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Ablation of sloping ice faces into polar seawater
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The effects of the slope of an ice–seawater interface on the mechanisms and rate
of ablation of the ice by natural convection are examined using turbulence-resolving
simulations. Solutions are obtained for ice slopes θ = 2◦–90◦, at a fixed ambient
salinity and temperature, chosen to represent common Antarctic ocean conditions.
For laminar boundary layers the ablation rate decreases with height, whereas in the
turbulent regime the ablation rate is found to be height independent. The simulated
laminar ablation rates scale with (sin θ)1/4, whereas in the turbulent regime it follows
a (sin θ)2/3 scaling, both consistent with the theoretical predictions developed here.
The reduction in the ablation rate with shallower slopes arises as a result of the
development of stable density stratification beneath the ice face, which reduces
turbulent buoyancy fluxes to the ice. The turbulent kinetic energy budget of the flow
shows that, for very steep slopes, both buoyancy and shear production are drivers
of turbulence, whereas for shallower slopes shear production becomes the dominant
mechanism for sustaining turbulence in the convective boundary layer.

Key words: buoyant boundary layers, ice sheets, turbulent convection

1. Introduction
Recent studies report that the rate of loss of the grounded ice mass of West

Antarctica has increased by 70 % since 2002 (Paolo, Fricker & Padman 2016). A net
mass loss from Antarctic ice sheets has contributed to global ocean sea level rise
(Cazenave & Llovel 2010; Piecuch & Ponte 2014) and its contribution is expected
to become larger in the future. Melting of glacier tongues is also contributing to
a stronger fresh water layer over the Weddell Sea and this can result in reduced
production of Antarctic Bottom Water, an important component in the global
thermohaline circulation (Lavergne et al. 2014). Much of the acceleration of ice loss
has been attributed to increased flow or warming of circumpolar deep water entering
cavities beneath floating ice shelves, where it can cause faster melting, retreat of the
grounding line and a speed-up of glacier advance (Jenkins et al. 2010; Jacobs et al.
2011). The rate of melting has been studied using general circulation models (GCMs)
(Beckmann & Goosse 2003; Swingedouw et al. 2008; Spence et al. 2014; Snow
et al. 2016) and the Regional Ocean Modelling System (ROMS) (Galton-Fenzi et al.
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2012). Modelling of the Pine Island Glacier and its grounding line, for example,
has shown a tight coupling between the ice sheet interior and the surrounding
ocean water properties and ablation rate (Rydt & Gudmundsson 2016). However, the
underlying dynamics of ice melting is quite complex and poorly understood. The
melting crucially involves the transport of heat and salt through a thin boundary
layer at the ice face, whereas the models cited above resolve the flow field only at
scales larger than O(100) m and rely on assumptions and parameterisations in order
to invoke the roles of the convection and turbulent processes that control the melt
(or ablation) rate. These parameterisations are also not coupled to the grid resolution,
thereby exacerbating the uncertainty in the resulting model solutions (Morrison, Hogg
& Ward 2011; Gladish et al. 2012). In contrast turbulence-resolving simulations,
such as the direct numerical simulations (DNS) recently reported by Gayen, Griffiths
& Kerr (2016), along with theoretical modelling, serve as tools to understand the
mechanisms governing the melting process. The results from theory and DNS are also
likely to provide improved parameterisations for larger-scale models, thus enabling
more accurate predictions of future ice-shelf melting rates.

Laboratory experiments with a small ice block, immersed in warm water with a
vertical salinity gradient, showed a laminar boundary layer next to the ice face and
the formation of double diffusive horizontal intrusions (Huppert & Turner 1978, 1980;
Carey & Gebhart 1982). Experiments on the ablation of a relatively tall (O(1 m)) and
vertical ice surface in colder and saline (35 ‰) water of uniform far-field conditions
(Josberger & Martin 1981) achieved a turbulent boundary layer. A recent experimental
study (Kerr & McConnochie 2015) revisited the turbulent ablation of a vertical wall
with ambient water temperatures (0–6 ◦C) and salinity (35 ‰) close to those of
Antarctic waters, and showed that the melt rate is independent of height. The results
also imply that natural convection is driven by the salinity buoyancy. Diffusion of
salt to the ice interface lowers the melting temperature, allowing the ice to melt (or
dissolve) even when the interface temperature is less than 0 ◦C (Woods 1992; Kerr
1994; Wells & Worster 2011; Kerr & McConnochie 2015).

Scaling laws for the natural convection boundary layer properties and ablation rate
have been proposed for various flow scenarios. For a laminar boundary layer next to
a vertical ice interface a balance between vertical advection by mean flow and lateral
diffusion of solute leads to an ablation velocity that scales to the −1/4 power of the
height, and the 1/4 power of buoyancy anomaly, the latter predominantly provided
by the salinity field (Josberger & Martin 1981; Carey & Gebhart 1982; Nilson 1985;
Wells & Worster 2011). For a turbulent boundary layer, on the other hand, a turbulent
parameterisation (such as the use of a constant turbulent diffusivity; Josberger &
Martin 1981) is necessary. A recent theoretical model for dissolution (based on an
established scaling for turbulent heat transfer for natural convection, Holman 2010),
predicts that the ablation velocity scales as V ∼1T4/3

L , where 1TL = Tw − TL is the
difference between the ambient temperature Tw and the freezing point at ambient
salinity TL (Kerr & McConnochie 2015). The salinity dependence of TL implies that
the temperature difference 1TL, and therefore the ablation rate, is determined by the
transport of solute to the ice interface. The quantity 1TL is referred to as the ‘driving
temperature difference’ because this temperature difference is the cause of melting
and represents the source of the latent heat required for melting. However, it is not
to be confused with the source of momentum, which is the solutal buoyancy. Kerr &
McConnochie (2015) also show that the theoretical model is consistent with earlier
estimation of iceberg melt rate from ocean measurements (Morgan & Budd 1978;
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Budd, Jacka & Morgan 1980; Shepherd, Wingham & Rignot 2004), as well as with
their own laboratory experiments.

In large-scale ice–ocean models the boundary layer turbulence is assumed to be
driven by shear instability of an ambient current or buoyant plume. Where a buoyant
plume is modelled it represents a contribution of natural convection at the ice–ocean
interface due to either melting of the interface or a subglacial discharge of fresh
water (Jenkins 1991; Payne et al. 2007; Jenkins 2011). Plume models have used the
conservation of momentum and heat (Morton, Taylor & Turner 1956; Ellison & Turner
1959) for a one-dimensional convective plume with ‘top hat’ profiles across the plume,
providing a parameterisation of turbulent fluxes to the ice face. The wall plume model
is further developed by incorporating the flux equation for salt transport through a
solutal boundary layer under a sloping ice interface (Jenkins 2011; Magorrian & Wells
2016; Slater et al. 2016). For a vertical ice face McConnochie & Kerr (2016) have
improved the model through laboratory measurements of entrainment into the turbulent
plume. Like the parameterisations for the case of an ambient current, use of the plume
model assumes that turbulent fluxes to the ice face are a result of instability of the
mean shear in the plume.

Three-dimensional DNS of the dissolution of ice into seawater have to date focussed
on natural convection alone, and a vertical planar ice face. For a range of typical
Antarctic water temperatures and salinities the computed dissolution rates (Gayen
et al. 2016) are in excellent agreement with the laboratory experiments by Josberger
& Martin (1981) and Kerr & McConnochie (2015) and with the predicted 4/3 power
dependence of ablation rate on the difference between the far-field water temperature
and the interface melting temperature. The DNS also showed that the ablation rate
is independent of height when the boundary layer is turbulent at large values of the
Grashof number, which implies that the flow is independent of further increase in
the size of the computational domain. Another important result from the DNS is
logarithmic profiles in velocity and density fields within the boundary layer. This is
associated with production of the eddies by the mean shear at a rate comparable
to that from convective instability in this vertical natural convection at the Grashof
number achieved.

The focus of this paper is the effects of ice face slope on melting rates.
Observations of glacier tongues on the seaward side of the grounding line indicate that
the ice–water interface has a wide range of slopes (Jenkins et al. 2010). Melting near
the grounding line is of particular interest, as this is where melting is most likely to
influence the glacier dynamics and the overall rate of loss of grounded ice, hence sea
level rise (Rignot & Jacobs 2002). Under a sloping ice face the flow and melting are
expected to be complicated by a component of the buoyancy force orthogonal to the
sloping face, leading to a gravitationally stable salinity stratification in the boundary
layer. Attempts to describe the melting of a sloping ice boundary (Jenkins 2011;
Magorrian & Wells 2016) have used the turbulent buoyant plume theory. However,
there are no turbulence-resolving simulations to test the scaling for boundary layer
properties and melting rate. The energy pathways for production of turbulence, an
important consideration for the formulation of a parameterisation, are also unknown.
Here we investigate the effects of slope on the ablation rate and boundary layer
properties for ice in contact with uniform and quiescent surrounding seawater using
scaling theory and DNS. The simulations show complex boundary layer structures
and support a new scaling prediction. The energy pathways to turbulence are also
examined.
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FIGURE 1. (Colour online) Schematic of the simulation domain. The ice face of length
L is in contact with the seawater beneath at initial temperature Tw and salinity Sw. At the
bottom right, the domain has an open boundary condition using a sponge layer. Interface
conditions at the ice (Tint; Sint and dissolution velocity V) are evaluated from heat and salt
flux balances at that boundary.

2. Formulation of the problem and solution techniques
The flow field is solved in a rectangular domain shown in figure 1 with length L

parallel to the slope, depth W normal to the ice face and a width D in the spanwise
direction (normal to the plane of the schematic). Ice–water interface conditions are
applied at one boundary (the ice face) of the computational domain (figure 1). The
domain and coordinate system are rotated relative to gravity in order to represent
the ice slope. Gravity is always directed downward. The flow field is represented
by ũ = [uη, v, uζ ], where the wall-normal (η), spanwise (y) and slope-parallel (ζ )
directions are uη, v and uζ , respectively. The coordinates and velocities are relative to
a reference frame fixed at the planar ice–water interface. This is the most convenient
reference frame and we make no assumption about the relative speeds of the glacier
advance and ablation. We solve the incompressible continuity, Navier–Stokes, heat and
salt equations:

∇ · ũ= 0, (2.1)
∂uη
∂t
+ (ũ · ∇)uη =−

1
ρ0

∂p∗

∂η
+ ν∇2uη +

ρ∗

ρ0
g cos θ, (2.2)

∂uζ
∂t
+ (ũ · ∇)uζ =−

1
ρ0

∂p∗

∂ζ
+ ν∇2uζ −

ρ∗

ρ0
g sin θ, (2.3)

∂v

∂t
+ (ũ · ∇)v =−

1
ρ0

∂p∗

∂y
+ ν∇2v, (2.4)

∂T∗

∂t
+ (ũ · ∇)T∗ = κT∇

2T∗, (2.5)

∂S∗

∂t
+ (ũ · ∇)S∗ = κS∇

2S∗. (2.6)

Here ρ0 is the reference density for pure water at 0 ◦C and p∗, T∗, S∗ and ρ∗ denote
the deviation from the ambient hydrostatic pressure (pw), temperature (Tw), salinity
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(Sw) and density (ρw). The saline water has kinematic viscosity ν, thermal diffusivity
κT and salinity diffusivity κS. As the flow involves only a small range of temperatures,
the equation of state is closely approximated as linear without significant effects on
the solution:

ρ∗ = ρ0(βS∗ − αT∗), (2.7)

with coefficient of thermal expansion α and coefficient of haline contraction β.
Computational domains of a given length but different slopes have different vertical
heights. Thus we compare the flow and melt rate for different slopes at two given
values of the global Grashof number (Gr, which is the relative strength of buoyancy
to viscous force) and one value of the Stefan number (St),

Gr≡
gβ1SL3

ν2
, St≡

ρsLf

ρwcw(Tw − Tint)
, (2.8a,b)

where, [Sint,Tint] are the interface and [Sw,Tw] are the far-field salinity and temperature,
1S= (Sw− Sint) is the salinity anomaly, cw is the specific heat, Lf is the latent heat of
fusion for ice and ρs is the density of the ice. The values of Gr and St are independent
of slope because the simulations in § 4 show that the interface temperature and salinity
are independent of slope. The Prandtl number (Pr= ν/κT) and Schmidt number (Sc=
ν/κS) are fixed.

Three relations are applied at the ice–water interface. The freezing point of saline
water is closely approximated by a linear function of salinity and pressure:

Tint = asSint + bPint ' asSint. (2.9)

For the present study the effect on the freezing point of hydrostatic pressure difference
within the limited domain size is negligible and the interface temperature is assumed
to be solely dependent on interface salinity. The slope of the liquidus line is fixed at
as =−6× 10−2 ◦C ‰−1 (Holland & Jenkins 1999).

The second interface relation expresses the balance between latent heat flux QH
m of

melting and the divergence of conductive heat fluxes at the interface,

QH
ice −QH

w =QH
m, (2.10)

where QH
ice and QH

w are the heat fluxes to the interface in the ice and water, respectively.
The conductive transfer of heat into the ice is very small compared to the total heat
being used to melt the ice shelf under typical Antarctic conditions (Holland & Jenkins
1999; Kerr & McConnochie 2015). We therefore neglect the diffusive heat flux into
the ice (setting QH

ice ∼ 0). It is also assumed that the diffusion of heat in water at
the interface is much faster than the advection of heat by the ablation velocity (i.e.
κT∂

2T/∂η2
� V∂T/∂η|η=0, as V� κT/δT , where δT is the diffusive thermal boundary

layer thickness), so that (2.10) becomes

ρwcwκT
∂T
∂η

∣∣∣∣
η=0

= ρsVLf , (2.11)

where V is the ablation velocity. We adopt the convention that positive ablation
velocity indicates melting and retreat of the interface in the negative η-direction
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(at speed V) relative to the ice mass, or equivalently, translation of the ice mass in
the positive η-direction relative to the interface reference frame used here.

An analogous equation is used to describe the salt flux balance at the interface due
to fresh water release and salt flux divergence:

QS
ice −QS

w =QS
m. (2.12)

Here QS
ice and QS

w are the diffusive salt fluxes at the interface on the ice and water
sides, respectively, and QS

m is the advective fresh water flux associated with melting.
The latter can be expressed as QS

m = ρsV(Sice − Sint). The diffusive salt flux in the ice
is neglected and (2.12) becomes

ρwκS
∂S
∂η

∣∣∣∣
η=0

= ρsV(Sint − Sice). (2.13)

Thus there is a balance between the diffusive flux of salt toward the ice and the
advective flux of salt away from the ice face (due to the fresh water release by
melting). This is in contrast to the neglect of the heat advection as discussed above.
For the solutions found here we will assume that the ice is free of salt (Sice = 0).

In the DNS we impose wall-normal velocity uη = ρSV/ρw (Wells & Worster 2011)
at the ice face. Effects of any mean gradient duη/dζ |η=0 (which occurs in the laminar
boundary layer cases, where V is dependent on ζ ) are neglected as justified by Carey
& Gebhart (1982). Also neglected are the effects of spatial (in ζ and y) and temporal
variations of uζ |η=0 associated with the flow fluctuations. It was verified that the DNS
solutions are unchanged even when uη|η=0 is everywhere set to zero.

The ‘open ocean’ side of the computational domain is maintained as an open
boundary by relaxing temperature and salinity back to its background temperature
Tw and salinity Sw, respectively, through a ‘sponge’ region (Gayen & Sarkar 2011)
at 0.5W 6 η 6 W. The along-slope, spanwise velocities and scalar fields are relaxed
towards the background state in the sponge region by adding damping functions
−σ(η)ui(η, y, ζ , t) (i = 2, 3), −σ(η)T∗(η, y, ζ , t) and −σ(η)S∗(η, y, ζ , t) to the
right-hand side of the momentum and scalar equations, respectively, where σ(η) is
based on the time step 1t and changes from 0 at η = 0.5W to 1/1t s−1 at η =W.
At the down-slope and up-slope boundaries of the domain, no-slip conditions are
imposed for velocities and no-flux conditions are maintained for the temperature and
salinity. Both Tint and Sint vary with location and time on the ice interface due to
turbulent variations in the local heat and solute transport to the interface.

The solution is obtained using a mixed spectral/finite difference algorithm (Gayen
et al. 2016). The wall-normal and slope-parallel spatial derivatives (η and ζ ) are
computed with second-order finite difference. The spanwise (y) direction is considered
periodic and derivatives in this direction are treated with a pseudo-spectral method.
Time stepping is accomplished with a mixed implicit/explicit strategy with all
terms involving viscous contribution being stepped with the alternating direction
implicit (ADI) method. All the other terms are treated with a low storage third-order
Runge–Kutta method (Gayen 2012).

The physical dimension of the rectangular domain for one set of simulations is
W = 0.4 m, D= 0.05 m and L= 1.8 m. Additional simulations with the across-slope
width doubled to D = 0.1 m, and the same W and L, show similar boundary layer
properties and melt rates. Thus a width of D= 0.05 m is used for the remainder of
the simulations for the sake of computational efficiency. A second set of solutions
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in a larger domain used W = 4 m, D = 0.05 m and L = 20 m. In the two domain
lengths the grids have 256× 64× 1150 and 256× 64× 1920 points in the η, y and ζ
directions, respectively. In order to resolve the salinity boundary layer and turbulent
microscales for salinity, grid stretching is used in the η direction. All solutions satisfy
rigorous grid resolution and grid convergence criteria that are reported in detail in
Gayen, Griffiths & Hughes (2014), Gayen et al. (2016). Variable time stepping with a
fixed Courant–Friedrichs–Lewy (CFL) number of NCFL= 0.5 is used. The time step is
calculated to be 1t= (1/NCFL)[1η/uη, 1y/v, 1ζ/uζ ]min and varies significantly, from
O(10−3) s in the turbulent regime to O(10−2) s in the laminar regime. The fractional
step method is used to evaluate dynamic pressure at each time step (Gayen & Sarkar
2011).

The slope angle θ is varied from 2◦ to 90◦. In order to focus on the effect of slope
on the melting process, the far-field temperature Tw = 2.3◦C and salinity Sw = 35 ‰
are fixed for all cases. All temperatures are measured with respect to the freezing
point of pure water and therefore are quoted in Celsius. We fix g= 10 m s−2, κT =

1.285× 10−7 m2 s−1, cw= 3985 J kg−1 K−1, ν= 1.8× 10−6 m2 s−1, α= 6× 10−5 K−1

and β = 8× 10−4 ‰−1, taken from the physical properties of aqueous NaCl solutions
at the far-field temperature and salinity (Washburn 1926; Weast, Astle & Beyer 1989).
We use κS = 7.2× 10−10 m2 s−1 at 0◦C (Josberger & Martin 1981) with a resultant
Sc= 2500 at grid points adjacent to the interface. In the interior we use κS = 3.6×
10−9 m2 s−1 (Sc=500, Gayen et al. 2016) in order to make the turbulence simulations
feasible. The Prandtl number is fixed at Pr= 15 throughout the domain. The primary
solution sets are designed to cover the range of slope angles for both Gr= 7.5× 1011

(for a domain length of 1.8 m) and Gr= 10.28× 1014 (domain length of 20 m).
The critical Grashof number for transitions from laminar to turbulent flow on a

vertical wall varies from Gr⊥c ∼ 109–1010 (Turner 1979; Josberger & Martin 1981;
Holman 2010). A first approximation for the critical along-slope distance Lc beyond
which the boundary layer becomes turbulent, based on the critical vertical height L⊥c ,
is

Lc ≈
L⊥c

sin θ
=

1
sin θ

(
ν2Gr⊥c
gβ1S

)1/3

, (2.14)

giving a critical Grashof number for the sloping interface as

Grc ≈
Gr⊥c
(sin θ)3

. (2.15)

Based on this assumption we calculated the transition length for various slope angles
bounding the previously established critical Gr⊥c (figure 2) and plotted the laminar to
turbulent transition length (Lc) given by the DNS, where Lc is defined as the height
where spanwise fluctuations (vrms, rms = root mean square) reach 10 % or more of
the average up-slope flow. The results show that the along-slope length required to
achieve turbulence increases rapidly with decreasing slope angles. Hence we require
the longer domain of 20 m in order to simulate turbulent conditions under sloping ice
at θ 6 20◦.

3. Scaling analysis
Ablation of the ice face takes place when it is in contact with saline water with

a temperature greater than the melting temperature. The addition of melt water to
the saline water results in freshening of a layer adjacent to the ice and gives rise to
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FIGURE 2. (Colour online) Simulated and theoretically predicted (2.14) laminar to
turbulent transition length, where the predictions (curves) are based on the critical Grashof
number for a vertical wall (Gr⊥c = 109–1010). The simulated transition length Lt is
calculated based on turbulent statistics from the simulations for L = 1.8 m and 20 m,
respectively.

a buoyant boundary layer plume. Working from the momentum and solute transport
equations the plume can be divided into multiple layers (figure 3) based on the
dominant balances discussed below. The buoyancy force is important only within a
solutal boundary layer at the ice face, of thickness δS, and we refer to this as the
‘inner layer’. Diffusion or turbulent advection of heat in the wall-normal direction
is important within a thermal boundary layer of thickness δT . However, the thermal
buoyancy is relatively small and does not enter the momentum balance at leading
order. In the inner layer, solutal buoyancy and stress are the dominant terms in the
momentum equation. Outside the inner boundary layer there is an outer layer, of
thickness δ0, in which buoyancy forces make a negligible contribution.

When the flow is laminar the whole of the inner layer will be dominated by the
balance of buoyancy with molecular viscous stress, and by molecular diffusion of heat
and solute toward the ice, as previously described in the context of a vertical ice face
(Wells & Worster 2011). The laminar outer layer is governed by an inertia–viscous
balance. That analysis is adapted here (§ 3.1) to a sloping ice face. We find that
this laminar solution may have geophysical relevance for very small ice slopes, as
a consequence of a stabilising density stratification produced by the melting.

When the plume is turbulent, small-scale eddies add significantly to momentum
transport in the wall-normal direction within the buoyant inner layer, leaving a much
thinner laminar and diffusive sublayer (of thickness δsub) on the ice face. Within the
sub-layer eddy transport and turbulent kinetic energy production are negligible. The
smallness of the sub-layer thickness is confirmed by the DNS solutions reported here,
which show it to be O(10) times smaller than the inner layer thickness δS. In the inner

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

97
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.970


Ablation of a sloping ice face 553
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FIGURE 3. Schematic of the theoretical model boundary layer structure, with up-slope
velocity and solute concentration profiles in the wall-normal direction, for the case of a
turbulent plume (thicknesses not to scale).

layer the dominant momentum balance is between the solutal buoyancy and Reynolds
stress. However, scaling indicates that the molecular diffusion of solute toward the
ice remains a dominant term in the salt budget. In the outer layer the turbulent plume
is dominated by Reynolds stress and turbulent transport of solute, leaving the solute
relatively well mixed, which in turn implies a negligible molecular transport of solute.
Molecular diffusion of heat can remain important throughout a region of thickness δT ,
which may overlap the outer inertial layer. Ambient fluid is entrained into the turbulent
plume from the edge of the outer layer. The layers defined here are consistent with
a model previously proposed for thermal convection at a heated vertical boundary
(Wells & Worster 2008). In the following sub-sections the thicknesses of the sloping
inner solutal layer and thermal boundary layer, and the ablation rate, are analysed for
laminar and turbulent cases.

3.1. Laminar boundary layer flows: viscous–buoyancy balance
Wells & Worster (2011) derived similarity solutions for melting and dissolving with a
laminar boundary layer for a vertical ice face and quiescent far field. (The final form
of the similarity solution for the case of dissolution of a solute at a vertical wall was
also quoted by Husband & Ozsahin (1967). Here we summarise their solution for the
case of dissolving and extend it to sloping ice faces. However, for brevity we use
simple scaling arguments, which also assist in contrasting the dynamics of laminar
and turbulent cases.) In the inner layer δS and L are the characteristic length scales for
the wall-normal and the along-slope directions, respectively, whereas δ0 and L are the
characteristic length scales associated with the outer layer. At small Grashof numbers
(Gr<Grc) or shallow slopes, the inertia terms inside the diffusive boundary layer are
negligible, leaving a balance between viscous drag and buoyancy in the up-slope flow
in the momentum equations (2.2)–(2.4). The buoyancy is predominantly supplied by
the salinity anomaly (1S) across the diffusive boundary layer:

ν
∂2Uζ

∂η2
∼ ν

Uζ

δ2
S
∼ g sin θβ1S. (3.1)
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The scaling of the viscous terms in (3.1) holds for large Sc, as the inflection in the
up-slope velocity profile must lie outside the buoyancy-driven inner layer. The wall-
normal derivatives in the boundary layer are the dominant contributions (i.e. ∂/∂η�
∂/∂ζ as δS � L) to both the viscous drag and the diffusion of solute. Outside the
solutal diffusive boundary layer the buoyancy force is neglected and hence the inertia
in the outer layer balances the residual viscous drag force generated by the up-slope
flow (Nilson 1985). This leads to

U2
ζ

L
∼ ν

Uζ

δ2
0
. (3.2)

The convective salt transport by mean flow in (2.6) balances solute diffusion through
the inner boundary layer:

Uζ

1S
L
∼Uη

1S
δS
∼ κS

1S
δ2

S
. (3.3)

Here total velocity ui =Ui + u′i is decomposed into the mean boundary layer flow Ui

and fluctuating velocity component u′i with the latter assumed to play a negligible role
for laminar flow. We also assume that the salinity anomaly in the along-slope direction
is equivalent to the salinity difference across the boundary layer. Combining (3.1) and
(3.3) leads to the scaling of the thickness of the solutal boundary layer as

δS ∼ δS0(sin θ)−(1/4), (3.4)

where δS0 is the salinity boundary layer thickness for the case of a vertical ice face

δS0 ∼

(
νκSL
gβ1S

)1/4

, (3.5)

or equivalently,

δS0

L
∼Gr−1/4

L Sc−1/4, (3.6)

with the local Grashof number GrL = gβ1SL3/ν2 (which is based on the up-slope
distance L). From (2.13) the ablation rate can be estimated as V∼ (ρwκS1S)/(ρSSintδS),
which gives

V ∼ V0(sin θ)1/4, (3.7)

where V0 is the ablation rate for a vertical ice face given by

V0 ∼
ρw1S
ρSSint

(
gβ1Sκ3

S

ν

)1/4

L−1/4, (3.8)

or

V0L
κS
∼

(
ρw1S
ρSSint

)
Gr1/4

L . (3.9)
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This scaling predicts that the ablation rate decreases in the up-slope direction as ζ−1/4,
consistent with dissolution by laminar flow on a vertical ice face (θ =π/2) found by
Wells & Worster (2011). It also predicts that ablation rate decreases with slope angle
as (sin θ)1/4. Considering the diffusive heat transport in the thermal boundary layer,
the ablation rate from (2.11) must satisfy

V ∼−
ρwcwκT1T
ρSLf δT

. (3.10)

Equating (3.10) and (3.7), the thermal boundary layer thickness δT can then be
expressed as

δT ∼ δT0(sin θ)−(1/4), (3.11)

where the thermal boundary layer thickness δT0 for the case of a vertical ice face is

δT0 ∼
cwκTSint

κSLf

1T
1S

(
νκSL
gβ1S

)1/4

, (3.12)

or in dimensionless form

δT0

L
∼

(
ρS

ρw

Sint

1S

)
StLeGr−1/4

L Sc−1/4. (3.13)

Here Le = κT/κS is the Lewis number. The thermal boundary layer thickness shows
a similar dependence on the up-slope distance and slope angle as does the solutal
boundary layer (3.5), (3.6). Scaling of the outer inertial layer thickness δ0 (using (3.2)
and (3.5)) becomes

δ0

L
∼ Sc1/2 δS

L
∼Gr−1/4

L Sc1/4, (3.14)

and this too increases with up-slope distance in the same manner as the inner layer
thickness.

3.2. Turbulent boundary layer flows: boundary layer inertia–buoyancy balance
At large Gr the boundary layer becomes unstable to both buoyancy- and shear-driven
instabilities, leading to small-scale motions (Josberger & Martin 1981; Holman 2010;
Gayen et al. 2016). In the outer layer diffusive transport is negligible and there is a
balance in (2.6) between advection of solute by the mean flow and turbulent solute
transport, leading to

Uζ1S
L
∼

u′S′

δ0
. (3.15)

In the inner layer there is potentially a regime, at intermediate Gr, in which
turbulent transport of solute dominates over molecular transport while viscous stress
remains important relative to Reynolds stress. However, here we consider a regime at
very large Gr, in which Reynolds stresses u′iu′j produced by the small-scale motions
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dominate over the viscous stress and establish a dominant balance with local buoyancy
in the inner layer. Thus we assume

∂

∂η
u′ηu
′

ζ ∼
u′2η
δS
∼ g sin θβ1S (3.16)

along with local isotropy (u′η ∼ u′ζ ∼ v
′).

For this turbulent case small-scale fluctuations contribute to solute transport in the
inner layer and the mean convective transport in the wall-normal direction becomes
relatively small, as indicated by the ratio of terms (u′S′/δS)/(Uζ1S/L) ∼ δ0/δS � 1
(using (3.15)). This is consistent with previous studies of natural thermal convection
at a heated vertical boundary (George & Capp 1979; Tsuji & Nagano 1988; Wells
& Worster 2008). The solute transport by fluctuations balances, to leading order, the
diffusive transport of salt giving

∂u′ηS′

∂η
+
∂u′ζS′

∂ζ
∼ κS

∂2S
∂η2

, (3.17)

or in scaled form

u′ηS′

δS
∼ κS

1S
δ2

S
, (3.18)

where S′ is the salinity fluctuation and ∂/∂η � ∂/∂ζ . For a vertical ice face the
fluctuations in the salinity field S′ and density field ρ ′ scale with 1S and 1ρ and
(3.16), (3.18) lead to the turbulent inner layer thickness and ablation rate:

δS0 ∼

(
κ2

S

gβ1S

)1/3

and V0 ∼
ρw1S
ρsSint

(gβ1SκS)
1/3. (3.19a,b)

Kerr & McConnochie (2015) reported scaling for the ablation velocity in this vertical
case having this same dependence on buoyancy, V0 ∼ (gβ1S)1/3, but different
molecular dependences, V0 ∼ (κ2

S/ν)
1/3. The present theory neglects the effect of

viscosity, which is assumed small compared with the Reynolds stress in the inner
layer.

When the ice face is inclined, the fresh water flux due to ablation generates
stratification, which inhibits the turbulent fluctuations. Hence, salinity fluctuations S′
cannot directly scale with salinity anomaly 1S across the boundary layer. Another
independent equation is required to solve for S′. We assume that the mean density
gradient in the inner stratified layer scales with 1ρ/δS and the frequency of turbulent
fluctuations (the eddy turnover rate 1/1t) scales with the buoyancy frequency N.
Hence 1t ∼ 1/N ∼ [ρ0δS/g1ρ]1/2, where N2

= −(g/ρ0)dρ/dz ∼ (g/ρ0)1ρ/δS. This
leads to a simple linearised equation for density fluctuation:

∂ρ ′

∂t
∼ u′η

∂ρ

∂η
→

ρ ′

1t
∼

u′η1ρ

δS
. (3.20)

These assumptions may not hold for near-vertical ice faces, where the effect of local
stratification becomes negligible. Substituting the time scale in (3.20), the density and
salinity fluctuations (S′ ∼ ρ ′/βρ0) become

ρ ′ ∼ uη ′
√
1ρρ0

gδS
, S′ ∼ uη ′

√
1S

gβδS
. (3.21a,b)
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From (3.16), (3.18) and (3.21) the salinity fluctuations scale as

S′ ∼1S(sin θ)1/2 (3.22)

and the solutal boundary layer thickness becomes

δS ∼ δS0(sin θ)−2/3, (3.23)

where δS0 is again the inner solutal layer thickness for the case of a vertical ice face,
this time for turbulent convection. In dimensionless form:

δS0

L
∼Gr−1/3

L Sc−2/3. (3.24)

Hence δS0 and δS are independent of up-slope distance. From (2.13) the ablation
velocity becomes

V ∼ V0(sin θ)2/3, (3.25)

where the ablation velocity (3.19) for a vertical ice face is

V0L
κS
∼

(
ρw1S
ρSSint

)
Gr1/3

L Sc2/3. (3.26)

Thus ablation rates too are predicted to be independent of distance up the slope.
Ablation decreases with decreasing slope angle as (sin θ)2/3.

Using (2.11) and (3.25) we solve for the thermal boundary layer thickness

δT ∼ δT0(sin θ)−2/3, (3.27)

where for the vertical case

δT0 ∼
cwκTSint

κSLf

1T
1S

(
κ2

S

gβ1S

)1/3

, (3.28)

or
δT0

L
∼

(
ρSSint

ρw1S

)
St−1LeGr−1/3

L Sc2/3. (3.29)

Like the inner solutal boundary layer, the inner thermal boundary layer has thickness
independent of distance up the slope.

The outer layer scaling can be established independently using turbulent entrainment
parameterisation. Continuity (2.1) for the mean flow in the outer layer shows

Uζ

L
∼

Uη

δ0
. (3.30)

The mean normal velocity Uη is equivalent to the entrainment velocity and is assumed
to be linearly proportional to the up-slope velocity, Uη ∼ EUζ , where E is the
entrainment coefficient (Morton et al. 1956). This leads to

δ0 ∼ EL. (3.31)

Similar scaling was suggested for the outer layer in the case of natural thermal
convection at a heated vertical boundary (Wells & Worster 2008), for turbulent wall
plumes driven by a uniformly distributed wall buoyancy flux (Cooper & Hunt 2010)
and also for the melt boundary layer at a vertical ice wall (Kerr & McConnochie
2015; Gayen et al. 2016). Under an inclined ice face E is likely to be dependent
on the slope angle, potentially following the result of Ellison & Turner (1959) for a
dense plume flowing down a sloping boundary. For our case of melting of a sloping
ice face, the result is an outer layer thickness (the overall region of turbulent flow)
that grows linearly with distance up the slope.
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FIGURE 4. (Colour online) Temporal evolution of ablation rate (µm s−1) measured at the
mid-length for slope angle θ,= 2◦, 50◦ and 80◦ in the 1.8 m domain.

4. Results

All simulations are initiated with uniform temperature and salinity. White noise is
imposed in the velocity field and concentrated near the interface. The initial ablation
rate is large, as shown in figure 4, but it quickly slows down and reaches a statistically
steady value. In the steady state, for most of cases, high frequency variations are
observed in the ablation rates and the interface temperatures (not shown here), as a
result of turbulent fluctuations inside the boundary layer. The time to reach steady
state decreased with increasing slope angle (figure 4). For the laminar boundary layer
at θ = 2◦ temporal variability is absent and the simulation takes significantly longer to
reach a steady state. The steady state ablation rate decreases with decreasing slope.

Snapshots of the up-slope velocity for the 1.8 m and 20 m domains are shown in
figures 5 and 6, respectively. Snapshots of the temperature and salinity field for a
1.8 m domain are shown in figures 7(a) and 7(b), respectively. Buoyant water with low
salinity is released from the interface and forms a very thin boundary layer (figure 7b)
with up-slope flow adjacent to the ice face. At the same time, a cooled outer boundary
layer forms with downslope flow extending far beyond the inner salinity boundary
layer (figure 7a). This bi-directional flow was previously predicted for a vertical ice
face (Nilson 1985), and was found in laboratory experiments (Josberger & Martin
1981; Kerr & McConnochie 2015) and numerical simulations (Gayen et al. 2016).
The inner boundary flow accelerates with up-slope distance from the bottom of the
domain and at the same time spreads outward due to laminar diffusion and turbulent
entrainment of the quiescent ambient fluid. Flow structures inside the boundary layer
are similar for turbulent cases at different slope angles.

For a given slope length the buoyancy force in the along-slope direction decreases
with decreasing boundary slope, resulting in weaker up-slope flow. The wall-normal
component of buoyancy keeps the up-slope plume in contact with the wall and tends
to separate it from the down-slope flow (as shown in figure 5b). For the domain length
of L= 1.8 m with slope angle θ 6 30◦, the effective Grashof number is smaller than
the critical Grashof number (Gr⊥<Gr⊥c ) and the flow field is expected to be laminar.
However, in the 20 m domain the flow is turbulent even for slopes as small as θ = 5◦
(figure 6a).

In figure 8(a) the ablation rates are compared for laminar and turbulent cases in
the smaller domain (slopes θ = 30◦ andθ = 80◦). For θ = 80◦ a maximum ablation
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FIGURE 5. (Colour online) Snapshots of the up-slope velocity uζ (colour scale in m s−1)
on a vertical ζ–η plane normal to the ice face for slopes (a) θ = 2◦, (b) 50◦ and (c) 80◦,
respectively, with L= 1.8 m.

rate is observed around ζ = 0.05–0.075 m from the bottom boundary, which is where
transition from laminar to turbulent flow takes place. Above this transition region the
turbulent ablation rate becomes statistically invariant with the along-slope distance.
Similar observations were reported in laboratory experiments (Josberger & Martin
1981; Kerr & McConnochie 2015) and DNS of the vertical case (Gayen et al. 2016).
For θ = 30◦ the entire boundary layer is laminar (for L = 1.8 m) and the ablation
rate decreases with along-slope distance. In order to estimate the power law relation
of the ablation rate and along-slope distance, the ablation rates for θ = 2◦, 10◦ and
30◦ are plotted as a function of distance up-slope on a logarithmic scale (figure 8b).
Consistent with the theoretical estimation in (3.7), the laminar ablation rates decrease
with up-slope distance as ζ−1/4.

Time-averaged ablation rates at mid-length are shown in figure 9(a), where
the rates are averaged over 8–10 turnover times τb at statistically steady state.
Here, τb = [L/gβ1S]1/2 is calculated based on the effective domain length L
and characteristic velocity scale [gβ1SL]1/2. Both laminar and turbulent ablation
rates monotonically increase with the slope angle. The turbulent ablation rates are
more sensitive to the ice face inclination than are the laminar rates. The laminar
cases show a (sin θ)1/4 dependence (3.7), whereas turbulent ablation rates follow
a (sin θ)2/3 dependence (figure 9b). Both of these behaviours are predicted by the
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FIGURE 6. (Colour online) Similar to figure 5, up-slope velocity uζ (colour scale in
m s−1) for (a) θ = 5◦, (b) θ = 10◦ and (c) θ = 20◦, respectively, for L = 20 m. The
slope-normal distance η is enlarged by approximately 10 times relative to the slope-parallel
scale in order to more clearly show the structure in the boundary layer.

theoretical scaling in (3.7) and (3.25). In figure 10(a) we plot the thermal boundary
layer thickness (δT) as a function of the slope angle, where δT is measured as the
temperature e-folding distance from the ice–water interface. The measured boundary
layer thickness increases with decreasing slope angle, with trends again depending
on whether the boundary layer is laminar or turbulent. The thickness of the thermal
boundary layer for laminar flow increases as (sin θ)−1/4 (figure 10b). For turbulent
flow the layer thickness is more sensitive to the slope angle and approximately follows
(sin θ)−2/3. Both behaviours are again consistent with the theoretical scaling in (3.11)
and (3.27). The corresponding thickness of the salinity boundary layer (figure 11)
behaves in an identical fashion and is approximately one half of the thermal boundary
layer thickness.

The wall-normal advective buoyancy flux (guηρ∗/ρ0) based on wall-normal velocity
uη and density anomaly ρ∗ is shown in figure 12(a). Although the wall-normal
buoyancy flux shows significant spatial variability associated with strong turbulent
patches, the averaged value is negative. The magnitude of the averaged advective
buoyancy flux shows increasing magnitude with the slope angle as (sin θ)2/3 (see
figure 12b). The ablation rate is also coupled to the net transport of buoyancy across
the boundary layer. Hence the trend in buoyancy flux with slope angle is consistent
with the change in ablation rate with slope angle as shown in (3.25). Under the
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FIGURE 7. (Colour online) Snapshots of (a) temperature T (◦C) and (b) salinity S (‰)
fields for θ = 50◦.

conditions used here, the turbulent advection (g〈uη ′ρ ′/ρ0〉) accounts for more than
80 % of the total advective buoyancy flux in the wall-normal direction. The scaling
(3.25) for transport can be compared with previous experiments for turbulent natural
convection beneath a forward facing inclined heated plane (Vliet & Ross 1975),
where uniform heat flux was imposed over the whole plane. In that case, the heat
transfer coefficient, Nu (the normalised heat transport), varies as the 1/4 power of the
flux Grashof number, Gr∗F. This is effectively the 1/3 power of the Grashof number
based on the temperature difference 1T and modified gravity g∗ = g(sin θ)2 (where
Gr∗= g∗α1TL3/ν2 and the extra sin θ dependence is due to stratification). The result
therefore suggests the heat transfer coefficient in that thermal convection problem
follows Nu∼ (sin θ)2/3, as is observed here for the solutal flux.

The turbulent kinetic energy (K), denoted by K = (1/2)u′iu
′

i with index representing
the η, y and ζ directions, is the energy associated with the fluctuating motions in the
boundary layers. The fluctuating (primed) component u′i = ui −Ui, is calculated using
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FIGURE 8. (a) Along-slope profiles of instantaneous laminar (θ = 30◦) and turbulent (θ =
80◦) dissolution rates. (b) Instantaneous laminar dissolution rates for θ = 2◦, 10◦ and 30◦,
respectively, as a function of along-slope distance (in logarithmic scale) for L = 1.8 m,
along with the theoretical 1/4 scaling (3.7) for laminar ablation rate for an arbitrary slope
angle (continuous line). Values are taken after the flow field reaches quasi-steady state.
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FIGURE 9. Time-averaged ablation rates at mid-length as functions of (a) slope angle θ
and (b) sin θ . In (b) scales are logarithmic. Lines show the predicted 1/4 (dashed line)
and 2/3 (solid line) power laws as predicted by (3.7) and (3.25).u Turbulent boundary
layer with L = 1.8 m; E turbulent boundary layer with L = 20 m, A laminar boundary
layer with L= 1.8 m.

spanwise spatial average Ui. The turbulent kinetic energy budget can be expressed as

∂K
∂t
+ uj

∂K
∂xj
= P− ε+ B−

∂Γ

∂xj
, (4.1)
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FIGURE 10. Thermal boundary layer thickness δT (m) as a function of (a) slope angle
θ and (b) sin θ (scales are logarithmic). Solid and dotted line show the predicted scaling,
(3.11) and (3.27), respectively. Symbols as in figure 9.
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FIGURE 11. Salinity boundary layer thickness δS (m) as function of (a) slope angle θ
and (b) sin θ (scales are logarithmic). Solid and dotted line shows the predicted scaling
of (3.4) and (3.23), respectively. Symbols as in figure 9.

where P is the turbulent shear production

P=−u′iu′j
∂Ui

∂xj
, (4.2)

ε is the turbulent dissipation

ε= ν
∂u′i
∂xj

∂u′i
∂xj
, (4.3)

B is the turbulent buoyancy production

B=−gρ ′u′ζ sin θ + gρ ′u′η cos θ (4.4)
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FIGURE 12. (Colour online) (a) Snapshot of slope-normal advective buoyancy flux (sum
of mean (Uηρ

∗) and turbulent (u′ηρ
′) advective fluxes in kg s−1 m−2), for L= 1.8 m and

θ = 80◦. (b) Absolute value of time- and area-averaged total wall-normal buoyancy flux as
a function of sin θ , where the real values are negative; scales are logarithmic. In (a) the
slope-normal distance is enlarged by approximately 10 times relative to the slope-parallel
scale in order to show the structure inside the boundary layer. In (b) the dashed line
has slope 2/3. The averaging is over a period τ ∼ 10τb and across the thickness of the
boundary layer.

and the term ∂Γ /∂xj denotes the turbulent advection of K,

Γ ≡ p′u′i +
1
2

u′iu′iu′j − ν
∂K
∂xj
, (4.5)

containing the pressure transport, turbulent transport and viscous transport.
Snapshots of K for the shorter and longer domain are shown in figures 13(a), 13(b)

and 13(c), 13(d) respectively. For all cases K increases in the up-slope direction and
the boundary layer thickens. For a given slope length, K is larger for the steeper
ice faces. For the smaller slope, turbulence develops further along the ice interface
(figure 13c,d).

The instantaneous turbulent shear production rate P, buoyancy production rate B,
and viscous dissipation rate ε are shown in figure 14 for the steepest (θ = 90◦) ice
face and in figure 15 for a small slope angle (θ = 10◦). The turbulent dissipation
rate is always maximum at the ice face at all distances along the slope. A significant
difference in the relative magnitude of turbulent production (compared with other
terms in the energy budget) is observed. For the shallower slopes, turbulent shear
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FIGURE 13. (Colour online) The instantaneous distribution of turbulent kinetic energy, K
(colour scale in m2 s−3) in turbulent boundary layers for slope angle (a) θ = 50◦ and (b)
θ = 90◦ for L= 1.8 m and (c) θ = 5◦ and (d) θ = 20◦ for L= 20 m. A middle portion of
the domain (the actively turbulent region) is shown, and in (c) and (d) the slope-normal
distance is enlarged by approximately 10 times relative to the slope-parallel scale in order
to more clearly show the turbulent activity in the boundary layer.
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FIGURE 14. (Colour online) Snapshot of rates of (a) turbulent shear production, P
(m2 s−3), (b) buoyancy production B (m2 s−3) and (c) viscous dissipation, ε (expressed
in a logarithmic colour scale) for θ = 90◦ in 1.8 m domain.

production is an order of magnitude greater than buoyancy production, whereas for
a vertical ice face the shear production is similar to the buoyancy production. The
relative contributions of turbulent fluxes in the production of turbulent kinetic energy
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FIGURE 15. (Colour online) Snapshot of rates of (a) turbulent shear production P
(m2 s−3), (b) buoyancy production B (m2 s−3) and (c) viscous dissipation ε (expressed
in logarithmic scale) for θ = 10◦ and L= 20 m. The slope-normal distance is enlarged by
approximately 10 times relative to the slope-parallel scale in order to show the structure
inside the boundary layer.

K are plotted in figure 16(b), where the time- and area-averaged K, dissipation, shear
and buoyancy production are denoted by, 〈K〉, 〈ε〉, 〈T〉 and 〈B〉 respectively, and are
calculated as:

〈K〉 =
1

2τA

∫
A

∫
τ

u′iu′i dt dA, (4.6)

〈P〉 =−
1
τA

∫
A

∫
τ

u′iu′j
∂Ui

∂xj
dt dA, (4.7)

〈ε〉 =
1
τA

∫
A

∫
τ

ν
∂u′i
∂xj

∂u′i
∂xj

dt dA (4.8)

and

〈B〉 =
1
τA

∫
A

∫
τ

g(−ρ ′u′ζ sin θ + ρ ′u′η cos θ) dt dA. (4.9)

The averaging time window is τ ∼ 10τb and A is the area (in the ζ and η plane)
containing the boundary layer in the upper half of the domain length, where the
boundary layer is fully turbulent. For steep slopes (figure 16a) K is large and the
value of 〈B〉 is comparable or slightly larger than that of 〈P〉. For small slopes
(θ 6 20◦) 〈P〉 dominates over 〈B〉.

The production of turbulence, either by velocity shear or buoyancy, is significantly
influenced by density stratification and gravity at both limits of ice face inclination.
When the slope is steep (θ > 80◦), turbulent buoyancy flux (predominantly produced
in the plume) is less impacted by the weak vertical (stable) buoyancy gradient
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FIGURE 16. (Colour online) Normalised time- and area-averaged turbulent statistics as
function of slope angle; (a) turbulent kinetic energy 〈K〉 is normalised by characteristic
velocity scale Uc∼ (gβ1SL)1/2, (b) turbulent dissipation 〈ε〉, buoyancy production 〈B〉, and
turbulent shear production 〈P〉, for 1.8 m domain (filled symbols) and for 20 m domain
(open symbols) normalised using the respective domain length L and velocity scale Uc.

produced by the solutal boundary layer. In contrast, the buoyancy production for
small angles is reduced significantly by two mechanisms. First there is a large
reduction in the buoyancy force in the up-slope direction (g sin θ ), which produces the
slope-parallel components of 〈B〉. In addition the development of stable stratification
under the sloping ice face causes the turbulent advection in the wall-normal direction
to decrease, resulting in smaller buoyancy production. For small slopes the mean
shear is large enough to produce turbulence despite the density stratification (while
convection is inhibited) and, as a result, the turbulent shear production becomes the
dominant mechanism for maintaining turbulence in the boundary layer.

5. Discussion and conclusions
This paper presents the first DNS of ice dissolution due to convection under a

sloping ice face. We have simulated fully turbulent flow at geophysically relevant
slopes (θ 6 40◦) at temperature and salinities relevant to Antarctic conditions. The
typical Grashof number based on the vertical height of the ice–seawater interface is of
the order of Gr⊥∼1017–1019, for heights in the range 200–800 m. Although this range
is not achievable using DNS with present computational capacity, we have chosen
large Grashof numbers (Gr⊥ ∼ 1010–1011), which are well above the critical Gr⊥c ∼
109 for the transition to turbulent convection on a vertical heated wall. The solutions
confirm that these conditions ensure a steady but turbulent mean flow. The boundary
layer flow changes significantly with the slope. For steep angles a narrow up-slope
flow of relatively fresh buoyant water develops close to the wall. For small slope
angles (θ < 20◦), the buoyant up-slope flow is relatively weak due to the reduction of
buoyancy force in the along-slope direction. However, the solutions at large Grashof
numbers again show a turbulent flow.

Boundary layer properties and ablation rates are dependent on whether the boundary
layer is laminar or turbulent. Both the thermal and solutal boundary layer thicknesses
increase with decreasing slope angle, resulting in the reduction of heat and salt
transport to the interface and consequent reduction of the ablation rate. In the
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laminar case the ablation rate decreases with along-slope distance as ζ−1/4, consistent
with theoretical scaling. In contrast the turbulent cases have ablation rates that are
nearly uniform along the slope, as previously found for vertical ice faces (Kerr &
McConnochie 2015; Gayen et al. 2016). We hypothesise that for domain lengths
larger than those achieved in the present DNS, and having a Grashof number greater
than the critical value, dissolution rate will be given by the asymptotic dynamics
of turbulent boundary layer flow, and the present results can be extrapolated to
geophysical scales following the scaling presented here. In that case, for a purely
convective boundary layer, the ablation of ice faces into the ocean will follow
V ' (sin θ)2/3. This leads to a simple modification of the previously derived
dependence of melt rate on the driving temperature difference (Kerr & McConnochie
2015; Gayen et al. 2016), now taking account of the interface slope as:

V ' 8.98× (1TL)
4/3(sin θ)2/3 m yr−1. (5.1)

An alternative scaling reported by Magorrian & Wells (2016) is based on a
buoyant plume model and gives a greater sensitivity of melt rates on θ for small
slopes (V ∼ (sin θ)3/2) and an inverse dependence on slope angle (V ∼ 1/sin θ ) for
near-vertical interfaces. Those trends are not reflected in the present DNS results.
The discrepancy may result from a different regime of the convective boundary layer.
The model of Jenkins (1991) and Magorrian & Wells (2016) assumes a regime in
which the thickness of the laminar sub-layer near the ice face is controlled primarily
by shear instability (Grossmann & Lohse 2000; Wells & Worster 2008) rather than
convective instability as found here. The transition to this shear-dominated regime at
steep slopes for saline convection was predicted to occur at Gr∼ 1020, which occurs
for vertical ice heights of hundreds of metres. The present study uses heights/domain
lengths where the boundary layer on near-vertical interfaces remains controlled by
turbulent convection. Hence it remains to be demonstrated whether the transition can
occur. Further discussion of transition between these two regimes can be found in
McConnochie & Kerr (2017b).

The turbulent kinetic energy budget shows the presence of statistically steady
turbulence in the simulated flow fields for slope angles as small as, θ = 5◦. For
near-vertical slopes (θ > 80◦) contributions to turbulent kinetic energy from shear
production and buoyancy flux are comparable, with a slightly greater contribution
from the buoyancy flux. For small slopes the production of turbulent kinetic energy
by buoyancy fluxes is significantly smaller than the turbulent shear production. This
potentially implies that the shear associated with large-scale ambient geostrophic
currents and barotropic tides in the ocean is more likely to contribute to the turbulent
transport at the ice face and enhance the melt rate for small slopes.

The present study has focused on the effect of ice face slope on melting that
is driven by natural convection. The natural convection on its own can be viewed
as a base, or reference, case given that natural convection will always be present
irrespective of the magnitude and influence of shear associated with ambient
geostrophic currents, internal waves or sub-glacial discharge plumes. The next step
will be to include ambient stratification (McConnochie & Kerr 2016b), subglacial
discharge of fresh water (McConnochie & Kerr 2017a) and ambient shear.
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