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Laboratory experiments were carried out in an open-channel recirculating water flume for
different bottom treatments and a variety of flow conditions. We acquired overhead images
of the free surface downstream of the bottom features and used these to train convolutional
neural network based classifiers. Using these classifiers, we demonstrate that information
acquired at the surface alone can be used to differentiate between the physical features
that lie at the bottom boundary. We show that although external physical processes, such
as winds, can modulate the free surface, they do not necessarily eliminate the free-surface
signature of the submerged bottom features. Our results provide strong motivation for
future studies that probe the physical processes responsible for transporting information
about the bottom of the flow to the surface.
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1. Introduction

Most flows in the environment move over surfaces that are not flat. These bottom
surfaces may include many different kind of features, such as bedforms, benthic
communities or vegetation canopies. Such submerged bottom features can influence the
flow at the free surface in many ways, ranging from simple changes to the level of the
surface, as is well known from open-channel flow theory, to more complex signatures.
Such signatures may consist of up- or downwellings, counter-rotating vortices, patterns of
waves, boils and so forth (Kumar, Gupta & Banerjee 1998; Brocchini & Peregrine 2001;
Savelsberg & van de Water 2008; Chickadel et al. 2009). A large amount of research has
focused on understanding how these flows at the surface can be related to the subsurface
flow. In channel flows, for example, Kumar et al. (1998) showed that the power spectrum
of velocity fluctuations measured on the surface closely resembled the spectra for the flow
beneath. Researchers have also studied turbulent coherent structures to gain insight into
the subsurface flow characteristics (Kumar et al. 1998; Savelsberg & van de Water 2008;
Chickadel et al. 2009; Plant et al. 2009; Koltakov 2013; Mandel 2018; Mandel et al. 2019).

In addition to being able to use surface signatures to describe the subsurface flow,
there is also a strong interest in using them to infer the physical nature of the features
on the bottom boundary, because such features are essential inputs for any environmental
flow model (Narayanan, Rama Rao & Kaihatu 2004; Wilson & Özkan Haller 2012;
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Holman & Haller 2013). Such features are often difficult to measure directly due to issues
ranging from limited physical accessibility to optical opacity arising from, e.g. suspended
sediment. However, limited research has been done to understand whether and how surface
flow signatures can be used to address this bathymetry inference problem.

One significant source of uncertainty as to whether bathymetry inference is possible
is that surface expressions of bottom-boundary features may be difficult to distinguish
from turbulent features generated at the surface itself due to, for example, wind or surface
waves (Chickadel et al. 2009; Nazarenko & Lukaschuk 2016). And even in the absence of
turbulence-generating mechanisms at the surface, coherent structures can be observed on
the surface that arise purely from generic wall-bounded flow processes that are present in
the absence of any particular bottom features (Koltakov 2013). Thus, it is not obvious a
priori that free-surface fluctuation data can be used to infer characteristics of the bottom
boundary.

Our goal here is to address this problem and demonstrate that bathymetry inference
using surface signatures alone is indeed possible. Specifically, our goals are (1) to show
that disturbances on the free surface of a flow driven over various kinds of model
bathymetric features carry sufficient information to distinguish these bottom features, and
(2) to show that this identification of bottom features is still possible even in the presence
of externally imposed surface disturbances, such as wind.

To this end, we conducted laboratory experiments in an open-channel water flume over
a range of flow conditions using four distinct bathymetric features. We acquired images
of the surface downstream of the features and used these images to train convolutional
neural network (CNN) classifiers. We find that the CNN is able to distinguish the different
bottom features with high accuracy using only this surface information. We also tested this
approach in the presence of imposed wind ruffles and found that the CNN was still able
to classify the bottom features as long as the training set of images was suitably designed.
Although our results do not identify the detailed physical mechanisms by which the bottom
features are coupled to their free-surface manifestations, they do provide strong evidence
that such a link exists – and, therefore, that future studies to characterize this connection
are warranted.

We begin below with a summary of the experimental set-up and data acquisition in
§ 2 and the analysis framework in § 3. Our results are reported and discussed in § 4. And
finally, we summarize the key conclusions from our study in § 5.

2. Experimental set-up

We conducted experiments in a 6 m long, 0.61 m wide recirculating water flume with
a variable depth of up to 0.27 m. Water entered the inlet section of the flume from a
constant-head tank filled by a variable-speed pump. The inlet section converged through a
series of homogenizing grids of decreasing size into a glass-walled rectangular test section
with a length of 3 m. Buffer zones of length 1.5 m both upstream and downstream of the
test section were used to mitigate entrance and exit effects on the flow profile. The flow rate
was controlled with the pump’s variable-speed control, and a sharp-crested downstream
control weir was used to regulate the flow depth. A complete description of the facility is
available in O’Riordan, Monismith & Koseff (1993).

Measurements of the mean flow velocity were made using a two-component laser
Doppler anemometer consisting of a Laser Quantum Ventus 250 laser emitting at 532 nm
and a Dantec Dynamics Burst Spectrum Analyzer. At each sampling location, horizontal
and vertical velocities were recorded for 6 min at sampling rates of 500–1200 Hz and then
filtered to a uniform sampling rate of 25 Hz. The depth-average velocity was obtained
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(b)(a) (c) (d )

FIGURE 1. Photographs (taken from above) of the bottom features used for this study. In each
image, the flow direction is from the bottom to the top. (a) ‘Canopy’. (b) Coral skeletons.
(c) ‘Dunes’. (d) ‘Rocks’.

using the 3-point averaging method developed by the United States Geological Survey
(Stone et al. 2012): time-averaged velocities obtained at 20 % and 80 % of the flow depth
were first averaged together, and the result was then averaged with the time-averaged
velocity measured at 60 % of the depth.

Our goal in this work is to determine whether information about features on the bottom
of the flow can be inferred from measurements of the surface alone. To that end, we
constructed four different types of bottom treatments designed to model distinctive bed
features that occur in shallow coastal, fluvial and estuarine environments. To model a
rocky bottom, we used a simple square array of nine hemispherical polystyrene domes,
each of radius 10 ± 0.2 cm. We simulated a porous vegetative canopy using a staggered
square array of cylindrical wooden dowels of height 10 ± 0.3 cm and diameter 6.4 mm.
We used PVC half-pipes of radius 10 ± 0.2 cm spanning the width of the test section to
model dunes. And finally, to test a more complex bed feature, we used a square array of
nine branching corals consisting of a Stylophora pistillata coral head collected from a reef
in the Gulf of Aqaba, Red Sea, and eight Porites compressa heads collected from a reef flat
in Kaneohe Bay, Hawaii (Reidenbach et al. 2006). The mean height of the coral canopy
was 10 cm. Each bedform patch spanned the full width of the flume and occupied the most
upstream 80 cm of the test section. Photographs of these bedform patches are shown in
figure 1.

When flow is driven over these bedforms, as opposed to a featureless bottom, the
velocity profile will adjust and coherent structures will be generated by the interaction
of the flow and the bedforms (Mandel et al. 2019). One may expect these structures
to be convected to the free surface over some flow length where they may exhibit a
particular surface expression. The nature of this expression, however, as well as the
structures themselves, will likely depend on the flow regime, the depth of the flow and
the bedform type. We, therefore, conducted a series of experiments varying the Reynolds
number ReH and submergence S for each of our four model bedforms. We defined the
submergence as S = (H − h)/h, where h is the height of the bedform and H is the depth
of the flow, and the Reynolds number as ReH = U∞H/ν, where U∞ is the depth-averaged
streamwise flow velocity (as measured in the channel with no bedforms present) and ν is
the kinematic viscosity. By varying U∞ and H, we ran experiments for all combinations
of three Reynolds numbers that we refer to as ‘slow’ (ReH = 29.9 × 103), ‘medium’
(ReH = 43.7 × 103) and ‘fast’ (ReH = 55.1 × 103) and three submergences that we refer
to as ‘shallow’ (S = 1.0), ‘intermediate’ (S = 1.5) and ‘deep’ (S = 1.7). With the four
different bedform types and nine possible flow conditions, this protocol amounted to 36
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(b)(a) (c) (d )

FIGURE 2. Sample difference images (as defined in § 2) for the four different bottom treatments
for the shallow–fast case. The flow direction is from the bottom to the top of the images.
(a) ‘Canopy’. (b) Coral skeletons. (c) ‘Dunes’. (d) ‘Rocks’.

different experimental cases. This range of ReH and S is representative of commonly
occurring conditions in many environmental flows (Nepf & Vivoni 2000). For all cases,
the amplitude of the surface features did not exceed a few millimetres.

Assessing the surface expression of these submerged features requires measurement of
the surface. Various techniques exist to measure either the velocity field on the surface,
such as surface particle image velocimetry (Logory, Hirsa & Anthony 1996; Dabiri &
Gharib 2001) and surface particle tracking velocimetry (Sokoray-Varga & Józsa 2008),
the surface slope field, such as free-surface synthetic Schlieren (Mandel et al. 2017) and
polarimetric slope sensing (Zappa et al. 2008; Barsic & Chinn 2012), or the free-surface
height field, such as Fourier-transform profilometry (Takeda, Ina & Kobayashi 1982;
Takeda & Mutoh 1983; Cobelli et al. 2018). For our purposes here, however, such
detailed information is not necessary. We, therefore, simply imaged the surface of the
flow beginning 15 cm downstream of the bedform patch using an overhead 1280 × 1024
pixel camera mounted along the flume centreline approximately 206 cm from the bottom
of the flume. The camera’s field of view was approximately 41 cm wide and 44 cm in the
streamwise direction. The lighting conditions were similar for all the experiments. To make
the free-surface patterns observed in the raw images more pronounced, we subtracted
consecutive frames (taken at a rate of 16 frames per second) to create difference images,
which were used for all of our analyses. Examples of such difference images are shown for
each bottom treatment in figure 2. For each case, we acquired several thousand images.

Finally, since in realistic environmental situations there will typically be more surface
disturbances present than just those arising from bathymetric features, we also conducted
a set of experiments using a fan to produce wind ruffles on the free surface. For these
cases, the flow Reynolds number was kept constant at ReH = 55.1 × 103 (the fast case),
but both the submergence and the wind speed were varied. We tested three different wind
speeds: 1.6 m s−1, 2.2 m s−1 and 2.6 m s−1, as measured 2 cm above the water surface at a
distance of 37 cm from the end of the bedform patch using a hot-wire anemometer probe.
The amplitude of the surface disturbances produced by the wind varied somewhat with
wind speed, but in all cases was similar to or smaller than the disturbances produced by
the bottom treatments. Examples of difference images in the presence of wind are shown
for each bottom treatment in figure 3.

3. Analysis framework

To analyse the images of the free surface, we used a classifier based on a CNN. The
details of the CNN (namely the architecture and the hyperparameters) are provided in the
Appendix. Here, we describe the three key steps in the analysis pipeline.

The first step was to train the CNN to distinguish images associated with each of
the different bedforms. To do so, we fed the CNN images associated with each of the
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(b)(a) (c) (d )

FIGURE 3. Sample difference images in the presence of wind (at wind speed 2.6 m s−1 as
defined in § 2) for the four different bottom treatments for the shallow–fast case. The flow
direction is from the bottom to the top of the images. (a) ‘Canopy’. (b) Coral skeletons.
(c) ‘Dunes’. (d) ‘Rocks’.

bedforms over a variety of flow conditions. Note that these training images were only a
subset of the full ensemble of images acquired. The training images were labelled with
the bedform class (i.e. canopy, coral, dunes or rocks), but not with the flow conditions.
During the iterative process of learning the decision boundaries between the classes, the
CNN minimizes the loss between the predicted label for a training image and its true label.
In this way, the classifier learns features of interest from the images that help it classify
them with high accuracy. Note that we use the term ‘accuracy’ in this case to mean the
percentage of the images given to the CNN that were classified correctly.

Once the model was trained, we tested its ability to classify a set of images that belonged
to the same flow conditions as those in the training set but were not seen by the model
during training. This training-development set was used to validate the ability of the CNN
to classify images that it had not seen but were acquired under the same conditions used
during the training phase. High accuracy on this set indicates that the model is not overfit
to the training images.

The final step was to use the CNN to classify a test set of images acquired under flow
conditions that it has not been trained on. This step allows us to determine the confidence
with which the CNN can classify images based on the information it has learned during
the training phase.

The precise sizes of the image sets used for the different cases discussed below varied,
but in all cases were empirically determined to be large enough to give stable results. The
training sets ranged from 24 000 to 48 000 images; the training-development sets from
1200 to 1600 images; and the test sets from 4800 to 8000 images. In all cases, equal
numbers of images were used for each of the four bottom treatments.

4. Results and discussion

4.1. Classification of bedforms without wind
To examine whether a measurable signature of the different bedforms was present at the
free surface, we trained nine different CNNs on sets of images acquired from flows with
different bedforms and flow conditions but no wind ruffles. The nine CNNs differed in that
their training and training-development sets consisted of images taken for all four bedform
types but only eight of the nine different flow configurations. The images for the remaining
flow condition (but again for all four bedforms) constituted the test set.

The accuracy of these nine CNN classifiers is shown in table 1. Each (ReH,S) pair in
the table denotes the flow condition that was held out of the training set and instead taken
as the test set. For each classifier, we show the accuracy separately for the training set
(in italic), training-development set (in bold) and test set (in bold italic). For example, for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

54
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.548


900 A41-6 S. Gakhar, J. R. Koseff and N. T. Ouellette

Increasing ReH −→

Increasing Slow Medium Fast
submergence
S ↓ Shallow 99.4 98.5 52.3 99.5 98.6 64.5 99.4 98.2 74.5

Intermediate 99.3 98.1 93.7 99.3 98.0 87.8 99.2 97.9 97.5
Deep 99.3 97.8 58.4 99.3 97.8 82.6 99.1 98.0 97.2

TABLE 1. Per cent accuracy of the nine CNN classifiers discussed in § 4.1. Each of the nine
(ReH,S) pairs in the table corresponds to a different model, and its placement in the table
indicates the flow condition that was held out from the training set and used for testing instead.
For each classifier, the training set accuracy, training-development set accuracy and test set
accuracy are shown in italic, bold and bold italic, respectively.

the classifier for which the medium ReH and intermediate S flow case images were held
out from the training, the training set accuracy was 99.3 %, the training-development set
accuracy was 98.0 %, and the test set accuracy was 87.8 %. Note that, by construction,
all the test cases consist of images of flow conditions that the CNNs were not exposed
to during training, rendering classification a non-trivial task. Nevertheless, all nine CNNs
perform significantly better than random chance, which would give an accuracy of 25 %.
This result suggests that the CNNs have indeed learned to pick out informative features
from the images of the free surface that accurately identify characteristics of the bottom
bathymetry, giving strong evidence that such surface signatures exist.

However, the test accuracy of the CNNs in classifying images for some of the flow
conditions is far from perfect. To analyse this result in more detail, we computed the
confusion matrices (Pedregosa et al. 2011), shown in figure 4. These matrices report the
fraction of the test set images corresponding to one kind of bedform that were classified
as another for all pairs. These confusion matrices reveal that low overall accuracy does
not result from across-the-board poor performance. Instead, for example, for the case of
slow, shallow flow (figure 4a), rocks are consistently misclassified as dunes, but never
as corals or canopy. Similarly, corals are misclassified as dunes 69 % of the time. Dunes
and canopies themselves, however, are well classified by the same CNN. Therefore, poor
classification for some of the bedforms results in a lower overall accuracy (e.g. 52.3 %
test set accuracy for the slow, shallow flow case of figure 4a). In contrast, there are also
flow cases (such as fast, intermediate-depth flow; see figure 4f ) where the CNN performs
excellently for all of the bedforms.

4.2. Classification in the presence of wind
In actual environmental flows of interest, distortions of the free surface will arise both
from bottom features and from stresses applied directly at the surface by phenomena such
as wind. One might anticipate that if these direct surface effects are strong enough, they
will overwhelm the surface signature of any bottom features. To explore this hypothesis,
we conducted a series of experiments where we introduced surface winds over the flume
(as described in § 2) and again used CNNs to attempt to classify the bottom features. We
did this in two ways. First, we trained a CNN classifier only on images taken for flows
with no imposed wind and tested its performance on experimental cases with imposed
winds. And second, we trained classifiers with images that did include imposed winds, in
a manner similar to that described above in § 4.1.
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FIGURE 4. Confusion matrices for the test-set performance of the nine classifier models
discussed in § 4.1. The numbers in each of the boxes give the fraction of test images belonging to
a particular bedform (row labels) that are classified by the CNN as belonging to one of the
four bedforms (column labels). (a) Shallow flow, slow flow-rate holdout. (b) Shallow flow,
medium flow-rate holdout. (c) Shallow flow, fast flow-rate holdout. (d) Intermediate-depth
flow, slow flow-rate holdout. (e) Intermediate-depth flow, medium flow-rate holdout.
( f ) Intermediate-depth flow, fast flow-rate holdout. (g) Deep flow, slow flow-rate holdout.
(h) Deep flow, medium flow-rate holdout. (i) Deep flow, fast flow-rate holdout.

4.2.1. Classifiers trained on flows without wind
For the first of these cases, we trained a single CNN classifier using images taken

from the full set of nine flow conditions described above (varying Reynolds number
and submergence), and tested its performance separately for each of the three imposed
wind-speed conditions (1.6 m s−1, 2.2 m s−1 and 2.6 m s−1). Note that, as mentioned above,
the Reynolds number was kept constant for each wind speed, but images were acquired for
all three submergences.

The performance of the CNN in classifying the images in these test cases was
significantly degraded by the presence of surface disturbances due to the wind: we found
that the accuracy of the classifier was 33 %, 35 % and 36 % for wind speeds of 1.6 m s−1,
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FIGURE 5. Confusion matrices for the three different wind-speed test cases discussed in § 4.2.1.
No images taken with imposed surface winds were used to train the CNN used for these cases.
(a) Wind speed = 1.6 m s−1. (b) Wind speed = 2.2 m s−1. (c) Wind speed = 2.6 m s−1.

2.2 m s−1 and 2.6 m s−1, respectively. Although these accuracies are still better than
random chance, they are far lower than those found for experiments without imposed wind
(§ 4.1).

Insight into why the performance was so poor can be gleaned from the confusion
matrices, as shown in figure 5. They reveal that the accuracy of the CNN is low because
almost all cases are classified as dunes, regardless of the actual bedform. This result is not
necessarily surprising. As described in § 2, the fan that generated the wind was oriented
along the centreline of the flume; thus, one would expect that the dominant features
produced by the wind would be surface waves spanning the width of the flume with their
crests oriented along the spanwise direction. Of the four model bedforms used, only our
model dunes shared this symmetry. Thus, it would appear that the CNN, as trained on
images with no wind, learned that the surface signature of dunes involves features with
a geometry shared by the features produced by wind – and thus consistently tended to
classify windy images as dunes.

4.2.2. Classifiers trained on flows with wind
To establish whether wind unavoidably destroys the possibility of classifying bottom

features or whether instead different features must be used to discriminate between the
types of bedforms, we next trained two CNNs on training sets that included images taken
from cases with wind in addition to cases without wind. As in § 4.1, for each CNN
classifier, we held out one data set from the training set of images to use as the test set.

For the first classifier, the test set was the case of intermediate submergence (S = 1.5),
medium Reynolds number (ReH = 43.7 × 103) and no wind. This case allowed us to assess
how much, if at all, the addition of images with wind degraded the ability of the CNN to
classify cases without wind. The accuracy for this case was 75 %, lower than that described
above for cases without wind, but still far above random chance.

For the second classifier, the test set was the case of intermediate submergence, high
Reynolds number (ReH = 55.1 × 103) and a wind speed of 2.2 m s−1. In this case, the
accuracy of the CNN was 86 % – significantly better than the performance of CNNs trained
without exposure to training images containing wind.

Taken together, these tests suggest that although the presence of imposed surface
disturbances due to wind adds additional complexity to the classification problem, they
do not eliminate the surface signature of the bedforms. This result is consistent with
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the findings of Rosenzweig (2017), who showed that the modification of the near-surface
velocity spectra by a submerged canopy was evident even in the presence of an imposed
wind chop. Thus, we conclude that the surface signature of submerged features can persist
in a distinguishable way even when the surface is directly acted upon by other physical
processes.

5. Conclusion

The results we have presented give strong evidence that the free-surface disturbances
caused by submerged features can carry sufficient information to identify at least the gross
characteristics of the feature. We have also shown that although directly imposed surface
disturbances, such as winds, may also modulate the free surface, they do not necessarily
preclude the identification of the submerged feature provided that appropriate information
is used.

These results point to a number of intriguing questions for future research. For example,
how far downstream of a bedform do signatures typically manifest, how quickly do they
decay, and what physics governs these processes? We speculate, for instance, that the
poorer test performance for the shallow-slow flow case in table 1 may be a result of the
measurement region being too far from the bedform so that surface fluctuations indicative
of the bedform will have decayed by the time they are imaged. Further study of the
mechanisms by which information is generated at the bed and propagates to the surface
may also clarify the range of flow conditions over which one may expect bathymetry
inference to be possible. For example, if the flow were completely laminar, there would
be no reason to expect significant fluctuations due to interaction between the bedform and
the flow and, therefore, there would be no surface signature of the bedform. In the other
extreme, if the flow were extremely turbulent, potential bedform signatures on the free
surface may be washed out by the ambient turbulent fluctuations.

Because we only used CNNs in this study, we cannot definitively address these questions
of physical mechanism: our work suggests the existence of a connection between the
submerged feature and the surface expression, but not the nature of that connection. To
answer the questions posed above in detail requires different tools, such as those discussed
in § 2, that allow the spatiotemporal reconstruction of the free-surface elevation or slope.
Nevertheless, our demonstration that this bathymetry inference is possible presents a
strong motivation for conducting future studies that directly probe the physical processes
responsible for transporting information about the bottom of the flow to the surface.
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Appendix. CNN architecture

Our CNN based classifiers were built using the Keras library (Chollet et al. 2015) that
uses tensorflow-v2 (Abadi et al. 2016) as its backend. Our CNN architecture is illustrated
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FIGURE 6. The CNN architecture used for this study.

in figure 6. We stacked four {convolution + relu + maxpooling} modules followed by two
fully connected layers. Convolution filters operated on 16 × 16, 10 × 10, 5 × 5 and 3 × 3
windows with a stride of 1 and the ‘same’ padding. Our maxpooling layers operated on
2 × 2 windows with a stride of 2. There were 16, 16, 32 and 64 filters, respectively, for each
convolutional layer. We trained the model with the categorical cross-entropy loss because
we are solving a multi-class classification problem. Last layer activation was softmax,
so that the output of the model for a given image can be interpreted as the probability
that an image belongs to a given class. For model optimization during training, we used
the RMSProp optimizer with a learning rate of 0.001 and a training batch size of 50
images with accuracy as the guiding metric. Training was carried out for 30 epochs. All
images fed into this model were rescaled to 224 × 224 pixels. When building the training
and training-development sets, we randomly shuffled the difference images so as not to
inadvertently include temporal correlations.
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