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We study the pattern formation of a thin film flowing under an inclined planar
substrate. The phenomenon is studied in the context of the Rayleigh–Taylor instability
using the lubrication equation. Inspired by experimental observations, we numerically
study the thin film response to a streamwise-invariant sinusoidal initial condition. The
numerical response shows the emergence of predominant streamwise-aligned structures,
modulated along the direction perpendicular to the flow, called rivulets. Oscillations
of the thickness profile along the streamwise direction do not grow significantly
when the inclination is very large or the liquid layer very thin. However, for small
inclinations or thick films, streamwise perturbations grow on rivulets. A secondary
stability analysis of one-dimensional and steady rivulets reveals a strong stabilization
mechanism for large inclinations or very thin films. The theoretical results are compared
with experimental measurements of the streamwise oscillations of the rivulet profile,
showing a good agreement. The emergence of rivulets is investigated by studying the
impulse response. Both the experimental observation and the numerical simulation show
a marked anisotropy favouring streamwise-aligned structures. A weakly nonlinear model
is proposed to rationalize the levelling of all but streamwise-aligned structures.

Key words: absolute/convective instability, nonlinear instability, thin films

1. Introduction

Coating flows are ubiquitous in nature and industrial applications. Nature provides
astonishing examples of the capability of coating flows to modify the topography of the
substrate via chemical and thermodynamic reactions. The structures that can be observed
in limestone caves, known as speleothems, are characterized by a morphogenesis that
is related to the hydrodynamic instability of a coating flow (Short et al. 2005; Meakin
& Jamtveit 2010; Camporeale 2015; Bertagni & Camporeale 2017). These fascinating
structures originate from the interaction between hydrodynamics and chemistry.
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The control of the instability related to coating processes is an important task in industrial
applications as many fabrication processes involve the presence of a thin film flowing on
a substrate (Weinstein & Ruschak 2004). Thin elastic shells of constant thickness can be
fabricated by polymerization of the film, as performed in Lee et al. (2016). Marthelot et al.
(2018b) showed a remarkable example of control of the flow instability to produce textured
surfaces, by rotation of a cylindrical substrate.

The Rayleigh–Taylor instability is a phenomenon that occurs when a heavier fluid is
placed above a lighter one. When a horizontal flat interface is considered, under the
only effect of gravity, all wavelengths are unstable (Rayleigh 1882; Taylor 1950). The
introduction of capillary effects bounds the range of unstable wavelengths (Chandrasekhar
2013). When an upper wall confines the overhanging fluid, the resulting pattern is
characterized by lenses arranged in hexagonal or square arrays (Fermigier et al. 1992).
The lenses may saturate for small enough initial thickness (Marthelot et al. 2018a), or
algebraically grow (Yiantsios & Higgins 1989; Lister, Rallison & Rees 2010), eventually
resulting in dripping droplets.

The problem of the dynamics of a thin film is usually studied within the context of
the lubrication approximation. The model assumes much larger characteristic lengths in
the directions which lay along the substrate than in the normal-to-the-substrate direction
(Ruschak 1978; Wilson 1982; Babchin et al. 1983; Weinstein & Ruschak 2004).

In the case of an inclined substrate, the route from a flat film towards dripping drops
still needs to be analysed. When the substrate is tilted with respect to the horizontal
direction, the gravity component parallel to the substrate creates a flow. In this work, we
consider a configuration with a permanent influx, in opposition to the case of cylindrical
and spherical substrates in which a transient release of fluid is studied (Balestra et al.
2018a; Balestra, Nguyen & Gallaire 2018b). A strong modulation of the thickness along the
direction perpendicular to the flow (spanwise direction) is identified as rivulet formation
(Charogiannis et al. 2018). The presence of a predominant rivulet pattern when the inertia
of the fluid is negligible was experimentally observed by Charogiannis et al. (2018).
Similar rivulet patterns were observed by Rietz et al. (2017), in an experimental set-up
where gravity was replaced by centrifugal acceleration. Lerisson et al. (2019) showed that
a state characterized by lenses travelling on the rivulets may emerge, depending on the
inclination angle and flow rate.

The stability analysis was performed by linearizing the flow equations around a constant
thickness, revealing that the flat film solution is always unstable to perturbations (Brun
et al. 2015). These authors found experimentally a link between dripping and the absolute
instability of the flow, modelled with the one-dimensional lubrication equation. The
model was refined introducing inertial and viscous extensional stresses (Scheid, Kofman
& Rohlfs 2016; Kofman et al. 2018). These authors showed that the occurrence of the
absolute instability does not predict the dripping satisfactorily.

In Lerisson et al. (2020) an experimental set-up able to continuously feed an inclined
planar substrate with fluid was presented. Using a very viscous fluid such that inertial
effects are negligible, the natural emergence of elongated, streamwise-oriented, steady
patterns was observed. A detailed analysis of the appearance of these so-called rivulets
was then performed, both when a spanwise-periodic forcing is imposed at the inlet
and when the rivulets emerge naturally from the lateral boundaries of the experiment.
The forced dynamics revealed that there is a narrow range of attainable spacings of
rivulets. The nonlinear simulations agreed with the thickness measured in experiments,
observing steady and streamwise-invariant rivulet states, periodic along the spanwise
direction. The one-dimensional and saturated rivulet profile was recovered by simple static
arguments, i.e. the equilibrium between capillary effects and hydrostatic pressure gradient
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Thin viscous film flowing under an inclined planar substrate 904 A23-3

(Roman, Gay & Clanet 2020; Zaccaria et al. 2011; Duprat & Stone 2015). The correct
shape was obtained imposing the local flow rate along the direction transverse to the rivulet
profile.

In this work, we aim at rationalizing the observations of steady rivulet patterns by
investigating the intrinsic rivulets selection and their stability.

The paper is organized as follows. We first introduce an experimental visualization for
the evolution of the film when the inlet is steadily forced along the spanwise direction. A
numerical study for an initial condition that mimics these experimental conditions, namely
a regular pattern of sinusoidal perturbations in the spanwise direction, is performed.
Periodic boundary conditions in all in-plane directions are imposed. The experimental
and numerical results are then rationalized by a secondary stability analysis. We perturb
the one-dimensional rivulet profile along the streamwise direction with a normal mode
expansion and obtain a dispersion relation characterizing the secondary growth of
lenses. We thus present a comparison of the secondary stability study with experimental
measurements of the spatial amplification of disturbances over steady rivulets. The last
section is devoted to the study of the emergence of rivulets from a flat film when the
film is impulsively perturbed. We introduce a qualitative experimental visualization when
the film is excited by a localized perturbation in the thickness, the results of which are
numerically reproduced. A weakly nonlinear model is eventually proposed to rationalize
these observations.

2. Experimental apparatus

The experimental apparatus is the same as that described in Lerisson et al. (2020) (see
figure 1). The substrate is an orientable glass plate of length L̂x = 600 mm and width Ŵi =
300 mm, whose angle with respect to the vertical is varied from θ = 20◦ to θ = 80◦. The
fluid is silicon oil (Bluestar Silicons 47V1000) of density ρ = 974 kg m−3, viscosity μ =
1089 mPa s and surface tension coefficient γ = 21 mN m−1. The oil is injected through
a horizontal rectangular opening of a reservoir and flows beneath the substrate. The flow
rate is driven by the height difference with another reservoir that creates a hydrostatic
pressure gradient. The flow rate can be varied by changing the height difference of the
two reservoirs. The system is designed in such a way that it is possible to steadily modify
the inlet condition in the spanwise direction by adding a sinusoidal or a comb-like blades
(see sketches in figure 1a). The sinusoidal blade is placed below the inlet with an angle
of 30◦ with respect to the substrate, and the fluid fills the gap between the glass and the
blade. Systematic measurements of the thickness give a thickness perturbation amplitude
of � 250 μm. The comb-like blade presents teeth of thickness t̂t = 1 mm, streamwise size
of l̂dt = 5 mm and spanwise size of 2 mm. The teeth occlude the inlet and the fluid covers
them by capillarity.

The volumic flow rate q is measured by weighing the oil leaving the substrate for 180 s.
We define the equivalent Nusselt thickness hN as well as the reduced capillary length l∗c :

hN =
(

3νq

Ŵig cos(θ)

)1/3

, l∗c = lc√
sin(θ)

, (2.1a,b)

where lc = √
γ /(ρg) is the capillary length, g the gravity acceleration and ν = μ/ρ

the kinematic viscosity. We define a coordinate system (x̂, ŷ, ẑ), where x̂ , ŷ and ẑ are
respectively the streamwise, spanwise and normal-to-the-substrate directions.

We employ a qualitative visualization technique based on shadowgraphs that are
constructed looking at the distortion of the rays coming from a point light source
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FIGURE 1. (a) Sketch of the experimental apparatus with the detail of the sinusoidal and
comb-like blades for the steady forcing at the inlet along the spanwise direction. (b) Photo of
the experimental apparatus.

through the liquid film. The surface deformation will focus or defocus the initially
homogenous light and forms patterns that are highly sensitive to slight deformations. The
combination of small and large deformations (Settles 2001; Moisy, Rabaud & Salsac 2009)
within the same experiment makes the visualization impossible to relate to quantitative
measurements of the thickness amplitude. However, the experiment gives access to the
phases of perturbations, and thus to qualitative observations of the emerging pattern.

We measure the film thickness using the confocal chromatic sensor STIL-CCS located
on the upper part of the glass plate. We choose an acquisition rate of 100 Hz. The position
of the sensor can be adjusted in the normal-to-the-substrate and spanwise directions once
the streamwise location is selected.

3. Observations of the secondary stability and instability of rivulets

3.1. Experimental observations
In this section, we briefly present selected results from the study of Lerisson et al.
(2020) in the presence and absence of the spanwise inlet forcing devices shown in
figure 1(a). Figure 2(a) shows a film thickness distribution obtained using an absorption
technique (reproduced from Lerisson et al. 2020). The inlet spanwise thickness profile
is amplified, and streamwise-saturated and steady rivulets are observed downstream. The
saturated rivulets are periodic along the spanwise direction. There is a narrow range of
attainable spacings, when the inlet is forced, around the value L̂r = 2π

√
2l∗c (value shown
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FIGURE 2. (a) Film thickness for θ = 39◦ and hN = 1515 μm (u = 1.5), steady inlet forcing
with the sinusoidal blade at the wavelength L̂f = 2π

√
2lc/

√
sin θ , extracted from Lerisson et al.

(2020). The thickness is measured with the absorption method and normalized by the flat film
thickness hN . The in-plane distances are normalized by the reduced capillary length lc/

√
sin θ .

(b) Typical rivulet pattern in the absence of the inlet forcing devices (figure 1a), θ = 20◦.

in figure 2a), i.e. the most amplified wavelength in the dispersion relation of the flat film.
Interestingly, even in the absence of the spanwise inlet forcing devices, the predominant
spacing of the emerging rivulet structures is L̂r (see figure 2b).

However, far downstream in figure 2(a), oscillations appear on the rivulet profiles. These
oscillations are amplified and rivulets carrying travelling lenses are observed, for these
values of angle and flow rate.

3.2. Numerical observations
The aim of this section is to numerically study the emerging patterns for an initial
condition that mimics the experimental conditions described in the previous section.

We consider a gravity-driven thin film of viscous Newtonian fluid flowing under a planar
substrate inclined with respect to the vertical with an angle θ . We introduce the following
non-dimensionalization:

x = x̂/l∗c; y = ŷ/l∗c; z = ẑ/hN; t = t̂/τ ∗, (3.1a–d)

where τ ∗ = νl2
c/h3

N sin2(θ)g is the characteristic time scale of the Rayleigh–Taylor
instability. The numerical model for the evolution of the film thickness h is the lubrication
equation in which the complete expression of the curvature is retained (Ruschak 1978;
Wilson 1982; Weinstein & Ruschak 2004):

∂th + uh2∂x h + 1
3∇ · [h3∇h + h3∇κ] = 0, (3.2)

where ∇ operates in the (x, y) directions, u = cot (θ)l̃∗c and l̃∗c = l∗c/hN . The linear
advection velocity u corresponds to the surface film velocity at which linear interface
thickness perturbations with respect to a flat condition are advected downstream (Brun
et al. 2015). In physical quantities, an increase of the parameter u implies a decrease of the
flow rate (since u is inversely proportional to hN) or θ . The curvature κ reads

κ = ∂xx h(1 + (∂yh)2) + ∂yyh(1 + (∂x h)2) − 2∂xyh∂x h∂yh
(1 + (∂x h)2 + (∂yh)2)3/2

. (3.3)

The two-dimensional equation is implemented in COMSOL Multiphysics. We use
the built-in finite elements method solver, exploiting cubic elements with Lagrangian
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FIGURE 3. Nonlinear response in the case of a streamwise-invariant sinusoidal initial condition,
for (a) u = 5.45 and (b) u = 1.5. From left to right: t = 1000, t = 1200. Results are reported in
the moving reference frame at the linear advection velocity (ξ = x − ut, y).

shape functions and a fully implicit time solver. The largest mesh element size is
half of the reduced capillary length l̃∗c . The domain size is Lx × Ly , where Lx = 231
and Ly = 106, leading to approximately 50 000 elements. A convergence analysis was
performed, showing that convergence is achieved for this characteristic size of the
elements. This characteristic element size was also validated by the experimental and
numerical comparisons in Lerisson et al. (2020). The equations are solved for the variables
(h, κ). For all the considered cases, periodic boundary conditions are used.

Experimentally, in the absence of the spanwise inlet perturbation device described in
figure 1(a), the rivulet spacing is the one dictated by the most amplified mode in the
flat film dispersion relation, i.e. Lr = 2π

√
2 (Lerisson et al. 2020). We numerically study

the nonlinear time evolution when a streamwise-invariant sinusoidal initial condition is
considered. We choose as initial condition a sinus of wavelength Lr = 2π

√
2:

h(x, y, t = 0) = h̄N

(
1 + A cos

(
2πy

Lr

))
, (3.4)

where A = 10−2, and h̄N = 0.54 is the initial value of the thickness that gives, for a pure
streamwise saturated structure, the same local flow rate in the streamwise direction as a
flat film of thickness h = 1 (§ 5.3 in Lerisson et al. 2020).

We introduce the moving reference frame at the linear advection velocity u (ξ =
x − ut, y). Figure 3 shows the evolution of the thickness with time for (a) u = 5.45 and
(b) u = 1.5. For visualization purposes, we focus in the region ξ ∈ [−8π

√
2, 8π

√
2] and

y ∈ [−6π
√

2, 6π
√

2]. In both cases, the streamwise invariant initial condition is amplified
and reaches, at t = 800, a saturated state in the streamwise direction. For (a) u = 5.45, we
do not observe any further evolution of the pattern for t > 800. For (b) u = 1.5, at t = 800
the rivulet profiles saturate. For t > 800, however, streamwise thickness perturbations
grow, and at t = 1200 the flow is characterized by lenses travelling on the rivulets.

The streamwise-invariant sinusoidal initial condition is amplified leading to a rivulet
pattern saturated in space and time, periodic along the spanwise direction. The absence
(respectively presence) of observable streamwise perturbations on the rivulet profiles at
high (respectively low) values of u suggests that the stability of the rivulet profile to
streamwise perturbations may be directly related to the linear advection velocity.
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Thin viscous film flowing under an inclined planar substrate 904 A23-7

The experimental observations of predominant spanwise-periodic rivulet patterns and
the occurrence of lenses on the rivulets are confirmed by the nonlinear simulations with
periodic boundary conditions. In the following, we aim at rationalizing the emergence of
predominant rivulet structures and their destabilization.

4. Secondary stability analysis of rivulets

In § 3.1 it was experimentally shown that rivulet structures grow in the domain and
saturate to a steady and spanwise-periodic state, invariant along the streamwise direction.
However, for low values of u and at large distances from the inlet, the rivulet profile
undergoes an instability and travelling lenses emerge on the rivulet structures, as shown
in figure 2(a). The saturation of the rivulet structures and the occurrence of lenses was
also observed in the nonlinear numerical simulation of figure 3. No lateral interactions
between rivulets are observed as the lenses grow. Here, we study the robustness of the
saturated rivulet pattern via a secondary stability analysis. We first introduce the steady,
streamwise-invariant and spanwise-periodic rivulet profile Hr( y), and then we focus on its
local stability properties when perturbed along the streamwise direction, x . The validity
of the local stability analysis is limited to the regions where steady and one-dimensional
rivulets are observed.

4.1. Base flow
In this section, we define the saturated rivulet profile Hr( y), serving as base flow for the
local stability analysis. The numerical base flow is the large-time solution (t = 10 000)
of the one-dimensional model presented in § 5 of Lerisson et al. (2020). The profile, of
periodic wavelength Lr, is given by a one-dimensional model in which the flow rate in the
streamwise direction coincides with the one of a flat film of thickness h = 1, leading to a
mean value h̄N = 0.54 of the thickness of the rivulet. The numerical procedure revealed
that the rivulet profile is slowly saturating to a steady state Hr( y). In figure 4, we report
the numerical periodic profile at t = 10 000 (solid line) used for the stability analysis.
The rivulet is characterized by a central lobe of large thickness that saturates to a steady
profile described by the pendulum equation (red circles in figure 4), while the side lobes
(of very low thickness) are slowly draining with a power law t−1/2 (Lister et al. 2010). It is
remarkable that, with the considered non-dimensionalization, the profiles are independent
of u, i.e. there is a unique rivulet shape (Lerisson et al. 2020). The numerical profile agrees
well with the experimental results (dots in figure 4) and can therefore be safely used as base
flow Hr( y) for the stability analysis.

4.2. Dispersion relation
Following the classical approach of the local stability analysis, we consider as a base
state the single, spanwise-periodic and steady rivulet Hr( y) described in § 4.1. The
quasi-steadiness of the rivulet profile allows us to neglect the slow evolution of the side
lobes at long times and thus to consider a normal mode expansion in time and along the
direction in which the base state is invariant, i.e. the streamwise direction x (Schmid,
Henningson & Jankowski 2002). The spanwise periodicity governing the base state
Hr( y) is also enforced on the perturbation. The following normal mode decomposition
is therefore used:

h(x, y, t) = Hr( y) + εη̃(x, y, t) = Hr( y) + εη( y) ei(kx x−ωt), ε � 1, (4.1)
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FIGURE 4. Periodic rivulet profile (black line) used for the stability analysis, compared with
the results of the pendulum equation of § 5.4 of Lerisson et al. (2020) (red circles), and with
the experimental results for three central rivulets (grey dots), from Lerisson et al. (2020), for 10
transverse measurements at two different streamwise locations, at θ = 39◦ and different hN . The
red dashed line denotes the mean thickness h̄N of the rivulet.

where η̃ is the thickness perturbation with respect to the base flow profile Hr( y). By
considering the two-dimensional nonlinear equation (3.2) and introducing the normal
mode decomposition (4.1), one obtains, up to O(ε)

ε∂tη̃ + εuH2
r ∂x η̃ + 1

3
∂y

[
H3

r

(
dHr

dy
+ dκ(0)

dy

)
+ εH3

r ∂y η̃

+ εH3
r ∂y κ̃(1) + 3εH2

r

(
dκ(0)

dy
+ dHr

dy

)
η̃

]
+ ε

3
∂x

[
H3

r (∂x κ̃(1) + ∂x η̃)
] = 0, (4.2)

where κ(0) is the base flow curvature, i.e. (3.3) evaluated for the base flow Hr( y),
κ(0) = (d2Hr/dy2)/(1 + (dHr/dy)2)3/2. Furthermore, κ̃(1) is the first-order term of the
curvature, i.e. the Jacobian of the curvature evaluated in the base flow and applied
to η̃ (κ̃(1) = [∂η̃κ(Hr)]η̃). The full expression of the operator ∂η̃κ(Hr) is reported in
appendix A. Deriving this expression with respect to x and y, we obtain ∂x κ̃(1) =
ikxκ(1)( y) exp(i(kx x − ωt)) and ∂y κ̃(1) = (dκ(1)/dy)( y) exp(i(kx x − ωt)).

At O(1) the base flow equation is recovered, while at O(ε) one obtains the following
evolution equation for the perturbation:

− iωη + ikx uH2
r η + 1

3
d

dy

[
3H2

r

(
dHr

dy
+ dκ(0)

dy

)
η

+ H3
r

(
dκ(1)

dy
+ dη

dy

)]
− 1

3
k2

x

[
H3

r

(
κ(1) + η

)] = 0, (4.3)

which is the dispersion relation Dr(ω, kx) = 0. The base flow Hr( y) can be perturbed by
(i) imposing the streamwise wavenumber kx ∈ R and looking at the temporal evolution
through the complex frequency ω ∈ C (temporal stability analysis) or (ii) imposing a
temporal forcing of real frequency ω and looking at the spatial amplification of the
perturbation, embodied by the complex spatial wavenumber kx ∈ C (spatial stability
analysis).

The numerical implementation of (4.3) is performed in MATLAB by a spectral
collocation Fourier method. Once discretized, the eigenfunction problem (4.3) becomes
an eigenvalue problem. The temporal and spatial stability analyses are respectively solved
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FIGURE 5. (a) Temporal growth rate ωi and (b) real frequency ωr as functions of the streamwise
wavenumber kx , from the temporal stability analysis, for u = 1 (blue line), u = 1.5 (red line),
u = 2 (yellow line), u = 2.5 (purple line), u = 3 (green line), u = 5 (light blue line).

using the built-in MATLAB functions eig and polyeig. Numerical convergence is achieved
for 100 collocations points. A preparatory analysis on the numerical rivulet profile Hr( y)
used as base flow for the stability analysis revealed a variation of the eigenvalues of the
order of the numerical discretization, as long as t > 5000.

4.3. Temporal stability analysis
In this section, we report the results for the temporal stability analysis. Positive
(respectively negatives) values of the temporal growth rate Im(ω) = ωi denote unstable
(respectively stable) wavenumbers. A preliminary analysis on the spectrum revealed that
all the eigenvalues have negative ωi for all kx , except one that is analysed in the following.

In figure 5(a) we report the variation of ωi with kx , for different values of u. The
dispersion relations are characterized by a local maximum associated with the dominant
wavenumber, and by a value of the wavenumber beyond which the temporal growth rate
is negative (the cutoff wavenumber), i.e. perturbations with wavenumber larger than the
cutoff are damped. Rivulets are strongly stabilized as the value of u increases. For u = 1
the growth rate ωi presents its maximum value at a dominant wavenumber close to kx =
0.56, while the cutoff wavenumber kcut

x = 0.8. An increase of u quickly quenches large
wavenumbers. Both the dominant growth rate and the cutoff wavenumber decrease. At
u = 5, kcut

x ∼ 10−2, with max(ωi) ∼ 10−3. For these values of u, the unstable wavelengths
are of the order of one hundred reduced capillary lengths. The real frequency Re(ω) = ωr
increases slightly less than linearly with kx (figure 5b). The resulting phase velocities ωr/kx

increase as u increases.
In figure 6(a) we show the real (dashed-dotted line) and imaginary (dashed line)

parts of the mode η( y) for the dominant wavenumber kx = 0.5, normalized by the
maximum modulus max(|η|), for u = 1.5. The mode is non-zero only in the steady
central lobe region. For the same value of u, in figure 6(b) we report a three-dimensional
plot of the linear combination of the base flow Hr( y) (extended in the x direction
along which it is invariant) with the mode at the dominant wavenumber (normalized by
the maximum modulus), i.e. h(x, y) = Hr( y) + A Re(η( y) exp(ikx x)), with A = 0.25 an
arbitrary amplitude for visualization purposes. The resulting pattern is characterized by
rivulets that carry lenses. The temporal dependence of the mode, which is not represented
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FIGURE 6. Temporal stability analysis, u = 1.5. (a) Real (solid line) and imaginary (dashed
line) parts of the eigenvector η( y), for the dominant wavenumber kx = 0.5, normalized by the
maximum modulus. (b) Linear combination of the base flow Hr( y) (extended in the x direction
along which it is invariant) with the mode at the dominant wavenumber (normalized with
the maximum modulus), i.e. h(x, y) = Hr( y) + A Re(η( y) exp(ikx x)). A = 0.25 is an arbitrary
amplitude for visualization purposes.

in figure 6(b), is characterized by a growing amplitude exp(ωit) and by an oscillating
behaviour exp(iωrt). The presence of a non-zero real part of ω (figure 5b) implies that
the perturbations are oscillating in time at fixed locations. This effect is related to the
advection as lenses are travelling along the streamwise direction.

The stability analysis reveals the occurrence of a secondary instability of the saturated
and one-dimensional rivulets, which is located in the steady central lobe and leads to
a pattern characterized by lenses that travel on the rivulets. Nevertheless, an increase
in the advection u induces a very strong stabilization and only very large wavelengths
remain slightly unstable. The stabilization is related to the advection term. In particular,
perturbations in regions of different thickness experience different advection velocities,
proportional to uH2

r (Kalliadasis et al. 2012). Regions of higher thickness travel faster
than regions of lower thickness, leading to a steepening of the interface profile and
eventually to a capillary levelling of perturbations. This steepening–levelling mechanism
is all the more pronounced as u is large. Small wavelengths, which present high interface
gradients, are progressively stabilized with u, leading to a cutoff wavelength of the
order of 102l∗c at u = 5. In the numerical simulation of figure 3(a) the resulting pattern
does not show any appreciable streamwise perturbations since the cutoff wavelength
(Lc = 2π/kcut

x ≈ 2 × 102) is of the order of the maximum acceptable wavelength fitting
in the domain. These results are consistent with the experimental observations of Lerisson
et al. (2020) when large values of u are considered. For u > 3, only very large wavelengths
are unstable and they are eventually suppressed because of the size of the experiment
(2 × 102l∗c < Lx < 3 × 102l∗c).

4.4. Spatial stability analysis
In this section, we study the spatial stability properties of the rivulet base flow Hr( y)

introduced in § 4.1. The saturated rivulet profile is perturbed with a temporal harmonic
perturbation of real frequency ω = ωr and we look for the spatial evolution of the
perturbation, in terms of spatial growth rate −Im(kx) and streamwise wavenumber Re(kx)

through the dispersion relation Dr(kx , ω) ((4.3)). Positive values of the spatial growth rate
denote unstable configurations associated with downstream propagating waves (Huerre &
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FIGURE 7. (a) Spatial growth rate and (b) streamwise wavenumber as functions of ω, from
the spatial stability analysis, for u = 1 (blue line), u = 1.5 (orange line), u = 2 (yellow line),
u = 2.5 (purple line), u = 3 (green line). The circles identify the values of the spatial growth
rate obtained by the Gaster transformation.

Rossi 1998; Schmid et al. 2002; Gallaire & Brun 2017). The spectrum is characterized
by only one unstable mode associated with downstream propagating waves, which is
described in the following.

In figure 7(a) we report the spatial growth rate −Im(kx) as a function of ω. The
spatial growth rate presents a behaviour similar to the temporal growth rate of § 4.3,
i.e. characterized by a maximum (dominant) value and a cutoff frequency beyond which
perturbations are damped. The dominant value of −Im(kx) strongly decreases with
u, while its associated dominant frequency presents a non-monotonic behaviour. The
same non-monotonic behaviour is observed in the cutoff frequency. The streamwise
wavenumber Re(kx) (figure 7b) shows, to a good approximation, a linear dependence with
ω. For fixed ω, the value of Re(kx) decreases with u.

The results of the spatial stability analysis are compared with those of the temporal
stability analysis, suitably rescaled by the Gaster transformation (Gaster 1962), valid
for strongly convectively unstable systems (see appendix B for details). Within this
approximation, from the temporal stability analysis of § 4.3 (labelled with (T)) we retrieve
the spatial stability analysis properties (labelled with (S)) through the relations

ωr(S) = ωr(T), Re(kx(S)) = Re(kx(T)), Im(kx(S)) = − ωi(T)

∂ωr

∂kx
(T)

. (4.4a–c)

The results of the Gaster transformation (4.4a–c) (circles) are in good agreement with
the spatial stability analysis results in figure 7(a), for u > 1. In appendix B we report the
results for u < 1, where the Gaster transformation prediction deviates from the spatial
stability analysis results.

In the following, we experimentally investigate the link between the spatial stability
analysis and the observable dynamics.

5. Experimental measurements of the rivulet secondary instability

5.1. Methods
As described in § 3.1, steady rivulets invade the experiment and saturate along the
streamwise direction (figure 2). At a certain distance from the inlet, streamwise oscillations
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on the rivulet profiles grow and evolve into travelling lenses. We investigate the
dependence of the overall dynamics and the amplitude of lenses with the parameters, by
exploring different angles 40◦ < θ < 80◦ and thicknesses in the range 0.12 < hN/lc < 1
(related to the flow rate by (2.1a,b)). Note that u = cot (θ)lc/

√
sin θhN , i.e. high values of

the linear advection velocity correspond to low values of the flow rate or θ . We modify the
inlet condition using the spanwise comb-like blade (figure 1a) with the optimal spacing
predicted by the flat film linear dispersion relation, i.e. L̂r = 2π

√
2l∗c . The requirement of a

reasonably small and constant error in a large range of the flow parameters, exempted from
a case-dependent calibration procedure, makes the confocal chromatic sensor STIL-CCS
a suitable candidate. The latter is placed at the end of the plate to measure the variation of
the amplitude of lenses oscillations as a function of θ and hN/lc.

The procedure is the following. We place the comb in position, and we wait the time
necessary for rivulets to invade the whole domain. We then measure the central rivulet
maximum thickness ĥmax(t) for 20 periods. This leads to a registration time T that goes
from 20 to 2000 s, depending on the angle. Once the data are registered, the flow rate is
increased. We wait the time necessary to advect all the transient effects away from the glass
plate; this varies from one minute, for θ = 40◦, to one hour, for θ = 80◦. Assuming the
saturated rivulet profile (figure 4), we transform the point measurement of the maximum
thickness in an estimate of the integral flux (i.e. hN in (2.1a,b)) by introducing the average
thickness ˆ̄h as follows:

ˆ̄h =
(

3
T

∫ T

0

ĥ3
max(t)

3
dt

)1/3

, hN = ˆ̄h/1.71, (5.1a,b)

being ĥmax = 1.71hN for a steady and saturated one-dimensional rivulet (Lerisson et al.
2020). The deviation Δ̂ from the average thickness value is computed as

Δ̂ =
√

1
T

∫ T

0
(ĥmax(t) − ˆ̄h)2 dt, (5.2)

which is non-dimensionalized using the capillary length, i.e. Δ = Δ̂/lc. Two typical
measurements are reported in figure 8.

5.2. Results
In figure 9 we report the deviation Δ as a function of hN/lc, for different angles θ . At low
values of hN/lc, Δ is constant at a plateau value around Δ ∼ 10−3. The plateau corresponds
to the resolution of the optical sensor and is of order 1 μm. At higher values of hN/lc, Δ
increases with hN/lc. We measure an increase of Δ of two decades.

The amplitude of the oscillations at the end of the plate is compared with the theoretical
findings of the spatial stability analysis. The spatial amplification at a distance x of a
temporal perturbation Δ0 on a fully developed rivulet profile reads

Δ/Δ0 = exp(−Im(kx)x). (5.3)

We assume that the observable disturbances are the inlet ones as they are amplified on
the largest distance, i.e. x = L. The perturbation amplitude Δ0 originates from background
noise that is below the sensitivity of our measurement sensor (∼1 μm). We assume that
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FIGURE 8. Registered maximum height ĥmax (t) of the rivulet, for (a) θ = 40◦ and hN =
1190 μm , (b) θ = 40◦ and hN = 1418 μm. The black dashed line denotes ˆ̄h, and the red dashed
lines ˆ̄h ± Δ̂. (a) u = 1.85, Δ̂ = 0.004 and (b) u = 1.57, Δ̂ = 0.132.
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FIGURE 9. Values of Δ (blue dots) as a function of hN/lc, for different values of θ . The black
horizontal line denotes the plateau value due to the resolution of the optical sensor. The red lines
denote the amplification estimated using the spatial stability analysis of § 4.4 and the size of
the plate, i.e. Δ = Δ0 exp(−Im(kx )L), with an initial amplitude chosen to obtain a good fit of
the experimental data, (a) Δ0 = 2 × 10−4, (b) Δ0 = 3 × 10−5, (c) Δ0 = 7.5 × 10−6, (d) Δ0 =
1 × 10−6, (e) Δ0 = 1.5 × 10−5, ( f ) Δ0 = 3 × 10−6.

the noise triggers the dominant mode described in §§ 4.3 and 4.4, and that Δ0 is constant
for a fixed angle. Note that the dominant spatial growth rate changes with hN/lc since the
value of u is varied.

In figure 9 the red lines denote the theoretical values of Δ for an inlet perturbation
amplitude Δ0 chosen to obtain a good fit of the experimental data. The measurement is
then not a direct measure of the spatial growth rate, but of the variation of the spatial
growth rate with the parameters. The variation of the deviation with the parameters well
agrees with the linear prediction.
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FIGURE 10. Results of the analysis in the (θ, hN/lc) plane: experimental measurements of Δ
(coloured dots) and inlet disturbance amplification Δ/Δ0 = exp(−Im(kx )L) evaluated by the
spatial stability analysis of § 4.4 (red iso-contours).

In figure 10 the experimental measurements of Δ (coloured dots) are summarized and
reported together with the spatial amplification Δ/Δ0 obtained by the spatial stability
analysis (red dashed lines). At low values of hN/lc the experimental values of Δ are below
the resolution of the optical sensor. As hN/lc increases, Δ emerges from the measurement
resolution and we observe an increase of two orders of magnitudes in the considered
range of parameters. This strong increase can be correlated to the theoretical amplification
curves. At very low values of hN/lc and inclination angles the theoretical amplification
is of order Δ/Δ0 ∼ 100. Low values of the flow rate (hN/lc) or θ imply high values
of u. In particular, the iso-level with value exp(−Im(kx)L) = 1.3 roughly corresponds
to the case u = 3.5. As hN/lc and θ are increased the theoretical amplification rapidly
grows.

Our analysis suggests that the occurrence of streamwise oscillations on the rivulet profile
is strongly related to the advection. The measured deviations strongly vary with u. When
high values of u are considered, the occurrence of a steady and saturated rivulet pattern
is observed (figure 11a). For low enough values of u, a state characterized by lenses
which travel on rivulets is observed (figure 11b), as shown in (Lerisson et al. 2019). Small
variations in the advection lead to dramatic effects on the overall pattern dynamics. A
change in the inclination of the plate of 10◦, e.g. from θ = 60◦ to θ = 50◦ at hN/lc = 0.55,
is enough to pass from a state characterized by large amplitude lenses to a rivulet pattern.

In the route to dripping, the formation of lenses can be interpreted as a secondary
instability of steady and streamwise-saturated rivulets, in which the role of the advection
is essential.
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(b)
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FIGURE 11. Representative patterns at θ = 45◦ for (a) hN = 623 μm, i.e. hN/lc = 0.42 and
u = 2.83, characterized by rivulets, and for (b) hN = 1352 μm, i.e. hN/lc = 0.92 and u = 1.29,
characterized by rivulets which carry lenses.

6. Linear and nonlinear impulse response: breaking of isotropy
and emergence of rivulets

In the previous sections, we numerically and experimentally studied the stability
of steady and streamwise-saturated rivulet structures with respect to streamwise
perturbations, and the link with the growth of travelling lenses. As observed in figure 2, the
instability of rivulets and the consequent emergence of lenses is preceded by the formation
of rivulet structures that invade the whole domain. Hereafter, we aim at giving a physical
insight into the predominance of rivulet structures by studying the response of the flat film
to an impulsive perturbation localized in space and time, i.e. the impulse response.

6.1. Experimental observation
In this section, we introduce a qualitative visualization of the evolution of a localized
perturbation in the film thickness. The experimental apparatus is set without any inlet
perturbation devices shown in figure 1(a). When high inclination angles and low flow
rates are considered (i.e. high values of u), we experimentally observe a large region
characterized by a uniform flat film where thickness perturbations from the lateral
boundaries of the experiment do not penetrate (Lerisson et al. 2020). In this region, we
trigger the destabilization with a thickness perturbation by blowing a puff of air with a
syringe. The whole field is then projected on a screen via the shadowgraph technique and
captured with a camera.

In figure 12 we show the evolution of the perturbation with time. The initially localized
perturbation is advected away in the streamwise direction with a constant velocity and
spreads in the domain. The perturbation phase lines are concentric circles in the upstream
part of the response. Nevertheless, the isotropy disappears in the downstream part. The
shadowgraph reveals that the phase lines tend to be parallel to the streamwise direction,
the effect becoming more and more evident as the time increases.

The presence of phase lines aligned with the streamwise directions suggests the
existence of a wavefront characterized by streamwise structures, i.e. rivulets, when the flat
film is perturbed using an impulse thickness perturbation. The selection of a streamwise
wavefront is not related to the boundaries of the thin film in the experiment, i.e. the rivulets
selection is intrinsic.

6.2. Numerical observation
Inspired by this experimental observation, in this section we numerically simulate the
impulse response, via (3.2), for the same values of angle and flow rate used in the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

67
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.673


904 A23-16 P. G. Ledda, G. Lerisson, G. Balestra and F. Gallaire

y
x

(a) (b) (c) (d )

FIGURE 12. Shadowgraph visualization of an experimental impulse response, for θ = 20◦ and
hN = 1292 μm, i.e. u = 5.45. Time increases going to the right and each snapshot is separated
by 15 s. (a) t = 0 s, (b) t = 15 s, (c) t = 30 s and (d) t = 45 s.
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FIGURE 13. Impulse response, θ = 20◦ and hN = 1292 μm (u = 5.45). The time increases
from left to right and the time step is 30. Results are reported in the moving reference frame
at the linear advection velocity (ξ = x − ut, y). (a) t = 0, (b) t = 30, (c) t = 60, (d) t = 90.

shadowgraph of figure 12, i.e. u = 5.45, in a double-periodic domain. The initial condition
is taken in the form

h(x, y, 0) = 1 + A exp
(

− x2 + y2

2

)
, (6.1)

where A = 10−2. In figure 13 we plot the time evolution of the response in the moving
reference frame (ξ = x − ut, y), from t = 0 to t = 90. In the moving reference frame, the
response progressively invades the domain from the initial impulse location. At t = 30, we
observe circular phase lines. At t = 60 the response loses its isotropy in the downstream
part. At t = 90 streamwise structures are dominant in the downstream front of the response
and they are also observable upstream.

In the moving reference frame, the response spreads from the initial impulse location,
meaning that in the fixed reference frame, the response is advected downstream at
the linear advection velocity u. The numerical evolution qualitatively agrees with the
experimental observation of § 6.1. We first observe the evolution of the impulse response
into an isotropic pattern. At large times, the response mostly evolve towards streamwise
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FIGURE 14. (a) Temporal growth rate ωi as a function of kx and ky . (b) Linear impulse response,
u = 5.45. The vertical and horizontal axes are respectively the streamwise and spanwise
directions. From left to right: t = 30, t = 60, t = 90. Results are reported in the moving reference
frame at the linear advection velocity (ξ = x − ut, y).

structures. However, the complicated form of (3.2), including nonlinear advection,
hydrostatic pressure distribution and capillary effects, does not allow one to identify the
physical mechanisms that lead to the emergence of streamwise structures observed in
figures 12 and 13. Lerisson et al. (2020) furthermore observed that the rivulet propagation
and growth are well described by the linear stability analysis of the flat film even at large
amplitudes of the thickness perturbation, beyond the expected validity of the linear theory.
Hereafter, we study the origin of the selection of rivulet structures by the linear and weakly
nonlinear dynamics.

6.3. Linear response
Upon introduction of the decomposition h = 1 + εη (ε � 1) in (3.2), the linearized
equation at O(ε) for the evolution of the thickness perturbation η with respect to the flat
film reads

∂tη + u∂xη + 1
3 [∇2η + ∇4η] = 0. (6.2)

The dispersion relation is recovered by introducing the normal mode decomposition η ∝
exp[i(k · x − ωt)] , with k = (kx , ky), where kx and ky denote respectively the streamwise
and spanwise wavenumbers

ω = ukx + i
3
(k2 − k4), (6.3)

where k =
√

k2
x + k2

y . The dispersion relation D(ω, kx , ky) = 0 is characterized by an
isotropic temporal growth rate ωi, as shown in figure 14(a). The temporal frequency ωr
is linear in kx and does not depend on ky .

The initial condition for the numerical simulation is the thickness perturbation
η(x, y, 0) = A exp(−x2/2 − y2/2), where A = 10−2. The linear numerical simulation
results for u = 5.45, in the moving reference frame (ξ = x − ut, y), are presented in
figure 14(b). As time increases, the perturbation spreads in concentric circles from the
initial impulse location. Similarly to the nonlinear simulation of figure 13, the response
is advected away at the linear advection velocity u, in the fixed reference frame. The
results can be rationalized considering the dispersion relation of (6.2). The wavepacket
is non-dispersive since ωr is linear in kx . This means that there is no distortion of the
wavepacket. Since the growth is isotropic, concentric circles invade the domain and at the
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same time are advected downstream with constant velocity ωr/kx = u. Higher values of u
imply faster advection velocities. In the moving reference frame (ξ, y), the (6.2) reads

∂tη + 1
3 [∇2

ξ yη + ∇4
ξ yη] = 0, (6.4)

where ∇ξ y operates in the reference frame (ξ, y). In this reference frame, the response
spreads in perfectly isotropic concentric circles without being advected away. The linear
dynamics agrees well with the early-time evolution of the nonlinear simulation shown in
figure 13, when the amplitude of the perturbations is still very small. However, since the
linearized dynamics is not able to capture the anisotropy of the pattern observed in the
nonlinear simulation, we propose next a weakly nonlinear study.

6.4. Weakly nonlinear response: the Nepomnyashchy equation
We consider a weakly nonlinear model for the flow of a thin film on the underside of an
inclined planar substrate. Following Kalliadasis et al. (2012), the derivation is based on a
multiple scale approach combined with an asymptotic expansion. Under the assumption
of small interfacial disturbances and u = O(1), the weakly nonlinear dynamics for a
thickness perturbation η with respect to the flat film reads

∂tη + 2uη∂ξη + 1
3 [∇2

ξ yη + ∇4
ξ yη] = 0, (6.5)

where ∇ξ y operates in moving the reference frame (ξ, y). The equation is formally
analogous to the Nepomnyashchy equation (Kalliadasis et al. 2012). We consider the
evolution of the thickness perturbation η starting from a Gaussian impulse η(ξ, y, 0) =
A exp(−ξ 2/2 − y2/2) (A = 10−2), in analogy with the linear simulation.

In figure 15(a) we report the thickness perturbation evolution. The initial localized
perturbation spreads in the domain and is always centred in the vicinity of the initial
impulse position, because of the moving reference frame. At t = 30 the perturbation
has spread isotropically in the domain. Nevertheless, at t = 60, streamwise structures
arise. At t = 90, the streamwise structures have invaded most of the perturbation
region.

In figure 15(b) we show the two-dimensional Fourier energy spectrum of η, normalized
by its maximum value. Since we are considering a real signal, the Fourier spectrum is
symmetric with respect to the kx and ky axes. We thus report only the values in the
first quadrant (kx > 0, ky > 0). At t = 0, we observe the Fourier spectrum of a Gaussian
impulse, which is a Gaussian centred around (kx = 0, ky = 0), i.e. the initial spectrum is

isotropic. At t = 30 the energy is located in a region around
√

k2
x + k2

y = 1/
√

2. As time

progressively increases, the energy concentrates towards (kx = 0, ky = 1/
√

2).
Initially, the response is characterized by an isotropic pattern, reminiscent of the linear

growth that is experienced in the first stages of the perturbation growth. As the amplitude
becomes sufficiently large, the spectrum shows that the energy is focusing on the axis
kx = 0, i.e. streamwise structures are selected. The emergence of streamwise structures
agrees well with the results of the fully nonlinear simulation and with the experimental
observation. Moreover, the spectrum is localized around ky = 1/

√
2, the most amplified

wavelength predicted by the flat film dispersion relation ((6.3)), and rivulet structures are
growing exponentially. Thus, the dynamics of pure streamwise structures stays linear, even
in the weakly nonlinear regime.
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FIGURE 15. Case u = 5.45. (a) Impulse response in the moving reference frame (ξ = x −
ut, y) from the weakly nonlinear model and (b) its two-dimensional Fourier energy spectrum.
From left to right: t = 0, t = 30, t = 60, t = 90.

The origin of the selection of rivulet structures is identified in the weakly nonlinear
advection term 2uη∂ξη, which acts in indirect manner to favour rivulet structures while
damping all other orientations. The weakly nonlinear model of (6.5) is formally analogous
to the linear model of (6.4), except for the weakly nonlinear advection term. It should be
noticed that this term influences the dynamics of streamwise-inhomogeneous structures
only, on which it is seen to have a damping effect. The nonlinear advection term embodies
the difference in the perturbation advection velocity in regions of different thickness and
is known to create wave steepening (Babchin et al. 1983). The emerging steep gradients
are damped by surface tension effects, levelling therefore the non-streamwise structures.
In conclusion, the most unstable solution in the weakly nonlinear regime is the one in
which the capillary damping is reduced the most, as the term 2uη∂ξη, responsible of wave
steepening, vanishes.

When only streamwise structures are present, the advection term disappears and the
weakly nonlinear model is formally analogous to the linear equation in the moving
reference frame (6.4). Consequently, the response of streamwise structures is linear up
to second order in the perturbation.

In conclusion, the weakly nonlinear dynamics gives an insight into the origin of the
emergence of rivulet structures: the latter are the only ones screened from the action
of the difference in the advection. The dynamics of pure streamwise structures remains
linear even in the weakly nonlinear regime, thus explaining the agreement between the
linear prediction and the experimental measurements at large amplitudes observed in
Lerisson et al. (2020). At late times, rivulets eventually invade the perturbation region.
In the case of steady inlet forcing (figure 2) rivulets invade the whole domain and steady
and streamwise saturated rivulet structures emerge downstream, as a result of the weakly
nonlinear dynamics. As seen in the previous sections, rivulets may eventually destabilize
through a secondary instability, resulting in travelling lenses. In both the emergence and
the stability of rivulets, the differences in advection in regions of different thickness is
crucial.
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7. Conclusions

In this paper, we studied the selection and stability of rivulet structures in a thin
film flowing under an inclined planar substrate. When the inlet is steadily forced along
the spanwise direction, predominant rivulet structures were experimentally observed,
which may destabilize at some distance from the inlet through the development of
travelling lenses. Inspired by this experimental observation, we performed a nonlinear
simulation with periodic boundary conditions, starting from an initial condition that
mimicked the experimental forcing. The response to a streamwise-invariant sinusoidal
initial condition confirmed the emergence of a persistent pattern of saturated rivulets,
which may destabilize.

We then focused on the study of the mechanisms that may explain the behaviours
observed in the experiment and numerical simulations, by studying the secondary stability
of one-dimensional and saturated rivulets when perturbed in the streamwise direction.
As the relative importance of advection increases, short wavelengths are progressively
stabilized and only very large wavelengths remain slightly unstable. We relate their
stabilization to the different advection of thickness perturbations on the rivulet profile. An
increase in the advection results in steeper gradients for the same perturbation wavelength.
Capillary forces counteract the wave steepening and eventually damp the perturbation,
for high enough values of the advection. We compared the theoretical results for the
spatial amplification of disturbances of the inlet flow rate with extensive experimental
measurements of oscillations on rivulets, and confirmed the observation of a steady and
saturated rivulet state when high values of u are considered.

Finally, we gave an insight into the early-stage selection of streamwise-aligned
structures, as observed in Lerisson et al. (2020), by studying the evolution of a
localized impulse in the flat film. The experimental response showed that the wavefront
selects mostly streamwise structures. The numerical impulse response also showed an
initial isotropic growth followed by the selection of predominant rivulet structures. The
numerical results were rationalized using a weakly nonlinear model, which showed the
same selection of rivulets. The strength of the weakly nonlinear model was to identify
one source of nonlinearity as the selection mechanism of streamwise structures, i.e. the
weakly nonlinear advection. The latter is known to create wave steepening, counteracted
by capillary terms. The evolution leads to levelling of all but streamwise structures. We
concluded that the departure from a flat film towards streamwise structures is the solution
in which the wave steepening and capillary damping effects are reduced the most. As
a consequence, the selection of streamwise structures is due to the difference in the
advection of perturbations in regions of different thickness, which acts to level all but pure
streamwise perturbations (rivulets), while the dynamics of the latter remains linear even
in the weakly nonlinear regime, thus rationalizing the results of Lerisson et al. (2020).

Our work aimed at laying rigorous foundations in the study of coating flows on the
underside of planar substrates, interpreting the route to dripping as a destabilization of the
flat film towards rivulets followed by a secondary instability. Nevertheless, several open
questions are left. In complement to the spatio-temporal impulse response studied in this
work, the response to a permanent in time but localized in space defect was considered
briefly in Lerisson et al. (2020). However, a more detailed study to properly quantify the
evolution of the response, e.g. in terms of asymptotic properties of the linear response,
still needs to be performed.

Despite the predominance of streamwise-oriented structures, for some conditions,
lenses appear on rivulets. While in this work a first analysis was performed in terms of
spatial growth, a complete analysis of the precise evolution of perturbations along the
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streamwise direction remains to be pursued. In particular, a weakly non-parallel approach
combined with a global resolvent technique could be suitable in this case. Furthermore,
although the rivulet configuration shown in figure 11(b) may seem regular, we sometimes
observe catastrophic events: lenses can merge in the streamwise direction, and eventually
drip. While this work and the one of Lerisson et al. (2020) were focused on the emergence
and stability of steady structures, further investigations focused on the dynamics of the
travelling lenses are crucial to understand the route to dripping.
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Appendix A. Expression of the Jacobian of the curvature

The operator ∂η̃κ(H), in general form, reads

∂η̃κ(H) = (1 + (∂yH)2)∂xx + (1 + (∂x H)2)∂yy − 2∂x H∂yH∂xy

(1 + (∂x H)2 + (∂yH)2)3/2

+ 2((∂x H)2∂yH − ∂x H(∂yH)2)

(1 + (∂x H)2 + (∂yH)2)3/2
∂x + 2((∂yH)2∂x H − ∂yH(∂x H)2)

(1 + (∂x H)2 + (∂yH)2)3/2
∂y

− 3
∂xx H(1 + (∂yH)2) + ∂yyH(1 + (∂x H)2) − 2∂x H∂yH∂xyH

(1 + (∂x H)2 + (∂yH)2)5/2
(∂x H∂x + ∂yH∂y).

(A 1)

The operator is evaluated for a base flow H(x, y) = Hr( y) (i.e. ∂x H = 0) and we impose
∂x η̃ = ikx η̃.

Appendix B. Absolute-convective transition of the saturated rivulet profile

The purpose of this appendix is to verify the application of the Gaster transformation
used in § 4.4. The Gaster transformation is applied in the context of strongly convectively
unstable systems.

To verify the convective nature of the instability of the one-dimensional and steady
rivulet profile, we evaluate the value of u at which the absolute-convective transition
occurs. We thus apply the Briggs–Bers criterion (Briggs 1964; Bers 1975; Huerre &
Monkewitz 1990; Schmid et al. 2002) to the dispersion relation Dr(ω, kx) = 0, (4.3). We
look for the saddle points in the complex kx plane ∂ω/∂kx = 0 and evaluate the imaginary
part of ω at the saddle point Im(ω0). The absolute-convective transition occurs when
Im(ω0) = 0. A spectral code is implemented in MATLAB, and saddle points are searched
for with the built-in function fsolve. We identified a single saddle point in the complex-kx

plane. The absolute-convective transition occurs at u0 = 0.56 (figure 16), which is much
lower than the values of u used throughout this work. Interestingly, the convective-absolute
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FIGURE 16. (a) Imaginary and (b) real parts of the complex frequency ω0 for the
absolute-convective stability analysis. The absolute-convective transition occurs at u0 = 0.56.

0 0.5

–I
m

(k
x)

1.0 1.5

0.05

0.10

0.15

ωr

FIGURE 17. Spatial growth rate given by the spatial stability analysis (solid lines) and by the
Gaster transformation (circles), for u = 0.6 (blue), u = 0.7 (orange), u = 0.8 (yellow), u = 0.9
(purple).

transition for the flat film takes place at u0 = 0.54 (Brun et al. 2015), very close to the
saturated rivulet value.

In figure 17 we report the comparison between the spatial stability analysis and the
Gaster transformation, for u < 1. As u approaches the value for the absolute-convective
transition, the prediction of the Gaster transformation deviates from the spatial stability
analysis results.
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