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Optimal suppression of a separation bubble
in a laminar boundary layer
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By means of nonlinear optimization, we seek the velocity disturbances at a given
upstream position that suppress a laminar separation bubble as effectively as possible.
Both steady and unsteady disturbances are examined and compared. For steady
disturbances, an informed guess based on linear analysis of transient perturbation
growth leads to significant delay of separation and serves as a starting point for
the nonlinear optimization algorithm. It is found that the linear analysis largely
captures the suppression of the separation bubble attained by the nonlinear optimal
perturbations. The mechanism of separation delay is the generation of a mean flow
distortion by nonlinear interactions during the perturbation growth. The mean flow
distortion enhances the momentum close to the wall, counteracting the deceleration
of the flow in that region. An examination of the effect of the disturbance spanwise
wavenumber reveals that perturbations maximizing the mean flow distortion also
approximately maximize the peak wall pressure, which is beneficial for lowering form
drag. The optimal spanwise wavenumber leading to maximal peak wall pressure is
significantly larger than the one maximizing the shift in separation onset. For unsteady
disturbances, the mechanism of separation delay relies on enhancing wall-normal
momentum transfer by triggering instabilities of the separated shear layer. It is found
that Tollmien–Schlichting waves obtained from linear stability theory provide accurate
estimates of the nonlinearly optimal disturbances. Comparison of optimal steady and
unsteady perturbations reveals that the latter are able to obtain a higher time-averaged
peak wall pressure.

Key words: boundary layer separation, flow control

1. Introduction
Boundary layers are prone to separation when subjected to adverse pressure

gradients. Flow separation often leads to increased pressure drag and decreased
lift, resulting in reduced performance of aerodynamic and hydrodynamic vehicles.
Separation is particularly relevant for the low-Reynolds-number aerodynamics of
small unmanned air vehicles, for which laminar flow is the rule rather than the
exception. Downstream of the separation point, the inflectional shear layer often
triggers early breakdown to turbulence. Although transition to turbulence induces flow

† Email address for correspondence: mjph@stanford.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-3649-2492
https://orcid.org/0000-0001-9308-5397
mailto:mjph@stanford.edu
https://doi.org/10.1017/jfm.2020.157


892 A23-2 M. Karp and M. J. P. Hack

reattachment, thereby reducing the size of the separated region, its adverse effects are
increased friction and heat transfer.

Vortex generators have been proposed as a possible passive control device
for mitigating flow separation, owing to their ability to generate counter-rotating
streamwise vortices that often trigger transition to turbulence, thus enabling a delay
or even prevention of separation (e.g. Pearcey 1961). Significant reduction of airfoil
drag, associated with laminar separation bubbles, has been demonstrated by using
vortex generators completely submerged in the boundary layer (e.g. Kerho et al. 1993).
Beyond the laminar regime, vortex generators have been shown to delay separation
even in fully turbulent flows (e.g. Schubauer & Spangenberg 1960). In addition to
passive approaches, active control has also been successful in mitigating separation
(see e.g. Greenblatt & Wygnanski 2000 for a review). Several studies explored the
application of linear stability theory aimed at active separation control (e.g. Rist &
Augustin 2006; Marxen et al. 2015).

In the context of transitional flows, it is now well established that perturbations can
transiently amplify even in exponentially stable settings. Counter-rotating streamwise
vortices have been identified as the initial condition leading to optimal linear transient
growth in parallel shear flows (see e.g. Butler & Farrell 1992). Ellingsen & Palm
(1975) demonstrated that the streamwise component of a three-dimensional streamwise
independent disturbance grows linearly with time for an inviscid fluid. Gustavsson
(1991) showed that, at finite Reynolds numbers, the growth is bounded and ultimately
overcome by viscous decay. The scale of the evolution of the transient growth of
disturbances is proportional to the Reynolds number, and the maximal energy gain
scales with the square of the Reynolds number. The most significant transient growth
of perturbations is generated by the lift-up mechanism (Landahl 1980). Lift-up
describes the generation of large streamwise disturbances, commonly referred to as
streaks, by cross-stream velocity fluctuations. Transient disturbance growth analyses
of non-parallel flat-plate boundary layers (e.g. Andersson, Berggren & Henningson
1999; Hack & Moin 2017) identified streamwise vortices as the dominant vortical
structures, consistent with parallel flows.

The scaling of the maximal energy growth with the square of the Reynolds
number suggests that, as the Reynolds number is increased, even initially small
disturbances may reach amplitudes at which nonlinear effects become apparent. In
the linear regime, the optimal disturbance corresponds to spanwise antisymmetric
sets of high-speed and low-speed streaks. Nonlinear interactions between the streaks
and the streamwise vortices break the symmetry by shifting the high-speed streaks
towards the wall and the low-speed streaks away from the wall. The resulting
distorted spanwise-averaged flow has excess momentum close to the wall and a
momentum deficit near the edge of the boundary layer (see e.g. Ran et al. 2019).
The increased fluid momentum near the wall may be favourable for separation delay,
as it counteracts the velocity deceleration in that region.

The transient growth mechanism has been utilized by Fransson et al. (2006) for
delaying transition to turbulence. They used cylindrical roughness elements embedded
within the boundary layer, and acting as vortex generators, to trigger the formation
of streamwise vortices, which generate streaks via the lift-up mechanism. The streaks
delay transition by introducing a mean flow distortion, which has a stabilizing effect
on exponential Tollmien–Schlichting instabilities, as earlier reported by Cossu &
Brandt (2002). In a subsequent study, Fransson & Talamelli (2012) investigated
miniature vortex generators and demonstrated that the streamwise vortices can be
reinforced downstream by a second array of vortex generators, making the control
more persistent.
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The impact of stationary disturbances on the separating flow over a backward-facing
step was studied experimentally by Boiko, Dovgal & Hein (2008). The streaky
disturbances induce a temporal mean flow distortion of the separated flow and promote
secondary instabilities. A similar study by Pujals, Depardon & Cossu (2010) explored
the ability of streaks to delay separation over a three-dimensional bluff body. The
spanwise modulation successfully suppresses the recirculation bubble and the overall
drag is reduced by approximately 10 %. The effect of steady and unsteady disturbances
on transition in separation bubbles was investigated by Marxen, Rist & Wagner (2004).
They found that three-dimensional steady perturbations up to 3 % did not influence
transition, which tends to be dominated by oblique travelling waves. Rist & Augustin
(2006) found that unsteady instability waves have a stronger impact on laminar
separation bubbles, as they enhance transition to turbulence. Marxen et al. (2009)
investigated the spatial transient growth of steady infinitesimal three-dimensional
disturbances in a two-dimensional separating boundary layer subjected to a pressure
gradient that changes gradually from favourable to adverse. They found that transient
growth caused by the lift-up effect dominates in the favourable-pressure-gradient
region and slightly downstream of the separation point, whereas a Görtler-type modal
instability is observed in the adverse-pressure-gradient region. In a follow-up study,
Marxen & Rist (2010) analysed the differences between forced and unforced laminar
separation bubbles induced by an adverse pressure gradient. In the forced case, the
flow transitioned to turbulence, changing the pressure distribution, and thus reducing
the size of the separation region. This resulted in a stabilization of the laminar flow
upstream of the bubble with respect to small linear perturbations. The application
of linear stability theory to separation bubbles was also studied by Xu et al. (2017).
They investigated how separation bubbles, formed by surface indentations, modify
and destabilize Tollmien–Schlichting waves.

Theofilis, Hein & Dallmann (2000) proposed global instability as a possible source
of unsteadiness and three-dimensionality in laminar separation bubbles. During the
instability, the separation line remains unaffected whereas the reattachment line
becomes three-dimensional. Abdessemed, Sherwin & Theofilis (2009) investigated
global instabilities of the flow over low-pressure turbine blades, with a separation
bubble close to the trailing edge. They identified a global mode of short spanwise
wavelength related to the separation bubble. More recently, global transient growth
analysis of the flow over a compressor blade has shown that the largest growth is
obtained within the separation bubble (Mao et al. 2017).

The choice of parameters of vortex generators aimed at delaying separation is often
based on trial and error, in particular their spanwise spacing. Moreover, the mechanism
for optimal separation delay is poorly understood. To shed light on the underlying flow
physics, we focus on the velocity field upstream of the point of separation. Our aim
is to find the optimal perturbation, in a sense that the separation location is delayed
as far downstream as possible. Both steady and unsteady disturbances are considered,
representative of passive and active approaches, and their performance is compared.
The relevance of concepts from linear stability theory for delaying separation is
explored. More specifically, we examine the effect of disturbances maximizing the
linear transient growth and their role in generating a mean flow distortion that
augments the shear at the wall. Further objectives are the identification of the optimal
spanwise spacing between the vortices and the analysis of the mechanism leading
to optimal separation delay. Several optimization objectives are compared, including
maximal delay of the separation location and maximal peak wall pressure.

The paper is organized as follows: § 2 provides the methodology, followed by a
description of the base state in § 3. Separation delay via linear transient growth is
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FIGURE 1. Problem set-up considered within this work.

analysed in § 4, and nonlinear optimization is performed in § 5. The effect of the
spanwise wavenumber is addressed in § 6. Unsteady separation delay is considered in
§ 7, followed by concluding remarks in § 8.

2. Methodology
2.1. Set-up

We simulate the incompressible three-dimensional Navier–Stokes equations. All
variables are non-dimensionalized by the free-stream velocity and boundary layer
thickness at the inlet. The velocity components u, v and w correspond to velocities
along x, y and z, the streamwise, wall-normal and spanwise dimensions, respectively.
Throughout the paper, the term ‘mean’ is consistently used to indicate averaging in
the spanwise dimension.

Our setting of triggering separation in the flow over a flat plate is similar to that
considered by Na & Moin (1998) and is shown in figure 1. A comparable set-up was
also used for instance by Kotapati et al. (2010), Cho, Choi & Choi (2016) and Seo
et al. (2018). A suction–injection velocity distribution is prescribed along the upper
boundary of the computational domain to create an adverse-to-favourable pressure
gradient that produces a closed separation bubble. The vertical velocity distribution
is given by

VS(x)=−v0x exp
(

1
2
−

1
2

x2

)
, x=

x− xs

1xse−1/2
, (2.1a,b)

with xs the location where the wall-normal velocity changes sign, 1xs a representative
width of the suction–injection region and v0 the maximal amplitude. The amount of
fluid removed (x< xs) and injected (x> xs) is equal to v01xs.

2.2. Direct numerical simulations
The flow field is computed in direct numerical simulations using a second-order
finite-volume formulation. At the inlet, a Blasius profile is superimposed with a
disturbance, whose specific details are provided below. The size of the computational
domain is Lx = 200 in the streamwise dimension and Ly = 30 in the wall-normal
dimension. The domain is assumed periodic in the spanwise dimension and extends
over one disturbance wavelength, Lz = 2π/β, where β is the spanwise wavenumber.
An equidistant grid is used along x and z, and a hyperbolic tangent clustering with a
ratio of 1ytop/1ywall= 50 is employed along the wall-normal dimension, leading to a
spacing of 1x = 0.1953, 1z = 0.0982/β and 1ywall = 0.0084 for the high-resolution
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FIGURE 2. Streamlines for a laminar separation bubble, base state. Only the part close to
the wall is shown. The Blasius boundary layer thickness is given by the thick solid line.

case (Nx,Ny,Nz)= (1024, 192, 64), and a spacing of 1x= 0.3906, 1z= 0.1963/β and
1ywall= 0.0126 for the low-resolution case (Nx,Ny,Nz)= (512, 128, 32). The spanwise
resolution in the low-resolution case is doubled for β 6 0.4, leading to a spacing
of 1z = 0.0982/β. The effect of the resolution is limited to a change of the mean
separation location of less than one boundary layer thickness in all considered cases.
Two-dimensional simulations are performed with Nz = 2. Along the top boundary, a
superposition of the Blasius solution and VS is enforced and a convective boundary
condition is prescribed at the outlet. The finite-volume algorithm is based on the
formulation by Rosenfeld, Kwak & Vinokur (1991), with the velocities stored on
a staggered grid at the faces of the computational volumes and the pressure stored
at their centres. The convective term is integrated in time using a second-order
Adams–Bashforth scheme, while a second-order Crank–Nicolson scheme is used for
the diffusion term. Mass conservation is enforced through the fractional step method
of Kim & Moin (1985). For steady inflow perturbations, the convergence to steady
state was accelerated by the application of selective frequency damping (Åkervik
et al. 2006).

3. Laminar separation – base state
The base state corresponds to a laminar boundary layer with a closed separation

bubble. The Reynolds number is Re= 800 and the parameters for the velocity at the
top boundary are fixed to xs= 100, 1xs= 30 and v0= 0.2, leading to the formation of
a laminar separation bubble. The base state has been calculated with the addition of
a small-amplitude three-dimensional disturbance at the inlet. The disturbance energy
is set to 10−8 in order to trigger a possible absolute instability within the separation
bubble. However, an instability was not observed and the resulting flow remained two-
dimensional and laminar.

A side view of the streamlines is presented in figure 2. Dashed lines represent
closed streamlines inside the bubble, with the Blasius boundary layer thickness
given for reference by the thick solid line. The maximal height of the bubble is
approximately h=2 and its centre of recirculation is at (x, y)= (107,1.2), closer to the
reattachment location. The streamwise and wall-normal flow components are shown
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FIGURE 3. Velocity components for a laminar separation bubble, base state:
(a) streamwise, u, and (b) wall-normal, v.

in figure 3. Positive (negative) velocities are indicated by the solid (dashed) lines.
The streamwise velocity in the free stream decelerates to a minimum of 0.71 at x= xs

owing to the adverse pressure gradient. The boundary layer thickens and separates in
the adverse-pressure-gradient region and reattaches in the favourable-pressure-gradient
region. The streamwise component remains negative up to y = 1.3, approximately
two-thirds of the bubble height. The reverse flow has a maximal magnitude of 6.6 %,
which is lower than 15 %–20 %, the threshold for the onset of absolute instability
proposed by Alam & Sandham (2000). The wall-normal velocity is effectively
antisymmetric with respect to x = xs, with positive (negative) velocities upstream
(downstream) of the bubble.

The wall shear for the base state is indicated by the red dash-dotted line in
figure 4(a), with the Blasius solution indicated by the blue dashed line. The base
state initially follows the Blasius solution, and separation occurs at x ≈ 63. The
laminar separation bubble closes with laminar reattachment at x≈ 124 and the curve
overshoots the Blasius solution. We note that the small rise in the wall shear near the
downstream end of the computational domain is related to the convective condition
applied at the outflow. Sensitivity studies demonstrated this effect to be limited to the
immediate vicinity of the boundary of the computational domain. The wall pressure
coefficient,

cp = (pwall − p∞)/(0.5ρ∞U2
∞
), (3.1)

is indicated by the red dash-dotted line in figure 4(b). The blue dashed line
corresponds to the inviscid solution obtained analytically by defining a flow potential,
as detailed in appendix A. The inviscid solution sets an upper bound for the pressure
rise at the wall, which could be attained without flow separation. Initially, the viscous
(red dash-dotted line) and inviscid (blue dashed line) curves rise together; however,
upon separation, the pressure flattens and remains below the level observed for the
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FIGURE 4. Comparison of base (red dash-dotted line) and optimized (black solid line)
states. In the optimized case the inflow perturbation is obtained by local linear transient
growth analysis and the inflow energy is E0 = 10−4. (a) Wall shear ∂um/∂y. The dashed
blue line corresponds to the Blasius solution. (b) Wall pressure coefficient cp. The dashed
blue line corresponds to the inviscid solution.

inviscid solution. The pressure coefficient attains a maximum of cp = 0.18 close to
the reattachment location, followed by a slow decay, as in the inviscid solution.

4. Steady separation delay by means of linear transient growth
Our analysis begins by considering steady perturbations, which can be implemented

through a passive device and do not require an actuator. In a first step, the steady
three-dimensional perturbations are obtained from linear transient growth analysis
and their effect on the laminar separation bubble is analysed. We employ local
spatial stability theory to calculate the linearly most highly amplified perturbations.
Accordingly, the total velocity at the inflow is written as

u= (UB(y), 0, 0)T + u′, (4.1)

where UB(y) is the Blasius solution and u′ is an infinitesimal disturbance. It should
be noted that the Blasius boundary layer is exponentially stable to steady disturbances
at all Reynolds numbers.

The linearized equations are

UB
∂u′

∂x
+

dUB

dy
v′ +

∂p′

∂x
=

1
Re
∇

2u′, (4.2a)

UB
∂v′

∂x
+
∂p′

∂y
=

1
Re
∇

2v′, (4.2b)

UB
∂w′

∂x
+
∂p′

∂z
=

1
Re
∇

2w′, (4.2c)

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0. (4.2d)

The homogeneity of the above base flow in the x and z dimensions allows an ansatz
of the form

q′ = q̃(y)ei(αx+βz)
+ c.c., (4.3)
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where q′ = (u′, v′, w′, p′)T, β is the spanwise wavenumber, α is the spatial complex
eigenvalue and q̃ is the eigenfunction.

Linear transient growth evaluates the gain, G(x) = E(x)/E0, i.e. the disturbance
kinetic energy, E(x) = (q′(x), q′(x))E, at location x, normalized by its value at the
inflow, E0 = E(x= 0), with the energy norm given by

(q′i, q′j)E =
1

2Lz

∫ Lz

0

∫
∞

0
(u′∗i u′j + v

′∗

i v
′

j +w′∗i w′j) dy dz, (4.4)

where Lz = 2π/β.
The procedure for identifying the optimal solutions is briefly described below, and

the reader is referred to Schmid & Henningson (2001) for details. We begin by solving
the eigenvalue problem to obtain the eigenvalues α and the eigenfunctions q̃(y). The
variables are written as

q′ =
∞∑

n=1

cn(x)q̃n(y)e
iβz
+ c.c., (4.5)

where cn are expansion coefficients of the eigenmodes. Next, the energy norm matrix
is calculated:

M i,j = ( q̃i, q̃j)E. (4.6)

This matrix is Hermitian positive-definite and can be decomposed via Cholesky
factorization, M = F HF , where the superscript H implies the conjugate transpose.
Doing so allows connecting the energy norm to the L2 norm via the relation

(q′i, q′j)E = cH
i Mcj = cH

i F HFcj = (Fci, Fcj)2. (4.7)

The maximal possible amplification of perturbation kinetic energy is given by

G(x)=max
q′0

(q′(x), q′(x))2E
(q′0, q′0)2E

=max
c0

(Fc(x), Fc(x))22
(Fc0, Fc0)

2
2
= (FeiΛxF−1, FeiΛxF−1)22, (4.8)

where Λ = diag{α1, α2, . . .}, c0 are the expansion coefficients of the eigenmodes at
the inflow and c(x) are the coefficients at the downstream position x. This procedure
gives the envelope for all possible maximum energy amplifications. Every point on
the envelope corresponds to different inflow conditions, which maximize the energy
gain at this point. The specific inflow condition reaching a maximum at a certain
downstream position x is found via singular-value decomposition of the rightmost
expression in (4.8). Convergence studies showed that 200 eigenmodes are sufficient
to capture the optimal growth.

As a first step towards delaying separation, we consider a spanwise wavenumber
of β = 1.85, for which maximal energy growth of zero-frequency disturbances in
a zero-pressure-gradient flat-plate boundary layer is obtained (e.g. Butler & Farrell
1992). The chosen kinetic energy of the inflow perturbation, E0 = 10−4, induces
appreciable nonlinear interactions of perturbations. The resulting mean wall shear
and wall pressure coefficient are indicated by the black solid lines in figure 4 and
show that the wall shear is enhanced compared to the base state. This effect is
attributed to the mean flow distortion caused by the growth of the perturbations,
which adds streamwise momentum close to the wall. Qualitative insight into the
general behaviour of the mean flow distortion, uMFD, is gained by considering an
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FIGURE 5. Mean flow distortion, uMFD, for a zero-pressure-gradient laminar boundary
layer in the absence of separation. The inflow disturbance is obtained from linear transient
growth and the inflow disturbance kinetic energy is E0 = 10−4. Positive (negative) mean
flow distortion is indicated by the solid (dashed) lines and the dash-dotted line indicates
zero.

attached zero-pressure-gradient Blasius boundary layer subject to the same inflow
disturbances. The result is presented in figure 5, where positive (negative) mean flow
distortion is indicated by the solid (dashed) lines and the dash-dotted line indicates
zero. The mean flow distortion attains its highest amplitude at y≈ 0.5 within a large
streamwise extent. Returning to figure 4(a), the mean separation is delayed to x≈ 84
and the mean reattachment moves upstream to x ≈ 108, reducing the mean bubble
size by approximately 60 %. The wall pressure coefficient in figure 4(b) continues to
rise in the separated region and is appreciably closer to the inviscid distribution with
a peak of cp ≈ 0.22.

Streamlines of the spanwise-averaged flow are presented in figure 6. The dashed
line represents a closed streamline inside the bubble with the Blasius boundary layer
thickness given for reference by the thick solid line. Comparison with figure 2 shows
a substantial reduction in the height of the bubble to approximately h= 0.5 and the
maximum spanwise-averaged reverse flow is reduced to 3 %. The streamwise velocity
fluctuations, i.e. the streamwise velocity after subtraction of its spanwise average,
along the plane y = 0.5 is presented in figure 7(a). Upstream of the separation
bubble, the low-speed streak is situated at zβ/π ≈ 1 and the high-speed streaks
are at zβ/π ≈ {0, 2}. Nevertheless, the streaks change their sign downstream of
the separation bubble, so that the high-speed streak is located at the centre. This
behaviour is attributed to the convex streamlines of the mean flow (figure 6). Studies
of transient disturbance growth in flows over convex surfaces by Karp & Hack
(2018) showed that, after the initial vortices have generated streaks via the lift-up
mechanism, the streaks generate new sets of vortices due to centrifugal forces, with
opposite sense of rotation compared to the initial vortices. The newly created vortices
generate streaks with opposite sign of the upstream streaks and the process repeats
downstream.
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FIGURE 6. Streamlines of the mean flow for the optimized case. The inflow perturbation
is obtained by local linear transient growth analysis and the disturbance inflow kinetic
energy is E0 = 10−4. Only the part close to the wall is shown. The Blasius boundary
layer thickness is given by the thick solid line.

To further examine whether a similar process is active in the present setting, we
consider the downstream evolution of the streamwise component of the enstrophy,

Wx =
1

2Lz

∫ Lz

0

∫
∞

0
ω2

x dy dz, (4.9)

where ωx is the streamwise vorticity, and the kinetic energy in the streamwise velocity
fluctuations,

Eu =
1

2Lz

∫ Lz

0

∫
∞

0
(u− um)

2 dy dz, (4.10)

which may be interpreted as a measure for the intensity of the streaks. Here, um is
the spanwise-averaged streamwise velocity given by

um =
1
Lz

∫ Lz

0
u dz. (4.11)

The enstrophy of the streamwise vortices is indicated by the blue line marked by a
cross in figure 7(b) and the energy of the streamwise velocity fluctuations is indicated
by the red line marked by a circle. The dashed lines represent a zero-pressure-gradient
laminar boundary layer without the suction–injection profile and the grey solid lines
indicate the mean separation and reattachment locations. Initially both solid and
dashed lines follow each other, with the vortices decaying and generating streaks via
lift-up. Approaching the separation region, the streaks reach a maximum at x ≈ 85
and then decay rapidly and energize the vortices, whose intensity peaks at x ≈ 120.
Farther downstream, the vortices decay while generating new streaks via lift-up.
Examining the streamlines in figure 6, it can be seen that the region where the
streaks regenerate the vortices (85 . x . 120) coincides with convex streamlines. It
should be noted that, upstream of the separation bubble, an increase of the kinetic
energy is observed in the separated case relative to the zero-pressure-gradient case.
This effect is attributed to a Görtler instability introduced by the concave streamlines
in the adverse-pressure-gradient region (see e.g. Marxen et al. 2009).
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FIGURE 7. (a) Streamwise velocity fluctuations (u − um) at y = 0.5 for the optimized
case. (b) Streamwise component of the enstrophy Wx (blue line marked by a cross) and
kinetic energy of the streamwise velocity fluctuations Eu (red line marked by a circle). The
dashed lines correspond to zero-pressure-gradient laminar boundary layer (in the absence
of separation) and the grey solid lines indicate the mean separation and reattachment
locations. The inflow perturbation is obtained by local linear transient growth analysis and
the disturbance inflow kinetic energy is E0 = 10−4.

5. Optimal steady separation delay
In the previous section, it was demonstrated that perturbations obtained from

linear transient growth analysis are able to suppress separation considerably.
These perturbations are the starting point for additional improvements gained by
means of nonlinear optimization. The spanwise wavenumber remains fixed at β= 1.85.
Results of five different cases are presented and compared. First, the optimization
objective is set to maximal delay of the onset of separation. Second, the streamwise
extent of the separation bubble is minimized. Third, the optimization objective is set
to maximal peak wall pressure, as maximizing cp is desirable for reducing form drag
in aeronautical applications. Motivated by the nature of the optimal inflow condition
identified in linear transient growth analysis, the optimal perturbations are restricted
to the wall-normal and spanwise velocity components. In the fourth considered case,
this limitation is lifted, and an optimization over all three velocity components is
performed with the objective of maximal separation delay. The last case addresses
the capability of a spanwise-homogeneous streamwise disturbance, i.e. a wall jet, to
suppress separation.

5.1. Methodology
The optimal disturbance shape at the inlet is sought such that the point of separation
is delayed as far downstream as possible. For a steady disturbance, the velocity field
at the inlet can be written as

u′(x= 0, y, z)= û(s) cos(βz), (5.1a)
v′(x= 0, y, z)= v̂(s) cos(βz), (5.1b)

w′(x= 0, y, z)=−ŵ(s) sin(βz), (5.1c)
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where s = (s1, s2, . . . , sN)
T is a vector of the degrees of freedom in the problem

and û, v̂ and ŵ are real functions. The kinetic energy of the disturbance at the inlet,
E0, is enforced by normalizing the disturbance kinetic energy to E0 for each guess.
Consistent with the investigation of the inflow disturbance computed in linear analysis
presented so far, the kinetic energy of the disturbance at the inflow is maintained at
E0 = 10−4. The objective functional is xsep, the spanwise-averaged separation location,
given by

xsep =min
x

(
∂um

∂y

∣∣∣∣
wall

= 0
)
, (5.2)

where um is the spanwise-averaged streamwise velocity. The dependence of xsep on s
is obtained by solving the Navier–Stokes equations and cannot be written explicitly;
thus, the optimization algorithm considered below is fully nonlinear.

In addition to xsep, we also conduct optimization of the length of the separation
bubble, defined as Lbubble= xrea− xsep, where xrea is the spanwise-averaged reattachment
location, given by

xrea =max
x

(
∂um

∂y

∣∣∣∣
wall

= 0
)
. (5.3)

We note that this optimization target inherently assumes steady flow at the reattachment
point.

An additional optimization objective is the peak wall pressure, defined as

cpmax =max
x
(cp), (5.4)

where cp is the mean pressure coefficient at the wall. A comparison of the optimal
disturbances maximizing xsep, minimizing Lbubble and maximizing cpmax is presented in
§§ 5.3 and 5.4.

The optimization is performed by means of the conjugate gradient algorithm
described schematically in figure 8. The iterative loop is initialized by a guess s(0),
used to generate the first search direction d(0), which is simply the negative value
of the gradient. The loop begins at f (s(n)) with a line search to find the maximum
of f (s) along the direction d(n), leading to the next guess s(n+1). The updated search
direction, d(n+1), is found by using the Polak–Ribière formula (Polak & Ribière 1969).
The residual at each iteration, r(n), is equal to the negative value of the gradient,
∇f (s(n)). The iterative procedure stops when the relative change in the magnitude of
the velocity components at consecutive iterations is less than 1 %. It has been verified
that the resulting change in the optimization functionals is appreciably less than 1 %
for all considered objectives.

The degrees of freedom were selected as the values of the velocity components
at several wall-normal locations. These locations were chosen as the 23 points
closest to the wall, which match every third grid point in the low-resolution case
(Ny = 128), with the outermost point located at y23 = 4.347. Convergence tests have
shown negligible changes in the optimal solutions as a result of increasing the
number of wall-normal locations and placing the outermost point farther from the
wall. A representative disturbance is plotted in figure 9 and the function values at the
23 locations are indicated by circles. Piecewise cubic spline interpolation was used
to reconstruct the function between the points and exponential decay was assumed
for y> y23. For the optimization algorithm, the no-slip and impermeability boundary
conditions were incorporated in the reconstruction procedure and ∂v′/∂y was set to
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d(0) = r(0) = -◊f(s(0))

rT
(n)r(n)

r(n+1) = -◊f(s(n+1))

Polak-Ribière method:  

Find å(n) that maximizes
f(s(n) + å(n)d(n))

ı(n+1) = max , 0 rT
(n+1)(r(n+1)-r(n))

d(n+1) = r(n+1) + ı(n+1)d(n)
s(n+1) = s(n) +å(n)d(n)PR

PR ( )
FIGURE 8. Schematic of the optimization algorithm. At the first iteration, the search
direction d(0) is the negative of the gradient ∇f (s(0)). A line search is conducted to find
the maximum of f (s) along the direction d(n), leading to the next guess s(n+1). The updated
search direction, d(n+1), is found using the Polak–Ribière formula.

0 0.2 0.4 0.6 0.8 1.0
f

y

5

4

3

2

1

FIGURE 9. Representative disturbance computed by the optimization algorithm. The
circles mark the variables chosen for the optimization. The solid line represents the
reconstructed function.

zero at the wall by mirroring the v′ values with respect to the x axis prior to the
reconstruction.

The optimization algorithm considers all three velocity components, i.e. the
total number of degrees of freedom is N = 23 × 3 = 69. For optimal disturbances
maximizing transient growth in a boundary layer, it is known that the streamwise
component is marginal at the initial position, with most of the energy concentrated
in the cross-stream components (see e.g. Hack & Zaki 2015). Therefore, initially
only v′ and w′ are considered in the optimization, reducing the number of degrees of
freedom to N = 23× 2= 46. The influence of u′ is addressed in § 5.5.
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FIGURE 10. Optimal velocity disturbance profiles. Initial guess based on transient growth
(black line marked by a plus), optimum for maximal delay of separation (blue line marked
by a cross), optimum for minimal bubble size (red line marked by a circle) and optimum
for maximal peak wall pressure (magenta line marked by a square). (a) Wall-normal
component, v̂. (b) Spanwise component, ŵ. (c) Streamwise component, û, for the case
where optimization of all three velocity components has been performed.

5.2. Optimization for maximal separation delay
In the following, we present results for the maximization of the mean separation
location. The identified optimal inflow disturbance is indicated by the blue line
marked by a cross in figure 10. The initial guess is also given for reference and
indicated by the black line marked by a plus sign. The optimal velocity perturbation
is more concentrated in the boundary layer and the most significant change is
in the maximum of the spanwise component, which changes from ŵ = 0.015 to
0.021. The effect on the mean wall shear and wall pressure coefficient is reported
in figure 11(a) and (b), respectively. The red dash-dotted line represents the base
state and the solid lines represent optimized cases. The initial guess based on linear
transient growth analysis is indicated by the black line marked by a plus sign, and
the optimum for maximal delay of separation is indicated by the blue line marked
by a cross. The moderate difference suggests that linear transient growth provides a
good approximation for the nonlinear optimal. We note that optimization for the delay
of separation leads to the highest levels of wall shear downstream of the separation
bubble, resulting in elevated friction drag relative to the other cases. A comparison
between the separation location, the size of the bubble and the peak wall pressure
coefficient is presented in table 1. The separation location shifts downstream by 1.5
boundary layer thicknesses compared to linear transient growth. The bubble size as
well as the peak wall pressure are comparable in both cases.

To understand the higher effectiveness of the nonlinear optimal disturbance at
delaying separation, it is useful to compare the spanwise distribution of the wall
shear in both cases. The wall shear at a representative streamwise location of x= 80
is shown in figure 12, where the black dashed and blue solid lines correspond to the
transient growth case and nonlinear optimal disturbance, respectively. The greatest
difference is in the low-speed streak region (zβ/π≈ 1), where the nonlinear optimal
attains smaller negative values. The reduced magnitude of the low-speed streak
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FIGURE 11. Comparison of the base state (red dashed-dotted line) and optimized cases
(solid lines). Initial guess based on transient growth (black line marked by a plus),
optimum for maximal delay of separation (blue line marked by a cross), optimum for
minimal bubble size (red line marked by a circle) and optimum for maximal peak wall
pressure (magenta line marked by a square). (a) Wall shear, ∂um/∂y. The dashed blue line
corresponds to the Blasius solution. (b) Wall pressure coefficient, cp. The dashed blue line
corresponds to the inviscid solution.

Case xsep Lbubble cpmax

Base state 63.2 61.2 0.178
Transient growth 83.9 24.7 0.217
Maximum xsep 85.4 24.9 0.211
Minimum Lbubble 84.8 24.2 0.216
Maximum cpmax 82.4 26.0 0.220

TABLE 1. Comparison of the separation location, bubble size and peak wall pressure for
the base state, initial guess based on linear transient growth theory and nonlinear optimal
cases for different objective functionals.

enables the delay of the separation point farther downstream compared to the initial
condition obtained from transient growth analysis. For reference, the base state is
given by the red dash-dotted line. Comparison with the optimized cases reveals that
the surplus of wall shear beneath high-speed streaks significantly outweighs the wall
shear deficit induced by low-speed streaks.

A three-dimensional visualization of the separation bubble is shown in figure 13.
The separation bubble is represented by a dark isosurface of u = 0, which gives a
good qualitative description of the bubble. The base state is shown for reference in
figure 13(a) and the flow obtained for the optimal disturbance at β= 1.85 is presented
in figure 13(b). Separation is suppressed significantly at the locations of the high-speed
streaks, whereas the delay in separation is negligible in the low-speed streak region.
As a consequence, the mean separation location is delayed appreciably owing to the
mean flow distortion as detailed above.
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FIGURE 12. Spanwise distribution of wall shear ∂u/∂y at x = 80. Comparison of the
inflow perturbation obtained using local linear transient growth (black dashed line) and
the nonlinearly optimal disturbance for maximal delay of separation (blue solid line). The
inflow energy is E0 = 10−4. The base state is given for reference by the red dash-dotted
line.

5.3. Optimization for minimal bubble size
We now turn the focus to optimizing the inflow perturbation field for minimal
streamwise extent of the separation bubble. The remaining parameters of the
simulation set-up as well as the optimization algorithm remain unchanged. The
resulting optimal disturbance is indicated by red lines marked by circles in figure 10.
The optimal disturbance is similar to the initial guess based on transient growth
analysis (black line marked by a plus sign), with minor differences near the maximum
of the spanwise velocity. The resulting mean wall shear and wall pressure coefficient
are indicated by red lines marked by a circle in figure 11(a) and (b), respectively.
A comparison to the reference transient growth result (black line marked by a
plus sign) again reveals only minor differences. The minimal mean bubble size is
also similar to the other optimized cases, as can be seen in table 1. Overall, the
results of the optimization for minimal mean bubble size are thus consistent with the
optimization of the mean separation location. We further note that, in practice, the
reattachment of laminar separation bubbles is often turbulent and unsteady, which
poses a challenge in the calculation of the mean bubble size. These considerations
favour an optimization of the mean separation location.

5.4. Optimization of peak wall pressure coefficient
The optimization objective is set to maximal mean peak wall pressure coefficient,
which is associated with a reduction of form drag in aeronautical applications. The
resulting optimal disturbance is indicated by magenta lines marked by a square
in figure 10. The optimal disturbance extends farther outside of the boundary layer,
with the most significant change in the peak of the spanwise component. The resulting
mean wall shear and wall pressure coefficient are indicated by magenta lines marked
by a square in figure 11(a) and (b), respectively. Only minor differences from the
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FIGURE 13. Separation bubble for β = 1.85 represented by an isosurface of u= 0 (dark
colour). Base state (a) and nonlinear optimal for maximal delay of separation (b). For the
latter, streamwise velocity streaks are shown by isosurfaces of ±0.25 streamwise velocity
fluctuations, positive (red) and negative (blue).

reference transient growth results are observed. Comparison of the separation location,
the size of the bubble and the peak wall pressure coefficient with other optimized
cases shown in table 1 reveals that the increase of the peak wall pressure coefficient
is accompanied by a slight reduction of the separation location and elongation of the
bubble. The results thus indicate that linear transient growth is a good approximation
of the optimal perturbation for maximal peak wall pressure.

5.5. Optimization of all three velocity components
So far, the optimization has been performed only on the cross-stream velocity
components v′ and w′, with the streamwise component assumed negligible. The
underlying rationale was that, in the transient amplification of boundary layer
streaks by means of lift-up, the streamwise velocity component in the optimal
inflow perturbation is effectively zero. To verify this premise, an optimization of all
three velocity components is performed. The objective is set to the maximal delay
of the mean separation location as in § 5.2. The resulting streamwise component
is shown in figure 10(c) and has a maximal magnitude of û = 13 × 10−4. The
resulting cross-stream components are practically identical to the ones obtained for
the optimization without the streamwise component (blue line indicated by a cross in
figure 10). The improvement in the mean separation location is 0.02 boundary layer
thicknesses and thus negligible. These results confirm that the streamwise component
of the inflow disturbance field is indeed ineffective at shifting the point of separation
downstream. Rather, the mean flow distortion, which increases the shear near the wall
and thus impedes separation, is most effectively caused by exploiting the gradients in
the mean flow through cross-stream disturbances.
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FIGURE 14. Optimal wall jet (spanwise-homogeneous streamwise disturbance) for
separation delay. (a) Streamwise perturbation velocity û. The inflow energy is E0 = 10−4.
(b) Wall shear ∂um/∂y; comparison between base (red dashed-dotted) and optimal (black
solid) states. The Blasius solution is given for reference by the blue dashed line.

5.6. Comparison with optimal wall jet

Wall jets, that is, the addition of streamwise momentum near the wall, have been
widely applied for separation delay (see e.g. Levinsky & Schappelle 1975). In the
following, the potential of a spanwise-homogeneous disturbance in the streamwise
velocity component to delay separation is discussed and contrasted with the optimal
disturbances presented above. The optimal streamwise velocity disturbance, for an
inlet disturbance kinetic energy held constant at E0 = 10−4, is sought. Since only the
streamwise component is optimized, the number of degrees of freedom is equivalent
to the number of wall-normal locations chosen for the optimization (N = 23). The
optimal velocity distribution is presented in figure 14(a). Most of the momentum is
concentrated around y ≈ 0.7, with a maximum velocity of 0.033. The corresponding
wall shear is shown in figure 14(b) by the black solid line, with the base state
given by the red dash-dotted line. The onset of the separation bubble is delayed by
0.8 boundary layer thicknesses. The wall shear is minimally enhanced upstream of
the separation point but the small increase has a negligible effect. The separation
streamline is indicated by the black solid line in figure 15, with the base state given
by the red dash-dotted line. The wall jet only leads to a marginal reduction of the
size of the bubble. The comparatively poor performance of the wall jet for the same
perturbation kinetic energy emphasizes the robustness of the disturbances discussed
above, which make use of the mean shear of the boundary layer.

6. Effect of spanwise wavenumber

In the previous section, the optimization has been performed only for the single
spanwise wavenumber which is known to maximize linear perturbation growth. The
effect of varying this parameter is analysed in the following. Optimization of the peak
wall pressure is considered first, contrasted with optimization for maximal delay of the
point of separation.
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FIGURE 15. Separation streamline for the base state (red dash-dotted) and the optimal
wall jet (black solid).
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FIGURE 16. Optimal peak wall pressure coefficient cpmax as a function of spanwise
wavenumber β. Nonlinear optimal (blue circles) and linear transient growth (red crosses).
The base state is indicated by the red dash-dotted line.

6.1. Optimization of peak wall pressure coefficient
The nonlinear optimization of the peak wall pressure is performed for spanwise
wavenumbers within the range 2.00 6 β 6 3.00. The resulting optimal peak wall
pressure coefficient is indicated by blue circles in figure 16. The peak wall pressure
coefficients based on maximal linear perturbation growth are indicated by red crosses.
The highest pressure coefficient, cpmax = 0.230, is attained at β = 2.45 and reaches
more than 80 % of the inviscid pressure peak, cpinv = 0.276. The results based on
linear transient growth show a similar trend. Although the optimum is reached for a
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FIGURE 17. Maximal mean flow distortion uMFDmax at x= 50 for perturbations maximizing
the peak wall pressure coefficient as a function of spanwise wavenumber β. The mean
flow distortion is calculated relative to the base state without perturbations.

lower spanwise wavenumber, the difference in cpmax is approximately 2 %. Moreover,
the overall change in cpmax is less than 3 % within the range of examined spanwise
wavenumbers, suggesting a weak sensitivity to the spanwise length scale of the
disturbances.

To examine a possible connection between the optimal peak wall pressure and mean
flow distortion, we consider the mean flow distortion, generated by the optimal inflow
perturbations, upstream of separation. The mean flow distortion is calculated relative
to the separated base state without perturbations and its maximum, defined as

uMFDmax =max
y
(uMFD), (6.1)

is presented in figure 17 at the representative location x = 50 as a function of
spanwise wavenumber. The highest magnitude of 13 % is attained for β = 2.60,
which is close to the optimal parameters for maximal peak wall pressure coefficient.
Perturbations maximizing mean flow distortion thus also approximately maximize
peak wall pressure.

The mean wall shear for several spanwise wavenumbers is presented in figure 18(a).
A similar trend is observed for all cases, with the most significant changes occurring
in the vicinity of the mean separation location. As the spanwise wavenumber is
increased, the mean separation location moves upstream, indicating that the spanwise
wavenumber associated with maximum peak wall pressure coefficient is different from
that associated with maximal separation delay. The corresponding mean wall pressure
coefficients are shown in figure 18(b). An increase of the spanwise wavenumber
from β = 2.00 to 2.50 leads to a higher adverse pressure gradient at the wall and
maximal pressure recovery. A further increase of the spanwise wavenumber beyond
2.50 causes a relaxation of the pressure gradient within the bubble (90. x. 110) and
thus a lower pressure peak at the wall. Downstream of the separation bubble, the wall
pressure coefficient is comparatively insensitive to the spanwise wavenumber, while
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FIGURE 18. Optimal mean wall shear ∂um/∂y (a) and wall pressure coefficient cp (b) for
various spanwise wavenumbers β, obtained via nonlinear optimization of the peak wall
pressure coefficient (solid lines). The wavenumbers are β = 2.00 (black), 2.50 (blue) and
3.00 (red). The arrows mark increasing β. The base state is indicated by the red dash-
dotted lines. The optimal for β = 1.85 is given by the dashed black line. The dashed blue
line corresponds to the Blasius solution in (a) and the inviscid solution in (b).

the wall shear grows with decreasing β. The increased shear past the bubble may
be attributed to the mean flow distortion introduced by the nonlinear amplification
of the disturbances. The change of the wall shear with the spanwise wavenumber is
an outcome of the varying effectiveness of the lift-up mechanism which drives the
amplification of the perturbations. The optimal wall shear and wall pressure coefficient
found in § 5 for β = 1.85 are indicated by the black dashed lines. Comparison with
the optimal distributions for β = 2.50 (blue solid lines) shows that the higher-pressure
peak at the wall for the latter is accompanied by a slight increase of the wall shear
upstream of the separation bubble, a reduction in the wall shear downstream of the
bubble and an increase in bubble size. We note that the change of the mean wall
shear and pressure coefficient with the spanwise wavenumber is in close agreement
with disturbances computed in linear analysis.

The optimal velocity perturbations for maximizing the peak wall pressure are
presented in figure 19 for several representative spanwise wavenumbers from
2.00 (black) to 3.00 (red). As the spanwise wavenumber increases, the velocity
distributions tend to concentrate inside the boundary layer. The wall-normal
component attains a larger negative peak (y≈ 0.9) whereas the spanwise component
shifts its maximum from the inner region (y≈ 0.4) to the outer region (y≈ 1.1). The
velocity perturbations, obtained via linear transient growth, are presented in figure 20.
Comparing to the nonlinearly optimal distributions in figure 19, it can be seen that
the key features and trends described above are qualitatively well predicted by the
linear analysis. Nevertheless, the perturbations obtained by linear analysis are more
concentrated within the boundary layer.

6.2. Optimization of separation location
The nonlinear optimization of the maximal mean separation location is performed
for spanwise wavenumbers within the range 0.30 6 β 6 2.00. The mean separation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.157


892 A23-22 M. Karp and M. J. P. Hack

y

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

ı

ı

√̂

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

ŵ
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FIGURE 19. Optimal perturbation velocity components obtained via nonlinear optimization
of the peak wall pressure coefficient. (a) Wall-normal v̂ and (b) spanwise ŵ components
for the spanwise wavenumbers β = 2.00 (black), 2.50 (blue) and 3.00 (red). The arrows
mark increasing β.

y

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

√̂

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

ŵ
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FIGURE 20. Optimal perturbation velocity components obtained via linear transient energy
growth. (a) Wall-normal v̂ and (b) spanwise ŵ components for the spanwise wavenumbers
β = 2.00 (black), 2.50 (blue) and 3.00 (red). The arrows mark increasing β.

location in figure 21 is presented for nonlinear optimal perturbations and linear
transient growth. In both cases, the separation onset is delayed farther downstream
as the spanwise wavenumber decreases, with maximal values attained around
β ≈ 0.40. Further decrease of the spanwise wavenumber leads to a sharp change
in the separation location, which is explained by examining the mean wall shear
for β = 0.40, indicated by the black line in figure 22(a). The wall shear is close
to zero in the region 65 . x . 100, which calls for caution when defining the
separation location. Comparison of the curves in figure 21 for nonlinear optimal
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FIGURE 21. Optimal mean separation location xsep as a function of spanwise
wavenumber β. Nonlinear optimal (blue circles) and linear transient growth (red
crosses). The base state is indicated by the red dash-dotted line.
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FIGURE 22. Optimal mean wall shear ∂um/∂y (a) and wall pressure coefficient cp (b)
for various spanwise wavenumbers β, obtained via nonlinear optimization of the mean
separation location (solid lines). The wavenumbers are β = 0.40 (black), 0.80 (blue),
1.20 (red), 1.60 (green) and 2.00 (cyan). The arrows mark increasing β. The base state is
indicated by the red dash-dotted lines. The optimal for β = 1.85 is given by the dashed
black line. The dashed blue line corresponds to the Blasius solution in (a) and the inviscid
solution in (b).

perturbations (blue circles) and linear transient growth analysis (red crosses) reveals
that, for spanwise wavenumbers larger than β = 0.40, the improvement in the optimal
separation location is bounded by three boundary layer thicknesses relative to linear
transient growth. The mean wall shear for several spanwise wavenumbers is presented
in figure 22(a), with the base state given for reference by the red dash-dotted line.
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FIGURE 23. Optimal perturbation velocity components for maximizing the mean
separation location obtained via nonlinear optimization. (a) Wall-normal, v̂ and
(b) spanwise ŵ components for the spanwise wavenumbers β = 0.40 (black), 0.80 (blue),
1.20 (red), 1.60 (green) and 2.00 (cyan). The arrows mark increasing β.

With decreasing spanwise wavenumber, the wall shear approaches the base state, with
a large region of almost vanishing wall shear. As noted in the previous section, the
spanwise wavenumber has an appreciable effect on the wall shear downstream of
the separation bubble, which is attributed to the varying effectiveness of the lift-up
mechanism. The corresponding wall pressure coefficient is shown in figure 22(b). As
the spanwise wavenumber decreases, a lower peak is attained, which locally drops
below the base state. Therefore, maximization of the delay of the separation location
may not necessarily contribute to a reduction of form drag in aeronautical settings.
The optimal wall shear and wall pressure coefficient reported in § 5 for β = 1.85
are indicated by the black dashed lines. Comparison with the optimal distributions
for β = 0.40 (black solid lines) shows that the downstream shift of the separation
location for the latter is associated with a reduction in the wall shear upstream and
downstream of the bubble and a significant reduction of the pressure peak at the wall.
As stated in the previous section, the variation of the mean wall shear and pressure
coefficient with the spanwise wavenumber is well captured by disturbances computed
in linear analysis.

The optimal velocity perturbations, obtained via nonlinear optimization, are
presented in figure 23, for several representative spanwise wavenumbers from
β = 0.40 (black) to 2.00 (cyan). The results show trends similar to the ones of the
optimal solutions for maximizing the peak wall pressure, presented in figure 19. The
optimal perturbations tend to concentrate inside the boundary layer as the spanwise
wavenumber is increased, with the wall-normal component obtaining a larger negative
peak (y ≈ 0.9) and the spanwise component shifting its maximum from the inner
region (y ≈ 0.4) to the outer region (y ≈ 1.1). These features are qualitatively well
predicted by the linear results computed in transient growth analysis (see figure 24).
Nevertheless, the nonlinear optimal perturbations are more concentrated within the
boundary layer.

The footprint of the separation bubble in the wall shear is presented in figure 25 for
several spanwise wavenumbers. The high-speed and low-speed streaks are indicated
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FIGURE 24. Optimal perturbation velocity components obtained via linear transient energy
growth. (a) Wall-normal v̂ and (b) spanwise ŵ components for the spanwise wavenumbers
β = 0.40 (black), 0.80 (blue), 1.20 (red), 1.60 (green) and 2.00 (cyan). The arrows mark
increasing β.

schematically on the left-hand side of the figure. For low spanwise wavenumbers,
the bubble consists of an upstream part, located in the low-speed streak region,
and a downstream part, with separation along the entire span. As the spanwise
wavenumber increases, the two parts merge and the separation line approximates a
cosine. The reattachment line is virtually straight for all cases. Owing to the change
in the sign of the streaks downstream of the separation bubble (see figure 7), the
maximum wall shear shifts from zβ/π ≈ {0, 2} before separation to zβ/π ≈ 1 after
reattachment.

7. Optimal unsteady separation delay
Thus far, our focus has been on suppressing flow separation by superimposing the

flow with steady perturbations which can be generated passively without the need of
an actuator or power source. Nevertheless, it is of interest to compare the outcome
with results obtained for unsteady perturbations. The mechanism of separation delay
based on unsteady disturbances relies on enhancing wall-normal momentum transfer
by triggering instabilities of the separated inflectional shear layer. The disturbances
are expected to amplify significantly in the shear layer, promoting reattachment and
altering the pressure distribution at the wall. We focus on the effect of unsteady two-
dimensional, spanwise-homogeneous, disturbances, as they are expected to undergo
the highest amplification. The optimization procedure is modified as described below,
and optimization is performed to find the maximal time-averaged peak wall pressure
coefficient.

7.1. Nonlinear optimization of unsteady disturbances
The optimization algorithm presented in § 5.1 is modified to treat unsteady two-
dimensional disturbances. The velocity field at the inlet is written as

u′(t, x= 0, y)= û(s)e−iωt
+ c.c., (7.1a)
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FIGURE 25. Wall shear ∂u/∂y for several spanwise wavenumbers β, obtained via
nonlinear optimization of the mean separation location: (a) β= 0.50; (b) β= 1.00; (c) β=
1.50; and (d) β = 2.00. Positive, negative and zero wall shear are indicated by the solid,
dashed and bold lines, respectively. The high-speed and low-speed streaks are indicated
schematically on the left-hand side of the figure.

v′(t, x= 0, y)= v̂(s)e−iωt
+ c.c., (7.1b)

where ω is the frequency, û and v̂ are complex functions and s= (s1, s2, . . . , sN)
T is a

vector of the degrees of freedom in the problem. The time-averaged kinetic energy of
the disturbance at the inflow is again chosen as E0 = 10−4. The objective functionals
are modified to their time-averaged counterparts, with the time average given by

〈 〉 =
1
Ts

∫ t0+Ts

t0

( ) dt, (7.2)

where t0 is the time when sampling begins and Ts is the averaging time. The sampling
begins at t0>0 to allow the transient responses, introduced by the change in inflow, to
convect out of the computational domain. In this study t0 is set to five flow-throughs
and Ts to 15 flow-throughs, chosen such that further increase of the values results in
marginal changes in the results. The time-averaging horizon covers approximately 19
periods of the lowest considered disturbance frequency, ω= 0.04.

Since both û and v̂ are complex, the number of degrees of freedom in the
optimization problem is 23× 4= 92. Since the temporal phase of the disturbance is
arbitrary, we set the phase of û to zero at one of the wall-normal locations, which
reduces the number of degrees of freedom to N = 23× 4− 1= 91.

The initial guess for the unsteady optimization is obtained from a local linear
stability analysis of the inflow Blasius profile. The least stable discrete Tollmien–
Schlichting mode is chosen as the initial guess.
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FIGURE 26. Optimal time-averaged peak wall pressure coefficient 〈cp〉max as a function
of frequency ω. Nonlinear optimal (blue circles) and Tollmien–Schlichting waves (red
crosses). The optimal value obtained by means of steady perturbations is given for
reference by the blue dashed line and the base state is indicated by the red dash-dotted
line.

7.2. Optimization of peak wall pressure coefficient
Nonlinear optimization of unsteady two-dimensional perturbations is conducted, with
the aim of maximizing the time-averaged peak wall pressure coefficient, 〈cp〉max. As
a step towards the optimization, the performance of the initial guesses, i.e. Tollmien–
Schlichting waves, is evaluated in the frequency range 0.046ω6 0.30. The resulting
〈cp〉max is indicated by red crosses in figure 26. An improvement is observed relative
to the base state (cpmax ≈ 0.18) for all considered frequencies, with the greatest increase
of the wall pressure attained at ω = 0.10. It is worth noting that 〈cp〉max exceeds the
inviscid peak, cpinv = 0.276, obtained assuming steady flow. We proceed by performing
nonlinear optimization for each of the frequencies. The optimal 〈cp〉max is obtained for
a range of frequencies centred around ω≈0.10, with only minimal improvements with
respect to the initial guess calculated by linear stability theory. Tollmien–Schlichting
waves can thus be seen as a good approximation of the optimal nonlinear disturbances.
The normalized optimal frequency ωL/U∞ ≈ 6 is in good agreement with the results
of Rist & Augustin (2006), who showed considerable separation delay for a frequency
of ωL/U∞=5, where L is the uncontrolled bubble length. Comparing the performance
of steady and unsteady perturbations, the maximum wall pressure coefficient increases
by more than 30 % from approximately cpmax =0.23 in the steady case, indicated by the
blue dashed line, to approximately 0.31 in the unsteady case. Note that, although the
peak wall pressure for ω= 0.30 is lower than the optimal value obtained for ω= 0.10,
the bubble has been effectively eliminated at the higher frequency, as inferred from
the wall shear and pressure coefficient, which indicate the absence of vortex shedding.

The time-averaged wall shear and wall pressure coefficient for several frequencies
are presented in figure 27(a) and (b), respectively. For the lower frequencies, the
time-averaged flow separates at x ≈ 65 and contains two regions of separated flow,
with brief reattachment in between. The time-averaged pressure in the upstream part
of the bubble flattens, followed by a sharp increase in the downstream part of the
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FIGURE 27. Optimal time-averaged wall shear ∂〈u〉/∂y (a) and wall pressure
coefficient 〈cp〉 (b) for various frequencies ω, obtained via nonlinear optimization
of the peak wall pressure coefficient (solid lines). The frequencies are ω = 0.05 (black),
0.10 (blue), 0.20 (red) and 0.30 (green). The arrows mark increasing ω. The base state
is indicated by the red dash-dotted lines. The optimal for the steady case is given by the
dashed black line. The dashed blue line corresponds to the Blasius solution in (a) and
the inviscid solution in (b).

bubble. For the higher frequency, the time-averaged separation location is delayed,
and only a single separated region is observed, with the time-averaged pressure rising
gradually in the adverse-pressure-gradient region. The optimal wall shear and wall
pressure coefficient found for steady perturbations are indicated by the black dashed
lines. Comparison with the case ω = 0.10 (blue solid lines) emphasizes the different
mechanisms leading to heightened peak wall pressure in the two cases. For the
steady disturbance (black dashed lines), the pre-eminent effect is an elevated mean
flow distortion, which leads to an increase in the wall shear upstream of the separation
bubble. For the unsteady disturbance (blue solid lines), the main mechanism is the
enhancement of the wall-normal momentum transfer in the separated shear layer,
which affects the wall shear and wall pressure coefficient in that region.

The optimal velocity distributions for ω= 0.10 are presented in figure 28, indicated
by the thick blue lines. The solid lines correspond to the real part and dashed lines
to the imaginary part. The Tollmien–Schlichting wave is given for reference by the
thin red lines. The optimal solution bears resemblance to the Tollmien–Schlichting
wave, with the main differences being a lower peak of the streamwise component and
a higher magnitude of the wall-normal component. The time-averaged wall shear and
wall pressure coefficient for the Tollmien–Schlichting wave are in close agreement
with those obtained for the optimal solution. The time-averaged streamlines of the
flow are shown in figure 29. Two recirculation centres are observed and the height of
the bubble is approximately h= 1.5. Comparing to the base state shown in figure 2,
the most significant change is the rapid reattachment on the downstream side of
the bubble. The temporal root mean square (r.m.s.) of the velocity components is
presented in figure 30. The maximum value of the streamwise (blue solid line) and
wall-normal (red dashed line) velocity components, defined as

(u, v)rmsmax =max
y
((u, v)rms), (7.3)
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FIGURE 28. Optimal perturbation velocity components for maximizing the time-averaged
peak wall pressure coefficient obtained via nonlinear optimization. (a) Streamwise û and
(b) wall-normal v̂ components for the frequency ω = 0.10. Thick blue lines indicate the
nonlinear optimal and thin red lines the Tollmien–Schlichting wave. Solid and dashed lines
correspond to real and imaginary parts, respectively.
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FIGURE 29. Streamlines of the time-averaged flow for the nonlinearly optimal case ω=
0.10. Only the part close to the wall is shown. The Blasius boundary layer thickness is
given by the thick solid line.

is shown along the streamwise coordinate. It can be seen that initially both velocity
components decay (06 x6 25), suggesting that transient amplification, for instance by
the Orr mechanism, may not play an important role in the optimal unsteady solution.
Closer to the separation bubble, both velocity components grow rapidly and attain a
maximum near the reattachment region (x≈ 100). Downstream of reattachment, where
vortex shedding occurs, there are no significant changes in the maximal r.m.s. values.
We note that the performance of unsteady disturbances can be improved by shifting
the location of their introduction into the flow field closer to the separation location.
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FIGURE 30. Nonlinearly optimal case ω= 0.10. Maximal r.m.s. of the streamwise velocity
component, urmsmax , (blue solid line) and wall-normal velocity component, vrmsmax , (red
dashed line).
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FIGURE 31. Instantaneous streamwise velocity component, u=−0.50 (dark) to u= 1.25
(light), for the nonlinearly optimal case ω= 0.10 at four equidistant phases of the period:
(a) t/T = 0; (b) t/T = 1/4; (c) t/T = 1/2; and (d) t/T = 3/4. Only the part close to the
wall is shown. An animation is available as part of the supplementary material.
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The results presented in figure 30 suggest that the application of unsteady forcing
at x ≈ 50 allows a reduction of the amplitude of the perturbations by an order of
magnitude. Insight into the temporal evolution of the flow is gained by examining the
instantaneous streamwise velocity component for the representative frequency ω=0.10
at four equidistant phases of the period (1t= 2π/4ω), presented in figure 31. Vortices
are shed from the separated shear layer (x≈ 90) and convect downstream with almost
uniform velocity. The distance between two consecutive vortices, 1x≈36, can be used
to estimate the convection velocity uc = 1x/(2π/ω) ≈ 0.57. An animation spanning
one period of the inflow disturbance is available as part of the supplementary material
available at https://doi.org/10.1017/jfm.2020.157.

8. Conclusions

The potential of steady and unsteady perturbations to suppress laminar flow
separation was examined by means of nonlinear optimization. The base state is
a two-dimensional steady boundary layer with a closed laminar separation bubble,
imposed by a suction–injection profile along the top boundary of the computational
domain.

For steady perturbations, the potential of steady streaks, generated by transient
growth, to suppress separation was explored. Perturbations obtained by linear transient
growth analysis cause significant delay of separation due to the generation of a mean
flow distortion by nonlinear interactions during the amplification of the disturbances.
The mean flow distortion augments the streamwise momentum close to the wall and
counteracts the deceleration of the flow in that region. The perturbation from linear
transient growth analysis was applied as a starting point for a nonlinear optimization
algorithm, aimed at delaying separation as far downstream as possible. For the
spanwise wavenumber maximizing linear transient energy growth, similar results
were obtained for optimizing the mean separation location, the mean bubble length
and the peak wall pressure coefficient. In contrast, optimization of a wall jet, i.e. a
spanwise-homogeneous streamwise disturbance, only leads to a marginal shift in the
separation location compared to the base state, emphasizing the robustness of the
disturbances based on the linear transient growth analysis.

The effect of the spanwise wavenumber on the steady optimal solutions was
explored for maximizing the peak wall pressure coefficient as well as maximizing the
mean separation location. It was found that the initial conditions from linear transient
growth and nonlinear optimization consistently maximize the peak wall pressure
coefficient for a spanwise wavenumber of β ≈ 2.5. The initial guess based on linear
transient growth analysis attains virtually the same peak wall pressure coefficient
as the nonlinearly optimal perturbations. The local linear analysis performed at
the inflow location therefore serves as a good approximation of the nonlinearly
optimal perturbations, even though it is unaware of the separation downstream.
Nevertheless, the linear analysis is unable to predict the optimal spanwise wavenumber,
which within a good approximation corresponds to perturbations that maximize the
mean flow distortion. Thus, perturbations maximizing the mean flow distortion
can be beneficial for lowering form drag in aeronautical applications. Optimization
of the mean separation location revealed that the optimal spanwise wavenumber
corresponding to maximal separation delay is significantly lower than that maximizing
the peak wall pressure coefficient. The delay of separation to the greatest possible
downstream position thus causes an increase of form drag. The initial guess based
on linear transient growth was found to give a good estimate of the nonlinear
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optimal perturbations for maximal separation delay, with differences of less than three
boundary layer thicknesses for a range of spanwise wavenumbers. The optimal steady
disturbances, associated with transient growth, are unlikely to change significantly
due to moderate variations in the inflow location, since the streamwise scale of the
transient amplification of disturbances is proportional to the Reynolds number.

The optimization of unsteady perturbations generally leads to a more effective
delay of separation than steady perturbations. A potentially critical limitation is,
however, the requirement of an actuator. It was found that the optimal frequency,
scaled by the uncontrolled bubble size, is fL/U∞ ≈ 1. Tollmien–Schlichting waves,
obtained by performing a local stability analysis of the inflow Blasius profile, serve
as good estimates of the nonlinearly optimal disturbances. Juxtaposing the optimal
disturbances to the Tollmien–Schlichting waves, the increase in the time-averaged
peak wall pressure is marginal. Comparison between the optimal steady and unsteady
disturbances revealed that the latter attain a 30 % higher peak pressure coefficient.

The close estimates of the nonlinearly optimal disturbances provided by linear
theory suggest the use of linear analysis as a starting point for impeding separation
in other configurations. Linear analysis is, however, unable to provide the spanwise
wavenumber or the frequency associated with optimal separation delay. An approach
relying exclusively on linear theory is thus unlikely to identify the parameters for
optimal suppression of separation. A possible solution would be a combination
with nonlinear simulations to find the specific conditions that optimally counteract
separation.

Our study contributes to the physical understanding of delaying flow separation.
The optimal perturbations upstream of the point of separation offer guidelines for
the design of devices for impeding separation and thus mark a first step towards
possible improvements in vehicle performance. The actual design of vortex generators
that implement these perturbations as effectively as possible is a subject of future
research.
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Appendix A. Inviscid solution for a two-dimensional flow with suction–injection
In the following, we describe the inviscid solution of a uniform flow, subjected to

suction–injection along y= Ly, with no penetration along the wall at y= 0. Assuming
irrotational flow, it is useful to define the flow potential φ such that u= ∂φ/∂x and
v = ∂φ/∂y. The resulting governing equation is

∇
2φ = 0, (A 1)
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with the boundary conditions

φ(±∞, y)= x,
∂φ

∂y
(x, 0)= 0,

∂φ

∂y
(x, Ly)= VS(x), (A 2a−c)

where VS is given in (2.1). The solution is readily obtained by performing a Fourier
transform along the streamwise coordinate, leading to the following expression for the
potential:

φ = x−
i
√

2π
v01x2

s e−1/2
∫
∞

−∞

e−(1/2)(α1xse−1/2)2−iα(x−xs)
cosh(αy)
sinh(αLy)

dα, (A 3)

with the corresponding velocity components given by

u= 1−
1
√

2π
v01x2

s e−1/2
∫
∞

−∞

αe−(1/2)(α1xse−1/2)2−iα(x−xs)
cosh(αy)
sinh(αLy)

dα, (A 4)

v =−
i
√

2π
v01x2

s e−1/2
∫
∞

−∞

αe−(1/2)(α1xse−1/2)2−iα(x−xs)
sinh(αy)
sinh(αLy)

dα. (A 5)
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