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Abstract

We present a Rayleigh–Taylor mixing rate simulation with an acceleration rate falling within the range of experiments.
The simulation uses front tracking to prevent interfacial mass diffusion. We present evidence to support the assertion
that the lower acceleration rate found in untracked simulations is caused, at least to a large extent, by a reduced buoyancy
force due to numerical interfacial mass diffusion. Quantitative evidence includes results from a time-dependent Atwood
number analysis of the diffusive simulation, which yields a renormalized mixing rate coefficient for the diffusive
simulation in agreement with experiment. We also present the study of Richtmyer–Meshkov mixing in cylindrical
geometry using the front tracking method and compare it with the experimental results.
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1. INTRODUCTION

Since Read~1984! and Youngs~1984! published the first
experimental study of Rayleigh–Taylor instability with a
randomly perturbed fluid interface, attention has been drawn
to the nondimensional acceleration rate of the bubble enve-
lope. Assume that two fluids are separated by a randomly
perturbed interface and that the gravitational field points
from the heavy fluidrH to the light fluid rL. Read and
Youngs confirmed the Sharp–Wheeler theoretical predic-
tion ~1961, unpublished technical report, Institute of De-
fense Analyses! that the average bubble front moves with
acceleration scaling

h~t ! 5 aAgt2, ~1!

whereh is the height of the bubble envelope,A 5 ~ rH 2
rL!0~ rH 1 rL! is the Atwood number,g is the gravity, andt
is time. Read~1984! and Youngs~1984! show that the ac-
celeration ratea is almost a constant, witha ' 0.0632
0.077 in three-dimensional~3D! experiments. The experi-
ments have been repeated by various authors with different
apparatus, and similar values ofa have been obtained; we
mention the experiments of Dimonte and Schneider~1996,

2000 and Dimonte~1999!!, giving a 5 0.056 0.01. The
theoretically determined value,a ' 0.05–0.06, is obtained
from a bubble merger renormalization group model. See B.
Cheng, J. Glimm, and D.H. Sharp~in press!, and references
cited there. Computation of the center of mass of the mixing
zone introduces a coupling between its two edges. There-
fore, a characterization of the center of mass~nearly station-
ary forA# 0.8, e.g.! determines the total mixing zone size in
terms ofa alone~Cheng,et al., 1999, 2000!.

The coefficienta is thus important. It characterizes the
size of the mixing zone, and thus largely determines the
amount of material that is mixed. It has been reported by
experimentalists as being approximately universal, in the
sense that it is nearly independent of the random initial
conditions of an experiment.

Researchers in several laboratories have tried to repro-
duce the Sharp–Wheeler theoretical scaling law with the
experimental value fora through numerical simulation. Most
researchers report a time-dependent, decreasing value fora,
ranging from 0.015 to 0.03.

These simulations are from computational codes using nu-
merical schemes with interfacial mass diffusion. We have
compared numerical simulations using a high resolution front
tracking codeFronTierwith zero interfacial mass diffusion
to our own simulations using an untracked total variation
diminishing~TVD!-level set code with interfacial mass dif-
fusion similar to the others. We also introduce an analytic
study of the effects of mass diffusion on buoyancy reduction
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and we predict the numerically observed reduction ina for
untracked simulations. Our main result is that all values ofa
~theory, experiment, simulation! are consistent if the diffu-
sive calculation ofa is renormalized to account for mass
diffusion.

We also performed simulations of the Richtmyer–
Meshkov instability in spherical geometry using a two-
dimensional~2D! cylindrical code.

2. DIFFUSIVE AND NONDIFFUSIVE
SIMULATIONS

An earlier comparison shows thatFronTiersimulations pro-
duce values fora close to agreement with experiment while
untracked TVD simulations produce low values fora ~see
Glimm et al., 2001!. These comparisons were limited in the
simulation time and in the penetration depth of mixing
achieved. Here we extend the comparison to a later time,
comparable to most other simulations. Figure 1 shows the
evolution of the fluid interface in theFronTier simulation.
The color coding displays the height through the mixing
zone, and the cut plane near the bubble surface at the top of
the right frame shows the location of the 5% volume fraction
contour for the light fluid. Note that there are a number of
light fluid bubbles at the later time. The dynamics is multi-
mode, not dominated by a single large space filling bubble
up to this time. Such a large bubble would indicate the end of
any possible self-similar flow regime, as the acceleration
scaling depends upon a continued growth in the transverse
scale of the mixing structures. We expand on this idea. The
dynamics of continued acceleration of the mixing zone edge,
as expressed in thet 2 scaling in Eq.~1!, depends on a
continued growth of the large scale structures~the bubbles!.
See, for example, Sharp~1984!. Bubbles grow through a
process of bubble competition and merger. Thus thet 2 scal-
ing and the determination ofa requires a simulation that is
still in the multimode regime, where bubble competition
and merger can occur.

The t 5 0 interface is constructed out of Fourier modes
with random amplitudes and frequencies in the range of 8
to 16 modes per computational domain width. See Glimm
et al. ~2000! for further information concerning these sim-
ulations. The 23 2 3 8 computational domain used here
allows computationally efficient late time, deep penetra-
tion simulations.

Within this computational aspect ratio, the Fourier mode
numbers represent a balance between the conflicting require-
ments of spatial resolution, favoring low numbers of modes,
and late time statistical validity, favoring large numbers of
modes. Except as noted, the simulations used a 1282 3 512
grid. Our simulations, thus balanced, have about 122 5144
initial bubbles and a grid resolution of about 10 cells in each
dimension per initial bubble. The final time considered here
has about five bubbles~see Fig. 1!.

A comparison of the mixing rates for the two simulations
is shown in Figure 2~left!, plotting bubble heighth versus

Agt2. FronTierhas a distinctly higher growth rate than does
the interface mass diffusive TVD simulation. The value of
h~t ! is the difference between thet50 bubble height and the
time t bubble height. The latter quantity is defined in terms
of a 1% volume fraction, that is, the greatest height at which
the fluid is 99% heavy and 1% light according to the front
tracking front or the TVD level set. This definition is some-
what unstable statistically, and a few spurious oscillations
associated with the definition were removed in the plots of
Figure 2.

Mass diffusion is a common feature of most untracked
simulation codes. Due to the interpolation constraint, nu-
merical schemes~finite difference, finite volume! can have
only first order accuracy in their spatial derivatives near a
discontinuity. For a contact discontinuity, the corresponding
characteristic is linear for the wave equation of the Riemann
invariant

]w

]t
1 u

]w

]x
5 0, wherew 5 r 2

P

c2 , ~2!

and so the truncation error will spread to the interior region.
Assuming that a finite difference scheme is second order in
time and first order in space at a contact discontinuity, we
have the equivalent equation

wt 1 uwx 5
1

2
Dxwxx, ~3!

so that the widthDL of the numerically diffused density
profile satisfiesDL ; !Dxt. To understand the difference
between the two simulations, we compare the cross-sectional
density plots in a series of horizontal slices from the bubble
~upper! portion of the mixing region. Figure 3 shows the
cross-sectional density plots in these simulations. Observe
that there is a substantial smearing out of the density across
the boundary between the two fluids in the untracked TVD
simulation, whereas theFronTier simulation maintains a
sharp boundary with a discontinuous density profile through-
out the simulation. As a further difference, we note the
fine-scale structure size in theFronTier simulation in com-
parison to the TVD simulation.

We compute an effective Atwood numberA~t ! as a func-
tion of time for the TVD simulations. This is determined
from the highest and lowest densities in a horizontal slice,
with the resulting time- and space-dependent Atwood num-
ber averaged over heights in the upper third of the mixing
zone at a fixed time to get an Atwood number dependent on
time alone.

In Figure 4, we plotA~t ! versust for three simulations
~fine and coarse grid TVD and fine gridFronTier!. The time
dependence ofA~t ! in the FronTier simulation is caused
purely by ~small! compressibility effects. For the mass
diffusive TVD simulation, the initial density contrast,
A~t50!50.5, is almost completely washed out; the earliest
time displayed showsA~t 5 2! ' 0.15. As new pure~heavy
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and light! fluid is injected into the mixing region, the effec-
tiveAtwood number increases, but it is still reduced to about
A' 0.3 on a time averaged basis, or nearly a 50% reduction
relative to its initial value.

To compensate for the time-dependent Atwood number
A~t !, we define an effective alpha,aeff ' h02** A~s!g ds dt
~see Fig. 2, right!. Specifically,a or aeff is defined here as
the slope of the straight line joining the beginning and end of

Fig. 1. Front plot for aFronTier simu-
lation of Rayleigh–Taylor mixing, with
A 5 0.5. Left frame: early time. Right
frame: late time. Color coding repre-
sents vertical height. The initial mean
height of the interface is 4, and the height
scale on the color bar applies only to the
later time.

Fig. 2. Mixing growth comparison of aFronTier ~nondiffusive! with a TVD ~diffusive! simulation. For the TVD simulation, two grid
levels are shown, the coarser being 642 3128. In all cases,h is the height of the 1% volume fraction contour, and the initial mean height
of the interface is 4. Left:h versusA~t 5 0!gt2 for FronTierand TVD. Right:h versus 2*0

t *0
s1 A~s!g ds ds1 for FronTierand TVD. The

solid line represents theFronTier simulation, the dashed line is the finer grid TVD simulation, and the dotted line is the coarser grid
TVD simulation.
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theh~t ! curve in Figure 2. This definition, although some-
what arbitrary, is conventional, and thus allows comparison
to the results of others. We observe an improved comparison

betweenFronTier and TVD and between TVD and experi-
ment. Note thataeff lies within the range of experimental
values; see Table 1. On this basis, we can state that the

Fig. 3. Cross-sectional plots showing density on a common
rainbow color scale. The pure light fluid is colored blue and
the pure heavy fluid is red. Yellow and green represent var-
ious levels of microscopic mixing. The ratio of extreme
density values is 3.3:1. The right frames show a higher slice
in thezdirection. Top:FronTier, bottom: TVD. The simula-
tions are shown at comparable penetration distances, but at
different times~Agt2 5 23 for FronTier, Agt2 5 66 for
TVD!. It is evident that the density contrast for the TVD
simulation has been reduced by about 50% due to mass
diffusion. See also Figure 4.

Fig. 4. Time-dependentA ~Atwood number! for fine gridFronTier, fine grid TVD, and coarse grid 642 3128 TVD. At timet 5 0, all
three simulations haveA~t 5 0! 5 0.5. This plot displays the reduced buoyancy of the diffusive TVD simulations as a function of time.
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diffusive buoyancy renormalization ofa is capable of re-
solving existing discrepancies among simulations, between
diffusive simulations and nondiffusive experiments, and with
theory.

3. DIFFUSION INDUCED BUOYANCY
REDUCTION

The reduced mixing rate due to unphysical numerical diffu-
sion can be understood from Figure 5. The left frame repre-
sents an immiscible bubble of radiusr. The central and the
right frame assume that this bubble is smeared out numeri-
cally to a radiusRwhereas the total mass inside the sphere of
radiusR is conserved. The buoyancy forces

f1 5 f2 5
4pr 3

3
~ rh 2 rL !g ~4!

for the bubbles in frames~a! and~c! are the same. However,
due to the difference between the mass in the nondiffused
bubble~a! and the diffused bubble~c!, the two acceleration
rates

a1 5
rH 2 rL

rL

g . a2 5
rH 2 rL

rL 1 S R3

r 3 2 1DrH

g ~5!

are different.
As a result of the mass diffusion, the buoyancy force is

distributed to a larger amount of mass, thus reducing the
acceleration of the bubble.

4. RICHTMYER–MESHKOV INSTABILITY

We have performed verification and validation studies for
axisymmetric simulations usingFon Tier. The validation
was through comparison to laser driven hemispherical tar-
gets~Chenget al., 2000!, and will not be repeated here. In
Figure 6, we present the results of a mesh refinement study
for an axisymmetrically perturbed spherical Richtmyer-
Meshkov problem, comparing the growth rates as a function
of time for a 2003 200 and a 4003 400 mesh. The influ-
ence of the symmetry axis~the “North Pole” effect on the
statistical characterization of the instability evolution was
studied~Glimm et al., 2000; in pressa; in pressb!, with the
main conclusions that:~1! the effect was a real consequence
of axisymmetrically perturbed flows, i.e., it was not due to

Table 1. Values ofa determined from experiment, theory, and simulation

Method a References

Experiment 0.05–0.077 Read~1984!; Youngs~1984!; Dimonte and Schneider~1996, 2000!;
Dimonte~1999!

Theory 0.05–0.06 B.,Cheng, et al., in press
FronTier simulation~unrenormalized! 0.07 This article~Fig. 2, left!; Glimm et al. ~2001!
FronTier simulation~renormalized! 0.07 This article~Fig. 2, right!
TVD simulation~unrenormalized! 0.035 This article~Fig. 2, left!
TVD simulation~renormalized! 0.06 This article~Fig. 2, right!

All values are consistent except the unrenormalized TVD value~with a determined from a time-independentt 5 0 Atwood number!.

Fig. 5. Left: Unmixed bubble of light fluid. Center: Unmixed bubble and heavy fluid mass that will be mixed with it. Right: Mixed
bubble.
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numerical effects,~2! it was independent of spherical flow
geometry, and arises in cylindrically shaped flows,~3! that
the effect occurs late in time and for spherical flows, is
pronounced after reshock, and~4! that the effect is not elim-
inated through use of spherical harmonic~Legendre poly-
nomial! perturbations.

We present in Figure 7 the results of a strong shock
scaling law analysis of the mixing zone growth rate for a
spherically perturbed Richtmyer-Meshkov problem. The
perturbed spherical surface separates a heavy gas~on the
interior! from a light gas~on the exterior!, with the initial
shock location in the heavy fluid, facing outward~explo-
sion!. Following Zhang and Graham~1997!, where a sim-
ilar scaling law was introduced for cylindrical implosions,
we scale the velocity and times by the incident shock Mach
number, introducing a scaled velocityv ' 5 v0M and time
t ' 5 Mt. The results of the scaling show a near identity of
growth rate curves, which is remarkable in view of the
large amount of structure in the curves themselves. Again
the configuration is heavy exploding light.

5. CONCLUSION

We present aFronTier simulation run to late time and deep
penetration. The simulation is terminated while still in a
multimode regime. It has no interfacial mass diffusion, and
the overall bubble mixing rate lies within the experimental
range. We recalibrate the buoyancy force for mass diffusive
TVD simulations, and obtain a renormalizedaeff that is also
in agreement with experiment. On this basis, the nondiffu-
sive simulation and the theory of mass diffused buoyancy
reduction presented here are capable of resolving the prin-
cipal differences between simulation and experiment for
Rayleigh–Taylor mixing. Our results confirm the earlier
agreement between theory and experiment~see B. Cheng, J.
Glimm, and D. H. Sharp, in press!. Finally, we observe that
our results open a door to further research, and do not close
inquiry related to the determination of the mixing rate, as the
uncertainties in the experimental, theoretical, and simula-
tion determination ofa deserve further investigation. Con-
cerning simulation, which is the main thrust of this article,
we mention the importance of improved resolution. The
needs for resolution are numerical accuracy, governed by
mesh cells per bubble, statistical accuracy, governed by the
number of bubbles, especially at the end of the simulation,

and convergence to self-similar flow, governed by the length
of time of the simulation.

REFERENCES

Cheng, J., Glimm, J., Saltz, D. & Sharp, D.H. ~1999!. Bound-
ary conditions for a two pressure two phase flow model.
Physica D133, 84–105.

Cheng, B., Glimm, J. & Sharp, D.H. ~2000!. Density dependence
of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts.
Phys. Lett. A268, 366–374.

Cheng, B., Glimm, J. & Sharp, D.H. ~in press!. A 3D RNG
bubble merger model for Rayleigh–Taylor mixing.Chaos.

Dimonte, G. ~1999!. Nonlinear evolution of the Rayleigh–Taylor
and Richtmyer–Meshkov instabilities.Phys. Plasmas5, 2009–
2015.

Dimonte, G. & Schneider M. ~1996!. Turbulent Rayleigh–
Taylor instability experiments with variable acceleration.Phys.
Rev. E54, 3740–3743.

Dimonte, G. & Schneider M. ~2000!. Density ration dependence
of Rayleigh–Taylor mixing for sustained and impulsive accel-
eration histories.Phys. Fluids12, 304–321.

Drake, R.P., Robey, H.F., Hurricane, O.A., Remington, B.A.,
Knauer, J., Glimm, J., Zhang, Y., Arnett, D., Ryutov,
D.D., Kane, J.O., Budil, K.S. & Grove, J.W. ~2002!. Exper-
iments to produce a hydrodynamically unstable spherically di-
verging system of relevance to instabilities in supernovae.
Astrophy. J.564, 896–906.

Glimm, J., Grove, J.W., Li, X.L., Oh, W. & Sharp, D.H. ~2001!.
A critical analysis of Rayleigh–Taylor growth rates.J. Comp.
Phys.169, 652–677.

Glimm, J., Grove, J.W. & Zhang, Y. ~2000!. Three dimensional
axisymmetric simulations of fluid instabilities in curved geom-
etry. InAdvances in Fluid Mechanics III~Rahman, M. & Breb-
bia, C.A., Eds.!. pp. 643–652. Southampton, UK: WIT Press.

Glimm, J., Grove, J.W. & Zhang, Y. ~in pressa!. Interface
tracking for axisymmetric flows.SIAM J. Sci. Comp.

Glimm, J., Grove, J.W., Zhang, Y. & Dutta, S. ~in pressb!.
Numerical study of axisymmetric Richtmyer–Meshkov insta-
bility and azimuthal effect on spherical mixing.J. Stat. Physics.

Read, K.I. ~1984!. Experimental investigation of turbulent mixing
by Rayleigh–Taylor instability.Physica D12, 45–58.

Sharp, D.H. ~1984!. Physica D12, 3–18.
Sharp, D.H. & Wheeler, J.A. ~1961!. Late stage of Rayleigh–

Taylor instability. Technical report, Institute of Defense
Analyses.

Youngs, D.L. ~1984!. Numerical simulation of turbulent mixing
by Rayleigh–Taylor instability.Physica D12, 32–44.

Zhang, Q. & Graham, M.J. ~1997!. Scaling laws for unstable
interfaces driven by strong shocks in cylindrical geometry.Phys.
Rev. Lett.79, 2674–2677.

442 E. George et al.

https://doi.org/10.1017/S0263034603213239 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034603213239

