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Numerical methods for the determination of mixing
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Abstract

We present a Rayleigh—Taylor mixing rate simulation with an acceleration rate falling within the range of experiments.
The simulation uses front tracking to prevent interfacial mass diffusion. We present evidence to support the assertion
that the lower acceleration rate found in untracked simulations is caused, at least to a large extent, by a reduced buoyancy
force due to numerical interfacial mass diffusion. Quantitative evidence includes results from a time-dependent Atwood
number analysis of the diffusive simulation, which yields a renormalized mixing rate coefficient for the diffusive
simulation in agreement with experiment. We also present the study of Richtmyer—Meshkov mixing in cylindrical
geometry using the front tracking method and compare it with the experimental results.
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1. INTRODUCTION 2000 and Dimont€1999), giving a = 0.05+ 0.01. The

. . ' theoretically determined value,~ 0.05-0.06, is obtained
Smce_ Read1984 and Young_s(1984) pub_hshed_ Fhe f|_rst from a bubble merger renormalization group model. See B.
experimental study of Rayleigh—Taylor instability with a

randomly perturbed fluid interface, attention has been drawr?.heng’ J. Glimm, and_D.H. Shaj press, and referencgs_
) : . cited there. Computation of the center of mass of the mixing
to the nondimensional acceleration rate of the bubble enve-

lope. Assume that two fluids are separated by a randomly "€ introduces-a c_oupling between its wo edges: There-
perturbed interface and that the gravitational field points ore, acharacterization of the center of masarly station-

from the heavy fluidpy to the light fluid p,. Read and ary forA= 0.8, e.g) determines the total mixing zone size in

. : ._terms ofa alone(Cheng.et al,, 1999, 2000.
Youngs confirmed the Sharp—Wheeler theoretical predic- The coefficientx is thus important. It characterizes the

tion (1961, unpublished technical report, Institute of De- . . .
... size of the mixing zone, and thus largely determines the
fense Analysesthat the average bubble front moves with . . .
amount of material that is mixed. It has been reported by

acceleration scaling experimentalists as being approximately universal, in the
sense that it is nearly independent of the random initial
conditions of an experiment.
) ) Researchers in several laboratories have tried to repro-
whereh is the height of the bubble envelop&= (py —  duce the Sharp-Wheeler theoretical scaling law with the
pL)/(pu + po) is the Atwood numbeg is the gravity, and  experimental value faz through numerical simulation. Most
is time. Read 1984 and Youngg1984) show that the ac- esearchers report atime-dependent, decreasing valag for
celeration ratex is almost a constant, withk ~ 0.063 — ranging from 0.015 to 0.03.
0.077 in three-dimension&BD) experiments. The experi-  These simulations are from computational codes using nu-
ments have been repeated by various authors with differefherical schemes with interfacial mass diffusion. We have
apparatus, and similar values @have been obtained; we compared numerical simulations using a high resolution front
mention the experiments of Dimonte and Schneld®96,  {racking codeFronTierwith zero interfacial mass diffusion
to our own simulations using an untracked total variation

. - diminishing(TVD)-level set code with interfacial mass dif-

Address correspondence and reprint requests to: Xiao Lin Li, Departy \sion similar to the others. We also introduce an analytic
ment of Applied Mathematics and Statistics, Stony Brook University, Stony
Brook, NY 11794-3600, USA. E-mail: linli@ams.sunysb.edu study of the effects of mass diffusion on buoyancy reduction
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and we predict the numerically observed reductionfior ~ Agt?. FronTierhas a distinctly higher growth rate than does
untracked simulations. Our main resultis that all valuas of the interface mass diffusive TVD simulation. The value of
(theory, experiment, simulatiprmre consistent if the diffu- h(t) is the difference between the 0 bubble height and the

sive calculation ofx is renormalized to account for mass timet bubble height. The latter quantity is defined in terms
diffusion. of a 1% volume fraction, that is, the greatest height at which

We also performed simulations of the Richtmyer—the fluid is 99% heavy and 1% light according to the front
Meshkov instability in spherical geometry using a two- tracking front or the TVD level set. This definition is some-
dimensional2D) cylindrical code. what unstable statistically, and a few spurious oscillations
associated with the definition were removed in the plots of
Figure 2.

Mass diffusion is a common feature of most untracked
simulation codes. Due to the interpolation constraint, nu-
An earlier comparison shows thatonTiersimulations pro-  merical schemefinite difference, finite volumgcan have
duce values fow close to agreement with experiment while only first order accuracy in their spatial derivatives near a
untracked TVD simulations produce low values tofsee  discontinuity. For a contact discontinuity, the corresponding
Glimm et al, 2001). These comparisons were limited in the characteristic is linear for the wave equation of the Riemann
simulation time and in the penetration depth of mixinginvariant
achieved. Here we extend the comparison to a later time,
comparable to most other simulations. Figure 1 shows the aw ‘U w 0. wherew= o — P @
evolution of the fluid interface in thEronTier simulation. ot X ' P2
The color coding displays the height through the mixing
zone, and the cut plane near the bubble surface at the top ahd so the truncation error will spread to the interior region.
the right frame shows the location of the 5% volume fractionAssuming that a finite difference scheme is second order in
contour for the light fluid. Note that there are a number oftime and first order in space at a contact discontinuity, we
light fluid bubbles at the later time. The dynamics is multi- have the equivalent equation
mode, not dominated by a single large space filling bubble
up to thistime. Such alarge bubble would indicate the end of
any possible self-similar flow regime, as the acceleration
scaling depends upon a continued growth in the transverse
scale of the mixing structures. We expand on this idea. Theo that the widthAL of the numerically diffused density
dynamics of continued acceleration of the mixing zone edgeprofile satisfiesAL ~ \/Axt. To understand the difference
as expressed in the? scaling in Eq.(1), depends on a between the two simulations, we compare the cross-sectional
continued growth of the large scale structutbe bubbles density plots in a series of horizontal slices from the bubble
See, for example, Shard984). Bubbles grow through a (uppep portion of the mixing region. Figure 3 shows the
process of bubble competition and merger. Thug flszal-  cross-sectional density plots in these simulations. Observe
ing and the determination of requires a simulation that is that there is a substantial smearing out of the density across
still in the multimode regime, where bubble competition the boundary between the two fluids in the untracked TVD
and merger can occur. simulation, whereas thEronTier simulation maintains a

Thet = 0 interface is constructed out of Fourier modessharp boundary with a discontinuous density profile through-
with random amplitudes and frequencies in the range of ®ut the simulation. As a further difference, we note the
to 16 modes per computational domain width. See Glimnfine-scale structure size in tlk@onTier simulation in com-
et al. (2000 for further information concerning these sim- parison to the TVD simulation.
ulations. The 2< 2 X 8 computational domain used here  We compute an effective Atwood numb&(t) as a func-
allows computationally efficient late time, deep penetra-tion of time for the TVD simulations. This is determined
tion simulations. from the highest and lowest densities in a horizontal slice,

Within this computational aspect ratio, the Fourier modewith the resulting time- and space-dependent Atwood num-
numbers represent a balance between the conflicting requireer averaged over heights in the upper third of the mixing
ments of spatial resolution, favoring low numbers of modeszone at a fixed time to get an Atwood number dependent on
and late time statistical validity, favoring large numbers oftime alone.
modes. Except as noted, the simulations used & X281 2 In Figure 4, we plotA(t) versust for three simulations
grid. Our simulations, thus balanced, have abodt2244  (fine and coarse grid TVD and fine gritonTier). The time
initial bubbles and a grid resolution of about 10 cells in eachdependence oA(t) in the FronTier simulation is caused
dimension per initial bubble. The final time considered herepurely by (small) compressibility effects. For the mass
has about five bubblesee Fig. 1 diffusive TVD simulation, the initial density contrast,

A comparison of the mixing rates for the two simulations A(t = 0) = 0.5, is almost completely washed out; the earliest
is shown in Figure 2Zleft), plotting bubble heighh versus time displayed showA(t = 2) =~ 0.15. As new puréheavy

2. DIFFUSIVE AND NONDIFFUSIVE
SIMULATIONS

1
W, + uw, = > AXWy, 3
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Fig. 1. Front plot for aFronTier simu-
lation of Rayleigh—Taylor mixing, with
A = 0.5. Left frame: early time. Right

frame: late time. Color coding repre-
sents vertical height. The initial mean
height of the interface is 4, and the height
scale on the color bar applies only to the
later time.

and light fluid is injected into the mixing region, the effec-  To compensate for the time-dependent Atwood number
tive Atwood number increases, butitis still reduced to aboutA(t), we define an effective alphaes ~ h/2 [ [ A(s)g ds dt
A~ 0.3 on atime averaged basis, or nearly a 50% reductiofsee Fig. 2, right Specifically,a or a.s is defined here as

relative to its initial value. the slope of the straight line joining the beginning and end of
7 7
65 . 1 65 4

8
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Fig. 2. Mixing growth comparison of &ronTier (nondiffusive with a TVD (diffusive) simulation. For the TVD simulation, two grid
levels are shown, the coarser being 64128. In all casey is the height of the 1% volume fraction contour, and the initial mean height
of the interface is 4. Lefth versusA(t = 0)gt? for FronTierand TVD. Righth versus 2f(§ f051 A(s)g ds ds for FronTierand TVD. The

solid line represents thieronTier simulation, the dashed line is the finer grid TVD simulation, and the dotted line is the coarser grid
TVD simulation.
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Fig. 3. Cross-sectional plots showing density on a common
rainbow color scale. The pure light fluid is colored blue and
the pure heavy fluid is red. Yellow and green represent var-
ious levels of microscopic mixing. The ratio of extreme
density values is 3.3:1. The right frames show a higher slice
in thezdirection. TopFronTier, bottom: TVD. The simula-
tions are shown at comparable penetration distances, but at
different times(Agt?> = 23 for FronTier, Agt> = 66 for
TVD). It is evident that the density contrast for the TVD
. simulation has been reduced by about 50% due to mass
diffusion. See also Figure 4.

theh(t) curve in Figure 2. This definition, although some- betweerFronTierand TVD and between TVD and experi-
what arbitrary, is conventional, and thus allows comparisorment. Note thatv lies within the range of experimental
to the results of others. We observe an improved comparisomalues; see Table 1. On this basis, we can state that the
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Fig. 4. Time-dependen (Atwood numbey for fine grid FronTier, fine grid TVD, and coarse grid 64x 128 TVD. At timet = 0, all
three simulations haw&(t = 0) = 0.5. This plot displays the reduced buoyancy of the diffusive TVD simulations as a function of time.
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Table 1. Values ofe determined from experiment, theory, and simulation

Method @ References

Experiment 0.05-0.077 Re&ti984); Youngs(1984); Dimonte and Schneid€i996, 2000;
Dimonte(1999

Theory 0.05-0.06 B.,Cheng, et al., in press

FronTier simulation(unrenormalizeyl 0.07 This articlgFig. 2, lef); Glimm et al. (2001

FronTier simulation(renormalizedl 0.07 This articlg Fig. 2, righ

TVD simulation(unrenormalizegl 0.035 This articlgFig. 2, lefy

TVD simulation(renormalized 0.06 This articlg Fig. 2, righ

All values are consistent except the unrenormalized TVD vedui « determined from a time-independént 0 Atwood number.

diffusive buoyancy renormalization ef is capable of re- _ P Pu — PL .
solving existing discrepancies among simulations, between A= pL 9~ 2= R3 9 ®)
diffusive simulations and nondiffusive experiments, and with pL PE 1) PH

theory.

are different.
As a result of the mass diffusion, the buoyancy force is
3. DIFFUSION INDUCED BUOYANCY distributed to a larger amount of mass, thus reducing the
REDUCTION acceleration of the bubble.

The reduced mixing rate due to unphysical numerical diffu-
sion can be understood from Figure 5. The left frame reprefl' RICHTMYER—-MESHKOV INSTABILITY

sents an immiscible bubble of radiusThe central and the We have performed verification and validation studies for
right frame assume that this bubble is smeared out numeraxisymmetric simulations usingon Tier. The validation
cally to aradiuRRwhereas the total mass inside the sphere ofvas through comparison to laser driven hemispherical tar-
radiusR is conserved. The buoyancy forces gets(Chenget al., 2000, and will not be repeated here. In
Figure 6, we present the results of a mesh refinement study
for an axisymmetrically perturbed spherical Richtmyer-
(pn—pL)g (4) Meshkov problem, comparing the growth rates as a function
of time for a 200X 200 and a 400< 400 mesh. The influ-
ence of the symmetry axishe “North Pole” effect on the
for the bubbles in frame®) and(c) are the same. However, statistical characterization of the instability evolution was
due to the difference between the mass in the nondiffusedtudied(Glimm et al., 2000; in press; in pressh), with the
bubble(a) and the diffused bubblg), the two acceleration main conclusions thatl) the effect was a real consequence
rates of axisymmetrically perturbed flows, i.e., it was not due to

4y 3

3

fi="1,=

(a) (b) ()

Fig. 5. Left: Unmixed bubble of light fluid. Center: Unmixed bubble and heavy fluid mass that will be mixed with it. Right: Mixed
bubble.
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numerical effects(2) it was independent of spherical flow and convergence to self-similar flow, governed by the length
geometry, and arises in cylindrically shaped flow&,that  of time of the simulation.

the effect occurs late in time and for spherical flows, is

pronounced after reshock, a(@ that the effectis notelim- REFERENCES

inated through use of spherical harmofii@gendre poly- CHENG, J., GLIMM, J., SALTZ, D. & SHaRrp, D.H. (1999. Bound-
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5. CONCLUSION
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