!a(−). z | !z. a〈−〉 | a〈−〉),

in which the mutual recursion in the replications at a and z causes a loop.

We now show why free first-order inputs underneath higher-order inputs cannot be

replicated. We use first-order links b, c, with type � 〈unit〉, and the higher-order link a

with type � 〈� 〈unit〉〉. The process

R4
def
= !a(x). !c. x | νb (!b. c | a〈b〉 | c)

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 37

can reduce to a process bisimilar to

νb (!c. b | !b. c | c)),

which has the same kind of loop as R′
3.

The above examples of divergences can be repeated using recursive definitions with

higher-order state instead of input nesting. For instance, writing A for the recursive

definition

µX(x, p). (x | a(y, q). (q〈x〉 | X�y, q�)) ,
R1 can be replaced by the process

R5
def
= A�c,−�

| !c. νp a〈−, p〉. p(x). a〈x,−〉,

which, in 4 steps, reduces to a process of the form R | R5, for some R (up to bisimilarity).

12. Non-termination in the Join calculus

The Join calculus (Fournet and Gonthier 1996; Fournet 1998) is a variant of the π-calculus

in which recursion, input and restriction are combined in the join construct. An example

of join is

def a(x) & b(y) � M in N , (5)

which introduces two new names a and b. Its effect is similar to that of an input-guarded

replication: a copy of M is activated, with appropriate arguments for x and y, whenever

an output at a and an output at b become available in N.

In Join, free inputs and recursion do not exist, therefore the clauses (2) and (3) of

Condition 4.2 are trivially satisfied. Moreover, condition (1) of the same definition simply

forbids recursive patterns (that is, a link should not be used in output underneath

the unique input occurrence of that link): this is the non-recursive Join. It is therefore

reasonable to wonder whether the simply-typed non-recursive Join just consists of

terminating processes.†

Counterexample (4) can be easily adapted to Join to show that the answer to the above

question is negative. The reason is that, intuitively, a join pattern like (5) is similar to a

process N | !a(x). b(y).M, which has nesting of inputs. To have only terminating processes,

we therefore need a further condition. A sufficient condition, obtained as a corollary of

Theorem 4.4, is that in any join pattern such as (5), at most one of the names a, b is

higher order.

13. Conclusions and future work

In this paper we have proved termination for the simply-typed (localised) π-calculus with

first-order values, and subject to three syntactic conditions that constrain recursive inputs

† Fournet (Fournet 1998) has shown that Join can be encoded into the non-recursive Join, but the encoding

needs recursive types, so it cannot be used to answer the question.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

D. Sangiorgi 38

and state. We have shown, by means of counterexamples, the need for the conditions as

well as the need for types. To prove the termination of this language, P, we first applied

the logical-relation technique to a subset of processes with only functional names, and

then we extended the termination property to the whole language by means of techniques

of behavioural preorders.

The termination of P implies the termination of various forms of simply-typed λ-

calculus: not only the usual call-by-name, call-by-value and call-by-need, but also enriched

λ-calculi such as concurrent λ-calculi (Dezani-Ciancaglini et al. 1994), λ-calculus with

resources and λ-calculus with multiplicities (Boudol and Laneve 2000). Indeed, all of

the encodings of λ-calculi into π-calculus that we are aware of, restricted to simply-

typed terms, are also encodings into P. The λ-calculus with resources, λres, is a form of

non-deterministic λ-calculus with explicit substitutions and with a parallel composition.

Substitutions have a multiplicity, telling us how many copies of a given resource can

be made. Because of non-determinism, parallelism and the multiplicity in substitutions

(which implies that a substitution cannot be distributed over a composite term), a direct

proof of termination of λres, using the technique of logical relations, although probably

possible, is non-trivial.

The main focus of this paper has been the proof techniques of termination for processes.

For future work, an important issue to look at is the expressiveness of the resulting

language P. At present we know little about it, other than that P can encode various λ-

calculus dialects. We are particularly interested in applications to parallel and distributed

object-oriented languages. This will probably require us to extend P with other features,

such as primitives for distribution and migration.

We have only considered the simply-typed π-calculus – the process analogous of the

simply-typed λ-calculus. It should be possible to adapt our work to more complex types,

such as those of the polymorphic π-calculus (Turner 1996; Sangiorgi and Walker 2001) –

the process analogue of the polymorphic λ-calculus.

We have been able to apply the logical-relation technique to only a small set of

‘functional’ processes. Then we have had to use ad hoc techniques to prove the termination

of a larger language. To obtain stronger results, and to extend the results more easily to

other languages (for instance, process languages with communication of terms such as

the Higher-Order π-calculus) a deeper understanding of the logical-relation technique in

concurrency would seem necessary.

Acknowledgements

I would like to thank the anonymous referees for their useful comments.

References

Boudol, G. and Laneve, C. (2000) λ-calculus, multiplicities and the π-calculus. In: Plotkin, G.,

Stirling, C. and Tofte, M. (eds.) Proof, Language and Interaction: Essays in Honour of Robin

Milner, MIT Press.

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

Termination of processes 39

Dezani-Ciancaglini, M., de-Liguoro, U. and Piperno, U. (1994) Fully abstract semantics for

concurrent λ-calculus. In: Hagiya, M. and Mitchell, J. C. (eds.) Theoretical Aspects of Computer

Software. Springer-Verlag Lecture Notes in Computer Science 789 16–35.

Fournet, C. and Gonthier, G. (1996) The Reflexive Chemical Abstract Machine and the Join

calculus. In: Proc. 23th POPL, ACM Press.

Fournet, C. (1998) The Join-Calculus: a Calculus for Distributed Mobile Programming, Ph.D. thesis,

Ecole Polytechnique.

Gandy, R.O. (1980a) An early proof of normalization by A. M. Turing. In: To H.B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism, Academic Press 453–455.

Gandy, R.O. (1980b) Proof of strong normalisation. In: To H.B. Curry: Essays on Combinatory

Logic, Lambda Calculus and Formalism, Academic Press.

Girard, J.-Y., Lafont, Y. and Taylor, P. (1988) Proofs and Types, Cambridge Tracts in Theoretical

Computer Science 7, Cambridge University Press.

Hicks, M., Kakkar, P., Moore, J. T., Gunter, C. A. and Nettles, S. (1999) PLAN: A packet language

for active networks. In: Conf. on Functional Programming (ICFP’98). ACM SIGPLAN Notices

34 (1) 86–93.

Honsell, F., Mason, I. A., Smith, S. F. and Talcott, C. L. (1995) A Variable Typed Logic of Effects.

Information and Computation 119 (1) 55–90.

Joachimski, F. and Matthes, R. (1998) Short proofs of normalization for the simply-typed lambda-

calculus, permutative conversions and Gdel’s T. Archive for Mathematical Logic (to appear).

Kobayashi, N. (2000) Type systems for concurrent processes: From deadlock-freedom to livelock-

freedom, time-boundedness. In: van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D. and Ito,

T. (eds.) IFIP Conf. TCS 2000. Springer-Verlag Lecture Notes in Computer Science 1872 365–389.

Lévy, J.-J. (1977) Reductions Correctes et Optimales dans le Lambda-Calcul, Ph.D. thesis, Université

de Paris.

Merro, M. (2001) Locality in the π-calculus and applications to object-oriented languages, Ph.D.

thesis, Ecoles des Mines de Paris.

Milner, R. (1989) Communication and Concurrency, Prentice Hall.

Milner, R. (1999) Communicating and Mobile Systems: the π-Calculus, Cambridge University Press.

Mitchell, J. C. (1996) Foundations for Programming Languages, MIT Press.

Sangiorgi, D. (1998) On the bisimulation proof method. Mathematical Structures in Computer Science

8 447–479.

Sangiorgi, D. (1999) The name discipline of uniform receptiveness. Theoretical Computer Science

221 457–493.

Sangiorgi, D. and Walker, D. (2001) The π-calculus: a Theory of Mobile Processes, Cambridge

University Press.

Turner, N.D. (1996) The polymorphic pi-calculus: Theory and Implementation, Ph.D. thesis,

Department of Computer Science, University of Edinburgh.

Yoshida, N., Berger, M. and Honda, K, (2001) Strong normalisation in the π-Calculus. In: 16th

Annual IEEE Symposium on Logic in Computer Science (LICS-01), IEEE Computer Society

311–322.

Yoshida, N. (1996) Graph types for monadic mobile processes. In: Proc. FST & TCS. Springer-

Verlag Lecture Notes in Computer Science 1180 371–386. (Full paper appeared as Technical

Report, ECS-LFCS-96-350, Edinburgh.)

https://doi.org/10.1017/S0960129505004810 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004810

