
Agent-based support within an interactive
evolutionary design system

DRAGAN CVETKOVIĆ1 and IAN PARMEE2

1Soliton Associates Incorporated, Toronto, ON M5C 1Y2, Canada
2University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom

(Received August 3, 2000;Accepted August 2, 2002!

Abstract

This paper describes the use of software agents within an interactive evolutionary conceptual design system. Several
different agent classes are introduced~search agents, interface agents, and information agents! and their function
within the system is explained. A preference modification agent is developed and an example is given illustrating the
use of agents in preference modeling.

Keywords: Conceptual Design; Multiobjective Optimization; Preferences; Software Agents

1. INTRODUCTION

Although application of evolutionary and adaptive comput-
ing technologies for design optimization is now well estab-
lished, there is little recognition of their potential for design
exploration through appropriate integration with concep-
tual design processes. Such integration supports search across
predefined design spaces while also allowing exploration
outside initial constraint and variable parameter bounds.
Close designer interaction allows exploration involving off-
line processing of initial results, which leads to a redefini-
tion of the design space. Further designer0evolutionary
search of redefined space can lead to the discovery of inno-
vative or even creative solutions~Parmee, 1998, 1999!.

Entirely machine-based conceptual design is not sug-
gested here, nor is it currently considered viable. Best util-
ity can be achieved from systems that enhance the designer’s
inherent capabilities. Appropriate integration can result in
the development of prototype evolutionary design tools that
provide powerful extensions to design team activity by sup-
porting rapid, extensive exploration and stimulating inno-
vative reasoning. This paper therefore discusses the use of
agent-based methods for both search0exploration and the
support of the designer in the design process. It represents a
synopsis of the second part of PhD thesis research pre-

sented in Cvetkovic´ ~2000!, dealing with application of
agents.

The idea of using preferences and agents in conceptual
engineering design is not new. Some aspects of the research
are presented by D’Ambrosio and Birmingham~1995!, Well-
man et al.~Wellman & Doyle, 1991; Wellman, 1995; Well-
man & Walsh, 2000!, and many other researchers.

The paper is organized in the following manner: Sec-
tion 2 briefly describes the interactive evolutionary con-
ceptual design system~ IEDS!, Section 3 introduces
preferences, and Section 4 introduces agents. In Section 5
the use of agents within the system is discussed and some
classes of agents are introduced. Section 6 provides an
example of agent use. Finally, Section 7 provides conclu-
sions, discussion, and pointers to future work. More de-
tails, in a wider context, are given in Cvetkovic´ ~2000!.
The IEDS is described in Parmee et al.~2000, 2001! and
the preferences are described in more detail in Cvetkovic´
~2000! and Cvetkovic´ and Parmee~2002!.

2. THE IEDS

Conceptual design represents the initial phase of a design
process~Pahl & Beitz, 1996!. The research presented here
is based on whole system airframe design in cooperation
with British Aerospace~BAE! Systems Ltd. Some design
issues have been presented elsewhere~Parmee & Purchase,
1997; Cvetkovic´ et al., 1998!. A major characteristic of
conceptual design relates to innovation and creativity, which

Reprint requests to: Dragan Cvetkovic´, Soliton Associates, Inc.,
44 Victoria Street 2100, Toronto, ON M5C 1Y2, Canada. E-mail:
dragan@soliton.com

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2002!, 16, 331–342. Printed in the USA.
Copyright © 2002 Cambridge University Press 0890-0604002 $12.50
DOI: 10.10170S0890060402165012

331

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

is very well encapsulated by the following quote~Goel,
1997!:

. . . problem formulation and reformulation are integral
parts of creative design. Designers’ understanding of a
problem typically evolves during creative design process-
ing. This evolution of problem understanding may lead
to ~possible radical! changes in the problem and solution
representations.

Therefore, an IEDS~Parmee et al., 2000, 2001! was de-
veloped to assist the designer during conceptual design.
The core of the IEDS is described in Figure 1. It consists of
the following modules:

• information gathering processes~e.g., cluster oriented
genetic algorithms or COGAs; Parmee, 1996; Bonham
& Parmee, 1998; Parmee & Bonham, 2000!: a module
that constantly extracts relevant information from the
search processes and presents it to the design team via
machine-based agents. COGAs support the rapid de-
composition of complex, multivariate design space into
regions of high performance and the extraction of rel-
evant design information from such regions through
good solution cover.

• preference module:a module for specifying the rela-
tive importance of objectives and constraints~Cvet-
ković & Parmee, 1999b, 2002!. Its task is to help the
designer in this process by introducing several catego-
ries of importance of objectives~much less important,
less important, equally important, more important, and
much more important! linguistically and to transfer
these values, using the concepts of leaving score and
induced ordering~Fodor & Roubens, 1994!, into
weights used throughout the optimization process.

• distributed coevolutionary GA:a module for multi-
objective optimization~Parmee & Watson, 1999;

Parmee et al., 2000!, supporting the identification of
high performance regions of a multidimensional Pa-
reto frontier. Each objective is assigned a separate op-
timization process with the task of optimizing
~minimizing or maximizing! that objective only. At the
beginning all optimization processes are independent
of each other; but as the run progresses, a penalty,
relating to maximal allowable Euclidean distance be-
tween the variables of each evolutionary process, is
used to lead obtained solutions toward a common re-
gion. If a variable is outside a range defined by a range
constraint map, the associated solution fitness is ad-
justed by a penalty function. The communication be-
tween processes is implemented using the Parallel
Virtual Machine~PVM! software package~Geist et al.,
1994!.

• problem decomposition module:a part of the distrib-
uted coevolutionary module that uses Taguchi meth-
ods ~Peace, 1993! for identifying the sensitivity of
several differing objectives to individual variable
parameters.

• database module:a module for storing interesting and
promising solutions and training data.

The two components under consideration within the pa-
per are the distributed coevolutionary GA and preference
module. Preferences are used in a coevolutionary context to
change the value of penalties depending on importance fac-
tors: more important objectives are penalized less, and less
important objectives are penalized more. In that way, pro-
cesses compete for the best solution, as the penalty function
discourages the solutions that are far apart.

Examples of different algorithms and different design
aspects are illustrated through the joint research project with
BAE Systems. The details of the project are described in
more detail elsewhere~Cvetkovićet al., 1998; Cvetkovic´,
2000; Parmee et al., 2000, 2001! and in Section 5.

Fig. 1. The schema of IEDS.

332 D. Cvetkovic´ & J. Parmee

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

An example of the integration of these two modules is
presented in Figure 2, showing the influence of preference
settings on the coevolutionary optimization processes. It
shows the optimization~maximization! of two objectives:
both processesS0 and S1 work on objectivesy3 ~specific
excess power, SEP1! andy9 ~ferry range, FR!, but the pro-

cessS0 tries to maximize objectivey3, whereas processS1

tries to maximize objectivey9 ~the objectives conflict!. The
plots show the values of objectivey3. Figure 2~a! shows the
optimization results using preferencey3 ,, y9 ~i.e., objec-
tive y3 is much less important thany9!, Figure 2~b! shows
equal preferences~ y3 ' y9! and Figure 2~c! shows the op-
timization results using preferencey3 .. y9 ~i.e., objective
y3 is much more important thany9!. These preferences di-
rect the search toward different regions ofy3 versusy9 val-
ues: ify3 ,, y9, the search processes will converge toward
smaller values fory3 ~and larger values fory9!, as illus-
trated in Figure 2~a!; if they are considered equally impor-
tant, they will converge toward compromise regions where
both objectives are “average”@Fig. 2~b!# . Similar results
are obtained by plotting objectivey9 instead ofy3.

Figure 2 demonstrates how preferences control the search
process, driving the compromise region toward the one with
better values for the more important objective. It can also
be noted in Figure 2~a! that the results of the two optimi-
zation processes do not converge to the same extent as they
do with equal preferences@Fig. 2~b!# . This behavior~i.e.,
the result difference! could be explained by noting that the
more important objective is penalized less: the solution that
is usually penalized if the Euclidean distance between vari-
ables is more than, for instance, 10% will now be penalized
if the distance is more than, for instance, 20%.

The penalty-factor corrected value of objectiveyi , fi ~x, t !
was calculated using the following formula:

fi ~x, t ! 5 fi
0~x!{)

j51

k

xd~xj , xi , t !, where

xd~x, y, t ! 5 H wp{up~x, y!, 6x 2 y6$ dp~t !;
1, otherwise. ~1!

for

up~x, y! 5 min$1,wx 0wy%, ~2!

wherews is the weight of objectives, fi
0~x! is the original

value of objectiveyi for a given set of inputsx, t is the
generation number,dp~t ! is the monotonically decreasing
function specifying minimal nonpenalized distance, andwp

is the original penalty factor~usually 0.5!.
During the design process, the designer is able to change

the preferences and objectives to optimize and to dynami-
cally add, modify, and delete constraints~scenarios! with
an almost immediate feedback from the system, showing
the influence of the changes on the solutions generated.

During the later phases of design few objectives tend to
be in evidence, whereas during conceptual design the de-
signer requires a global picture and therefore routinely deals
with many possible objectives. The vast number of param-
eters involved can confuse the designer. In order to reduce
cognitive overload and to help the designer in mundane and
less creative tasks, a set of agents has been developed that

Fig. 2. Coevolution with different preferences: the influence on optimiz-
ing y3 ~SEP1, processS0! andy9 ~FR, processS1!. The results are for SEP1
with an average of 20 runs.

Agent-based support within an IEDS 333

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

are an integral part of the IEDS. The components relevant
to the research described in this article are marked by dot-
ted lines in Figure 1. They are described in Section 5 after
an introduction to preferences and agents.

3. PREFERENCES

The notion of preferences is not new, and different authors
propose different preference systems in engineering design
~Wellman & Doyle, 1991; D’Ambrosio & Birmingham,
1995; Greenwood et al., 1996!. The present authors have
developed a preference systems for specifying the relative
importance of objectives. The following predicates have
been introduced~Cvetković& Parmee, 1999b; Cvetković,
2000; Parmee et al., 2000; Cvetkovic´ & Parmee, 2002!:

Relation Intended Meaning

' Is equally important
a Is less important
,, Is much less important
¬ Is not important
! Is important

the set of axioms specifying the properties of these rela-
tions follows:

• ' is an equivalence relation;

• a and,, are strict orders;

• ' is congruentwith ,, anda;

• ,, is a subrelation ofa; and

• miscellaneous properties:

! x ∨ ¬x, ~3!

! y ∧ ¬x] x ,, y, ~4!

¬x ∧ ¬y] x ' y, ~5!

x a y ∧ y ,, z] x ,, z. ~6!

The corresponding, “more important”~s! and “much
more important”~..! relations are defined as

x .. y ?
def

y ,, x, ~7!

x s y ?
def

y a x. ~8!

The above cited work describes the use of preferences
within multiobjective optimization~weighted sums optimi-
zation, weighted Pareto optimization, etc!. The current ar-
ticle tries to merge preferences with agents, that is, to use
agents to automate preference estimation.

4. AGENTS

Defining the notion of an agent is a very difficult task, as
the following quote demonstrates. According to Watt~1996,
p. 89!:

. . . “Agent” is a difficult word for a difficult concept;
covering a rag-bag of concepts that span a whole gamut
of different kinds of behaviour, including, for example,
autonomy, learning and social interaction; but there is a
common ground. An agent will set out to do something,
and do it; therefore it has competences for intending
to act, for action in an environment, and for monitoring
and achieving its goals. Of course, the adequate per-
formance of these, other competencies, such as learn-
ing, negotiation, and planning, may be helpful or even
necessary.

An overview of theoretical aspects of agents~including
topics such as belief, intention, default reasoning, possible
world semantics, etc.! is given in Wooldridge and Jennings
~1995!.

In the most general sense, agents can be classified into
the following categories~Stenmark, 1999!: interface, sys-
tem, advisory, filtering, retrieval, navigation, monitoring,
recommender, and profiling. However, for the purposes of
our application, conceptual design, the following classes of
agents appear to offer utility:

interface agents:agents that help the designer deal with
a system and that~if the designer wishes it! hide some
low-level noninteresting details from the designer;

search agents:agents that cover the process of optimiza-
tion, cooperation, population monitoring, jumping out
of regions, constraint questioning, and so on; and

information agents:agents that deal with information ob-
tained, look for interesting solutions and filter uninter-
esting ones, make decisions with regard to what and
where to explore, resolve conflicts, and so forth.

Figure 3 classifies the agents used throughout the project.
A similar classification is used by Sycara et al.~1996!.

Because the role of agents necessitates collaboration~ne-
gotiations! and interaction, these two concepts are impor-
tant and will be described in the following two subsections.

4.1. Negotiations

According to Sycara~1991!, there are four conflict situa-
tions where negotiation is used in design. These conflicts
follow ~Berker, 1995!:

• different agents make conflict recommendations for a
parameter value;

• a value proposed by one agent makes it impossible for
another agent to offer consistent values for other
attributes;

• a decision of one agent adversely affects the optimal-
ity of other agents; and

• alternate approaches achieve similar functional
results.

334 D. Cvetkovic´ & J. Parmee

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

The negotiation process proceeds as follows:

1. generation of proposal;

2. generation of counterproposal based on feedback from
dissenting agents; and

3. communication of justifications and supporting
evidence.

The paper by Nwana et al.~1996! gives an overview of
different coordination techniques.

4.2. Agent communication

Agents need a common language in order to be able to
communicate. The first developed methods used a black-
board architecture~Hayes–Roth, 1985; Brenner et al., 1998!,
as presented in Figure 4~a!, where all agents are able to
read from and write to a shared memory area. The other
method utilizes directed message passing from agent to agent,
as shown in Figure 4~b! using message transport methods
~e.g., PVM, MPI, etc.!. More modern agent communication
languages are described in Labrou et al.~1999!.

5. USE OF AGENTS IN DESIGN PROCESSES

A very successful agent-based application is described in
Ygge and Akkermans~1999!: it describes a climate control
system for large buildings with many offices using a “market-
based agent approach.” Agents buy and sell cooling power
resources~Huberman & Clearwater, 1995!. A very compre-
hensive review of computer supported cooperative environ-
ments for engineering design is given in Shen and Norrie
~1999!. Wellman describes “market-oriented program-
ming” ~1995, 1996!. Some issues are also discussed in
Lander~1997!. An agent-based system for conceptual de-
sign is described in two studies~Campbell et al., 1999;
Campbell, 2000!.

In our development of agents, we decided to follow the
philosophy of simple agents: an agent performs only one
function, similar to single function agents~SIFAs; Berker,

1995; Brown et al., 1995!. SIFAs are designed to perform
one function only, and they have the following parameters:

function:what kind of work it performs;

target: on what parameter or object the agent has an im-
mediate effect; and

Fig. 3. Agent classification and examples of agents within classes.

Fig. 4. Agent communication methods.

Agent-based support within an IEDS 335

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

point of view:the perspective that the agent takes in per-
forming its function on its target. The point of view
can be cost, strength, and so forth.

Brown et al. ~1995! argue that in this way it is much
easier to construct new agents and~equally important! it is
much easier to debug agents.

Following the classification of agents given in Section 4,
the agents developed for the BAE Systems conceptual en-
gineering design system are schematically presented in Fig-
ure 3. They mostly follow the above SIFA philosophy: a
single function per agent.

The conceptual airframe design project~or miniCAPS
project, explained below! has been developed in coopera-
tion with BAE Systems. The details of the project are not
relevant for this paper, and it is not possible to describe the
model in detail. However, a brief summary follows.

The miniCAPS model~Webb, 1997! is a version of
Computer Aided Project Studies~CAPS!, which is BAE
Systems software used by designers during the earliest
investigation stages of a new aircraft. MiniCAPS repro-
duces the general characteristics of CAPS but without the
computational complexity. MiniCAPS models a variety of
disciplines and consists of three modules:aerodynamics
~lift and drag coefficients, flight envelope, etc.!; perfor-
mance~ferry range, sustained turn rate, take-off distance,
cruise height, etc.! andconfiguration~wing position, wing
shape, canard position, number of engines, mass estima-
tion, etc.!. A high degree of interaction is incorporated
between these disciplines and many of the objectives are
thus highly conflicting.

One of the goals of the project was a development of an
~semi-! intelligent and~semi-!autonomous system that will
utilize preferences and agents in order to reduce designer’s
burden through the performance of more mundane tasks,
enabling designer to concentrate on more creative aspects
of the design.

At present miniCAPS utilizes nine variable parameters
producing a total of 13 outputs, each of which may be con-
sidered an objective.

5.1. Interface agents

Interface agents are used to reduce the complexity of in-
creasingly sophisticated and overloaded conceptual design
systems. They build a user friendly interface between the
designer and the computer. The designer can specify the
quality threshold of solutions, situation trigger actions, and
other parameters.

Their role is to help the designer in a~boring! question
and answer preference estimation procedure~e.g., “State-
ment:A is the most important to me andB the least impor-
tant of all the objectives”! that the agent transforms into a
series of questions and answers suitable for the preference
module.

5.1.1. Application within the system

We implemented an agent in the system that helps the
designer in the preference estimation procedure. It allows
the designer to specify the complete preference order on the
command line or in a file, for example,

y9 ' y10 .. y1 ' y2 ' y6 s y3 ' y4 s y5 .. y7 ' y11 s y8,

instead of answering the following standard sequence of
questions:

y9 ' y10;

y1 ' y2 ' y6;

y3 ' y4;

y7 ' y11;

y1 s y2, y1 s y5, y1 .. y7, y1 .. y8, y1 ,, y9;

y3 s y5, y3 .. y7, y3 .. y8;

y5 .. y7;

y5 .. y8;

y7 s y8.

In the initial stage, the designer will probably prefer the
second method~pairwise comparisons!; but as the process
goes on, specifying the complete order is easier, especially
if the changes are incremental~as in the case of the incre-
mental agent described in Section 5.4.1!. Because the pref-
erence method transforms preferences into a total order,
these two methods are equivalent, providing that the initial
complete order specified is not circular~also checked by
the agent!.

5.2. Search agents

The role of search agents is to look for “interesting” solu-
tions. Here the notion of interesting is defined by the de-
signer, for instance, a good solution with a large Euclidean
distance from the majority of the population. It looks for
“novelty” solutions, which might be overlooked and ig-
nored otherwise.

Among the search agents, the following classes of agents
have been investigated and developed:

jumpout agent:an agent that searches exclusively out-
side of variable boundaries;

quality monitoring agent:an agent that monitors the qual-
ity of solutions;

constraint agent:an agent that tries to find out what
solutions can be obtained by breaking one of the
constraints;

336 D. Cvetkovic´ & J. Parmee

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

scenario agent:an agent that solves the original problem
minus one of the scenarios~dynamically, on-line spec-
ified constraints in a relatively rich mathematical lan-
guage with logical operators; Cvetkovic´ & Parmee,
1999a!; and

population monitoring agent:an agent that monitors the
convergence of the population.

These agents are described in subsequent sections. The fol-
lowing need to be considered when applying agents:

• where to search;

• variation of each variable parameter range; and

• constraint versus objective space~i.e., shall we use
penalty functions to transform constraints into objec-
tives, etc.!.

5.2.1. Jumpout agent

This agent searches exclusively out of boundaries. It can
initiate a new GA that works in parallel with the main one,
or it can initiate a quick hill climber that starts from one of
the solutions, changes a randomly chosen variable to be out
of defined range, and then performs hill climbing. Alterna-
tively, it could start modifying good solutions, not just any
random population member. Parameters of the agents limit
how far outside the domain the agent can go and for how
many generations. How many individuals to create could
also be specified. The method used could be hill climbing,
simulated annealing~Laarhoven & Aarts, 1987!, scatter
search~Laguna, 1999!, differential evolution~Storn & Price,
1995!, and many others. If desired, this can be combined
with tabu lists~Glover & Laguna, 1997! to remember al-
ready explored regions.

This area has also been investigated within the Plymouth
Engineering Design Centre through the work of Beck and
Parmee~1999!.

Jumpout agents are useful for questioning the initial con-
straints and domain of the problem and for attempting to
expand the problem domain. During conceptual design, some
limits are set rather ad hoc. This agent assesses whether it is
possible to obtain better solutions by ignoring some of the
initial limitations.

5.2.2. Quality monitoring agent

If the solution fitness is at least 90% of the best solution,
this agent notifies the designer about it. The quality thresh-
old ~the percentage of the best solution, 90% in this exam-
ple! is a configurable parameter. Also, the user can specify
when to be notified:

• immediately, so that the search can be led in that di-
rection, or

• afterward, for off-line analysis.

5.2.3. Constraint agent

This agent tries to break some of the constraints; and if a
good solution is obtained, it notifies the designer. Con-

straints can have different levels of “softness” assigned~from
0 to 1, or from “absolutely unchangeable” to “you can do
whatever you want with it”!. For each solution the informa-
tion regarding the number of constraints broken~if using
penalty functions for resolving constraints! is stored.

Another constraint agent monitors the best solutions and
tries to further optimize the solution for each of them, ig-
noring~i.e., breaking! one of the constraints. If the obtained
solution is significantly better, it will present it to the de-
signer and let him or her decide if that constraint is neces-
sary. The designer can mark some of the constraints as
nonquestionable~as before!.

5.2.4. Scenario agent

The scenario agent is similar to a constraint agent, except
that it deals with scenarios, which are a set of constraints
connected with the logical operatorsand, or, andnot ~Cvet-
ković& Parmee, 1999a; Cvetkovic´, 2000!. Each agent solves
the original problem minus one of the scenarios. Form
scenarios, that meansm 1 1 parallel GAs~one with all
scenarios!. This could be very costly because parallel search
processes are required. However, the increased use of par-
allel and more and more powerful computers makes such
distributed strategies increasingly feasible. One example of
scenarios is given in Section 6.

5.2.5. Population monitoring agent

If the GA search is too concentrated~i.e., too converged
in variable space! in one part of the search space, this agent
“jumps” far away from the converged point in space~but
still within the feasible domainD! and starts a new search
there. Bookkeeping about already explored regions is needed
in order to avoid visiting the same region many times.

Three levels of spontaneous behavior are available:

• machine-based agent automatically decides to try jump-
ing out of regions, breaking constraints, and so forth;

• the designer only decides on the action taken; and

• interactively, the agent suggests and the designer de-
clines or accepts.

5.3. Information agents

This class of agents is more intelligent then the previously
described classes and should be able to make autonomous
decision concerning~but not limited to!:

• “spawning” an agent to search in a given direction;

• “killing” an agent that is not very successful;

• negotiation between agents~unless they need to con-
sult the designer!;

• recognition of the novelty of a solution~eventually
consulting the database of existing solutions! and turn-
ing the designer’s attention toward it; and

• when to consult the designer.

Agent-based support within an IEDS 337

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

One example of an information agent is the incremental
agent described in Section 5.4.1.

5.4. Closing design loop

In a conceptual design context the agents can be applied in
the manner presented in Figure 5.

Common to all optimization processes, there is a stan-
dard search path: preferencesr search enginer output.
The new component here is a process that picks up solu-
tions from the search engine and presents them to a consor-
tium of agents that look at it in terms of different interests
or points of view~say agentA monitors objective 1, agentB
monitors objective 2, . . ., agentD monitors variable 1, which
should be ideally between 0 and 5 or 15 and 20, etc.!. This
information is presented to the designer together with some
suggestions~e.g., “can we change this preference?” or “this
solution path is no good for some constraints”! and prefer-
ences and some mathematical model details are changed
~with the designer’s approval!. This connects agents nicely
with the scenario concept. The agents are employed to mon-
itor constraints and scenarios and to analyze those that are
never completely fulfilled. The unfulfilled constraints and
scenarios usually give an indication about the changes needed
to improve the design. Ideally, these changes should be
suggested by the agents.

The next section describes an agent that tries to fulfil
scenarios through changing preferences and variable ranges.
Every time it finds an unfulfilled scenario, it suggests the

changes to the designer and, if approved, continues the search
in the modified setting.

5.4.1. Incremental agent
The incremental agent developed in this section will close

the design loop, as presented in Figure 6. This is a more
detailed view of the general IEDS described in Section 2
and presented in Figure 1. For the sake of simplicity, in
Figure 6 it is assumed that agent and scenario values are
incorporated into the fitness value as some form of penalty.

The incremental agent works in the following way:

1. use the original designer’s preferences~both for ob-
jectives and for scenarios! and run the optimization
process;

2. if some of the scenarios are not fulfilled, suggest in-
creasing the importance of those scenarios that are
not fulfilled and repeat the search process;

3. if some scenarios are still not fulfilled, although they
are classified as the most important, suggest changing
variable ranges~of those variables mentioned in sce-
narios! and repeat the search with this new setting;
and

4. if some scenarios are still not fulfilled, give up and
report the results to the designer.

6. EXAMPLE OF AGENT USE

The following example illustrates the use of agents and the
automated preference adjustment through the use of incre-

Fig. 5. Agents in an optimization context.

338 D. Cvetkovic´ & J. Parmee

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

mental agents described in Section 5.4.1. The example also
illustrates the interactiveness of conceptual design process
using the IEDS.

Example 1. Suppose that for BAE System’s airframe
design problem, the following set of scenarios is given:

constraints for F-111 Aardvark Bomber
S1: y11 >= 9.74 & y11 <= 19.20 # Wing span
S2: x4 <= 61.07 & x4 >= 48.77 # Wing plan area
S3: y9 >= 4707 # Ferry range
S4: y10 >= 45360 # Take off mass
S5: x3 >= 0.75 # Max cruise

speed 919 km/h
S6: y1 <= 951 # Take-off run

The process goes as follows:

1. The original set of objective preferences, that is,

y1 ' y9 ' y10 ' y11,

and the original set of scenario preferences, that is,

S1 ' S2 ' S3 ' S4 ' S5 ' S6,

give the solution wherey10 5 30,936, so scenarioS4

~which requires thaty10 $ 45,360! is not fulfilled and
is noted by the agent.

2. At that stage the agent suggests increasing the impor-
tance of scenarioS4,

S4 s S1 ' S2 ' S3 ' S5 ' S6,

but the obtained solution still does not satisfy sce-
narioS4.

3. At that stage the agent suggests another increase of
the importance of theS4 scenario:

S4 .. S1 ' S2 ' S3 ' S5 ' S6.

This again gives a solution where scenarioS4 is not
fulfilled, and this is noted by the agent.

4. Because the importance of scenarioS4 cannot be fur-
ther increased, the agent suggests modifying the vari-
able bounds. It suggests increasing the range of all
variables by 10% and starting again.

5. With all equal scenario preferences there is no differ-
ence, so an increase inS4 importance is suggested
again.

6. For a preference setting,

S4 s S1 ' S2 ' S3 ' S5 ' S6,

the solution finally satisfiesS4 but violates scenarios
S1, S2, andS6.

7. The agent suggests

S4 s S1 ' S2 ' S6 s S3 ' S5,

which again gives a solution whereS1, S2, andS6 are
satisfied butS4 is not, so the next suggestion is

S4 .. S1 ' S2 ' S6 s S3 ' S5.

Fig. 6. Closing the design loop using agents. See text for details.

Agent-based support within an IEDS 339

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

This gives a solution where scenariosS1, S2, andS3

are not fulfilled:x3 5 0.92,x4 5 86, y1 5 759,y9 5
290,y10 5 46,982, andy11 5 23.6. At this point the
agent might call the designer for further assistance.

8. From the analysis so far, the designer can immedi-
ately see that he or she can~using the given airframe
model! either haveS4 fulfilled or S1 and S2 ~wing
span and wing plan area are connected to take-off
mass!. At this point the designer decides to use the
following preferences~the last set of preferences
above!,

S4 .. S1 ' S2 ' S6 s S3 ' S5,

and to just increase the range of variablex4 from
@20, 80# to @20, 120#, keeping all other variables to
their original ranges. This gives a solutionx35 0.87,
x4 5 120, y1 5 951, y9 5 7846,y10 5 49,924, and
y115 26.8, which violates scenariosS1 andS2 but is
probably the best compromise in these circumstances.

9. If the designer further decides to minimize take-off
mass instead of maximizing, the result isx3 5 0.86,
x4 5 120, y1 5 878, y9 5 9829,y10 5 45,360, and
y11 5 26.8.

10. If the designer, out of curiosity, further increases the
range ofx4 to @20, 140#, the solution isx3 5 0.87,
x4 5 140, y1 5 951, y9 5 8517,y10 5 49,452, and
y11 5 14.5, where only scenarioS2 is not fulfilled
and the obtained airplane has a very large wing plan
area but small wing span~probably some delta-
shaped wings!.

11. And so forth.

As can be seen from this example, IEDS provides a pow-
erful system for interactive analysis and change of param-
eters in the run and gives almost immediate feedback about
the objectives, constraints, and preferences.

Note that in this particular example the agent did not find
an acceptable solution, but by trying different methods it
enabled the designer to find the right one~as much as the
concept of “rightness” can be unambiguous in a multiobjec-
tive framework!.

6.1. Design agent cooperation

Consider a system with several agents, each with the task to
optimize a single objective. The question is how to make
them collaborate. Each agent is aware of the quality of its
own solution. If the quality of one agent’s solution is infe-
rior to the quality of the solution of some other agents and
their solutions conflict, that agent compromises and accepts
a worse solution from its point of view, for the benefit of
other agents. In a case where they cannot decide~e.g., both
agents think that they have quality solutions!, the designer

is asked to decide. Once the designer resolves a conflict,
the agents need to remember the decision and try to learn
from it so that the next time a similar situation happens,
they can resolve the conflict among themselves without the
designer’s intervention.

Some form of voting system, where the importance of
each agent also plays a certain role in resolving conflicts,
can be useful. However, that can lead to problems, because
according to Arrow’s impossibility theorem~Arrow, 1951!,
it is not possible to construct a group preference relation
satisfying the following basic principles: complete domain,
positive association of social and individual ordering, inde-
pendence of irrelevant alternatives, individual’s sover-
eignty, and nondictatorship.

If an agent is successful, it is made more important than
the others~so that good solutions usually count as more
important in the negotiation process!. For each “best solu-
tion,” we increase the value of the solution. If an agent is
less successful, we reduce the agent’s importance or the
quality of its solutions. Limits to both the maximal and
minimal possible importance of an agent are needed in or-
der to keep diversity of solutions generated. More details
are given in Cvetkovic´ ~2000!. A similar learning method is
used by Campbell~2000!.

7. CONCLUSION AND DISCUSSION

A frequently asked question is “do we need agents?” When
writing about agents, Jennings and Wooldridge~1995! say
the following:

Although agent based technology clearly has an impor-
tant role to play in the development of leading edge com-
pound applications, it should not be regarded as a panacea.
The majority of applications which currently use agents
could be solved using non-agent techniques~in most cases
not as well, but in some cases better!!. . . . As with all
system designs, the ultimate choice depends upon a large
number of technical and non-technical factors . . .

Whilst this new system paradigm offers many exciting
opportunities, it has a down side which invariably places
a limit on the types of application to which agents can be
applied. The first major problem is that the overall sys-
tem is unpredictable and non-deterministic: which agents
will interact with which other in which way to achieve
what cannot be predicted in advance. Even worse, there
is no guarantee that dependencies between the agents can
be managed effectively, since the agents are autonomous
and free to make their own decisions . . . The second
main disadvantage is that the behaviour and properties of
the overall system cannot be fixed at design time. While
a specification of the behaviour of an individual agent
can be given, a corresponding specification of the system
in its entirety cannot, since global behaviour necessarily
emerges at run time.

340 D. Cvetkovic´ & J. Parmee

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

This paper describes some techniques and methods used
in the interactive design system for conceptual design of
products. The use of agents is delineated and some exam-
ples of their use are presented.

As this research illustrates, the agents do not need com-
plex architectures: simple agents such as the “jumpout agent”
are very useful in the optimization process. Their use en-
ables the designer to concentrate on the higher level aspects
of the design process and frees him or her from having to
worry about the behavior of the optimization module. Fil-
tering and information agents are useful for turning the de-
signer’s attention to some interesting and0or unusual~but
promising! solutions. They are also useful for questioning
all ~variable! limits and constraints.

We do not claim that these agents are very intelligent or
sophisticated. However, they should be considered in terms
of the environment in which they are used, that is, in an
interactive design system. In this context, however, their
usefulness has been illustrated to some extent. In the previ-
ous example the agent did not really solve the problem, but
during its work it collected enough information that the
designer was able to immediately see the way to an accept-
able solution. The designer is able to solve the problem
without using agents but not without extensive and tedious
“trial and error” runs. The agents described in this article
are designed for a conceptual design environment where
design goals and constraints are still rather vague, and in
that environment any help to the designer is important.

Because of the complex problem domain, it is very hard
to judge the role of the agents in the system, that is, if they
are limiting factor or a factor of improvement in design.
The primary role in using agents is pragmatic: they should
make the design task easier for the designer.

For the same reason it is very hard to compare the devel-
oped system with agent systems described in the literature.

Future work will include the development of new classes
of agents and their tighter integration in design processes.

REFERENCES

Arrow, K.J.~1951!. Social Choice and Individual Values. New York: Wiley.
Beck, M.A., & Parmee, I.C.~1999!. Design exploration: Extending the

bounds of the search space.Proc. 1999 Congress on Evolutionary
Computation—CEC99, pp. 519–526. Washington, DC: IEEE.

Berker, I.~1995!. Conflicts and negotiations in single function agent based
design systems. Master’s Thesis. Worcester, MA: Worcester Polytech-
nic Institute. Available on-line at http:00www.cs.wpi.edu0Research0
aidg0SiFA0ilan.html.

Bonham, C.R., & Parmee, I.C.~1998!. Cluster oriented genetic algorithms
~COGAs! for the decomposition of multi-dimensional engineering de-
sign spaces. InAdvances in Computational Structures Technology~Top-
ping, B.H.V., Ed.!, pp. 87–95. Stirling, Scotland: Civil-Comp Press.

Brenner, W., Zarnekow, R., & Wittig, H.~1998!. Intelligent Software Agents:
Foundation and Applications. Berlin: Springer–Verlag.

Brown, D.C., Dunskus, B.V., Grecu, D.L., & Berker, I.~1995!. SINE:
Support for single function agents.Applications of AI in Engineering
AIENG’95, Udine, Italy.

Campbell, M.I.~2000!. A-design: An electro-mechanical design strategy
utilizing adaptive complex systems and multi-objective optimization.
PhD Thesis. Pittsburgh, PA: Carnegie Mellon, Mechanical Engineer-
ing Department.

Campbell, M.I., Cagan, J., & Kotovsky, K.~1999!. A-design: An agent-
based approach to conceptual design in a dynamic environment.Re-
search in Engineering Design 11(3), 172–192.

Cvetković, D. ~2000!. Evolutionary multi-objective decision support sys-
tems for conceptual design. PhD Thesis. Plymouth, UK: University of
Plymouth, School of Computing.

Cvetković, D., & Parmee, I.C.~1999a!. Genetic algorithm-based multi-
objective optimisation and conceptual engineering design,Proc. 1999
Congress on Evolutionary Computation—CEC99, pp. 29–36. Wash-
ington, DC: IEEE.

Cvetković, D., & Parmee, I.C.~1999b!. Use of preferences for GA-based
multi-objective optimisation. InGECCO-99: Proc. Genetic and Evo-
lutionary Computation Conf., pp. 1504–1509. San Francisco, CA: Mor-
gan Kaufmann.

Cvetković, D., & Parmee, I.C.~2002!. Preferences and their application in
evolutionary multiobjective optimisation.IEEE Transactions on Evo-
lutionary Computation 6(1), 42–57.

Cvetković, D., Parmee, I.C., & Webb, E.~1998!. Multi-objective optimi-
sation and preliminary airframe design. InAdaptive Computing in De-
sign and Manufacture: The Integration of Evolutionary and Adaptive
Computing Technologies with Product0System Design and Realisation
~Parmee, I.C., Ed.!. pp. 255–267. New York: Springer–Verlag.

D’Ambrosio, J.G., & Birmingham, W.P.~1995!. Preference–directed de-
sign.Artificial Intelligence for Engineering Design, Analysis and Man-
ufacturing 9, 219–230.

Fodor, J., & Roubens, M.~1994!. Fuzzy Preference Modelling and Multi-
criteria Decision Support. Dordrecht: Kluwer.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., & Sun-
deram, V.~1994!. PVM: Parallel Virtual Machine: A Users’Guide and
Tutorial for Networked Parallel Computing. Cambridge, MA: MIT
Press.

Glover, F., & Laguna, M.~1997!. Tabu Search. Boston: Kluwer.
Goel, A.K. ~1997!. Design, analogy and creativity.IEEE Expert 12(3),

62–70.
Greenwood, G.W., Hu, X.S., & D’Ambrosio, J.G.~1996!. Fitness func-

tions for multiple objective optimization problems: Combining prefer-
ences with Pareto ranking. InFoundations of Genetic Algorithms 4
(FOGA’96) ~Belew, R.K., & Vose, M.D., Eds.!, pp. 437–455. San
Francisco, CA: Morgan Kaufmann.

Hayes-Roth, B.~1985!. A blackboard architecture for control.Artificial
Intelligence 26, 251–321.

Huberman, B.A., & Clearwater, S.~1995!. A multi-agent system for con-
trolling building environments. InProc. First Int. Conf. Multi-Agent
Systems, ICMAS’95, pp. 171–176. Boston: AAAI Press0MIT Press,

Jennings, N.R., & Wooldridge, M.J.~1995!. Applying agent technology.
Journal of Applied Artificial Intelligence 9(4), 357–369.

Laarhoven, P.J.M.v., & Aarts, E.H.L.~1987!. Simulated Annealing: Theory
and Applications. Dordrecht: Kluwer.

Labrou, Y., Finin, T., & Peng, Y.~1999!. Agent communication languages:
The current landscape.IEEE Intelligent Systems 14(2), 45–52.

Laguna, M.~2002!. Scatter search. InHandbook of Applied Optimization
~Pardalos, P.M., & Resende, M.G.C., Eds.!, pp. 183–193. New York:
Oxford Academic Press.

Lander, S.E.~1997!. Issues in multiagent design systems.IEEE Expert
12(2), 18–26.

Nwana, H.S., Lee, L., & Jennings, N.R.~1996!. Co-ordination in software
agent systems.BT Technical Journal 14(4), 79–89.

Pahl, G., & Beitz, W.~1996!. Engineering Design: A Systematic Ap-
proach, 2 ed., London: Springer–Verlag.

Parmee, I.C.~1996!. The maintenance of search diversity for effective
design space decomposition using cluster oriented genetic algorithms
~COGAs! and multi–agent strategies~GAANT !. In Proc. Adaptive Com-
puting in Engineering Design and Control, pp. 128–138. Plymouth,
UK: University of Plymouth, PEDC.

Parmee, I.C.~1998!. Exploring the design potential of evolutionary0
adaptive search and other computational intelligence technologies. In
Adaptive computing in design and manufacture: The integration of
evolutionary and adaptive computing technologies with product0
system design and realisation.Proc. 3rd Conf. Adaptive Computing
in Design and Manufacture (ACDM’98), pp. 27–42. New York:
Springer–Verlag.

Parmee, I.C.~1999!. Exploring the design potential of evolutionary search,
exploration and optimisation. InEvolutionary Design by Computers
~Bentley, P.J., Ed.!, pp. 119–143. San Francisco, CA: Morgan Kaufmann.

Agent-based support within an IEDS 341

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

Parmee, I.C., & Bonham, C.R.~2000!. Towards the support of innovative
conceptual design through interactive designer0evolutionary comput-
ing strategies.Artificial Intelligence in Engineering, Design, Analysis
and Manufacturing 14(1), 3–16.

Parmee, I.C., Cvetkovic´, D., Bonham, C.R., & Packham, I.S.~2001!. In-
troducing prototype interactive evolutionary systems for ill-defined
multi-objective design environments.Advances in Engineering Soft-
ware 32(6), 429–441.

Parmee, I.C., Cvetkovic´, D., Watson, A.H., & Bonham, C.R.~2000!. Multi-
objective satisfaction within an interactive evolutionary design envi-
ronment.Evolutionary Computation 8(2), 197–222.

Parmee, I.C., & Purchase, G.~1997!. Integrating computational intelli-
gence technologies with design and manufacturing team practice.Proc.
Intelligent Design in Engineering Applications Symposium (IDEA’97),
pp. 95–99, Aachen, Germany.

Parmee, I.C., & Watson, A.H.~1999!. Preliminary airframe design using
co-evolutionary multiobjective genetic algorithms. InGECCO–99: Proc.
Genetic and Evolutionary Computation Conf., pp. 1657–1665. San
Francisco, CA: Morgan Kaufmann.

Peace, G.S.~1993!. Taguchi Methods: A Hands-On Approach. Reading,
MA: Addison–Wesley.

Shen, W., & Norrie, D.H.~1999!. Agent-based systems for intelligent
manufacturing: A state-of-the-art survey.Knowledge and Information
Systems. An International Journal 1(2), 129–156. Available on-line at
http:00sern.cpsc.ucalgary.ca0CAG0publications0abm.htm.

Stenmark, D.~1999!. Evaluation of intelligent software agents. Available
on-line at http:00w3.informatik.gu.se0;dixi 0agent0agent.htm.

Storn, R., & Price, K.~1995!. Differential Evolution–A Simple and Effi-
cient Adaptive Scheme for Global Optimization Over Continuous Spaces.
Technical Report TR-95-012, Berkeley, CA: University of Berkeley,
ICSI.

Sycara, K.~1991!. Cooperative negotiation in concurrent engineering de-
sign. InComputer-Aided Cooperative Product Development~Sriram,
D., Logcher, R., & Fukuda, S., Eds.!. New York: Springer–Verlag.

Sycara, K., Decker, K., Pannu, A., Williamson, M., & Zeng, D.~1996!.
Distributed intelligent agent.IEEE Expert 11(6), 36–46.

Watt, S.N.K.~1996!. Artificial societies and psychological agents.BT Tech-
nical Journal 14(4), 89–97.

Webb, E.~1997!. MINICAPS—A Simplified Version of CAPS for Use as
a Research Tool. Unclassified Report BAe-WOA-RP-GEN-11313. War-
ton, UK: British Aerospace.

Wellman, M.P.~1995!. The economic approach to artificial intelligence.
ACM Computing Surveys 27(3), 360–362.

Wellman, M.P.~1996!. Market-oriented programming: Some early les-
sons. InMarket-Based Control: A Paradigm for Distributed Resource
Allocation ~Clearwater, S., Ed.!. London: World Scientific.

Wellman, M.P., & Doyle, J.~1991!. Preferential semantics for goals.Proc.
9th National Conf. Artificial Intelligence, Vol. 2, pp. 698–703. Boston:
AAAI Press0MIT Press.

Wellman, M.P., & Walsh, W.E.~2000!. Distributed quiescence detection in
multiagent negotiation.Fourth Int. Conf. Multiagent Systems (IC-
MAS’2000), pp. 317–324. Boston.

Wooldridge, M.J., & Jennings, N.R.~1995!. Intelligent agents: Theory and
practice.Knowledge Engineering Review 10(2), 115–152.

Ygge, F., & Akkermans, H.~1999!. Decentralized markets versus central
control: A comparative study.Journal of Artificial Intelligence Re-
search 11, 301–333.

Dragan Cvetkovićreceived his BSc and MSc in Mathemat-
ics from the University of Belgrade, Yugoslavia. Recently
he received his PhD in Computer Science from the Univer-
sity of Plymouth, UK. In the late 1980s he started teaching
in the Faculty of Mathematics, University of Belgrade, Yu-
goslavia. Genetic algorithms became his interest in early
1990s when he worked at the Max Planck Institute for Com-
puter Science, Saarbrücken, Germany, and later for GMD—
National Research Center for Information Technology, St.
Augustin, Germany. In the period from 1997 to 2000 Dragan
completed his PhD research at the Plymouth Engineering
Design Centre, University of Plymouth, UK. His research
interests include genetic algorithms, multiobjective optimi-
zation, the logic of preferences, and agent-based methodol-
ogies. Dr. Cvetkovic´ is currently working for Soliton Inc.,
Toronto, Canada.

Ian Parmee has several years of experience in both the
contracting and consultancy sectors of the civil engineering
industry. He returned to an academic career in 1991 and
played a major role in the development of Plymouth Uni-
versity’s EPSRC Engineering Design Centre, investigating
the integration of evolutionary computing technologies with
engineering design. He has now joined the University of
the West of England, Bristol, where he is currently estab-
lishing research in the area of evolutionary design and de-
cision making. Dr. Parmee’s research has resulted in over
100 publications in journals, conference proceedings, and
books.

342 D. Cvetkovic´ & J. Parmee

https://doi.org/10.1017/S0890060402165012 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060402165012

