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Nonlinear resonance in Anaconda
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A nonlinear theory is developed for a recent wave energy converter design inspired
by the mechanics of animal arteries. The device is a long and hollow rubber tube
immersed beneath the sea surface. Excited by passing water waves outside, pressure
waves are resonated inside the tube and advance toward the stern to spin a turbine for
power production. To account for significant magnification, the classical linear theory
of blood vessels is modified. Diffraction is neglected but nonlinearity and wall friction
are included. The spatial evolution of harmonic amplitudes is shown to be governed by
a dynamical system similar to that in nonlinear optics. The maximum available power
flux is predicted as a function of the tube length and other structural parameters. It is
hoped that the theory may assist further development of the novel device.

Key words: coastal engineering, waves/free-surface flows, wave–structure interactions

1. Introduction
A novel design for extracting energy from sea waves is being developed in the

UK using a submerged rubber tube open at both bow and stern and aligned with
the incoming waves (Chaplin et al. 2012; Farley, Rainey & Chaplin 2012). Pressured
by the passing sea waves outside, waves are generated inside which can activate a
turbine at the stern for energy production. The idea stems from the mechanics of blood
vessels (McDonald 1974; Pedley 1980; Fung 1996, etc.) where waves propagate due
to the distensibility of the wall. Some laboratory experiments have demonstrated the
feasibility of the concept as a wave energy converter. Since the tube can wiggle in
water if it is moored only at the bow, the design has been christened Anaconda by
the inventors.

As in most wave energy converters, high efficiency is achieved by resonance. The
classical linearized equation for unforced waves in an artery is

∂2p
∂t2
− Eh0

2ρR0

∂2p
∂x2
= 0 (1.1)

where p denotes the blood pressure, E the Young’s modulus of the tube wall, h0 the
mean wall thickness and R0 the inner radius of the tube (Fung 1996). A propagating
wave of frequency ω must have the wavenumber k0 and phase speed C0 given by

k0 =ω
√

2ρR0

Eh0
= ω

C0
, C0 =

√
Eh0

2ρR0
. (1.2a,b)
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508 C. C. Mei

It is easily shown that if the external excitation is a progressive wave with matching
frequency and wave number, the tube wave can be resonated to large amplitude after
a long distance (Farley et al. 2012). For a rubber tube of given material with known
Young’s modulus E, matching with sea waves can be achieved by choosing proper R0
and h0.

As usual in resonance physics the response can be very much greater than the
forcing. This can be seen by using the linearized relation between the typical radial
distension a and the tube pressure p=Eh0a/(R2

0) known for blood vessels (Fung 1996).
Since the water wave pressure is pW ∼ ρgA where A is the local wave amplitude
around the tube, the magnification ratio can be estimated as

pW

p
∼ k2

0R0ρgA
2ρω2a

= k0R0

2
A
a
. (1.3)

Use has been made of the dispersion relation ω2= gk for deep water waves and k0= k.
As the tube radius is expected to be no more than a few metres, and k≈ 0.025 m−1

for sea swell of 12 s period, kR0 is typically small. Wall distention as large as the
surrounding water-wave amplitude (a∼A) can therefore be excited by relatively small
wave pressure. A nonlinear analysis accounting for the finite deformation of the tube
wall is therefore warranted, and is pursued here with the view to aiding future choices
of tube material and dimensions, etc.

2. Approximate nonlinear equations

We assume that the tube is constrained in a fixed horizontal position along the
x axis in order to minimize the loss of wave energy by radiation. The two ends
are kept fixed so that the tube distends in plane strain. In this work we shall only
consider the radial deformation of a straight tube, as in the experiments by Chaplin
et al. (2012). Similar configuration has been used to model blood pulses in animal
arteries (see Pedley 1980 and Fung 1996). In particular Yomosa (1987) has extended
the classical linear theory to predict weakly nonlinear solitary waves in blood vessels
by including convective inertia in the fluid, nonlinear wall elasticity and change of
tube wall thickness, as well as wall inertia. For convenience we cite below the same
conservation laws, and a constitutive relation valid for Anaconda.

Let the inner tube radius R(x, t) be much greater than the wall thickness h(x, t)
but much smaller than the wavelength 2π/k, which is in turn much smaller than the
tube length L. To be specific we define the small parameter ε=A/R0, where A is the
typical amplitude of water wave, and assume

O(kR)=O(h/R)= ε = A/R0� 1. (2.1)

We first show that, for a slender tube in head seas, the external wave pressure pW

is dominated by the incident wave pI
W ∼ ρgA alone, where g is the gravitational

acceleration. In other words, pressures from the radiated wave pR
W due to tube

distention, and from the scattered wave pS
W due to the tube presence, are quite

negligible. Let a(x, t) be the radial deformation, which is assumed to be comparable
to A. In terms of the radiation potential, the radial velocity of the wall is

∂φR

∂r
=−iωa, hence φR ∼−iωaR, on r= R+ h. (2.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

27
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.277


Nonlinear resonance in Anaconda 509

Hence
pR

W ∼−iωρφR ∼ ρgkR a∼ ρgA(kR)= (kR)pI
W� pI

W (2.3)

since kR � 1. A similar consideration shows that the scattering pressure pS
W is

comparably small. Thus pW is dominated by pI
W alone. For a large tube or short

waves, radiation and scattering must of course be considered.
Let u(x, t) be the area-averaged longitudinal fluid velocity, and let S(x, t) be the

cross-sectional area of the tube. Mass conservation of fluid flow inside the tube
requires

∂S
∂t
+ ∂(uS)

∂x
= 0. (2.4)

Let R(x, t)= R0 + a(x, t), where R0 is the inner radius of the tube at rest and a(x, t)
the local radial distention. Substituting S=π(R0 + a)2 we get

∂a
∂t
+ R0

2

(
1+ a

R0

)
∂u
∂x
+ u

∂a
∂x
= 0. (2.5)

Balance of fluid momentum in the longitudinal direction requires

∂u
∂t
+ u

∂u
∂x
+ 1
ρ

∂p
∂x
=−2πR

πR2

τw

ρ
=−2τw

ρR
, (2.6)

where p is the water pressure in the tube and τw is the wall shear stress.
To simulate solitary waves in micro-vessels in dogs, Yomosa (1987) included inertia

in Newton’s law for the tube wall. Due to the slenderness of Anaconda, wall inertia
is O(k2R2(h/R)) times the magnitude of the pressure and the hoop stress. Ignoring
the inertia term, balance of radial forces on a small angular sector Rdθ of the tube
requires

(p− pW)Rdθ = 2hσT
dθ
2
. (2.7)

The right-hand side is the total radial component of the hoop stress σ at the two edges
of the slice where h(x, t) is the local wall thickness. Assuming linear elasticity and
plane strain

σT = E
1− ν2

e

a
R0

(2.8)

where νe is the Poisson ratio. Mass conservation further requires

Rh= R0h0, implying h= h0

1+ a/R0
. (2.9)

Using (2.8) with νe = 1/2 and (2.9), (2.7) becomes

p− pW = 4Eh0

3
a
R2

0

(
1+ a

R0

)−2

. (2.10)

Due to (2.9) this relation is nonlinear despite the assumption of linear Hooke’s law.
For modelling large blood vessels, Yomosa (1987) added a nonlinear term for the
hoop stress σT and used data for the thoracic aorta of a dog to estimate the new
elastic coefficient. For Anaconda such a coefficient would of course depend on the
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510 C. C. Mei

wall material used. Our choice of (2.8) conforms with the experimentally verified
relation of Chaplin et al. (2012) for a reinforced rubber tube, that is,

p− pW = 4Eh0

3R0

r′ − 1
r′(r′ − 1+ α), (2.11)

where r′ = R/R0 and α 6 1 is an empirical factor representing the fraction of rubber
used. Equation (2.12) is the limit of (2.11) for α= 1 for pure rubber. For small a/R0
we have approximately

p− pW = 2ρC2 a
R0

[
1− 2

a
R0
+O

(
a
R0

)2
]
, where C2 = 2

3
Eh0

ρR0
. (2.12)

Other nonlinear relations between the pressure difference and the cross-sectional
area have been introduced for blood vessels by Olsen & Shapiro (1967) and Anliker,
Rockwell & Ogden (1971). For small strains, approximations similar to (2.12) can be
obtained from their empirical formulas.

3. Dimensionless nonlinear equations
Let us first define the dimensionless coordinates distinguished by primes: x′ = kx,

t′ = ωt, where k = ω/C is the characteristic wavenumber of the tube and C
is defined by (2.12). Since our focus is on resonance, the wavenumber of the
surrounding sea waves is also close to k. Relations between characteristic scales of
all physical quantities can be found by balancing the linear terms in the governing
equations. Using square brackets to denote the scales we find from fluid momentum
equation (2.6), and fluid mass,

[u] = ω

kR0
[a] =C

[a]
R0
, [p] = ρω

k
[u] = ρC2 [a]

R0
, [pW] = ρg[a], [τw] = ρν

δ
[u].

(3.1a–d)
The scale of the wall stress is dictated by the classical Stokes theory of oscillatory
boundary layers where δ =√2ν/ω is the boundary layer thickness. For convenience
we choose [a] = A from here on so that [a]/R0 = ε� 1.

With these scales we get the normalized equations, distinguished by primes,

∂u′

∂t′
+ εu′

∂u′

∂x′
+ ∂p′

∂x′
=−2

[τw]
ρR0ω[u]τ

′
w =−

δ

R0
τ ′w, (3.2)

∂a′

∂t′
+ 1

2

(
1+ εa′

) ∂u′

∂x′
+ εu′

∂a′

∂x′
= 0 (3.3)

and
p′ − (kR0)p′W = 2a′(1− 2εa′). (3.4)

We shall assume

kR0 = βε, δ

R0
= [a]

R0

δ

[a] = εγ , γ = δ

[a] , (3.5a–c)

where β and γ are at most of order unity.
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Nonlinear resonance in Anaconda 511

By cross-differentiation we first eliminate p and u to leading order, and get

∂2a′

∂x′2
− ∂

2a′

∂t′2
= ε

{
2
∂2a′2

∂x′2
+ 1

2
∂

∂t′

(
a′
∂u′

∂x′

)
+ ∂

∂t′

(
u′
∂a′

∂x′

)
− 1

2
∂

∂x′

(
u′
∂u′

∂x′

)

− 1
2
γ
∂τ ′w
∂x′
− 1

2
β
∂2p′W
∂x′2

}
. (3.6)

Accurate up to O(ε), the linear approximations of (3.3), (3.2) and (3.4) can be used
in all quadratic terms, yielding

∂2a′

∂x′2
− ∂

2a′

∂t′2
= ε

{
2
∂2a′2

∂x′2
− 1

2
∂2a′2

∂t′2
+ 2

(
∂a′

∂t′

)2

− 2
(
∂a′

∂x′

)2
}

− ε
{

1
2
γ
∂τ ′w
∂x′
− 1

2
β
∂2p′W
∂x′2

}
. (3.7)

From here on, primes will be omitted for all dimensionless variables for the sake of
brevity.

4. Resonant evolution in a long tube
Anticipating resonant growth along the tube we introduce the slow coordinate

X = εx and the two-scale expansion:

a= a0(x, t; X)+ εa1(x, t; X)+ ε2a2(x, t; X)+ · · · . (4.1)

The perturbation equations are:

∂2a0

∂x2
− ∂

2a0

∂t2
= 0, (4.2)

∂2a1

∂x2
− ∂

2a1

∂t2
+ 2

∂2a0

∂x∂X
= 2

∂2a2
0

∂x2
− 1

2
∂2a2

0

∂t2
− 1

2
∂2u2

0

∂x2
+ 2

(
∂a0

∂t

)2

− 2
(
∂a0

∂x

)2

− γ ∂τw

∂x
− 1

2
β
∂2pW

∂x2
. (4.3)

We now assume that the water wave outside is simple harmonic with a slight
detuning from the tube wave by εK:

βpW = βeiKXeiθ + c.c., where θ ≡ x− t. (4.4)

Due to nonlinearity, higher harmonics are expected

a0 =
∞∑

`=−∞
6=0

A`ei`θ , u0 =
∞∑

`=−∞
6=0

U`ei`θ , p0 =
∞∑

`=−∞
6=0

P`ei`θ , (4.5a–c)

where A`, U`, P` depend on X with A0 = U0 = P0 = 0. From the leading order parts
of (3.2), (3.3) and (3.4), the first-order harmonic amplitudes are simply related by

P` =U` = 2A`. (4.6)
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512 C. C. Mei

In a study of long sea waves in a narrow bay, Rogers & Mei (1987) have shown
that

a2
0 =

 ∞∑
`=−∞
6=0

A`ei`θ


2

=
∞∑

m=−∞
6=0

eimθ

{[m/2]∑
`=1

α`A`Am−` +
∞∑
`=1

2A∗`Am+`

}

+ 2
∞∑
`=1

|A`|2; α` = 1, if `= m
2
; α` = 2, otherwise. (4.7)

where [m/2] denotes the integral part of m/2. (See also Mei, Stiassnie & Yue (2005)
for proof.) The last series in (4.7) is the zeroth harmonic. Since ∂/∂x=−∂/∂t on the
right-hand side, the last two terms in the second line of (4.3) cancel. The remaining
nonlinear terms add up to

− 1
2
∂2a2

0

∂x2
=−1

2
∂2

∂x2

 ∞∑
`=−∞
6=0

A`ei`θ


2

. (4.8)

We must now choose a model for the wall shear stress. It is known from
experiments for oscillatory flows in a smooth pipe that transition to turbulence
occurs when Reδ = Uδ/ν = 550 (Li 1954 and Hino, Sawamoto & Takasu 1976).
Under progressive waves the threshold is lower (Reδ = 160, Collins 1963). For rough
walls such as the seabed, semi-empirical models of turbulent boundary layer in waves
have been advanced by Kajiura (1968) and Grant & Madsen (1979) based on the
mixing length concept. The prediction depends on the judicious estimate of the wall
roughness. Laboratory measurements for walls roughened by sand grains or artificial
grooves have shown that the eddy viscosity can be as high as 20–40 cm2 s−1 or
O(103) that of the molecular viscosity of water (Jonsson 1966). Uncertain of the
roughness of future Anaconda we shall adopt the simple model of constant eddy
viscosity and estimate its value to be O(100) times that of the molecular viscosity.

Following Stokes theory of monochromatic oscillatory flows near a wall, it can be
shown that the velocity in the boundary layer is, in dimensional form

u(x, X, r, t) =
∞∑

m=−∞
6=0

[u]Um(X)
[

1− exp
(
−(1∓ i)

√|m|R0 − r
δ

)]
eim(kx−ωt),

if
{

m> 0,
m< 0, 0 6

R0 − r
δ

<∞, (4.9)

where Um is the dimensionless velocity amplitude slowly varying in x, and δ=√2ν/ω
is defined by the eddy viscosity ν. The physical shear stress on the tube wall is

τw = ρν ∂u
∂r

∣∣∣∣
r=R0

=−
∑
m=−∞
6=0

(1∓ i)
ρν

δ

√|m|[u]Um eimkx−imωt. (4.10)

Since τw = [τw]τ ′w = (ρν/δ)[u]τ ′w, the dimensionless shear stress is

τ ′w =−
∑
m=−∞
6=0

(1∓ i)
√|m|2Ameim(x′−t′), (4.11)

after using (4.6).
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With these results, (4.3) becomes, after omitting primes,

∂2a1

∂x2
− ∂

2a1

∂t2
= −2

∑
m=−∞
6=0

im
∂Am

∂X
eimθ

− 1
2
∂2

∂t2

∞∑
m=−∞
6=0

eimθ

{[m/2]∑
`=1

α`A`Am−` + 2
∞∑
`=1

A∗`Am+`

}

+ βeiKX

2

(
eiθ + c.c.

)−γ ∑
m=−∞
6=0

i(1∓ i)
√|m|m[2Ameimθ ]. (4.12)

Since eimθ is a homogeneous solution of the wave equation on the left-hand side, the
sum of all terms proportional to eimθ on the right must be set to zero for a1 to be
bounded in the fast-scale coordinates x, t, hence,

∂Am

∂X
=− i

4
m

{[m/2]∑
`=1

α`A`Am−` + 2
∞∑
`=1

A∗`Am+`

}
− (1− i)

√
mγAm − iβ

4
eiKX δm1. (4.13)

This is the dynamical system coupling the nonlinear evolution of the harmonic
amplitudes. As the sea-wave pressure at the entrance is O(kR0) times smaller, the
initial conditions are:

Am(0)= 0, m= 1, 2, 3, 4, . . . . (4.14)

Except for the forcing term proportional to β, this system is of the same form as
that governing long waves in shallow sea over a randomly rough seabed (Grataloup &
Mei 2003; see also Mei & Ünlüata 1973 and Bryant 1983). Similar equations appeared
first in the theory of nonlinear optics (Armstrong et al. 1962).

For numerical computation the infinite series is truncated after n terms where n is
large. Adding the product of A∗m with (4.13) and its complex conjugate, and summing
over all m= 1, 2, 3, . . . , n, we get

d
dX

n∑
m=1

|Am|2 = −2γ
n∑

m=1

√
m|Am|2 + Im

(
β

2
eiKXA∗1

)

+ 1
2

Im
n∑

m=1

m

[[m/2]∑
`=1

α`A`Am−`A∗m + 2
n−m∑
`=1

A∗`Am+`A∗m

]
. (4.15)

On the right-hand side, the first term represents the energy loss due to wall friction,
and the second term is the input due to work done by the wave pressure along the
tube. By mathematical induction the remaining series is known to vanish for all n
(Grataloup & Mei 2003), implying that nonlinear interactions do not change the total
energy.

5. Maximum power-capture width
In terms of the normalized p0 and u0 defined in (4.5a–c), the dimensional time-

averaged power flux E at the station X is

E(X)=πR2
0[p][u]

∫ 2π

0
p0u0 dt= 2πR2

0[p][u]
∞∑

m=1

A`(X)A∗`(X), (5.1)
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514 C. C. Mei

since p0u0 = 4a2
0 in view of (4.6) and∫ 2π

0
4a2

0 dt= 2
∞∑

m=1

A`(X)A∗`(X). (5.2)

If an energy converter such as a Wells’ turbine is installed at X, the maximum power
available for extraction is E(X). Recalling the scale relationship (3.1a–d), the factor
above is

πR2
0[p][u] =πR2ρ

ω2[a]
k2R0

ω[a]
kR0
=πρ

ω3

k3
[a]2. (5.3)

Assuming plane incident waves in deep water, the rate of energy flux per unit length
of the incident wave crest is ECg = ((ρg[a]2)/2)(ω/(2k)). As a measure of the
power extraction potential, we define the capture width W by the ratio of the energy
extractable to the incident energy per unit length of the incoming wave:

kW = kE
ECg
= 8π

∞∑
`=1

|A`|2. (5.4)

6. Numerical examples
The magnitude of the wall friction depends on the flow rate and the wall roughness

both of which affect the magnitude of the model eddy viscosity ν and the factor γ .
For reference let us first take the molecular viscosity of water ν= 10−2 cm2 s−1, then
for ω= 2π/12 rad s−1, δ= 0.2 cm. For [a] = 10 cm, γ = δ/[a] = 0.02. We shall take
γ = 0.1 and 0.2 for simulating a turbulent boundary layer. In all computations, eleven
harmonics are used and β = 1.

First, figure 1(a–d) shows the first few harmonic amplitudes for four different phase
mismatches: K= 0.0, 0.5, 0.75, 1.0. The wall friction parameter is fixed at γ = δ/[a]=
0.1. For perfect tuning K = 0, the first harmonic grows monotonically but slowly, as
shown in figure 1(a). As detuning increases, the peak amplitudes of all harmonics
decrease and the evolution becomes more oscillatory, as seen in figure 1(b–d). In
light or shallow water waves, energy usually comes from a distant source; harmonic
generation is the result of nonlinear interactions. Here energy is constantly supplied
along the entire path of propagation. Phase mismatch is the primary cause of envelope
oscillations, as can be seen in the limiting case of weak nonlinearity. By letting
A1� Am, m= 2, 3, 4, . . . , the linearized problem for A1 has the solution

A1 = iβ
4

1
iK + (1− i)γ

(e−(1−i)γX − eiKX). (6.1)

When γX� 1,

A1→− iβ
4

eiKX

iK + (1− i)γ
, (6.2)

hence |A1| is monotonic in X if there is no phase mismatch (K = 0), and oscillatory
otherwise. If the wall friction is greater, the peak amplitudes of all harmonics are
lower, and are attained within a shorter distance.

If the power take-off device at the stern is perfectly efficient, the maximum power
available to a tube of total length X is given by (5.1). In figure 2(a,b), we compare
the maximum capture width of two tubes with different wall friction. For either tube,
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FIGURE 1. Evolution of harmonics. γ = 0.1.
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perfect phase matching yields the highest power output. Potential productivity is
reduced if the mismatch is greater. Since larger detuning makes the energy flux more
oscillatory, fluctuations of power extractable must be expected from a tube of fixed
length, due to variations of wave spectrum. Not surprisingly, the tube with less wall
friction gives greater output.

It is known that an isolated buoy absorbing energy from heave only has the
maximum capture width kWmax = 1. This is achieved in a typical swell only if the
buoy is sufficiently large. For an elongated raft, where energy is absorbed from
connecting hinges, the optimal capture width is comparable to the wavelength if
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it is comparable to the total raft length (Newman 1979). In comparison, the best
efficiency for Anaconda is achieved around X = εkx= O(1), hence the tube must be
many wavelengths long. But the dimensionless capture width kW can be considerably
greater than unity.

Experiments for testing the predictions here would be very worthwhile. Further
improvement of the fluid-mechanical theory is desirable to assist the development of
Anaconda. To account for head-sea diffraction by a tube of moderately large radius,
and the accompanying radiation due to tube distention, a theory similar to that by
Haren & Mei (1981) for a raft-like converter appears possible. Since power take-off
devices such as turbines are likely imperfect, wave reflection inside the tube and
radiation from the bow may need to be examined. Of course other factors such as
the costs of materials, construction, maintenance and operation must also be weighed
for its realization as a contributor to renewable energy.
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