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1. Introduction. Isotropic Gaussian processes, of which we shall give a formal
definition presently, arise in various practical problems. The present inquiry arose
from the consideration of the variability found in the yields of plots in agricultural
field experiments. Samples of such patterns of variability can be obtained from
uniformity trials, whereby a piece of land is treated uniformly throughout and the
crop is harvested in small units or plots. The results from such trials have been widely
used to determine optimum plot sizes for future experiments with the crop con-
cerned, but it has never been clear how valid is the generalization from a uniformity
trial to future experiments on other sites. One difficulty arises from the lack of a suitable
model to express the variability; another difficulty arises from the formidable analytical
problems besetting any attempts to apply deductive reasoning to even simple models.
We may mention two approaches that have been made to the uniformity trial problem:
Fairfield Smith (3) has supplied an empirical law connecting the variance of con-
tiguous groups of plots with the size of the group, and Quenouille (6) and Whittle (8)
have considered the fitting of two-dimensional isotropic Gaussian processes to uni-
formity trial data. Whittle has pointed out that a satisfactory model may have to
incorporate an additional random element at each point, and has outlined the
difficulties of estimation which arise when such an element is introduced. The con-
nexion between Fairfield Smith's law and the approach via two-dimensional stochastic
processes, if any, seems to be quite unknown.

The complexity of the question suggests that an approach based on sampling from
certain plausible isotropic Gaussian processes might be valuable. The problem then
arises of drawing a sample from such a process. This is the problem considered in
this paper.

The Gaussian process is a random function. Little previous work has been done on
sampling for random functions; and, to the best of our knowledge, what has been done
(e.g. D. G. Kendall's construction of a sample birth-and-death process (5)) has always
been by way of an artificial realization of some given physical process. In our inquiry,
the data consist of a given distribution (of a random function), and we have first to
discover a suitable physical process whose realization will then provide a sample
function. |

f Theoretically we may derive a finite set of n values of such a sample function directly as
follows: Let % be a vector of n independent random variates from a normal distribution of mean
zero. Then, if A be any symmetric n x n matrix, A? is a random vector with correlation matrix
A2. Thus to produce a sample of n values from a process with given correlation matrix R, we
could solve the equation A2 = R for A, and form A%. However, in practice, n is likely to be at
least 100 or more, and the labour involved in the calculation of A would be formidable.
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The agricultural example, quoted above, concerns a Gaussian process in the plane.
Gaussian processes also arise in three-dimensional space, for example, in studying
turbulence of fluids. We may as well, therefore, deal directly with the isotropic
Gaussian process in %-dimensional Euclidean space. At the end of the paper, however,
we shall discuss the particular case n = 2 in detail.

2. Definition of the isotropic Gaussian "process. Let En denote ̂ -dimensional Euclidean
space, in which x, y,. . . (perhaps with suffixes) denote typical points. Let W be the
space of all functions w{x.) with domain En and range Ev An isotropic Gaussian process
is a probability measure P(w) on W such that

(i) for every given finite set of points x1; x2, ...,xfc, the joint distribution of w^Xj),
w(x2),..., w(xk) is a &-variate normal distribution;

(ii) for every given pair of points x, y, the correlation coefficient between w(x) and
w{y) depends only on r = | x — y |, the distance between x and y.

By introducing a linear transformation w*(x) = a(x) + /?(x) w(x), where a and /? are
deterministic functions, we may suppose that the mean and variance of w(x) are
0 and 1 respectively, independently of x. After (ii), we can then write p(r) for the
covariance of w(x) and w(y).

Not every function p is admissible in this role. We suppose that we are given some
admissible p, and that we have to discover a physical process which will yield a sample
from P(w) with this prescribed p. A necessary and sufficient condition for admissibility
of p is that, for every finite set x1;x2, ...,xk, the matrix (p^) shall be positive semi-
definite, where pti = p(\ xt — x^ |) for i,j = 1,2, ...,k. Our analysis will provide an
alternative condition, which is sufficient (see §4) but not necessary (see §11).

3. Proposed procedure. In terms of the prescribed function p(r), we shall determine
two functions f(z) and v(z), where/(z) is a frequency function of a non-negative random
scalar and v(z) is a non-negative function of a non-negative real variable. For the
moment, however, suppose t h a t / and v are known functions.

We shall also require a fixed family of cumulative distribution functions Fy(s), the
family being generated by y varying over all non-negative real numbers and the
variable s in each such distribution being a real scalar. The members of this family are
to satisfy two conditions

f°° sdFy(s) = 0, f" s*dFv(s) = v(y),
J —00 J — 00

(1)

but may otherwise be completely arbitrary. For instance, we might take Fy to be the
distribution having the two discrete values ± [v(y)]%, each with probability £; or,
alternatively, Fy might be rectangular for some values of y and normal for other values,
subject to the conditions (1) that the mean and variance of Fy are always to be zero
and v(y) respectively.

In principle the procedure to be adopted is this: We throw on to En an infinite number
of (n-dimensional) spheres at random. The centres of these spheres are to be uniformly
and independently distributed over En, and their radii are to be independently
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distributed with frequency function/(z). To each sphere of radius z we attach a random
score s, which is to be a random observation from the distribution Fz(s). The scores
from the various spheres are to be mutually independent. Let w(x.) be the sum of the
scores of all spheres which contain x. We assert that, if/ and v are properly defined in
terms of p, w[x) will have the prescribed distribution P(w); and we shall prove this
assertion in §4.

We notice first, however, that for a practical realization of this procedure, we must
modify it slightly, since we can (in practice) only throw down a finite number of
spheres and we can only cover with them some bounded region of En. In fact, we shall
only want to observe how w(x) behaves in some large sphere 8, centred at the origin
and of radius R. If R is large enough, w(x) for x e 8 will give an adequate picture of
the behaviour of w(x) in the whole of En. In this case then we need only consider those
random spheres which meet S\ for all other spheres will not influence w(x) in 8. To
compensate for working within S only, we must replace f(z) by a suitably chosen
frequency function/jK(z) depending on the fixed number R. The procedure for obtaining
a random sphere consequently becomes: Choose a radius z at random from/B(z); then
choose a centre uniformly at random in the sphere of radius R + z centred at the origin;
and finally attach a score s to the sphere by drawing an observation from Fs(s). This is
to be repeated a large number of times, say N, so that the number of scores contributing
to w(x) for any particular x is large. We shall then invoke the central limit theorem to
claim that the sum of scores at each x is asymptotically normal.

Because N is finite, the final result will be an approximation to w(x) in two respects.
First, w(x), for each particular x, will be only approximately normal. Secondly,
w(x) = w(y) whenever x and y are sufficiently close together, because x and y will then
be covered by the same set of spheres. Thus w(x) will be a step-function approximation
to the limiting random function. Clearly, however, as N increases, the sizes of the
various regions in which w remains constant will decrease; and therefore, when we
are only interested in observing w at some finite set of points in 8, we can choose
N large enough to make the approximation adequate.

4. Justification oftheprocess. Consider any given finite setof points xx, x2,..., xfc in S.
In accordance with the modified procedure above, we throw N random spheres on to
En, each one to meet 8; but, as we have already seen, so far as the scores within 8 are
concerned, the procedure is equivalent to throwing spheres with centres uniformly at
random over En. Thus, if sf is the score allotted to the jth sphere (j = 1,2,..., N) and
s^ = Sj or 0 according as x^ falls within the jth. sphere or not, then the vectors
ŝ  = (sy> s2j, • •., ski) are independently and identically distributed, and

«?(s,) = 0

by (1), and *&,) = <>*, (2)

independently of i, j . Let us suppose that we can satisfy

<j* = 1. (3)
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Then, by the multivariate central limit theorem for identically distributed random
N

vectors (Cramer(2), Theorem 20a), the normalized total score N~i 2 si wiH t>e

asymptotically normal as N->co. (It is worth noticing in passing, that the distribution
of Sj will never be a multivariate normal distribution, except in the trivial case when
Fy(s) = 1 for s ̂  0 and Fv(s) = 0 for s < 0.) Hence the procedure will be fully justified
if we can satisfy

*{*u*a) = PW (r>0), (4)

where r = | xx —x21, since (3) amounts to the special case r = 0 in (4).
Now sxls21 = s\ or 0 according as the sphere does or does not cover both xx and x2.

The probability that z will be drawn from/jj is fR(z) dz; and, conditional upon z having
been drawn, the expected value of sf is v(z), by (1). Hence

=
J

Q(z)v{z)fR{z)dz, (5)
0

where Q(z) is the probability that a sphere of radius z will cover both xx and x2.
Let hnz

n denote the volume of an ra-dimensional sphere of radius z. Here kn is
a constant, expressible in terms of gamma-functions of n. Now Q{z) = 0 if z < \r.
Otherwise write

zsin# = | r , (6)

so that \TT — 6 is the semi-vertical angle of the cone (with vertex at xt) through the
intersection of the surfaces of two spheres of radius z centred at xx and x2. The random
sphere will cover both xx and x2 if and only if its centre lies in the region common to
these two spheres; this region is made up of elementary (n— 1)-dimensional disks
(perpendicular to the axis of the cone) of radius z cos x and thickness d(z sin x)> and its
total volume is therefore

2 &»i-i(z c o s X)""1 d(z sin Y) = 2kn_, zn cos71 Y dy.
Jx=8 Je

By momentarily taking r = 0 we deduce the well-known relation

f*" , ^, r i i i r fk+ j )
Kn — zlcn-\\ c o s XaX — / / cm-l o n / i « , i \ • ^8^

Jo

The available positions for the centre of the random sphere of radius z fill the interior
of a sphere of radius R + z. Hence, from (7),

Define functions <j> and G by means of

42-2
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Since Q(z) = 0 for z < \r, we get from (4), (5), (6), (9) and (10)

n-lJ ir

Cco(Ci7r

cos"
JirUe

cos

= - \G(Z) f " cosnxdxT - f °° 0(z) cosn

L JO Jz=ir J z = \r
dd6

4}
2sin6>

= 01 -sin(91 cos™

Hence, substituting t = 2jr, and using (8), we get

The integral equation (11) is a generalized form of Schlomilch's equation; and we
shall obtain its solution in §5. I t will then follow from (10) that we shall have solved
the problem provided we take fR and v to be functions satisfying

where <j>'(u) = d<j){u)jdu. Since fR is a frequency function, it must also satisfy

«)«fe=l; (13)f
Joo

and since v is a variance we must have ^' > 0. Hence a sufficient condition for the
admissibility of p is that the solution ^ of (11) shall be non-decreasing.f

5. A generalization of Schlomilch's integral equation. The integral equation to be
considered is m h + l ) , t ) r

t t o 0 0 M f( ( ) (14)

Here ijrn is a given function, and we want to solve the equation for the unknown
function <f>n. We assume throughout that n is a non-negative integer. Schlomilch's

f This conclusion is slightly more general than that actually proved in the text; it follows
easily enough, however, by replacing fR(z) dz by dFR(z) and allowing discontinuities in FK. Here
FR is simply the cumulative distribution function associated wiih fR, and is unconnected with
Fv denned in §3. When n = 1, it may be inferred from equation (29) below that any convex p
is admissiible. P61ya (Proc. 1st Berkeley Symp. on Math. Statist, and Prob. p. 116) has already
noted that convexity is a sufficient condition for a symmetric characteristic function. Symmetric
characteristic functions and isotropic correlation functions are formally equivalent. Hence (29)
confirms P61ya's result, while (30) and (31) generalize it for n = 2 and n = 3.
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equation is the particular case n = 0; and (Whittaker and Watson(7), p. 229) its
solution is ri"

<?>o(t) = to(0) + t\ f'o(tsmd)dd, (15)
Jo

where i/r^(t) = d^0{t)/dt. The case n = 1 is easily solved. We have
rin rt

txjr^t) = <j>-i(ts,m.d)tcosddd = (fr^ujdu,

Jo Jo

whence ^i(0 = ^i(*) + < î(*)- (16)

We recall Cauchy's integration formulae: namely, that the system of equations

Ct(t — x)m~1

is equivalent to $ f >(«) = \ ' <j>n{x) dx (m = 1,2,...). (18)
Jo \m— ll-

The analogous system of equations

\l (m = 1,2,...) (19)= \l

Jo
is equivalent to

\ J J (m=l;2,...). (20)

These results are true for arbitrary functions (f)n, ijrn (i.e. not necessarily connected by
(14)), and (20) can easily be deduced from (18) by writing %x2 for x, \tz for t, and
ipn\x) — ^irHi^2)- Alternatively, (19) and (20) can be proved from first principles in
the same way as Cauchy's formulae.

Now (14), (17) and (19) yield

rt ri"
dx\

Jo Jo

Repeating this process m times, where 2m < n, we get

= rffl r ( f r + \ ) { n ~x} (n "3)'''(w "2m + 1 ) \ l" ̂ m){t sin d) coan~2medd-
We can thus reduce the general case of (14) to one or other of the cases n = 0 or

n=\. Thus if n is even and positive, we take 2m = n in (21) and get
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Then, from (15) and (17),

<j)n(t) = ~ It f ** Y;(*sin0)dd\ (n>2 and even). (23)

Alternatively, if % is odd, we take 2m = n — 1 and deduce

<f>n(t) = ~ {^=^tj^ (i2 -x^-^xfjx) riz) (n > 2 and odd). (24)

6. Remarks on the nature of the general solution. It follows from (11) and (12) that
*(*)/R(*) is a linear functional of p(»); and this fact can be exploited in the usual way.
For instance, suppose that . , . . , , , ,„_.

V{*)fn(*) = U\(Z) (25)
is the solution when p(r) = e~Xr. (26)

Then v{z)fR(z)=ju^(z)dH(X) (27)

is the solution when p(r) = \e~XrdH(A). (28)

We shall give explicit expressions for «A(z) in case n = 1,2 or 3; so that a general
solution (27) will be available in these cases whenever the correlation function can be
represented as a Laplace-Stieltjes transform. The solution (27) is formal to the extent
that it is only meaningful if never negative. Thus as a particular case of (27) we can
obtain a formal but meaningless solution for p(r) = e-Ar cos fir by picking out the real

In applying the theory to a physical realization, one has considerable freedom of
choice, since it is only the product of fE and v which is specified, and, moreover, the
distributions Fy are arbitrary apart from (1). We are uncertain how best to use this
freedom of choice. If Fy is normal, w(x) for any fixed value of x will not be normal
when a finite number N spheres are thrown; for w(x) will be the sum of N numbers,
of which n (say) are zero and N — n are drawn from normal populations with a random
variance v(z), since z is random. Also n is a random variate, being binomially dis-
tributed with parameter

It follows that the characteristic function of w(x), for fixed x, is

which is not the characteristic function of a normal distribution. When v(z) is constant,
it might be possible to get a fairly good approximation to normality in w(x) by taking
Fy as a discrete distribution, normal in shape apart from the fact that the frequency
at zero is reduced by a sufficient amount to allow for the factor p. When v(z) is not
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constant, the situation becomes more difficult. In any case adjustments to Fy of the
foregoing type will not ensure that w{Xj),..., w(xh) are jointly in multivariate normal
form for a finite number of spheres. The whole problem of the rapidity of convergence
to a Gaussian process, as the number of spheres becomes large, seems rather formidable,
since it is intimately bound up with the behaviour of w(x) and w(y) for points x and
y close together.f

7. Explicit solutions in three or fewer dimensions. By a straightforward application
of the methods described in §§4 and 5, we find

) />*(2s), when n = 1; (29)

J g ) when. = 2; (30)

»(*)/*(*) = 4 ( J ^ Z ) V ( 2 z ) - 2zpw(2z)}, when n = 3. (31)

In (29), (30) and (31)
p"(r) = d2p(r)jdr2, p'"(r) = d3p(r)/dr3.

For higher values of n, v(z)fR(z) can be expressed similarly in terms of various
derivatives of p; but the expressions become increasingly complicated as n increases,
and the cases n ^ 4 are unlikely to be wanted in practice. A useful alternative form to
(30) springs from the substitution cosectf = coshw:

(32)v(z)fR(z) = -4(ii! + z)2 p'"(2z coshu) cosh udu, when n = 2.
Jo

8. Markovian linear process. This is the special but important case n = l,/o(r) = e~**,
where A is a constant. We find from (29)

v(z)fB(z) = ^(R + z)e-2^; (33)

and a convenient method will be to sample from the exponential distribution^

/ B ( ) ]
I (34)

with v{z) = 2A72 + 2AZ.J

As a generalization of (33), the case n = 1, p(r) = exp (— Ara) leads to

provided 0 < a ^ 1.

t Note added 26 March 1955. Since preparing this paper, one of us (J. A.N.) has carried out
some numerical sampling for the case n = 2, p(r) = e-°-er. With the choices of fB and v used so
far, the rate of convergence is disappointingly slow. We are at present investigating devices for
improving the rate of convergence, and we hope to publish information on this in a subsequent
paper.

% Since only the product V/R has to depend on R, it is immaterial whether we make /R or
v depend on R; the latter choice might be more convenient.
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9. Pseudo-Markovian planar process. This is the case n = 2, p(r) = e~~Xr, and seems
the simplest model for the agricultural example mentioned in § 1. We find from (32)

2\
Jo1 0

(2Az), (35)

where K1 is the modified Bessel function of the second kind in Macdonald's notation,
namely, T7. , . ,. , (T . . T , .,

A , k = hm iml 1_(z) — ii . JzH cosec7re.
e-»-0

This form of ^Tx is the one usually tabulated. For further remarks on notation, see the
footnotes to Whittaker and Watson ((7), p. 373), and Jeffreys and Jeffreys ((4), p. 579).
In Heaviside's notation (27) reads

Z)2K1I1(2AZ). (36)

The main difference between (33) and (35) is that, in (33),

!" v(z)fB(z)dz (37)
Jo

is finite; so that we can, if we wish, arrange that the scores attached to the random
spheres are all bounded. On the other hand, with (35), (37) is infinite; so that we
must use an unboundedly large variance v(z) and a fortiori unboundedly large scores
for very small spheres. This, of course, does not mean that the variance of w(x.) will
be unbounded; in fact our analysis has already ensured that it shall be unity, which
may be otherwise verified from (5) and (9), thus:

var[u;(x)] = f°° 4Xsz2K,(2Az)dz = I f°° x*K,(x)dx
Jo *Jo

= -\ x2\ e-xcoahucoshududx = " = 1.

2J 0 Jo Jo cosh2tt

Since the function exK1(x) is tabulated(i), it might be convenient to satisfy (35)

by taking /B(«.) = 2Ae-«*«, v(z) = |(2Ai? + 2Az)2e2A*iiri(2Az). (38)
This form also has the advantage that we shall not have to deal as a rule with very
large random circles carrying very small scores.

The more general case n = 2, p(r) = exp (— Ara) is also admissible if 0 < a ^ 1; and
fR{z) v(z) is expressible in terms of a rather complicated definite integral, which we do
not quote.

10. Pseudo-Markovian spatial process. The three-dimensional case of p(r) — e~Xr

g l V 6 S v{z)fB{z) = 4A2(iJ + z)3 (1 + 2Az)e-2A*/3z2. (39)

11. Whittle's planar process. Whittle (8) has given reasons for regarding the process
with correlation function . . , Tr .. . IA^

p(r) = ArK^Xr) (40)
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(where K^ is the Bessel function used in § 9) as the ' elementary' process in two dimen-
sions corresponding to p(r) = e~Ar in one dimension. WenowshowthatWhittle'sprocess
cannot be realized by the methods of this paper, thus substantiating the remark at
the end of § 2. Since A is only a scale factor, it will be convenient to take A = 1: so that
(40) becomes

p(r) = rK^r).

Now ((4), p. 582) we have the relations

~ [rKx(r)] = - rK0(r)t j r [KQ(r)] = - K^r).

Hence p"(r) = rKt(r) - K0(r).

d r°°
From (32) we have v(z)fR(z) = - 2(R + z)2-j- p"(2z cosh u)du,

dzj o
and so it is enough to show that

d f00
M (z) = -=- {2z cosh u Kx(2z cosh u) — K0(2z cosh uj} du

can take positive values. Since, by definition of Kn,

KJx) = cosh nue-xeoshudu,
Jo

we have M(z) = -j- (2zcoshucoshv - l)e~2!IC0Si!XUC0ShJVdudv
dzjo Jo

dz \ dz/J o J

= _ i . ^ L ( l + 2 " e-2. cosh „

4rfz\ dz/J _„]_«,

In the integral, put ?7 = it + v and F = u — v. Since

2 cosh u cosh v = cosh U + cosh F,

weget * ( , )

= ^0(z) Kx{z) - z[K0(z)]> - 2[^i(2)]2-

Since K0(z) is logarithmically infinite at z = 0, while ^Tx(z) has a simple pole at z = 0,
we see that M(z) is positive for all suflSciently small positive values of z.
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