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On infinitesimal τ-isospectrality of locally
symmetric spaces

Chandrasheel Bhagwat , Kaustabh Mondal , and Gunja Sachdeva

Abstract. Let (τ, Vτ) be a finite dimensional representation of a maximal compact subgroup K of a
connected non-compact semisimple Lie group G, and let � be a uniform torsion-free lattice in G.
We obtain an infinitesimal version of the celebrated Matsushima–Murakami formula, which relates
the dimension of the space of automorphic forms associated to τ and multiplicities of irreducible
τ∨-spherical spectra in L2(�/G). This result gives a promising tool to study the joint spectra of all
central operators on the homogenous bundle associated to the locally symmetric space and hence its
infinitesimal τ-isospectrality. Along with this, we prove that the almost equality of τ-spherical spectra
of two lattices assures the equality of their τ-spherical spectra.

1 Introduction

1.1 τ-isospectrality and representation equivalence

Let G be a connected non-compact semisimple Lie group with finite centre. Let K
be a maximal compact subgroup in G. Then G/K is a symmetric space which carries
a G-invariant Riemannian metric induced by the Ad(G)-invariant inner product on
the Lie algebra g of G. For any finite dimensional complex representation (τ, Vτ) of
K, one has the homogeneous vector bundle Eτ on G/K (see Section 2.3 for the details)
whose smooth sections are given by the space

A∞(G/K , τ) ∶= {ϕ ∶ G → Vτ ∣ smooth, ϕ(gk) = τ(k−1)(ϕ(g)) for all k ∈ K , g ∈ G}.

This space A∞(G/K , τ) is U(g)K-stable. In particular, the centre Z(g) of the
universal enveloping algebra acts on A∞(G/K , τ), and the Casimir element in the
centre induces a second order elliptic differential operator Δτ on A∞(G/K , τ). When
τ is the trivial representation of K, Δτ coincides with the Laplace–Beltrami operator
acting on the smooth functions on G/K.
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2 C. Bhagwat, K. Mondal, and G. Sachdeva

Let � be a uniform lattice in G. Then X� ∶= �/G/K is a compact locally symmetric
space which is manifold if � acts freely on G/K. The space X� has a Riemannian
metric induced from G/K. We denote by V�,τ to be the space of all �-invariant
smooth sections in A∞(G/K , τ). Then V�,τ is stable under the action of U(g)K , in
particular of the centre Z(g). The Casimir element C, induces the second order self-
adjoint elliptic operator Δτ ,� on V�,τ , which has non-negative discrete spectrum of
eigenvalues with finite multiplicities. The multiset of eigenvalues with multiplicity
is denoted by Spec(Δτ ,�). Such spectrum of a locally symmetric space is closely
related to the multiplicity of irreducible representations occurring in the right regular
representation L2(�/G) of G. Here we mention the famous Matsushima–Murakami
formula (see [9], see also [7, Proposition 2.4]):

MultΔτ ,�(λ) = ∑
π∈Ĝ ,π(C)=λ

m(π, �) dim(HomK(τ∨, π∣K)),(1.1)

where, τ∨ is the dual representation of τ and m(π, �) is the multiplicity of π in the
right regular representation L2(�/G).

Let Ĝτ = {π ∈ Ĝ ∶ HomK(τ, π∣K) ≠ 0}. Two uniform lattices �1 and �2 are called
τ-representation equivalent if m(π, �1) = m(π, �2) for all π ∈ Ĝτ . From Eq. 1.1, it
is easily observed that if m(π, �1) = m(π, �2) for all π ∈ Ĝτ∨ , then Spec(Δτ ,�1 ) =
Spec(Δτ ,�2 ) for X�1 and X�2 , respectively. Therefore, if two lattices �1 and �2 are
τ∨-representation equivalent, then the corresponding elliptic operators have the same
spectrum for the locally symmetric spaces X�1 and X�2 , respectively i.e., they are
τ-isospectral (see [7, Proposition 2.5]).

Definition 1.1.1 Two co-compact lattices �1 and �2 are called almost-
τ-representation equivalent if m(π, �1) is equal to m(π, �2) for all but finitely many
π ∈ Ĝτ .

In the first half of this paper, we give an affirmative answer of the question:
whether the almost-τ-representation equivalence implies τ-representation equiva-
lence between two uniform torsion free lattices �1 and �2 in non-compact symmetric
space G/K with arbitrary rank, and for any finite dimensional representation (τ, Vτ)
of K.

Theorem 1.1.2 Let G be a non-compact connected semisimple Lie group with finite
center. If for two uniform torsion free lattices �1 and �2,

m(π, �1) = m(π, �2)

for all but finitely many π ∈ Ĝτ , then �1 and �2 are τ-representation equivalent
lattices.

Remark 1.1.3 Consequently, the above hypothesis implies that X�1 and X�2 are
τ∨-isospectral. When τ is trivial, Theorem 1.1.2 reduces to [1, Theorem 1.2]. A special
case of Theorem 1.1.2 is [2, Theorem 4.1] for the group PSL(2,R).
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Infinitesimal τ-isospectrality 3

1.2 Infinitesimal τ-isospectrality

For an infinitesimal character χ of Z(g), let Vχ,�,τ = {ϕ ∈ V�,τ ∣ z.ϕ = χ(z)ϕ for all
z ∈ Z(g)}.

We define a refinement of the notion of τ-isospectrality as follows.

Definition 1.2.1 Two locally symmetric spaces X�1 and X�2 of non-compact type
are infinitesimally τ-isospectral if

dim Vχ,�1 ,τ = dim Vχ,�2 ,τ for all χ ∈ Ẑ(g).

Let [χ] be the set of all irreducible representations of G which has infinitesimal
character χ. It is known that [χ] is a finite subset of Ĝ (see [4, Corollary 10.37]). We
have obtained the following variant of Matsushima–Murakami formula.

Theorem 1.2.2 Let G be a connected non-compact semisimple Lie group. Assume
that � is a uniform lattice in G. Then for any χ ∈ Ẑ(g) and for any finite dimensional
representation τ of K,

dim Vχ,�,τ = ∑
π∈[χ]

m(π, �) dim(HomK(τ∨ , π∣K)).

Remark 1.2.3 For the rank one semisimple Lie group G, an infinitesimal character
χ ∈ Ẑ(g) is completely determined by its value on the Casimir element. Therefore the
above result becomes the earlier mentioned Matsushima–Murakami formula Eq. 1.1.

Remark 1.2.4 Let τ = τp be the p-th exterior power of the adjoint representation
of K on p∗

C
. The associated homogeneous vector bundle is identified with the p-th

exterior product of the co-tangent bundle on G/K. In [8], Matsushima proved the
relationship between the dimension of harmonic p-forms on X� and the multiplicity
of irreducible representations in L2(�/G) that occur with a nonzero τp-isotypic
component. Therefore, Theorem 1.2.2 can be seen as an infinitesimal version of Eq. 1.1.

Corollary 1.2.5 If �1 and �2 are τ∨-representation equivalent then the spaces X�1 and
X�2 are infinitesimally τ-isospectral.

Remark 1.2.6 If τ is trivial, the above formula in Theorem 1.2.2 reduces to [1, Theo-
rem 1.3].

Remark 1.2.7 The finite set [χ] of all irreducible representations of a real reductive
group (informally a χ-packet) is quite close to Langlands L-packet that consists of
irreducible admissible representations having same L-parameter. It is known that the
irreducible representations from a fixed L-packet have same infinitesimal character
i.e., they cannot be distinguished by the spectral data. According to our knowledge,
the converse of this is not known in general. It is interesting to formulate a suitable
variant of Matsushima–Murakami formula in terms of L-packet instead, and that
might reflect some analogous relationship between the multiplicities of irreducible
representations in a given L-packet and isospectrality.
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4 C. Bhagwat, K. Mondal, and G. Sachdeva

1.3 Literature review

We briefly review some literature related to the main results in this paper. The
question: Can the space X� (up to isometry) be determined by its spectrum? has been
of great interest over last few decades. The works of Milnor (see [10]) and Vignéras
(see [14]) are in the frontline to answer this negatively. Later, the construction of non-
isometric isospectral manifolds by Sunada brought significant arithmetic flavour in
this context (see [13]). In another important work in this context, C. S. Rajan studied
the appropriate arithmetic properties which are determined by the spectrum (see
[12]). Other than the ambitious inverse spectral problem there is another converse
of the above discussion: Given two τ-isospectral spaces X�1 and X�2 , are �1 and
�2 τ∨-representation equivalent? This is called the representation-spectral converse
for the pair (G , K). This has gotten attention for quite some time. There is a slightly
weaker version of this, defined as follows.

Definition 1.3.1 Two locally symmetric spaces X�1 and X�2 with the same universal
cover G/K are said to be almost-τ-isospectral if MultΔτ ,�1

(λ) = MultΔτ ,�2
(λ) for all

but finitely many λ.

In the direction of ‘almost-τ-representation equivalence implies isospectrality’, sev-
eral approaches have been made. In [5], E. Lauret and R. Miatello answered this
question for the case where K is a closed subgroup of a compact group G, i.e., for the
case of compact homogeneous space G/K for compact group G. They further proved
that the multiplicity of an appropriate finite subset of Ĝτ determines all multiplicities
(see [5, Theorem 1.1]). Later, they studied the representation-spectral converse in the
context of simply connected compact Riemannian symmetric space G/K of rank one
and proved there are infinitely many τ ∈ K̂ such that almost-τ-isospectrality implies
τ∨-representation equivalence and hence τ-isospectral (see [6, Theorem 1.1]).

For many non-compact Riemannian symmetric spaces, Pesce proved the validity
of representation-spectral converse where τ is trivial (see [11]). When τ is trivial
the τ-spectra are called spherical spectra. Bhagwat and Rajan answered that almost-
spherical representation equivalence implies spherical representation equivalence
(see [1, Theorem 1.2]). In fact, they described that for a spherical irreducible repre-
sentation π ∈ Ĝ1, there exists a character λπ of the algebra of G-invariant differen-
tial operators on X� such that Mult(λπ) = m(π, �) and conversely. Later, Kelmer
obtained several density results which relates the isospectrality and representation
equivalence via the notion of length equivalence for the case of X� with real rank
one and of non-compact type (having non-compact universal cover), in particular
for compact hyperbolic manifolds (see [3]).

1.4 Methodology

Let us briefly outline our methods for obtaining Theorem 1.1.2. We employ the well-
established and effective tool, namely the Selberg Trace Formula to study the represen-
tation spectra of L2(�/G)with respect to a convolution operator. Since our focus is on
the τ-spherical irreducible representations in L2(�/G), we need to annihilate the non
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Infinitesimal τ-isospectrality 5

τ-spherical component using appropriate test functions. To achieve this, we instead
consider the right regular representation L2(�/G , Vτ) (see 2.1) of G. We also utilize
an algebra, denoted by C∞c (G , K , Vτ) consisting of compactly supported smooth
End(Vτ)-valued test functions on G which are τ-equivariant (see 2.3). One can
suitably define the convolution operator on L2(�/G , Vτ) for such test functions. It is
straightforward to compute both the spectral and geometric expansions of the trace
of these convolution operators, which leads to the required Selberg Trace Formula for
L2(�/G , Vτ) (see 2.12). The advantage of using such operator valued τ-equivariant test
functions is the corresponding convolution operator annihilates the non τ-spherical
representation spectra (see 3.1.3). Moreover, due to our hypothesis, taking the dif-
ference between the trace formula for �1 and �2 yields a finite linear combination
of Harish Chandra character distribution associated with finitely many τ-spherical
irreducible representations. In Proposition 3.1.5, we construct a left K-saturated open
set in G that avoids all conjugacy classes [γ]G for γ ∈ �1 ∪ �2. For the aforementioned
test functions supported on this K-stable open set, the orbital integrals, and thus the
entire geometric side vanish. Finally, the remainder of the argument relies on the
analyticity of locally integrable character functions and the linear independence of
character distributions for inequivalent irreducible representations.

The organization of the article is as follows: In Section 2, we set up the preliminaries
and recall the Harish Chandra character distributions, Isospectrality and Representa-
tion equivalence. In Section 2.5, we explicitly calculate the Selberg Trace Formula for
L2(�/G), Vτ). In Section 3, we discuss the required lemmas and propositions to prove
Theorem 1.1.2. In Section 4, we provide some observations and complete the proof of
Theorem 1.2.2. In Section 5, we consider the case where the group G has discrete series
representations and using the results from [16] and Theorem 1.2.2, we show that the
dimension of χ-eigenspace of the automorphic forms of type τ∨ is equal to the qλ-th
L2-cohomology of the automorphic line bundle �/Lλ associated to the discrete series
representation π with minimal K-type τ and infinitesimal character χ.

2 Preliminaries

2.1 Basic setup

Let G be a connected non-compact semisimple Lie group and let K be a maximal
compact subgroup of G with Lie algebras g and k, respectively. Then the homogeneous
space G/K is a symmetric space with a G-invariant metric. Let (τ, Vτ) be a finite
dimensional representation of K. Let � be a uniform torsion-free lattice in G.

We consider the right regular representation ρ of G on the space

L2(�/G , Vτ) ∶= {ϕ ∶ G → Vτ ∣ ϕ is measurable,

ϕ(γg) = ϕ(g) for all γ ∈ �, ∫
�/G

∣ϕ(g)∣2 dg < ∞}.(2.1)

Since �/G is compact, the right regular representation L2(�/G) of G is completely
reducible and each irreducible subrepresentation occurs with finite multiplicity. In
other words,
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6 C. Bhagwat, K. Mondal, and G. Sachdeva

L2(�/G) ≅ ⊕̂
π∈Ĝ

m(π, �)Wπ

with m(π, �) < ∞ for all π ∈ Ĝ.
We choose an orthonormal basis for each copy of π. Taking union of those we get

an orthonormal basis W of L2(�/G). Let {v i}n
i=1 be an orthonormal basis of Vτ . For

any ψ ∈W, we let ψ i(x) = ψ(x)v i . Then {ψ i ∣ψ ∈W, 1 ≤ i ≤ n} forms an orthonormal
basis of L2(�/G , Vτ). Note that L2(�/G , Vτ) = L2(�/G) ⊗ Vτ .

Therefore, we get

L2(�/G , Vτ) ≅ ⊕̂
π∈Ĝ

m(π, �) (Wπ ⊗ Vτ).(2.2)

For each copy of Wπ ⊗ Vτ , we identify a subspace Vπ in L2(�/G , Vτ). The subspace
Vπ is not an irreducible G-subspace, rather it is direct sum of dim Vτ many copies of
Wπ .

We introduce a space C∞c (G , K , Vτ) defined by

{ f ∶ G → End(Vτ) ∣ f is compactly supported and smooth such that
f (kx) = f (x)τ(k−1) for all x ∈ G , k ∈ K}.(2.3)

For f ∈ C∞c (G , K , Vτ), let h f (x) = Trace ( f (x)) for all x ∈ G. Now for any
f ∈ C∞c (G , K , Vτ), we define the convolution operator ρ( f ) ∶ L2(�/G , Vτ) →
L2(�/G , Vτ) by

ρ( f )ϕ(x) = ∫
G

f (y)(ϕ(g y)) d y for all ϕ ∈ L2(�/G , Vτ).(2.4)

Proposition 2.1.1 Each Vπ is ρ( f )-stable subspace for all f ∈ C∞c (G , K , Vτ).

Proof Let U ⊂W be the subset such that U is an orthonormal basis of Wπ . Then
{ϕ i ∶ ϕ ∈ U, 1 ≤ i ≤ n} is an orthonormal basis of Vπ . Thus it suffices to show that

⟨ρ( f )ϕ i , ψ j⟩ = 0 for any ϕ ∈ U, ψ ∈W /U and any 1 ≤ i , j ≤ n.

We compute,

⟨ρ( f )ϕ i , ψ j⟩ = ∫
�/G

⟨ρ( f )ϕ i(g), ψ j(g)⟩ dg

= ∫
�/G

⟨∫
G

ϕ(g y) f (y)v i , ψ(g)v j⟩ d y dg

= ∫
�/G

∫
G

ϕ(g y)ψ(g)⟨ f (y)v i , v j⟩ d y dg(2.5)

= ∫
G

⟨ f (y)v i , v j⟩ ∫
�/G

ϕ(g y)ψ(g) dg d y

= 0. ∎
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Infinitesimal τ-isospectrality 7

2.2 Results on Harish–Chandra characters

We will be using the following two important results on Harish–Chandra characters.

Harish–Chandra character distribution: Let (π, Wπ) be an irreducible unitary repre-
sentation of G. Let C∞c (G) be the space of all compactly supported smooth functions
on G. For any f ∈ C∞c (G), the convolution operator π( f )on Wπ is defined by π( f )v =
∫
G

f (g)π(g)v dg for all v ∈ Wπ . It is a trace class operator (see [4, Theorem 10.2]) and

χπ( f ) = Trace (π( f )) for all f ∈ C∞c (G).

Theorem 2.2.1 Let {π i} be a finite collection of mutually inequivalent unitary irre-
ducible representations of G. Then their characters {χπ i} are linearly independent
distributions on G.

Proof Reader is referred to [4, Theorem 10.6]. ∎

Theorem 2.2.2 Let π be an irreducible unitary representation of G. Then the distribu-
tion character χπ is given by a locally integrable function ϕπ on G i.e., for f ∈ C∞c (G),

χπ( f ) = ∫
G

f (g)ϕπ(g) dg .

Moreover, the restriction of ϕπ to the regular set of G is a real analytic function
invariant under conjugation.

Proof Reader is referred to [4, Theorem 10.25]. ∎

2.3 Isospectrality and representation equivalence

There is a natural homogeneous vector bundle Eτ on G/K that is associated with
the representation (τ, Vτ) of K. The space of all smooth global sections of Eτ can be
realized as A∞(G/K , τ) = {ϕ ∶ G → Vτ ∣ ϕ is smooth, ϕ(xk) = τ(k−1)(ϕ(x)) for all
x ∈ G , k ∈ K}. Note thatA∞(G/K , τ) is aU(g)K module. In particular,Z(g) ⊂ U(g)K

acts on A∞(G/K , τ).
Let g = k⊕ p be the Cartan decomposition of the Lie algebra g. We choose a basis

{X i} and {Yj} of k and p, respectively with respect to a bilinear form B on g induced
from the killing form such that B(Xk , X l) = −δk l and B(Ym , Yn) = δmn . Let C be
the Casimir element given by C = −∑X2

i +∑Y 2
j . The Casimir element C induces

a second order symmetric elliptic operator Δτ on A∞(G/K , τ).
Let � be a uniform torsion-free lattice in G, and let X� = �/G/K be the associated

compact locally symmetric space of non-compact type. We consider the vector bundle
Eτ ,� on X� defined by the relation [γg , w] ∼ [g , w] for all γ ∈ � and [g , w] ∈ Eτ . The
space of all smooth global sections of Eτ ,� can be realised as the space V�,τ = {ϕ ∈
A∞(G/K , τ) ∣ ϕ(γx) = ϕ(x) for all γ ∈ �}. Hence, the centre Z(g) acts on V�,τ .

Let Δτ ,� = Δτ ∣V�,τ . This is again a second order symmetric elliptic operator on X�.
Its spectrum Spec(Δτ ,�) is a discrete subset of the non-negative real numbers. Let
MultΔτ ,�(λ) = the multiplicity of λ ∈ Spec(Δτ ,�). Recall Eq. 1.1
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8 C. Bhagwat, K. Mondal, and G. Sachdeva

MultΔτ ,�(λ) = ∑
π∈Ĝ ,π(C)=λ

m(π, �) dim(HomK(τ∨, π∣K)),

where π(C) is the scalar by which the Casimir element C acts on Wπ .

Definition 2.3.1 X�1 and X�2 are called τ-isospectral if the operators Δτ ,�1 and Δτ ,�2

have same spectrum (with multiplicity).

We denote Ĝτ = {π ∈ Ĝ ∶ HomK(τ, π) ≠ 0}.

Definition 2.3.2 �1 and �2 are called τ-representation equivalent if m(π, �1) =
m(π, �2) for all π ∈ Ĝτ .

It is clear from Eq. 1.1 that, if �1 and �2 are τ∨-representation equivalent, then X�1

and X�2 are τ-isospectral.

2.4 A further refinement

We have seen that Z(g) acts on V�,τ (see Section 1.1). For any character χ ∈ Ẑ(g), we
have the χ-eigenspace defined as

Vχ,�,τ = {ϕ ∈ V�,τ ∣ z.ϕ = χ(z)ϕ for all z ∈ Z(g)}.

In fact, V�,τ decomposes as V�,τ = ⊕
χ∈Ẑ(g)

Vχ,�,τ .

We here introduce a notion of two locally symmetric spaces being infinitesimally
τ-isospectral, defined as follows.

Definition 2.4.1 Two locally symmetric spaces X�1 and X�2 are infinitesimally
τ-isospectral if for all characters χ ∈ Ẑ(g),

dim Vχ,�1 ,τ = dim Vχ,�2 ,τ .

Remark 2.4.2 If G is a real rank one Lie group, the centre Z(g) is the polynomial
algebra over C in the Casimir element C. Therefore, the χ-eigenspace is simply the
λ-eigenspace where λ is an eigenvalue of the Laplace-Beltrami operator Δτ ,� on Eτ ,�.
In this case, infinitesimal τ-isospectrality reduces to τ-isospectrality as defined above.

As in [1] and [2], we can expect that the dim Vχ,�,τ is related with the multiplicities
m(π, �) of π ∈ Ĝτ∨ occurring in L2(�/G) with infinitesimal character χ. This is the
content of Theorem 1.2.2.

2.5 Selberg trace formula for L2(�/G , Vτ)

Recall {ψ j ∶ ψ ∈W, j ∈ 1, ..., n} is an orthonormal basis of L2(�/G , Vτ) (recall 2.1).
For any f ∈ C∞c (G , K , Vτ) (recall 2.3), let [ f i j]n×n be the matrix representation of f
with respect to the basis {v i}n

i=1 of Vτ . For f ∈ C∞c (G , K , Vτ), observe that,
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ρ( f )ψ j(x) = ∫
G

f (x−1 y)(ψ j(y)) d y

= ∫
G

f (x−1 y)(ψ(y)v j) d y(2.6)

= ∑
i
∫
G

ψ(y) f i j(x−1 y)v i d y.

Then, we have

Trace (ρ( f )) = ∑
ψ∈W

∑
j
⟨ρ( f )ψ j , ψ j⟩

= ∑
ψ∈W

∑
j
∫

�/G

⟨∑
i
∫
G

ψ(y) f i j(x−1 y)v i d y, ψ(x)v j⟩ dx

= ∑
ψ∈W

∑
j
∫

�/G
∫

�/G

ψ(y) ψ(x) ∑
γ∈�
⟨∑

i
f i j(x−1γy)v i , v j⟩ d y dx

= ∑
ψ∈W

∫
�/G×�/G

∑
γ∈�

Trace ( f (x−1γy))ψ(x)ψ(y) d y dx

= ∑
ψ∈W

∫
�/G×�/G

∑
γ∈�

h f (x−1γy)ψ(x)ψ(y) d y dx .(2.7)

Put K f (x , y) = ∑
γ∈�

h f (x−1γy). Above equals,

∑
ψ∈W

∫
�/G×�/G

K f (x , y)ψ(x)ψ(y) d y dx .(2.8)

Consider the integral operator T on L2(�/G) defined by

Tψ(x) = ∫
�/G

K f (x , y)ψ(y) d y.(2.9)

Then T is a trace class operator and its trace is given by

Trace (T) = ∑
ψ∈W

∫
�/G×�/G

K f (x , y)ψ(x)ψ(y) d y dx .(2.10)

On the other hand the trace of such an operator T equals ∫
�/G

K f (x , x) dx. Therefore,

Trace (ρ( f )) = ∫
�/G

K f (x , x) dx = ∫
�/G

∑
γ∈�

h f (x−1γx) dx .

From Proposition 2.1.1, we have

Trace (ρ( f )) = ∑
π∈Ĝ

m(π, �) Trace (ρ( f )∣Vπ).
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Now,

Trace (ρ( f )∣Vπ) = ∑
j

∑
ψ∈W∩Wπ

⟨ρ( f )ψ j , ψ j⟩

= ∑
ψ∈W∩Wπ

∫
�/G

∫
G

ψ(x y) ψ(x) Trace ( f (y)) d y dx(2.11)

= Trace (π(h f )).

Therefore, we have the following Selberg trace formula:

∑
π∈Ĝ

m(π, �) Trace (π(h f )) = ∫
�/G

∑
γ∈�

h f (x−1γx) dx

= ∑
[γ]∈[�]G

vol (�γ/Gγ) ∫
Gγ/G

h f (x−1γx) dx(2.12)

= ∑
[γ]∈[�]G

a(γ, �) Oγ(h f ),

where, a(γ, �) and Oγ(h f ) denote vol (�γ/Gγ) and ∫
Gγ/G

h f (x−1γx) dx , respectively.

Remark 2.5.1 This trace formula is a generalisation of the well-known Selberg trace
formula. For more explicit description about the “geometric side”, see [15].

3 Proof of the first main result Theorem 1.1.2

3.1 Some preliminary results

We will describe the lemmas and propositions required to prove Theorem 1.1.2.

Lemma 3.1.1 Let Kx be a left coset of K in G for some x ∈ G. Let U be an open set
containing the left coset Kx. Then there exists f ∈ C∞c (G) with Supp ( f ) ⊂ U such that
∫
K

f (kx)χτ(k) dk ≠ 0. (Here χτ is the character function of τ.)

Proof For any f ∈ C∞c (G) with Supp( f ) ⊂ U , we define ψ ∈ C∞(K) by ψ(k) =
f (kx). Conversely, for any ψ ∈ C∞(K), define f (kx) = ψ(k), and extend f smoothly
to U.

Now, if ∫
K

f (kx)χτ(k) dk = 0 for all f ∈ C∞c (G) such that Supp( f ) ⊂ U , then

∫
K

ψ(k) χτ(k) dk = 0 for all ψ ∈ C∞(K).

But that implies χτ is identically zero leading to a contradiction. ∎

Lemma 3.1.2 Let Kx ≠ Ky be two distinct left cosets of K in G. Then there exists
F ∈ C∞c (G , K , Vτ) such that hF(x) ≠ 0 and hF ∣Ky = 0.
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Proof Kx ≠ Ky are disjoint compact sets in G. Choose disjoint open sets U1 , U2
with Kx ⊂ U1 , Ky ⊂ U2, and U1 ∩U2 = ∅. From Lemma 3.1.1, there exists f ∈ C∞c (G)
with Supp ( f ) ⊂ U1 such that ∫

K
f (kx)χτ(k) dk ≠ 0.

Let F(g) = ∫
K

f (kg)τ(k) dk. Then, F ∈ C∞c (G , K , Vτ).

Furthermore, hF(g) = ∫
K

f (kg)χτ(k) dk. Hence hF(x) ≠ 0 and hF(y) = 0 and

hence hF ∣Ky = 0. ∎

Proposition 3.1.3 Let π be an irreducible representation of G occurring as a subrepre-
sentation of ρ. Assume that π is not τ-spherical i.e., HomK(Vτ , Vπ) = 0. Then ρ( f ) is
zero on Vπ .

Proof It is enough to show that ρ( f ) is zero at each element of the orthonormal
basis {ψ j ∶ ψ ∈ U, 1 ≤ j ≤ n}. Here, U =W ∩Wπ . Recall that (see Eq. 2.4)

ρ( f )ψ j(g) = ∫
G

ψ(g y) f (y)(v j) d y.

For a fixed ψ ∈ U, consider the subspace Uψ = span {ψ j ∶ j ∈ {1, . . . , n}}. If

v =
n
∑
j=1

a jv j , we write ψv = ∑n
j=1 a jψ j . Then the subspace Uψ is same as {ψv ∶ v ∈ Vτ}.

There is an action of K on Uψ by τ(k)ψv = ψτ(k)v .
Clearly, Uψ is a representation of K isomorphic to τ. Note that ⊕̂

ψ∈W
Uψ = Vπ . We

show that ρ( f )∣Uψ = 0. In fact, we show that ρ( f ) ∈ HomK(Uψ , Vπ).
Let ψv ∈ Uψ and k0 ∈ K. Then for every g ∈ G, we have

(ρ(k0)ρ( f )ψv)(g) = (ρ( f )ψv)(gk0)

= ∫
G

f (y) (ψ(gk0 y)v) d y

= ∫
G

ψ(g y) f (k−1
0 y)v d y(3.1)

= ∫
G

ψ(g y) f (y)τ(k0)v d y

= ρ( f ) τ(k0) ψv(g).
Therefore, ρ( f ) is zero on Uψ for all ψ ∈W. Consequently, ρ( f ) is zero on Vπ . ∎

Lemma 3.1.4 Let � be a torsion-free uniform lattice in G. For a non-trivial element
γ ∈ �, the conjugacy class [γ]G of γ in G is disjoint from K.

Proof Reader is referred to [1, Lemma 4.2]. ∎

Proposition 3.1.5 Let �1 and �2 be two uniform lattices in G. Then there exists an
open set B in G such that [γ]G ∩ B is empty for all γ ∈ �1 ∪ �2, and B is stable under left
K action on G.
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Proof Let U ′ be a relatively compact open set containing the identity element e
in G. Let U = KU ′. Then U is relatively compact and therefore it intersects at most
finitely many conjugacy classes [γ]G . Since, the natural map G → K/G is proper,
K[γ]G is closed in G. Since U is K-stable, K[γ]G ∩U ≠ ∅ if and only if [γ]G ∩U ≠ ∅.
Let E = ⋃

γ≠e
(K[γ]G ∩U). Since E is a finite union of closed sets, it is closed and

K-stable subset of U. If there is k ∈ K, γ ≠ e and x ∈ G such that kx−1γx = e, then
x−1γx ∈ K; which contradicts the previous lemma. Therefore e ∉ K[γ]G for any γ ≠ e
and hence e ∉ E. Choose an open set V containing e such that E ∩ V = ∅. Now, let
B = KV ∩ K c . Then B is the desired open set in G. ∎

3.2 Proof of Theorem 1.1.2

We have two uniform torsion free lattices �1 and �2 in G. So by Eq. 2.2,

(ρ�i , L2(�i/G , Vτ)) = ⊕̂
π∈Ĝ

m(π, �i)Vπ

for i = 1, 2. Let tπ = m(π, �1) −m(π, �2). By hypothesis there exists a finite set S ⊂ Ĝτ
such that tπ = 0 for all π ∈ Ĝτ/S. For f ∈ C∞c (G , K , Vτ), ρ�i ( f ) is zero on Vπ if π ∉ Ĝτ
by Proposition 3.1.3. Recall that h f (y) = Trace ( f (y)). Therefore from the Selberg
trace formula (2.12), we have

∑
[γ]∈[�1]G∪[�2]G

(a(γ, �1) − a(γ, �2))Oγ(h f ) = ∑
π∈S

tπ Trace (π(h f ))

= ∑
π∈S

tπ ∫
G

h f (y)ϕπ(y) d y

= ∫
G

h f (y)ϕ(y) d y,

where, ϕ = ∑
π∈S

tπ ϕπ .

Let B be the open set from Proposition 3.1.5. For any f ∈ C∞c (G , K , Vτ) supported
in B, the orbital integrals on the right-hand side is zero. For such functions f, we have

∫
B

h f (y)ϕ(y) d y = 0.

From Lemma 3.1.2, the functions h f separates points in B. Hence ϕ must vanish
on the open subset B of G. Since ϕ is real analytic (see Theorem 2.2.2), it vanishes on
all of G. By the linear independence of functions ϕπ (see Theorem 2.2.1), we conclude
that m(π, �1) = m(π, �2) for all π ∈ Ĝτ .

4 Proof of the second main result Theorem 1.2.2

4.1 Some observations

In this subsection, we make some observations that will be useful in the proof of
Theorem 1.2.2.
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Recall from Section 2.3 that A∞(G/K , τ) is the space of smooth sections of the
vector bundle Eτ and V�,τ is the subspace defined by

V�,τ = {ϕ ∈ A∞(G/K , τ) ∣ ϕ(γx) = ϕ(x) for all γ ∈ �, x ∈ G}.

Let n = dim(Vτ). Recall the choice of an orthonormal basis {v i}n
i=1 of Vτ from

Section 2.1. For a fixed ϕ ∈ Vχ,�,τ , write ϕ(x) =
n
∑
i=1

ϕ i(x)v i for all x ∈ G, where each

ϕ i is smooth complex valued function on �/G. Recall from Section 2.1 that Vχ,�,τ is
the χ-eigenspace of V�,τ with respect to the action of Z(g). For any X ∈ Z(g) and for
all x ∈ G, we can see that

X ⋅ ϕ(x) =
n
∑
i=1

X ⋅ ϕ i(x) v i .(4.1)

Therefore, we conclude that X ⋅ ϕ i = χ(X)ϕ i for all i.
Each τ(k) has a matrix representation with respect to the chosen orthonormal

basis of Vτ . Let the (i , j)-th entry of τ(k) be denoted by a i j(k).
Note that ϕ(xk) = τ(k−1)(ϕ(x)) for all x ∈ G and k ∈ K. Thus we have

∑
i

ϕ i(xk) v i = τ(k−1)
⎛
⎝∑j

ϕ j(x) v j
⎞
⎠

=∑
l

⎛
⎝∑j

a l j(k−1)ϕ j(x)
⎞
⎠

v l .(4.2)

Therefore, ϕ i(xk) =
n
∑
j=1

a i j(k−1) ϕ j(x) for all x ∈ G , k ∈ K.

4.2 Proof of Theorem 1.2.2

We denote [χ] = {π ∈ Ĝ ∶ the infinitesimal character of π is χ}. Recall that

L2(�/G) = ⊕̂
π∈Ĝ

m(π, �)Wπ .

There are m(π, �) copies of Wπ inside L2(�/G) say, {Wπ t ∶ 1 ≤ t ≤ m(π, �)}. Let
Pπ t be the projection onto Wπ t .

Clearly, ϕ i ∈ L2(�/G) for all ϕ ∈ Vχ,�,τ . We have

ϕ i = ∑
π∈[χ]

m(π ,�)

∑
t=1

Pπ t ϕ i .

For any 1 ≤ t ≤ m(π, �), clearly Pπ t ∈ HomG(L2(�/G), Wπ t). Using Eq. 4.2, we get

https://doi.org/10.4153/S0008439524000882 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000882


14 C. Bhagwat, K. Mondal, and G. Sachdeva

π(k)Pπ t ϕ i = Pπ t ρ(k)ϕ i

= Pπ t

n
∑
j=1

a i j(k−1)ϕ j(4.3)

=
n
∑
j=1

a i j(k−1)Pπ t ϕ j .

Let Fπ t = Span of {Pπ t ϕ j ∶ 1 ≤ j ≤ n}. From Eq. 4.3, it follows that Fπ t is a finite
dimensional representation of K. Let τ∨ be the dual representation of τ of K on the
dual space V∗τ . Let {v∗i }n

i=1 be the dual basis of V∗τ . Then there is K-isomorphism
between Fπ t and V∗τ which maps each Pπ t ϕ i to v∗i .

Now we assume that τ is irreducible (and hence τ∨ as well). For a fixed πt , let
Wπ t(τ∨) be the isotypic component of τ∨ in Wπ t . Then Fπ t ⊂ Wπ t(τ∨). We have a
decomposition

Wπ t(τ∨) =
Mτ∨

⊕
p=1

Hp ,

where, each Hp is an irreducible representation of K isomorphic to τ∨. Note that
Mτ∨ = dim(HomK(τ∨, π)).

For each p, let {ϕt , p,s}n
s=1 be a basis of Hp satisfying ϕp,t ,s(xk) =

n
∑
u=1

aus(k−1)
ϕt , p,u(x). Note that this is possible because each Hp is isomorphic to Fπ t .

Now, Pπ t ϕ i = ∑
p
∑
s

αp,s , i ϕt , p,s . For each p, the matrix (αp,s , i)s , i represents a

K-homomorphism between Fπ t and Hp . Therefore, αp,s , i = αpδs , i for some scalar αp
by Schur’s lemma.

Therefore, Pπ t ϕ i = ∑
p

αp ϕt , p, i . We define ϕt , p(x) =
n
∑
i=1

ϕt , p, i(x) v i for all t and p.

Hence, we get

ϕ =
n
∑
i=1

ϕ iv i

=
n
∑
i=1

⎛
⎝ ∑π∈[χ]

m(π ,�)

∑
t=1

Pπ t ϕ i
⎞
⎠

v i

=
n
∑
i=1
∑

π∈[χ]

m(π ,�)

∑
t=1

Mτ∨

∑
p=1

αp ϕt , p, i v i(4.4)

= ∑
π∈[χ]

m(π ,�)

∑
t=1

Mτ∨

∑
p=1

αp ϕt , p .

We conclude that dim Vχ,�,τ ≤ ∑
π∈[χ]

m(π, �) dim(HomK(τ∨, π)).

Conversely, for every t and for every p, choose a basis {ϕt , p, i}n
i=1 of Hp such that

ϕt , p, i(xk) =
n
∑
j=1

a ji(k−1) ϕt , p, j(x).
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Let ϕt , p =
n
∑
i=1

ϕt , p, i v i . Then ϕt , p(xk) = τ(k−1)(ϕt , p(x)). Since X ⋅ ϕt , p, i =
χ(X) ϕt , p, i for all X ∈ Z(g), it follows that ϕt , p ∈ Vχ,�,τ .

We conclude that ∑
π∈[χ]

m(π, �) dim(HomK(τ∨ , π)) ≤ dim Vχ,�,τ . Therefore, we

have the equality

dim Vχ,�,τ = ∑
π∈[χ]

m(π, �) dim(HomK(τ∨ , π)) for all τ ∈ K̂ .(4.5)

Now, let us consider the general case that τ is a finite dimensional representation

of K (possibly reducible). Let τ ≅
q
⊕
i=1

m i τ i be a decomposition of τ into irreducible

representations of K. Hence τ∨ ≅
q
⊕
i=1

m i (τ i)∨.

Let V�,τ be as in Section 2.3. The center Z(g) acts on this space. Therefore for any
character χ ∈ Ẑ(g), we can consider the χ-eigenspace Vχ,�,τ ⊂ V�,τ . We observe that

dim Vχ,�,τ =
q

∑
i=1

m i dim Vχ,�,τ i .

We can use the argument culminating into Eq. 4.5 for each τ i and the additivity
properties of Hom spaces with respect to decomposition of τ to complete the proof
of Theorem 1.2.2.

5 Discrete series representations and cohomology

In this section, we comment about the case when G is non-compact connected
semisimple group that admits a discrete series representation. (This is same as saying
rank G = rank T, where T is a “compact” Cartan subgroup.) It is well-known that
for a given χ ∈ Ẑ(g), and a K-type τ there exists at most one (up to infinitesimal
equivalence) discrete series representation πλ+ρ with the infinitesimal character χ and
minimal K-type τ where λ ∈ t∗

C
such that λ + ρ is regular and integral linear form.

Also, HomK(τ, πλ+ρ) = 1.
Therefore Theorem. 1.2.2 implies the dimension of Vχ,�,τ∨ is equal to the multiplic-

ity of the above discrete series πλ+ρ in L2(�/G).
For λ ∈ t∗

C
, there exists a G-equivariant holomorphic line bundle Lλ on G/T .

Under a mild condition on λ (see [16, Equation (7.66)]), [16, Theorem 7.65] implies
the L2-cohomology H∗2 (�/Lλ) is non-vanishing in exactly one degree qλ (depends
on λ) and

dim Hqλ
2 (�/Lλ) = m(πλ+ρ , �).

Hence, the dimension of the χ-eigenspace of the automorphic forms of type τ∨ is
equal to the qλ-th L2-cohomology of the automorphic line bundle �/Lλ .
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