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Coincidence of the barycentre and the geometric
centre of weighted points

ULRICH ABEL

1.   Introduction
Recently, Gerhard J. Woeginger [1] gave a survey on the interesting

history of results on equiangular -vertex polygons with edge lengths in
arithmetic progression. Such a polygon exists if, and only if,  has at least
two distinct prime factors.

n
n

An equivalent formulation of the problem is as follows: Suppose you
have  objects whose weights  are in arithmetic progression. For
which values of  is it possible to place these objects evenly spaced around
the circumference of a disc so that the disc will exactly balance on the centre
point?

n m1, … , mn
n

In algebraic terms, is there a permutation  of the integers  such
that

τ 1, … , n

1
M ∑

n

k = 1

mτ(k)e
2πik/n = 0

is valid? Such a permutation exists if, and only if,  has at least two distinct
prime factors. For references see the list contained in [1].

n

Though Woeginger closed his article with the statement “And that's the
end of this story” we want to continue it by the following generalisation.
Problem 1:  Let . Consider a real linear space  and select

. Let  be a point mass at the point  ( ).

Suppose that the total mass  is positive. For which positive

integers is there a permutation  on  such that the barycentre
coincides with the geometric centre point? In algebraic terms, this means
that

n ∈ � V
x1, … , xn ∈ V mk ∈ � xk k = 1, … , n

M = ∑
n

k = 1
mk

τ {1, … , n}

1
M ∑

n

k = 1

mτ(k)xk =
1
n ∑

n

k = 1

xk

is valid.

The problem presented in [1] is the solution in the case
regarded as ,

V = �
�2

xk = e2πik/n (k = 1, … , n) ,
and  is an arithmetic sequence of real numbers.mk

In this Article, we consider the case of equispaced points  on
the real line , and derive a complete solution of the problem if the
masses  are an arithmetic sequence of real numbers.

x1, … , xn
V = �

mk
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2.   Point masses on the line
We consider , equispaced pointsV = �

xk = k (k = 1, … , n)
and a non-constant arithmetic sequence of numbers . Without loss of
generality we can assume that . Then the geometric
centre point is  and the total mass is . Hence, we
study the following problem which is a special case of Problem 1:

mk
mk = k (k = 1, … , n)

1
2 (n + 1) M = 1

2n (n + 1)

Problem 2: Is there a permutation  on  such thatτ {1, … , n}

∑
n

k = 1

k · τ (k) =
n (n + 1)2

4
. (1)

Obviously, this is valid for , but there is no such permutation for
. For , we have exactly 2 solutions:

n = 1
n ∈ {2,  3} n = 4

Position: 1 2 3 4
Mass: 2 4 1 3

3 1 4 2

For , we list the exactly 6 permutations satisfying (1):n = 5

Position: 1 2 3 4 5 written as a product of cycles
Mass: 1 5 4 3 2 (1) (2, 5) (3, 4)

2 3 4 5 1 (1, 2, 3, 4, 5)
2 5 3 1 4 (1, 2, 5, 4)(3)
4 1 3 5 2 (1, 4, 5, 2)(3)
4 3 2 1 5 (1, 4)(2, 3)(5)
5 1 2 3 4 (1, 5, 4, 3, 2)

Furthermore, we list the number of solutions of Problem 2 and their
percentage of the total number of possible permutations, for small values of :n

:n 1 2 3 4 5 6 7 8 9 10
Number of solutions: 1 0 0 2 6 0 184 936 6688 0
Number of permutations: 1 2 6 24 120 720 5040 40320 362880 3628800
Percentage: 100 0 0 8.33 5 0 3.65 2.32 1.843 0

These calculations were achieved by brute force using the computer algebra
system Mathematica.
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For each of the following values of  we list one arbitrary solution:n

n permutation written as a product of cycles
11 (1, 9, 6, 3, 7, 11, 8, 5) (2) (4, 10)
12 (1, 2, 7, 11, 8, 4, 9, 5) (3, 12) (6) (10)
13 (1, 2, 12, 7, 4, 3, 11) (5) (6, 13, 10, 9, 8)
14 no solution
15 (1, 8, 9, 13, 11, 14, 3, 2, 10, 4, 15, 5, 6, 7) (12)
16 (1, 9, 12, 10, 11, 4, 3, 7, 8, 5) (2, 16) (6, 13, 15, 14)
17 (1, 11) (2, 16, 17, 12) (3, 8, 4, 7, 14, 6, 5, 13, 9, 10) (15)
18 no solution

For , the number of solutions is even, because with  also the
permutation  is a solution of (1). The following theorem
gives a complete answer to the Problem 2.

n ≥ 2 τ
k → τ (n + 1 − k)

Theorem 3:  Let  be the set of all positive integers for which Problem 2 has
a solution. Then

S

S = {n ∈ � : n ≠ 4k + 2 for all integers k ≥ 0} \ {3} .

Proof:  For  one can easily check that there is no solution. When
, we have . Hence, the right-hand side

of (1) is not an integer. The proof for all other values of  is divided into
several cases.

n = 3
n ≡ 2 mod 4 n (n + 1)2 ≡ 2 mod 4

n

Case 1:  is an integral multiple of 4, i.e.  with ,n n = 4r r ∈ �

We provide a proof in a constructive way by describing a permutation
which solves (1). First, we place the masses of odd values in ascending
order and, subsequently, the masses of even value in descending order:

Position: 1 2 3 4 … 2r 2r + 1 … 4r − 2 4r − 1 4r
Mass: 1 3 5 7 … 4r − 1 4r … 6 4 2

The associated permutation is given by

τ1 (k) =
⎧

⎩
⎨
⎪
⎪

2k − 1 (1 ≤ k ≤ 2r) ,
2 (4r + 1 − k) (2r + 1 ≤ k ≤ 4r) ,

and we obtain

∑
n

k = 1

k · τ1 (k) = ∑
2r

k = 1

k · (2k − 1) + ∑
4r

k = 2r + 1

(4r + 1 − k)  · 2k

= ∑
2r

k = 1

[k · (2k − 1) + (2r + 1 − k)  · 2 (k + 2r)]
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= 8r2 (2r + 1) + ∑
2r

k = 1

k = r (2r + 1) (8r + 1)

=
1
8

n (n + 2) (2n + 1) =
n (n + 1)2

4
+ σ,

where . Swapping, for , both the masses
 and  at the positions  and ,

respectively, diminishes the sum  by a total amount of .
Note that

σ = 1
8n2 = 2r2 1 ≤ k ≤ 2r

m4r − 2k + 1 m4r − 2k + 2 2r + 1 − k 2r + k
∑n

k = 1k · τ1(k) 2k − 1

∑
2r

k = 1

(2k − 1) = 4r2 > σ.

Subcase 1(a):  is even,  .r n = 8,  16,  24, …
If , say, thenr = 2ρ

∑
ρ

k = 1

(2k − 1) + ∑
4ρ

k = 3ρ + 1

(2k − 1) = 8ρ2 = 2r2 = σ.

Doing the relevant interchanges leads to the desired permutation .τ

For the sake of a better understanding we illustrate the general
construction by a concrete example:

Take , .n = 8 ρ = 1

Position: 1 2 3 4 5 6 7 8
Mass: 2 3 5 8 7 6 4 1

The permutation given as a product of cycles is
and .

(1,  2,  3,  5,  7,  4,  8) (6)
1 · 2 + 2 · 3 +  …  + 8 · 1 = 162 = 1

4 (8 · 92)

Subcase 1(b):  is odd,  .r n = 12,  20,  28, …
The case , i.e.,  is already shown above.

Suppose  is odd, , say, then swapping both the masses
 and  at the positions  and , respectively, increases the

sum  by a total amount of . Furthermore,

r = 1 n = 4r = 4 ∈ S
r ≥ 3 r = 2ρ + 1

m2r + 1 m2r r + 1 3r + 1

∑
n

k = 1
k · τ1 (k) 2r

∑
ρ + 1

k = 1

(2k − 1) + ∑
4ρ + 2

k = 3ρ + 2

(2k − 1) − 2r = 2 (2ρ + 1)2 = 2r2 = σ.

Doing the relevant interchanges leads to the desired permutation . Note that
in the range from position 1 up to , the second sum and the first sum
involve the positions from 1 up to  and from  up to
while the last term  involves the position . The analoguous
situation is valid in the range from position  up to .

τ
2r
ρ + 1 3ρ + 1 4ρ + 2

−2r 2ρ + 2
2r + 1 4r
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As an example take , , .n = 12 r = 3 ρ = 1

Position: 1 2 3 4 5 6 7 8 9 10 11 12
Mass: 2 4 5 6 10 12 11 9 8 7 3 1

The permutation given as a product of cycles is (1, 2, 4, 6, 12) (3, 5, 10,
7, 11) (8, 9) and .1 · 2 + 2 · 4 +  …  + 12 · 1 = 507 = 1

4 (12 · 132)

Case 2:  is an odd integer.n ≥ 5
First, we place the mass 1 at the last position . Then we distribute the

masses 2, 3, 4, 5, 6, 7, 8, 9, … pairwise on the free positions alternating
furthest to the left and furthest to the right:

n

Position: 1 2 3 4 … n − 4 n − 3 n − 2 n − 1 n
Mass: 2 3 6 7 … 8 9 4 5 1

The associated permutation is given by , ,
for ‘small’ odd values of  and , , for
“small” even values of , and finally . In order to study the
situation in more detail we distinguish two subcases.

τ2 (k) = 2k τ2 (k + 1) = 2k + 1
k τ2(n + 1 − k) = 2k + 1 τ2 (n − k) = 2k

k ≥ 1 τ2 (n) = 1

Subcase 2(a): ,  .n ≡ 1 mod 4 n = 5,  9,  13,  17, …
Put  with . Then, the permutation  can be defined byn = 4r + 1 r ∈ � τ2

⎧

⎩

⎨
⎪

⎪

⎪

⎪

⎪

⎪

τ2 (2i − 1) = 2 (2i − 1) (1 ≤ i ≤ r) ,
τ2 (2i) = 2 (2i − 1) + 1 (1 ≤ i ≤ r) ,
τ2 (2r + 2i − 1) = 4 (r − i + 1)   (1 ≤ i ≤ r) ,
τ2 (2r + 2i) = 4 (r − i + 1) + 1 (1 ≤ i ≤ r) ,
τ2 (4r + 1) = 1  

and we obtain

∑
n

k = 1

k · τ2 (k)

= ∑
r

i =1

(2i − 1)(4i − 2) + ∑
r

i =1

(2i)(4i − 1) + ∑
r

i =1

(2r + 2i − 1) · 4(r − i + 1)

+ ∑
r

i =1

(2r + 2i)(4(r − i + 1) + 1) + (4r + 1) · 1

= ∑
r

i =1

(16r2 + 14r + 12i − 2) + 4r + 1

= 16r3 + 20r2 + 8r + 1 = (4r + 1)(2r + 1)2 =
n(n + 1)2

4
,

which is condition (1).
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Example: , .n = 9 r = 2

Position: 1 2 3 4 5 6 7 8 9
Mass: 2 3 6 7 8 9 4 5 1

The permutation given as a product of cycles is (1, 2, 3, 6, 9) (4, 7) (5, 8)
and .1 · 2 + 2 · 3 +  …  + 9 · 1 = 225 = 1

4 (9 · 102)

Subcase 2(b): ,  . Put
with . Then, the permutation  can be defined by

n ≡ 3 mod 4 n = 7,  11,  15,  19,  … n = 4r + 3
r ∈ � τ2

⎧

⎩

⎨
⎪

⎪

⎪

⎪

⎪

⎪

τ2 (2i − 1) = 2 (2i − 1) (1 ≤ i ≤ r + 1) ,
τ2 (2i) = 2 (2i − 1) + 1 (1 ≤ i ≤ r + 1) ,
τ2 (2r + 2i + 1) = 4 (r − i + 1)   (1 ≤ i ≤ r) ,
τ2 (2r + 2i + 2) = 4 (r − i + 1) + 1 (1 ≤ i ≤ r) ,
τ2 (4r + 3) = 1  

and we obtain

∑
n

k = 1

k · τ2 (k)

= ∑
r +1

i =1

(2i − 1)(4i − 2) + ∑
r +1

i =1

(2i)(4i − 1) + ∑
r

i =1

(2r + 2i + 1) · 4(r − i + 1)

+ ∑
r

i =1

(2r + 2i + 2)(4(r − i + 1) + 1) + (4r + 3) · 1

= (2r + 1)(4r + 2) + (2r + 2)(4r + 3)

+ ∑
r

i =1

(16r2 + 30r + 16 − 4i) + (4r + 3) · 1

= 16r2 + 26r + 11 + ∑
r

i =1

(16r2 + 30r + 16 − 4i)

= 16r3 + 44r2 + 40r + 11

= (4r + 3)(2r + 2)2 − 1 =
n(n + 1)2

4
− 1.
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Now we make the following manipulations:

Position: 1 2 3 4 … n − 4 n − 3 n − 2 n − 1 n
Mass (choice 1): 2 3 6 7 … 8 9 4 5 1
Mass (choice 2): 3 2 6 7 … 8 9 5 1 4

Swapping the masses 2 and 3 at the first two positions diminishes the sum

 by an amount of 1. Interchanging the order of the last three

masses 4, 5, 1 to 5, 1, 4 increases the sum by an amount of 2. Altogether the
sum  increases by a total amount of 1. Thus, we have found a
suitable permutation satisfying (1).

∑
n

k = 1
k · τ2 (k)

∑n
k = 1k · τ2(k)

Example: , .n = 11 r = 2

Position: 1 2 3 4 5 6 7 8 9 10 11
Mass (choice 1): 2 3 6 7 10 11 8 9 4 5 1
Mass (choice 2): 3 2 6 7 10 11 8 9 5 1 4

In the first choice we have .

Doing the changes (choice 2) increases the sum  by an amount

of 1.

1 · 2 + 2 · 3 +  … +11 · 1 = 395 = 1
4 (11 · 122) − 1

∑
n

k = 1
k · τ2 (k)
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