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Turbulent kinetic energy production and flow
structures in flows past smooth and rough walls
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Data available in the literature from direct numerical simulations of two-dimensional
turbulent channels by Lee & Moser (J. Fluid Mech., vol. 774, 2015, pp. 395–415),
Bernardini et al. (J. Fluid Mech., 742, 2014, pp. 171–191), Yamamoto & Tsuji (Phys.
Rev. Fluids, vol. 3, 2018, 012062) and Orlandi et al. (J. Fluid Mech., 770, 2015,
pp. 424–441) in a large range of Reynolds number have been used to find that S∗
the ratio between the eddy turnover time (q2/ε, with q2 being twice the turbulent
kinetic energy and ε the isotropic rate of dissipation) and the time scale of the mean
deformation (1/S), scales very well with the Reynolds number in the wall region. The
good scaling is due to the eddy turnover time, although the turbulent kinetic energy
and the rate of isotropic dissipation show a Reynolds dependence near the wall; S∗, as
well as −〈Q〉 = 〈sijsji〉 − 〈ωiωi/2〉 are linked to the flow structures, and also the latter
quantity presents a good scaling near the wall. It has been found that the maximum
of turbulent kinetic energy production Pk occurs in the layer with −〈Q〉 ≈ 0, that is,
where the unstable sheet-like structures roll-up to become rods. The decomposition
of Pk in the contribution of elongational and compressive strain demonstrates that the
two contributions present a good scaling. However, the good scaling holds when the
wall and the outer structures are separated. The same statistics have been evaluated by
direct simulations of turbulent flows in the presence of different types of corrugations
on both walls. The flow physics in the layer near the plane of the crests is strongly
linked to the shape of the surface and it has been demonstrated that the u2 (normal to
the wall) fluctuations are responsible for the modification of the flow structures, for
the increase of the resistance and of the turbulent kinetic energy production.

Key words: turbulence simulation

1. Introduction
Turbulent flows near smooth walls are characterised by flow structures of different

size and intensity that have been observed and described by very impressive flow
visualisations by Kline et al. (1967). In laboratory experiments it is rather difficult
to measure any quantity, therefore some issue of the flow complexity cannot be
investigated. The evolution of the hardware and software necessary for the solution of
the nonlinear Navier–Stokes equations has allowed us to evaluate any flow variable
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and to increase our knowledge of the physics of turbulent flows. The simulations were
performed for a large number of turbulent flows and in particular for wall-bounded
flows such as boundary layers, circular pipes and two-dimensional channels. In this
paper the study is focused on flows in two-dimensional channels past smooth and
corrugated walls. The first direct numerical simulation (DNS) of a two-dimensional
channel by Moin & Kim (1982) can be considered a scientific revolution, in fact,
after this publication, a large number of scholars directed their research work towards
the use of numerical methods to produce and analyse turbulent data. The complex
physics of wall bounded turbulent flows therefore was studied through the evaluation
of any kind of statistic. The direct comparison between numerical and laboratory
flow visualisations in Moin & Kim (1997) can be considered a first evidence that the
Navier–Stokes equations are the valid model to describe the evolution of turbulent
flows. After simulation at low Reynolds number (Rτ =uτh/ν=180 with uτ the friction
velocity h half channel height and ν the kinematic viscosity) there was a large effort
to increase the Reynolds number. The relevant contributions, among several groups,
were done by Jiménez & Hoyas (2008) up to Rτ = 2000 by Bernardini, Pirozzoli
& Orland (2014) up to Rτ = 4000, by Lee & Moser (2015) up to Rτ = 5200 and
recently by Yamamoto & Tsuji (2018) up to Rτ = 8000. Some of the statistics in
these papers together with others at low Reynolds number in Orlandi, Bernardini
& Pirozzoli (2015) are used in this study to calculate quantities linked to the flow
structures, and to investigate their dependence on the Reynolds number. Namely these
are the shear rate parameter S∗= Sq2/ε defined as the ratio between the eddy turnover
time q2/ε (q2 is twice the turbulent kinetic energy and ε = 2ν(sijsij) is the isotropic
dissipation rate) and the time scale of the mean deformation 1/S = 2/(dU/dx2) (U
stands for 〈u1〉). The shear parameter was used by Lee, Kim & Moin (1990) to
provide evidence that the elongated wall structures, observed by Kline et al. (1967),
were not generated by the presence of the solid wall. The mean shear rate S generates
them if S∗ is greater than a threshold value. As was shown by Orlandi et al. (2015),
the profiles of the shear parameter do not greatly vary with the Reynolds number in
the presence of smooth walls. These observations can be considered a first evidence
that, in real experiments, limitations of the measurement techniques means that we
cannot explain certain aspects of the complex physics of turbulent flows, in particular
those strongly linked to the rate of dissipation ε. Some approximations allow us to
get a good estimate of ε in the central region of the channel. These approximations
are not valid near the wall. The profiles of ε+ as well as those of q2+ (the superscript
+ indicates wall units) are Reynolds dependent. In this paper it is shown that, near
the walls, the eddy turnover time as well as the mean shear, in wall units, do not
depend on the Reynolds number, therefore the shear parameters S∗ can be considered
a quantity characterising the energetic scales near smooth walls.

The production of turbulent energy Pk = −〈u1u2〉(dU/dx2) (small letters indicate
fluctuations) is strictly linked to S. When the near-wall and the outer turbulent
structures are separated, the production does not depend on the Reynolds number. At
low Re, on the other hand, the maximum of P+k , from zero for the laminar regime
jumps to a value 0.15 at the transitional Reynolds number. Hence it gradually grows
with Rτ to saturate at 500 < Rτ at a value equal to 0.25. Due to the key role of S
the one-dimensional statistics profiles can be projected onto the eigenvectors of the
tensor Sij. In this frame there is a negative compressive Sα and a positive extensional
Sγ strain. The turbulent kinetic production in this local frame is Pk = −(Pα + Pγ )
with the terms Pα = RααSα and Pγ = Rγ γ Sγ greater than Pk. Their profiles show
that the compressive strain generates more kinetic energy than that destroyed by the
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extensional one. The projection of the statistics along the eigenvectors of the tensor
Sij shows a decrease on the anisotropy of the velocity and vorticity correlation and
can give insights into turbulence closures. The stresses in the spanwise direction do
not change in this new reference frame with Sβ = 0.

The production of turbulent kinetic energy can also be expressed in a different
way (Orlandi (2000) at p. 211) with Pk = PT + PC. This expression is derived by
the Navier–Stokes equation in rotational form, where PC = ∂U〈u1u2〉/∂x2 is related
to the action of the large eddies advecting the turbulence across the channel and
PT = U(〈u3ω2〉 − 〈u2ω3〉) is linked to the energy transfer from large to small eddies
(ωi indicates the vorticity fluctuating components).

Orlandi (2013) in turbulent wall-bounded flows emphasised that the role of the
wall-normal Reynolds stress, and therefore the statistics linked to the u2 velocity
fluctuations and in particular those connected to the flow structures, should be
analysed. The 〈u2

2〉 stress received little attention, in particular because of the difficulty
in measuring u2 near the walls. It is worth to recall that only this stress appears in
the mean momentum equation and it is balanced by the mean pressure 〈p〉. As
was discussed in that paper as well as by Tsinober (2009) on p. 162, the topology
of flow structures can be described by −Q = sijsji − ωiωi/2, where regions with
Q < 0 are sheet dominated and regions with Q > 0 are associated with tube-like
structures. In homogeneous turbulence 〈Q〉 = 0. In non-homogeneous turbulent flows
d2
〈u2

2〉/dx2
2 =−〈Q〉 = 〈sijsji〉 − 〈ωiωi/2〉 accounts for the disequilibrium between 〈sijsji〉

and 〈ωiωi/2〉. Hence the term d2
〈u2

2〉/dx2
2 determines whether in a region there is a

prevalence of sheet-like or rod-like structures. The former are inherently unsteady
and roll-up, producing turbulent kinetic energy. A detailed study of the difference
between the shapes of ribbon- and rod-like structures requires appropriate eduction
schemes, such as those described by Pirozzoli, Bernardini & Grasso (2010). The
profiles of the turbulent kinetic energy production, in their different forms, together
with the profiles of d2

〈u2
2〉/dx2

2 show that the maximum production occurs in the layer
separating sheet- and tubular-dominated regions. One of the goals in performing DNS
of two-dimensional turbulent channels at high Reynolds numbers was and still is to
investigate the Reynolds number dependence on the statistics. The aim of the present
study is to see whether the above mentioned statistics, in wall units, related to the
flow structures present a minor or almost a complete Reynolds number independence
in the viscous and buffer layers.

A rediscovered and improved version of the old immersed boundary technique used
by Peskin (1972) for bio-inspired flows was developed by Orlandi & Leonardi (2006)
to perform DNS of turbulent flows past rough walls. The method was validated in
several papers and the convincing evidence of its accuracy was reported by Burattini
et al. (2008) by comparing the statistics derived by the numerical experiments with
those measured in the laboratory. The experiments were designed with the aim of
showing that true DNS can be accomplished by the immersed boundary technique
inserted into a second-order finite difference method. In this paper the corrugations
are located at both walls and the solutions are obtained at intermediate values of
the Re number, namely approximately at Rτ = 200 in the presence of smooth walls.
Longitudinal transverse and three-dimensional elements are considered, producing
a drag increase, with the exception of a geometry similar to that investigated by
Choi, Moin & Kim (1993) which produces drag reduction. Near rough walls the flow
structures change, leading to profiles of the turbulent statistics affected by the shape
of the surface.
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The paper is organised as follows. In § 2.1 the two-dimensional channel is analysed
through the DNS data in a wide range of Reynolds numbers. It is shown that, for
certain quantities, the Reynolds independence for y+ < 200 holds. Namely (q2/ε)+

and even better (q2/Dk)
+ show a good scaling. It has been also observed that the

latter grows linearly for y+ < 2, and that, at Rτ = 5200, there is a clear tendency
to a linear growth in the outer region. The transition between one and the other
linear growth occurs in a narrow layer dominated by sheet-like structures highlighted
by the profiles of (d〈u2

2〉/dx2
2)
+. The total rate of dissipation Dk leads to a simple

turbulent kinetic energy budget, that could help with the improvement of low Reynolds
number Reynolds average Navier–Stokes (RANS) closures. The Reynolds number
independence has been also observed in several expressions of the turbulent kinetic
energy production.

To show that modifications of the velocity boundary conditions destroy the wall
similarity, in § 2.2 flows past rough walls have been simulated. The numerical
methods has been resumed in § 2.2.1, the global results are discussed in § 2.2.2 and
the profiles of the statistics related to the friction increase or reduction in § 2.2.3.
The shear parameter in § 2.2.4 and (d〈u2

2〉/dx2
2)
+ in § 2.2.5 show that different types

of roughness promote the formation of a variety of flow structures. These structures
are visualised through surface contours of ω2 in § 2.2.6. For any rough surface, in
§ 2.2.7, through the projection of the Reynolds stress tensor along the eigenvectors of
the rate of strain tensor, it is shown that the turbulent kinetic energy produced by the
compressive strain overcomes that dissipated by the extensional strain. The total rate
of turbulent kinetic dissipation in § 2.2.8, as for smooth channels, leads to simplified
budgets. This observation together with the proportionality between turbulent eddy
viscosity, roughness function and 〈u2

2〉|W at the plane of the crest, in § 2.2.9, may give
new insight into RANS closures for practical simulations at high Reynolds numbers.
Visualisations of instantaneous stresses in the Cartesian reference and in the strain
rate reference frame show a reduction of the anisotropy near the wall in § 2.2.11 that
may be useful in RANS closures. Concluding remarks are given in § 3.

2. Results
2.1. Smooth wall

The data in the web of the DNS at high Reynolds numbers by Bernardini et al. (2014),
by Lee & Moser (2015) and by Yamamoto & Tsuji (2018) are used to investigate the
eventual Reynolds independence of the shear parameter and its components. The data
at low Re are those used in Orlandi et al. (2015). In the transitional regime simulation,
at Rτ =78, there is no separation between wall and outer structures, these have sizes of
the order of the half-channel, therefore the DNS can be affected by the box size. Two
simulations have been performed, one in a box L1 = 6π, L3 = 2π and the other, with
the same resolution, in a box L1= 8π, l3= 3π producing equal profiles of the statistics.
The shear parameter S∗ is one of the statistics linked to the flow structures, in fact
if S∗ is greater than a threshold value, approximately 5, very elongated anisotropic
longitudinal structures form. It has been observed that for y+ < 20 S∗ is high and
in the outer layer is small, consequently the flow structures near the wall are more
intense than those in the outer region. The profiles of q2+ in figure 1(a) and of ε+ in
figure 1(b) show a large Re dependence in the wall region, that has been emphasised
by plotting the quantities only in the viscous and buffer layers. These two figures show
that large variations appear at intermediate Re and that both quantities tend to a limit
at high Re. Still, it has not been established whether a saturation or a logarithmic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

96
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.96


TKE production and flow structures 901

12

8

4

0
101100 102

101 103

y+ y+
100 10210-110-2 0 10 20

101100 102 101100 102

101100 102

0.15

0.10

0.05

0

102

101

100

10-1

40

30

20

10

0

104

103

102

101

100

10-1

80

60

40

20

q2+

(q
2 /

´)
+

(q
2 /

D
k)+

Sq
2 /

´

´+

(a) (b)

(c) (d)

(e) (f)

180
550

1000
2000
4000
5200

78
8000

180
550

1000
2000
5200

0 10 20 30

200

100

FIGURE 1. (Colour online) Profiles in wall units of (a) turbulent kinetic energy, (b) rate of
dissipation, (c) eddy turnover time evaluated with ε (solid line 2x2 dashed 10x), (d) shear
parameter, (e, f ) eddy turnover time evaluated with Dk (solid line 15x dashed 5x), for
channel flows past smooth walls; the data are from the references given in the text. The
Reynolds numbers are in the legend of panel (a); in panels (b–f ) the profiles at Rτ = 8000
could not be evaluated from the Yamamoto & Tsuji (2018) data as evinced by the legend
in panel (e).

growth of the maximum of q2+ occurs for Re→∞. However, figure 1(a) seems to
infer a saturation. The value of the maximum of q2+ at Rτ = 8000 is twice the value
reached at the transitional Reynolds number. At this Re there is no separation between
outer and near-wall structures. The peak is located almost at the same distance, in wall
units, as that at a Re number hundred times greater.

The rate of isotropic energy dissipation ε+ in figure 1(b) shows a large Reynolds
number dependence for y+ < 10. As discussed later on, for y+ < 10, the full rate of
energy dissipation Dk = (1/Re)〈ui∇

2ui〉, in wall units, shows a reduced dependence
with the Reynolds number. Since Dk = (1/Re)(d2

〈q2/2〉/dx2
2) − ε it can be inferred

that the Reynolds dependence of ε+, for y+ < 20, is due to the viscous diffusion of
q2+. The Reynolds dependence for y+< 10, at high Re, in the outer region disappears
by looking at the profiles of the eddy turnover time, in wall units, in figure 1(c).
In the region y+ < 8 the eddy turnover time is proportional to y2+, instead, in the
outer region, it is proportional to y+. Figure 1(c) shows a deviation from the linear
behaviour that is higher the smaller Re is. In order to appreciate better the variations
in the region of transition, in the inset some of the profiles are plotted in linear scale.
The eddy turnover time based on D+k (figure 1e) instead of on ε+ shows a linear
increase with y+ also near the wall. Therefore it can be stressed that this dimensionless
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FIGURE 2. (Colour online) Profiles in wall units of: (a) d2
〈u2

2〉/dx2
2, (b) turbulent kinetic

energy production, (c) full rate of dissipation, (d) turbulent diffusion by nonlinear terms;
the data are from the references given in the text. The Reynolds numbers are in the legend
of panel (b); in (c,d) the profiles at Rτ = 8000 could not be evaluated from the Yamamoto
& Tsuji (2018) data.

eddy turnover time depicts a universal behaviour for the inner and outer structures.
These have the same characteristics, being generated by the strain, S, and are fast near
the wall and slow in the outer region. The transition between the two similar structures
occurs in the region with a high growth of turbulent kinetic energy production. To
demonstrate the collapse of (q2/Dk)

+, in the viscous region (y+< 5), and the tendency
towards saturation in the buffer region, linear scales have been used in figure 1( f )
and the data at Rτ = 78 were not plotted. At Re numbers close to the transitional
value (Rτ ≈ 80) the two kinds of structure, the inner and outer structures, coincide,
and the flow physics is more complex. In the transitional regime the motion of these
large structures plays a large role in mixing processes or in heat transfer. From the
data in figure 2 in Orlandi et al. (2015) it has been evaluated that for 70 < Rτ <
200, K/(hU2

b) (K =
∫

q2 dy and Ub the bulk velocity) decays with R1/3
τ and that for

500< Rτ < 5200 it decays with R1/6
τ . Therefore it can be inferred that the effects of

Reynolds number are high when the wall and the outer structures of the same size
are strongly interconnected. When the wall structures are much smaller and far apart
from the outer ones the effect of the Reynolds number is reduced. The profiles of S+
for y+< 200 are not given, being superimposed on each other. Therefore the Reynolds
independence of the shear parameter S∗ in figure 1(d) is due to the universality of the
eddy turnover time for y+ < 20. From these observations it can be asserted that, for
wall-bounded turbulent flows past smooth walls, the well-defined boundary conditions
lead to mean shear S+ profiles independent of the Reynolds number for y+ < 200.
The similarity of the large scales of the mean motion promotes the universality of
the eddy turnover time of turbulent flows in the range of y+ in which the energy
containing scales (figure 1a) and their rate of isotropic dissipation (figure 1b) are
Reynolds number dependent.

To understand in more detail the influence of the Reynolds number on the flow
structures in the wall region (viscous and buffer layers) it is worth looking at the
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TKE production and flow structures 903

profiles of d2
〈u2

2〉/dx2
2 = −〈Q〉. As previously mentioned, this quantity is null in

homogeneous turbulent flows. For −〈Q〉> 0, sheet-like structures prevail over tubular
like structures and figure 2(a) shows that this occurs for y+ < 12. In this layer,
the sheets produce and dissipate turbulent kinetic energy. The profiles in wall units
of (d2

〈u2
2〉/dx2

2)
+ (figure 2a), P+k (figure 2b) and D+k (figure 2c) show a similar

dependence upon the Reynolds number. Namely large variations for 70 < Rτ < 200
and small for 500< Rτ < 5200. In figure 2(c) the data by Yamamoto & Tsuji (2018)
at Rτ = 8000 are not reported, since the budgets were not accessible. Figure 2(a) for
500<Rτ < 5200 depicts a good scaling for the sheet-like structures near the wall and
even better for the tubular structures in the buffer region. It can also been observed
that the trend with Re is not regular, in fact the peak at Rτ = 5200 (Lee & Moser
2015) is smaller than that at Rτ = 4000 (Bernardini et al. 2014) and that at Rτ = 8000
(Yamamoto & Tsuji 2018). The profiles for 70 < Rτ < 200 of −〈Q〉 largely depend
on the Reynolds number with the magnitude decreasing with Re in both regions.
By reducing the Reynolds number the zero crossing point moves far from the wall.
Figure 2(b) shows that the maximum energy production is located, at low and high
Reynolds numbers, near the crossing point and it is slightly shifted in the region
where the sheet-like structures prevail. In this location it may be inferred that the
unstable ribbon-like structures tend to roll-up to become rod-like structures. When
the Reynolds number increases the saturation of the maximum of P+k , and for all of
the profiles up to y+ ≈ 200, is evident, corroborating the saturation of the maximum
of the turbulent kinetic energy in figure 1(a).

The total rate of dissipation in figure 1(c) behaves similarly to the production, with
the maximum located in the region dominated by ribbon-like structures, therefore
during the roll-up of the unstable structures the maxima of production and dissipation
occur. Lee & Moser (2018) discussed in detail the interaction between near-wall and
outer structures by the spectral decomposition of the terms in the Reynolds stress
transport equations. In this way they observed an impact of the large scales on certain
statistics in the wall region. Here the interest is to show that for certain quantities
that should be modelled in the RANS closures, the influence of the outer structures
is negligible. The scaling of D+k in figure 2(c), at high Re, is rather good but not as
good as that of P+k in figure 2(b). This occurrence can be explained by considering
that the production is directly linked to the mean shear, having a perfect scaling with
the Reynolds number. Since P+k is balanced by D+k and T+k (turbulent kinetic energy
diffusion Tk = −((1/2)(d〈u2u2

i 〉/dx2) + 〈ui(∂p/∂xi)〉)) and that the latter is smaller
than P+k and D+k , the Re dependence in D+k should appear in the profiles of T+k .
Indeed the profiles of the turbulent diffusion, in figure 2(d), evaluated by including
the small contribution of the pressure transport term, show a deterioration of the
wall scaling in the sheet-dominated layer. The transfer of energy from the region
dominated by the tubular structures into the region dominated by the sheets depends
on the Reynolds number and this dependence should be expected because of the
influence of the viscosity on the roll-up of the ribbon-like structures. In figure 2(d)
the perfect collapse of T+k < 0, for the flows at 180< Rτ , suggests that the universal
rod-like structures loose the same amount of energy independently of the value of
Rτ . The profiles in figure 2(b–d) could be of interest to those interested in building
low Reynolds number RANS closures at high Reynolds number. In fact the model of
the rate of full dissipation should be easier since DK , from zero at the wall, grows
proportionally to q2 in the viscous layer.

To get a different view of the contribution of the structures to the turbulent kinetic
energy production it is worth looking at the distribution of the normal stresses
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FIGURE 3. (Colour online) Profiles in wall units of the stress aligned with (a) Sα , (b) Sγ ;
of the turbulent kinetic energy aligned with (c) Sα, (d) Sγ , the data are from the references
given in the text. The Reynolds number are in the legend of panel (a).

aligned with the eigenvectors of the strain tensor Sij. The reason, as previously
mentioned, is that the good scaling of the production with the Reynolds number
is due to its proportionality with the mean shear Si = S12. Therefore the statistics
aligned with the eigenvectors of Sij should be linked to flow structures, different
from those visualised in the Cartesian reference frame. The new reference frame is
aligned with a negative compressive Sγ and a positive extensional Sα strain. In the
Cartesian frame the near-wall inhomogeneity is manifested by large differences in the
profiles of the normal stresses Rii = 〈uiui〉 with R22 < R33� R11. Flow visualisations
in planes x1 − x3 parallel to the wall, show very elongated structures for u1, while
the other two fluctuating velocity components are concentrated in patches of elliptical
or circular shape. The contours of u2 in several locations depict the presence of
an intense negative patch surrounded by two positive patches of elliptical shape.
In correspondence with the strong u2 < 0 (sweeps events) the positive elongated
streamwise structures form (Orlandi, Sassun & Leonardi 2016). Several papers have
been addressed at investigating this cycle of events, for instance that by Jiménez
& Pinelli (1999). The u1 and u2 are the fluctuations producing the active motion
in turbulent flows since their combination interacts directly with the mean shear S
to produce new fluctuations. The fluctuations u3 in the spanwise direction can be
considered as an inactive motion, and these are concentrated in positive and negative
patches. The structures therefore are not as well defined as those of the other two
velocity components. These structures can be considered inactive also because the
profiles of the relative stress R33 coincide with Rββ aligned with Sβ = 0. The vertical
profiles of R+ββ are not reported, on the other hand figure 3(a,b) shows that R+αα and
R+γ γ do not differ in shape, and that those aligned with Sγ are greater than those
aligned with Sα. In each component a strong Reynolds dependence, similar to that
depicted in figure 1(a) for q2+, emerges. The similarity of the profiles of R+αα and
of R+γ γ suggests that the contours of uαuα and uγ uγ in a plane x1 − x3 parallel to
the wall should be similar, implying that the structures aligned with Sα and Sγ do
not largely differ. This is shown later on discussing the differences between flows
past smooth and flows past corrugated walls. To investigate which of the two kinds
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of structures plays a large role in the near-wall turbulent kinetic production it is
worth decomposing the production Pk. In this local frame Pk = −(Pα + Pγ ) with
Pα = RααSα and Pγ = Rγ γ Sγ . The two terms are greater than Pk and their profiles in
figure 3(c) and in figure 3(d) show that the compressive strain generates more kinetic
energy than that eliminated by the extensional one. In both terms there is a Reynolds
dependence at high and low Re numbers, while the sum of the two in figure 2(b)
shows that it is almost absent at high Re. It can be, therefore, concluded, that the
universality of the wall structures is evident only in some of the statistics.

A different way to split Pk was used by Orlandi (2000) at p. 211 to determine
the energy transfer from large to small eddies in the near-wall region. The splitting
was derived by the Navier–Stokes equation in rotational form where the Lamb vector
λ=−u× ω appears. This term is PT = U(〈u3ω2〉 − 〈u2ω3〉), and to get Pk it should
be subtracted from PC = dU〈u1u2〉/dx2, related to the action of the large eddies
advecting the turbulence across the channel. The profiles of the vorticity velocity
correlations were not directly evaluated in the simulations here used. However the
identity 〈u3ω2〉 − 〈u2ω3〉 = d〈u2u1〉/dx2 allows us to evaluate PT . The two terms
plotted in figure 4 are characterised by a universal behaviour for y+ < 100 and for
500<Rτ < 8000. The detailed analysis of the two terms gives insight into what occurs
in the whole channel. The expression for PC demonstrates that what is produced near
the wall is transferred to the outer region. In fact P+C is negative in the outer region
and in magnitude higher for smaller Re; with P+C smaller than P+T it follows that
P+k > 0. Tsinober (2009) at p. 120 analysed the physical aspects of the kinematic
relationship previously mentioned, by asserting ‘the component of the Lamb vectors
imply a statistical dependence by large scales (u) and small scales (ω). Without this
dependence the mean flow does not fill the turbulent part’. Indeed figure 4(a) shows
that, for 100< y+, P+T is negligible at high Rτ , however, the large contribution of P+T
implies the transfer of energy from large to small scale, which is redistributed by
P+C . The budget in Lee & Moser (2015) at Rτ = 5200, in the outer region, shown in
the inset of figure 4(a) depicts the large contributions of the P+T and P+C terms with
respect to the turbulent diffusion and to the full dissipation discussed respectively
in figure 2(c) and in figure 2(d). Tsinober (2009) wrote ‘It is noteworthy that both
correlation coefficients Cu3ω2 = 〈u3ω2〉/〈u2

3〉
1/2
〈ω2

2〉
1/2 and Cu2ω3 = 〈u2ω3〉/〈u2

2〉
1/2
〈ω2

3〉
1/2

(and many other statistical characteristics, e.g. some, but not all, measures of
anisotropy) are of order 10−2 even at rather small Reynolds numbers. Nevertheless,
as we have seen, in view of the dynamical importance of interaction between velocity
and vorticity in turbulent shear flows such small correlations by no means imply
absence of a dynamically important statistical dependence and a direct interaction
between large and small scales’. This is indeed true in the outer region (0.2< y< 0.5)
where S is rather small, however large enough to give a S∗ ≈ 8 sufficient to create
large elongated structures in the outer region. Near the wall the two velocity vorticity
correlations are quite large, producing large negative values of P+T .

An easy way to change the velocity fluctuations at the boundary consists of the
modification of the shape of the surface with the result of producing large differences
among the statistics profiles in the near-wall region. Therefore there is a large
probability that the universality with the Reynolds number, described in this section,
is not any longer valid. In the next section the behaviours of the quantities, here
considered, are discussed for flows past surfaces leading to an increase or to a
reduction of the drag with respect to that in the presence of smooth walls. Having
several realisations, the joint probability density function (p.d.f.) between the velocity
components generating the turbulent stress together with flow visualisations allow us
to understand in more detail the differences between smooth and rough walls.
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FIGURE 4. (Colour online) Profiles in wall units of (a) PT ; in the inset are plotted the
terms Rτ = 5200, red Pk, green PT , purple PC, black Dk and blue Tk; (b) PC as defined
in the text. The data are from the references given in the text. The Reynolds numbers are
in the legend for panel (b).

2.2. Rough walls
2.2.1. Numerical procedure and validation

The numerical methodology was described in several previous papers, in particular
Orlandi & Leonardi (2006), however it is worth briefly summarising the main features
of the method, and recalling the validation based on the comparisons between the
numerical results and the laboratory data available in the literature.

The non-dimensional Navier–Stokes and continuity equations for incompressible
flows are

∂ui

∂t
+
∂uiuj

∂xj
=−

∂p
∂xi
+

1
Re
∂2ui

∂x2
j
+Πδ1i,

∂uj

∂xj
= 0, (2.1a,b)

where Π is the pressure gradient required to maintain a constant flow rate, ui
is the component of the velocity vector in the i direction and p is the pressure.
The reference velocity is the centreline laminar Poiseuille velocity profile UP, and
the reference length is the half-channel height h in the presence of smooth walls.
The Navier–Stokes equations have been discretised in an orthogonal coordinate
system through a staggered central second-order finite-difference approximation. The
discretisation scheme of the equations is reported in chap. 9 of Orlandi (2000).
To treat complex boundaries, Orlandi & Leonardi (2006) developed an immersed
boundary technique, whereby the mean pressure gradient to maintain a constant
flow rate in channels with rough surfaces of any shape is enforced. In the presence
of rough walls, after the discrete integration of RHSi (right-hand side in the i
directions) in the whole computational domain, a correction is necessary to account
for the variations of the metrics near the body. This procedure, requires a number of
operations proportional to the number of boundary points, and the flow rate remains
constant within round-off errors. In principle, there is no big difference in treating
two- or three-dimensional geometries. However, in the latter case, a greater memory
occupancy is necessary to define the nearest points to the wall surface.

In the present paper several types of corrugations have been considered in a
computational domain with size L1= 8 in the streamwise and L3= 2π in the spanwise
direction. Differently than in previous simulations, where one wall was corrugated and
the other was smooth, here both walls have the same corrugation. This set-up has the
advantage of enabling investigating as to whether, at the steady state, a symmetrical
solution is achieved. This condition should require a large number of realisations
collected by simulations requiring a great CPU time. As for the flows past smooth
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walls, considered in the previous section, the symmetric boundaries, for flow past
rough walls, require a reduced number of realisations to get converged statistics.

The validation of the immersed boundary technique was presented in Orlandi,
Leonardi & Antonia (2006) by a comparison of the pressure distribution on the
rod-shaped elements with the measurements by Furuya, Miyata & Fujita (1976).
These authors studied the boundary layer over circular rods, fixed to the wall and
transverse to the flow, for several values of w/k (w is the streamwise separation
between two consecutive rods of height k). The numerical validation was performed
for values of w/k = 3, 7 and 15. It is important to point out that circular rods are
appropriate for numerical validation of the immersed boundary method, owing to the
variation of the metric along the circle. The numerical simulations were performed
at Re = UPh/ν = 4200, and the pressure distributions around the circular rod were
compared with those measured. The good agreement reported in Orlandi et al. (2006)
implies that the numerical method is accurate and can be used to reproduce the flow
past any type of surface. From the physical point of view, the agreement between
low Re simulations and high Re experiments (Furuya et al. 1976) implies a similarity
between the near-wall region of boundary layers and channel flows. In addition it
can be asserted that, as in fully rough flows, (Nikuradse 1950) a Reynolds number
independence for the friction factor does exist. The capability of the immersed
boundary technique to treat rough surfaces was further demonstrated by a comparison
with the experimental results of Burattini et al. (2008) for a flow past transverse
square bars with w/k= 3.

2.2.2. Global results
Several corrugations of height k = 0.2 have been located below the plane of

the crest at x2 ± 1 that coincides with the walls of channels with smooth walls
(SM). The shapes of the corrugation are given in figure 5 by plotting the contours
of the u2 velocity component in the planes most appropriate to see the walls of
the corrugations. These images demonstrate that the immersed boundary technique
accurately reproduces the flow around the corrugations. The normal to the wall
velocity coincides with the fluctuating component u2 being, for each realisation, its
average in the homogeneous directions equal to zero. In several previous papers the
importance of the u2 fluctuations and the relative statistics was stressed. The relevant
papers are reported in Orlandi (2013). For the smooth channel the u2 contours, in
a small region, in figure 5(a) depict the sweep and the ejection events one after
the other. These are the events contributing to an increase in the drag of turbulent
flows with respect to that of laminar flows, producing turbulent kinetic energy. The
recirculating motion in figure 5(b) within the cavities of the transverse square bar
configuration (TS), for this spanwise section, connects the negative regions of u2
inside with those of the same sign above. However, in a different spanwise section,
a connection between positive values has been observed. The global results leads to
a value of 〈u2

2〉W , at the plane of the crests, different from zero. In the whole paper
the subscript W indicates quantities evaluated at the plane of the crests at x2 ± 1.

Triangular transverse bars, one attached to the other (TT), generate a more intense
recirculating motion (figure 5c), producing large effects on the overlying turbulent
flows. A spanwise coherence of the recirculating motion inside the corrugations
is observed, that disappears at a distance y = 0.2 from the plane of the crests.
The capability of the numerical method to describe the complex flow inside the
three-dimensional staggered cubes (CS) can be appreciated by the contours of u2
in figure 5(d) in a x1–x3 plane at x2 = −1.03. The velocity disturbances ejected
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 5. (Colour online) Contour plots of u2: (a) SM, (b) TS, (c) TT in planes in x1–x2,
(d) CS plane x1–x3 at x2=−1.03, (e) LLS, ( f ) LS, (g) LT , (h) LTS, planes in x3− x2. Blue
and green negative, red and magenta positive, ∆= 0.005 for red and blue ∆= 0.0005 for
green and magenta.

from three-dimensional corrugations are large, and, therefore, large effects on the
overlying turbulent flow are produced. The motion inside the longitudinal corrugation
can be visualised by u2 contours in x3–x2 planes; in these circumstances the motion
is rather weak, therefore contours with ∆ = 0.0005 are depicted in figure 5(e–h) in
green for negative and in magenta for positive u2. These images confirm that the
immersed boundary technique reproduces the complexity of the secondary motion,
namely for the corrugation LLS (figure 5e) with w/k= 3 (w is the distance between
two square bars), and LS with w/k = 1. Triangular bars (LT) with s/k = 1 (s is the
width of the base of the triangle) in figure 5(g) show disturbances similar to those in
figure 5( f ) for LS. On the other hand, for the triangular bars with s/k = 0.5 (LTS),
the recirculating motion in figure 5(h) is very weak, and, as a consequence, the
activity of the overlying flow decreases, leading to a reduction of turbulent kinetic
energy and of the drag.

Some of the global results and the resolution for the cases depicted in in figure 5
are reported in the table 1. The resolutions in the streamwise and spanwise directions
are different for transverse, longitudinal and three-dimensional corrugations. The
resolution in x1 for transverse corrugations is dictated in order to have 20 grid points
to describe the square and triangular cavities. For the longitudinal corrugations 16
grid points are used for the solid bars for the LS and LLS cases. For all cases 20
grid points are used to describe the layer with thickness k below the plane of the
crests. This resolution allows us to have a well resolved flow around the corrugation
as is shown in figure 5. It is important to point out that in flow past rough surfaces
the resistance may be evaluated at the plane of the crests. The contributions to it
come from the viscous resistance at the solid walls, at the fluid interface and from
the turbulent contribution given by 〈u2u1〉 generated by the velocity fluctuations inside
the roughness. The balance of the streamwise momentum equation, inside the cavities
below the plane of the crests, shows that 〈u2u1〉 is equal to the viscous and pressure
forces along the solid walls of the cavities (Leonardi et al. 2003). The values of
UW (the mean streamwise velocity at the plane of the crests) in the table shows
that values of UW for the longitudinal bars are greater than those for the transverse
corrugations, implying a decrease of τW = (1/Re)(dU/dx2)|W . Therefore a large drag
reduction should be expected due to this slip condition. As has been demonstrated
by Arenas et al. (2018), if at the plane of the crests the u2 can be, ideally, set equal
to zero for any kind of corrugation, a strong drag reduction is achieved. For the
surfaces, here considered, the largest reduction should be for the LLS configuration.
However, in the real flows, the u2 fluctuations are large, as can be inferred by the
values of 〈u2

2〉W in table 1. The u2 at the plane of the crests generates a turbulent
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Flow l N1 N3 Hfl Rτ 10UW 104
〈u2

2〉W 102uτ 104τW 104
〈u1u2〉W

SM 0 800 128 2.00 204.2 0.0 0.0 4.1678 17.362 0.0
CS 1 800 512 2.295 372.1 1.400 33.11 7.5939 15.279 34.985
TT 2 800 128 2.195 313.3 1.050 14.00 6.3942 20.384 16.882
TS 3 800 128 2.190 238.4 0.369 1.572 4.8497 19.900 1.581
LS 4 256 512 2.200 228.8 1.390 5.285 4.6572 13.609 6.103
LLS 5 256 512 2.323 217.2 4.067 6.384 4.0519 4.376 9.756
LT 6 256 512 2.195 205.7 2.691 3.378 4.1981 9.777 6.280
LTS 7 256 512 2.189 166.8 2.143 0.483 3.4040 9.332 1.256

TABLE 1. Values of some of the global quantities for the simulations at Re= 4900, the
non-uniform grid x2 is the same in all cases with N2= 257 points.

stress 〈u2u1〉W which can be considered as a ‘form’ drag due to the corrugation of the
surfaces, contributing to the total resistance τT = τW − 〈u2u1〉W . The friction velocities
uτ l=

√
τTlRVl (l is an index of the geometry of the surface) show that for the surface

LTS there is a strong and for LLS a negligible drag reduction with respect to that in
the presence of smooth walls (SM). In this expression RVl is given by the ratio of Hfl
with respect to that of the channel with smooth walls (H). Hfl is the ratio between
the volume occupied by the fluid and the area in the homogeneous directions (L1L3).

2.2.3. Viscous and turbulent stresses
From the global results it follows that the statistics of great interest are the viscous

τ = (1/Re)(dU/dx2) in figure 6(a) and the turbulent −〈u2u1〉 in figure 6(b) stresses.
The figures are in semi-log form to emphasise the different behaviour in the region
near the plane of the crests and therefore to illustrate the difference with the well-
known profiles in the presence of smooth walls. Figure 6(a) shows a viscous stress,
at the plane of the crests, for transverse grooves (TS) higher than that of smooth
walls (SM). This occurs despite the presence of a û1|W 6= 0 in the regions of the
cavities. The over-script ·̂ indicates an average in time, in x3 for the transverse, in
x1 for the longitudinal corrugations of the generic quantity q(x1, x2, x3, t). A further
phase average over several elements allows us to have the distribution of û1|W along
the cavity. The distributions of û1|W and of û1 above the cavities vary with the type
of corrugations. In this way it is possible to understand which part of the cavity
contributes more to the reduction of (∂ û1/∂x2)|W . Orlandi et al. (2016), for the TS and
TT surfaces, described in detail the reduction of the viscous stress above the cavity
region. However, the increase of viscous stress in correspondence with the solid leads
to a value of τ in figure 6(a) higher than that of SM. Similar distribution along each
transverse cavity for û1u2|W demonstrates why, in figure 6(b), a small value for TS and
a large value for TT are found. The latter is due to the strong ejections flowing along
the slopes of the triangular cavities (figure 5c). For TT the profiles of the viscous
and the turbulent stress largely differ from those in the presence of smooth walls.
These profiles are those typical of ‘k’ type roughness. Instead, for the TS surface the
profiles are those typical of ‘d’-type roughness. The turbulent stress profile for the
flow past staggered cubes (CS) is the largest among all the cases here studied with a
maximum four times greater than that of smooth walls. Even in this flow the causes of
the increase are the flow ejections from the roughness layer, qualitatively depicted in
figure 5(d). The viscous stress profiles of the longitudinal corrugations in figure 6(a)
are largely reduced with respect to that of the smooth wall, with the smallest values
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FIGURE 6. (Colour online) Profiles of: (a) viscous stress; (b) turbulent stress versus the
distance from the plane of the crests, in computational units; (c) the normal to the wall
stress; (d) the mean velocity subtracted from the velocity at the plane of the crests UW .
In (c,d) the statistics and the distance are in wall units. The flows listed in the legend for
(a) corresponds to those in table 1, (lines Lee & Moser (2015) at Rτ = 180).

for LLS due to the high û1|W generated at the wide interface of the cavity. Figure 5(e)
shows a rather high u2 inside the cavity leading to a turbulent stress three times greater
than the viscous stress at the plane of the crests. The final result leads to a friction
velocity for LLS slightly smaller than that of smooth walls. The other two surfaces
LT and LS, despite the different profiles of the two stresses, lead to similar values of
uτ in table 1. The recirculating motion inside the LS cavity (figure 5f ) is similar to
that inside the LT (figure 5g), therefore the turbulent stress at the plane of the crest
in figure 6(b) is the same. The wider solid surface of LS is the reason why τW in
table 1 is greater than that for LT . These two surfaces have almost the same û1u2|W

therefore the greater uτ is caused by the differences in τW . Thin triangular cavities,
such as those in figure 5(h) (LTS), give at the plane of the crests the same value of
the viscous stress of LT , on the other hand the values of turbulent stress, in figure 6(b),
are drastically reduced in the whole channel leading to a sensible drag reduction. In
fact for LTS uτ is 18 % smaller than for SM.

Our view is that the normal to the wall stress is the fundamental statistic to
characterise wall-bounded flows. The values at the plane of the crests are linked to
the shape of the surfaces. It should be a difficult task to relate it to the kind of surface,
in fact a large number of geometrical parameters enter into the characterisation of a
surface. For instance in figure 6(c) the profile of 〈u2

2〉
+ of LTS do not differ from that
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FIGURE 7. (Colour online) Profiles in wall units of: (a) turbulent kinetic energy, (b) rate
of isotropic dissipation, (c) eddy turnover time, (d) shear parameter for the flows with
rough surfaces listed in the inset in (a), compared with those in the presence of smooth
walls (open circle present at Rτ = 204, lines Lee & Moser (2015) at Rτ = 180).

of TS, the surfaces being completely different. Despite the quantitative differences
with the smooth wall it is interesting to notice that, in a thin layer of a few wall
units, the growth is similar to that for smooth walls, with the exception of the
surfaces with very strong ejections (CS and TT). Orlandi (2013), by investigating the
importance of 〈u2

2〉|
+

W in wall-bounded flows, observed that the roughness function
1U+, evaluated by the profiles of U+−U+W , is proportional to 〈u2

2〉|
+

W . This behaviour
can be qualitatively appreciated in figure 6(d) where the downward shift of the log
law is greater for higher 〈u2

2〉|
+

W . In figure 6(d) the results by Lee & Moser (2015) are
in perfect agreement with the present one corroborating the accuracy of the present
numerics. The differences, in figure 6(c), between the present SM and the Lee &
Moser (2015) profiles should be, in part, attributed to the effect of the Reynolds
number. In fact, in the previous section, large differences have been observed at low
Re, here Rτ = 204 instead in Lee & Moser (2015) Rτ = 180.

2.2.4. Shear parameter
For flows past smooth walls, despite the Re variations for y+ < 30 of the turbulent

kinetic energy and of the rate of energy dissipation in figure 1(c), there was a good
scaling of the eddy turnover time. Figure 7(a) shows unexpected behaviour of q2+

depending on the type of roughness. For instance it is rather difficult to predict the
large increase of q2+ for LLS with respect to that for CS, the differences between the
〈u2u2〉

+ values in figure 6(c) being rather small. The profiles of each normal stress,
which are not reported here, show that the growth of q2+ is due to the large increase
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of 〈u1u1〉
+. The increase of 〈u3u3〉

+, instead, is moderate. The message of figure 7(a)
is that in the region near the plane of the crests the longitudinal grooves generate
values of q2+ greater than those for transverse and three-dimensional corrugations,
due to the large streamwise fluctuations inside the longitudinal cavities. In figure 7(b)
large variations for y+ < 20 of the profiles of the rate of dissipation do not have
the same trend as those of q2+. The LS and the TS surfaces have a high rate of
dissipation, due to large amount of solid at the plane of the crests, generating high
s2+

12 contributing more to ε+ than the other fluctuating shears. Only for the LTS flow
the small fluctuations near the plane of the crests and the small amount of solid
give rise to a rate of dissipation smaller than that of the smooth wall. The profile
of the eddy turnover time of the TS surface, in figure 7(c), is the only one close
to that of smooth walls and the difference is mainly due to the ε+ in figure 7(b).
Interestingly figure 7(c) depicts a completely different behaviour for transverse and
longitudinal corrugations. In the latter q2+/ε+ remains constant while in the former
it decays similarly to the smooth walls. The shear parameter S∗ corroborates the
similarity between the smooth and the TS surfaces, classified as ‘d’-type roughness,
with a weak drag increase with respect to SM. In both surfaces, as well as for
LTS with drag reduction, the maximum is located approximately at y+ = 10. Flow
visualisations for LTS depict the formation of streaky structures similar to those of the
smooth channel. For the other longitudinal corrugations the maximum of S∗, near the
plane of the crests, depends on the type of surface, indicating that the shape of the
surface dictates the structures formation. The values of S∗ suggest for LS coherent
longitudinal structures, these become more strong and coherent for LLS. The low
values S∗ indicate an isotropisation of the structures, that was investigated by Orlandi
& Leonardi (2006) through the profiles of the normal stresses. In figure 7(d) the
collapse of the S∗ profiles in the outer layer, despite the differences near the plane of
the crests, may be a further indication of the validity of the Townsend local similarity
hypothesis (Townsend 1976). To determine the behaviour of the statistics in the outer
region these should be plotted versus the distance from the wall in computational
units. Indeed, the same data plotted in this way show a collapse of S∗ for y > 0.3.
The tendency to a better evidence of the local similarity hypothesis by increasing
the Reynolds number was shown by Orlandi (2013), through the profiles of the three
normal stresses.

2.2.5. Structural statistics
As for the smooth channel an analysis of the kind of structures near the surfaces

can be made by the profiles of (d2
〈u2

2〉/dx2
2)
+. It is worth recalling that positive

values indicate a layer dominated by sheet-like and negative by rod-like structures.
In figure 8 as well as in figure 7(b) differences can be noticed between the present
SM data and those at Rτ = 180 in figure 2(a). The reason should be attributed in
large measure to the different Rτ and in reduced measure to the coarse grid near the
plane of the crests, necessary to have a smooth transition of the resolution on the
flow side to that in the roughness layer. The resolution and the Reynolds number
affect more the profiles of 〈ω2

2〉
+ in figure 8(b) and of ε+ in figure 7(b). Both

figures 8(a) and 8(b) show drastic differences between smooth and rough walls near
the plane of the crests, that tend to disappear far from the wall. For the longitudinal
corrugations, near the plane of the crests, and, in particular, in contact with the solid,
tubular-like structures form, as is qualitatively depicted by the u2 contours in figure 5.
Even for the transverse triangular bar (TT) as well as for the cubes (CS) there is a
tendency to the formation of tubular-like structures. For the flow past the TS surface
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FIGURE 8. (Colour online) Profiles in wall units of: (a) d2
〈u2

2〉/dx2
2 for the flows with

rough surfaces listed in the legend, compared with those in the presence of smooth walls
(open circles for Rτ = 204, lines Lee & Moser (2015) at Rτ = 180). (b) Root mean square
(r.m.s.) of normal to the wall vorticity component for the flows listed. (a,c) Comparison
between the three vorticity components’ r.m.s. for the SM (lines) and those for the TT
(open symbols) flows, (d) the same between SM and LLS, blue indicates i= 3, red i= 2
and green i= 1.

the higher positive peak, in figure 8(a), than that for smooth walls (SM) implies a
large prevalence of the sheet-like structures. This occurrence is also confirmed by
a comparison between figure 5(c,d). Only the LLS surface shows small variations
of −〈Q〉, and once more this occurrence is corroborated by the smooth contours in
figure 5(e) of u2 lying in large structures. The intensification of the contours of u2
near the wedges in figure 5( f,g), relative to the longitudinal corrugations LLS and
LT , explain the negative values of −〈Q〉 near the plane of the crests in figure 8(a).
The locations where −〈Q〉 = 0 varies between y+ = 10 and y+ = 18 are where the
maximum of turbulent kinetic energy production is located, as discussed later on.

Near smooth walls the elongated structures, the so called near-wall streaks, are
usually characterised by regions of negative and positive u1. The same picture is
obtained by contours of ω2, therefore it is interesting to look at the effects of the
shape of the surfaces on the profiles of 〈ω2

2〉
+. In presence of smooth walls the streaky

structures are very intense at the distance where these are generated, accordingly the
peak of 〈ω2

2〉
+ is located at y+≈15. Figure 8(b) shows a different trend, near the plane

of the crests, between the longitudinal and the transverse corrugations. For the TT
and the CS surfaces the small and constants values of 〈ω2

2〉
+ suggest a fast tendency

to the isotropisation of the small scales moving from the plane of the crests towards
the outer region. For the channel with smooth walls Kim, Moin & Moser (1987)
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reported large differences among the profiles of the three vorticity r.m.s. components.
This behaviour is reproduced by the present simulation of the flow past smooth walls
in figure 8(c), rather different from that obtained in the presence of the TT surface.
As for the SM flow 〈ω2

3〉
+ is the greatest component near the wall, but for the TT

decays very rapidly and becomes equal to the other two at a distance y+ = 10 from
the plane of the crests. At y+ = 50 figure 8(c) depicts a rather good isotropisation of
the small scales for both surfaces. On the other hand, for the longitudinal grooves
the anisotropy of the structures may be recognised by the growth of 〈ω2

2〉
+ moving

towards the plane of the crests in figure 8(b). The strong planar motion at the top of
the cavities, in particular for the LS and LT surfaces, causes this growth. This motion
is due to the large u2 fluctuations generated inside the longitudinal cavities depicted
in figure 5( f,g). The large increase of the small scale anisotropy near the plane of
the crests is shown in figure 8(d) by comparing the vorticity r.m.s. profiles for the
LLS surface with those for the SM. In this surface an intense ω2 is generated at the
edge of the longitudinal square bars and the planar motion mentioned above leads
to a high 〈ω2

2〉
+ at the plane of the crests. The other two components do not largely

differ from those of SM near the plane of the crests. These do not show any increase
moving far from the wall, as with that for SM, at y+ ≈ 12, the location of maximum
q2 production. Despite the different trend near the plane of the crests a good isotropy
of the small scales is achieved at y+ ≈ 40. For the drag reducing surface (LTS) these
fluctuations reduce in the region near the plane of the crests (figure 5h), therefore
the strength of small and large scales reduce in accordance with the decrease of q2+

and ε+ in figure 7. In figure 8(b) 〈ω2
2〉
+ for LTS is smaller than that of the other

longitudinal corrugations.

2.2.6. Flow visualisations and statistics
The surface contours of ω2, in the region near the plane of the crests, for the

different corrugations may help to explain what has been previously discussed. The
visualisations are performed by taking only one realisation, from which the r.m.s.
profiles of 〈ω2

2〉 are calculated. The comparison between these profiles, indicated by
lines, and those calculated by taking several fields, indicated by symbols, demonstrates
that the main features, previously described by converged statistics, are captured by
one realisation. This is shown in figure 9(a) and in figure 9(b) through the profiles
of 〈u2

2〉 and of 〈ω2
2〉 in computational units. These profiles show, in figure 9(a), that,

〈u2
2〉 is rather constant near the plane of the crests, and 〈ω2

2〉 depends on the type of
corrugations. In some of the flows, and, in particular, for those with a large resistance
or those with large longitudinal corrugations (LLS) 〈ω2

2〉 decreases moving far from
the plane of the crests. For transverse corrugations 〈ω2

2〉 increases as for smooth
walls. It remains constant in a thick layer for the drag reducing flow (LTS). The
weak u2 fluctuations created by the TS corrugation do not produce large differences
in the near-wall streaks, as it can be appreciated by comparing figure 10(a) for
SM and figure 10(b) for TS. To illustrate the different shapes of ω2 generated near
the corrugations, the surface contours in figure 10 are shown in one fourth of the
computational domain. The strong u2 fluctuations emerging from the CS and the TT
surfaces break the streamwise coherence of the near-wall structures highlighted in
figure 10(c) (TT) and in figure 10(d) (CS). The ω2 surface contours are therefore
clustered in short regions. The tendency towards the isotropisation of the small scales
is also corroborated by visualisations, not shown of ω1 and ω3. The impact of the
geometry surfaces on the ω2 vorticity is depicted in figure 10(e) by the positive
and negative surface contours of ω2 attached to the corners of LLS, spanning the
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FIGURE 9. (Colour online) Profiles in computational units of the r.m.s. of the: (a) normal
to the wall velocity, (b) normal to the wall vorticity components, for the flows with
rough surfaces listed in the legend of (b), symbols show averages in time and in the
homogeneous directions x1 and x3, lines show the same quantities averaged in x1 and x3
of the fields used to get the visualisations of ω2.
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FIGURE 10. (Colour online) Surface contours of ω2 considering only half of the
computational domain in x1 and x3 (red ω2 =+1, yellow ω2 =−1): (a) SM, (b) TS, (c)
TT , (d) CS, (e) LLS, ( f ) LS, (g) LT , (h) LTS.

entire length in the streamwise direction. These vorticity layers are generated by the
strong ∂u1/∂x3 forming near the vertical walls inside the cavities. A similar view is
obtained in the LS (figure 10f ) and LT (figure 10g) corrugations by the layers of ω2
generated near the cavities walls. For LT the ω2 layers are less intense than those for
LS, accordingly to the profiles in figure 9(b). In the drag reducing LTS configuration
the weak motion near the plane of the crest creates a more uniform flow, and the
vorticity structures in figure 10(h) are weak.

2.2.7. Turbulent kinetic energy production
The large dependence of the statistics on the shape of the corrugations should be

also observed in the components of the normal stresses aligned with the eigenvectors
of the strain tensor Sij. As for smooth walls, in this reference system, the stress
Rγ γ aligned with the compressive Sγ and the Rαα aligned with the extensional Sα
strain become of the same order. The stress in the spanwise direction (R33), does not
change, and coincides with Rββ aligned with Sβ = 0. For any surface figure 11(a)
and figure 11(b) show that the stresses aligned with Sγ are greater than those aligned
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FIGURE 11. (Colour online) Profiles in wall units of the stress aligned with: (a) Sα, (b) Sγ ,
of the turbulent kinetic energy production aligned with (c) Sα , (d) Sγ , (e) turbulent kinetic
energy production, ( f ) full rate of dissipation D+k , for the flows with rough surfaces listed
in the legend of (a), compared with those in presence of smooth walls (open circle show
present work at Rτ = 204, lines Lee & Moser (2015) at Rτ = 180).

with Sα. For the longitudinal corrugations Rαα and Rγ γ become very large. This is
mainly due to the growth of R11 in particular for the LLS surface. In this reference
system no one component has a constant trend near the plane of the crests as that
in figure 9(a). The Rαα and the Rγ γ grow or decrease with slopes that depend
on the shape of the surface. The slope is zero for the LT surface. This stress
decomposition allows us to split the turbulent kinetic production Pk = −(Pγ + Pα);
in magnitude Pγ in figure 11(d), is greater than Pα in figure 11(c). Near the walls
the two component have a similar trend with the highest values for the LLS due to
the strong fluctuations generated within the cavities. The increase of Rαα and Rγ γ

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

96
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.96


TKE production and flow structures 917

despite the reduction of Sα and Sγ leads to the increase of P+α and of P+γ . For the
drag reducing surface the components of Pk decrease. These are rather small for
the three-dimensional corrugations. The same trend should be expected for Pk, on
the other hand, figure 11(e) shows a different trend with maximum production for
TT and a sensible reduction for LLS and LS corrugations. In some of the flows the
maximum production is located near the plane of the crests, with the exception of the
LTS and TS surfaces, which do not differ much from the Pk profile in the presence of
smooth walls. The rate of isotropic dissipation ε+ in the region near the plane of the
crests, in figure 7(b), is greater than the production P+k . The trend of the maximum
of ε+ is not similar to that of the production P+k . Near smooth walls, in figure 2, the
same trend for the profiles of P+k and D+k was observed and the difference between
the two was balanced by the turbulent diffusion T+k due to the nonlinear terms. In
figure 11( f ) D+k has been plotted, showing a complex behaviour. For the CS, LT ,
LTS and LS corrugations a trend similar to that of P+k is found while for the other
flows large differences occur. Therefore very large differences should be expected in
the profiles of T+k .

2.2.8. Budgets of turbulent kinetic energy
The simplified turbulent kinetic energy budgets allow us to demonstrate the different

behaviour in the presence of smooth and that in the presence of rough surfaces. In
these circumstances the production Pk is balanced by total dissipation Dk and by Tk,
accounting for the turbulent diffusion and for the correlation between the velocity and
pressure gradient. For smooth walls the three terms are zero at the wall, and grow with
different trends; |Dk| and Tk proportionally to y2 and Pk to y3. The Tk is positive in
the region with −〈Q〉> 0 meaning that the sheet-like structures loose energy towards
the region with −〈Q〉 < 0 where the tubular-like structures prevail. This is depicted
in figure 12(a) with the present data compared with those of Lee & Moser (2015)
at Rτ = 180. The agreement is rather good, with the small differences in D+k and T+k
mainly due to the different Reynolds numbers. The transverse square bars TS show
a trend in figure 12(b) similar to that in figure 12(a). The TS is characterised by
D+k and P+k different from zero at the plane of the crests. This occurrence is due to
the small velocity fluctuations generated inside the square cavities. In the presence of
triangular bars (TT) the strong fluctuations emerging from the cavities produce a high
〈u1u2〉W , therefore the maximum production, in figure 12(c), moves at the plane of
the crests with the consequence of having there a high D+k . In this flow the turbulent
transfer is low and negative near the plane of the crests. This negative contribution is
partially balanced by the positive contribution at the centre of the channel. It is worth
recalling that for smooth walls the total contribution of the turbulent transfer is zero,
for rough surfaces it is smaller than the total production and full rate of dissipation,
but it could be different from zero. The values of the total contribution of each term
are reported in the caption and are indicated with IP for production, ID for dissipation
and IT for transfer. For the CS surface figure 12(d) shows a reduction of P+k and D+k
near the plane of the crests. The large disturbances emerging from the interior of the
surfaces make T+k a sink of energy comparable to the total rate of dissipation. This is
corroborated by the large values −〈Q〉< 0 in figure 8(a) implying the prevalence of
tubular-like structures in this layer. For the LLS corrugation the wide cavity generates
large u2 fluctuations, therefore T+k is a sink of turbulent kinetic energy greater than
D+k (figure 12e), implying the formation of tubular-like structures near the plane of
the crests, as was depicted in figure 8(a). Figure 9(a) shows that the 〈u2

2〉 for LS does
not change too much with respect to that for LLS and therefore the T+k profile in
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FIGURE 12. (Colour online) Profiles in wall units of the simplified budgets: Dk =

ν〈ui∇
2ui〉, Pk=−2〈u2u1〉S, Tk=−((1/2)d〈u2u2

i 〉/dx2+〈ui(∂p/∂xi)〉) (a) SM,4.90,−4.90,0.,
(b) TS, 7.17, −6.94, −0.26, (c) TT, 15.96, −14.37, −1.54, (d) CS, 22.07, −18.48, −3.64,
(e) LLS, 2.36,−2.07,−0.34, ( f ) LS, 6.43,−5.82,−0.80, (g) LT, 4.15,−4.10,−0.16, (h)
LTS, 2.36, −2.45, +0.09, the values of the integrals, the first IP the second ID the third
IT are multiplied by 104, in (a) line Lee & Moser (2015) at Rτ = 180 symbols present
Rτ = 204.

figure 12( f ) is similar to that in figure 12(e). For LS the increase of solid at the plane
of the crests leads to an increase of S greater than the reduction of 〈u2u1〉, as is shown
in figure 6(a,b). This occurrence explains the increase of P+k and D+k in figure 12( f )
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FIGURE 13. (Colour online) Profiles in wall units of: (a) ν+T for the flows with rough
surfaces (symbols) listed in the legend, compared with those in presence of smooth walls
(open circle show present work at Rτ = 204, lines Lee & Moser (2015) at Rτ = 180), (b)
νT |
+

W with solid line 5.5/0.4v′+W , (c) 1U+ with solid line 12.5(v′+W )4, (d) K+S versus v′+W ,
the black symbols from the simulations in Orlandi (2013) the red symbols present results.

with respect to the quantities calculated near the plane of the crests for LLS. For the
triangular (LT) as well as for the square (LS) longitudinal bars, T+k is negative in a
large part of the channel. In figure 12(g) the values of T+k are small, therefore the
energy produced is directly dissipated. For the LTS the u2 fluctuations reduce with
respect to those generated in the LT corrugations (figure 9a), in addition the profiles of
−〈Q〉 for LTS in figure 8(a) are similar to those for TS and consequently the budgets
in figure 12(h) do not differ too much from those in figure 12(b).

2.2.9. Suggestions for RANS closures
The simplified budgets in figure 12 can help to direct the turbulence modellers

to improve the low Reynolds number RANS closures for simulations of flows
past rough surfaces at high Reynolds numbers. For instance the modification of
the Spalart–Allmaras closure proposed by Aupoix & Spalart (2003) requires the
modification of the turbulent viscosity in the wall region, as they reported in their
figure 10. The turbulent viscosity profiles obtained by the present simulations in
figure 13(a) qualitatively agree with the experimental profiles in Aupoix & Spalart
(2003). The correction for the roughness could be achieved by assigning the
value of νT |

+

W at the plane of the crests, that depends on the type of surfaces.
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FIGURE 14. (Colour online) Profiles in computational units of: (a) correlation coefficient
between u1 and u2, for the flows with rough surfaces listed in the inset, (lines Lee &
Moser (2015) at Rτ = 180); (b) quadrant contribution to −Cu1u2 for the SM flow.

However, figure 13(a) shows that the same profile of ν+T may be obtained by
completely different surfaces. Therefore a parametrisation based on the geometrical
properties of the rough surface should be rather difficult. As previously mentioned the
parametrisation based on v′+W =

√
〈u2+

2 〉W could be useful. The arguments in Orlandi
(2013) on the importance of the normal to the wall stress have been qualitatively
reported in commenting the proportionality between the roughness function 1U+ and
v′+W .

The analytical expression 1U+ = B(v′+W /κ), (with B = 5.5 the constant in the
expression of the log law for smooth walls, and κ = 0.4 the von Kármán constant)
fitted well the data obtained by several simulations of flows past rough surfaces. The
data with the black solid symbols in figure 13(c) derived by simulations with one
wall rough and the other smooth, and the present (red squares in figure 13c) with two
rough walls fit well the linear relationship. From the profiles of ν+T in figure 13(a) and
from the profiles calculated by the simulation in Orlandi (2013) the values of νT |

+

W ,
in figure 13(b), fit rather well the expression νT |

+

W = 12.5v′+W
4. Nikuradse (1950) from

a large number of measurements of flow past rough surfaces, made by sand grains
of different size, in which the corrugation cannot be exactly characterised, derived
the expression for the mean velocity in wall units U+ = 8.48 + (1/κ) log(y+/K+S )
where K+S is an equivalent roughness height. From the present results and from
those in Orlandi (2013) the values of K+S are plotted in figure 13(d) versus the
corresponding value of v′+W , showing a good collapse of the data, with the exception
of the simulations having high values of UW at the plane of the crests. In Nikuradse
(1950) an equivalent roughness height was introduced and was not linked to the
shape of the corrugations, the present results suggest the introduction of a value v′+W
equivalent to a roughness height. The passage from an equivalent roughness height to
a normal to the wall stress should be useful in RANS simulation requiring boundary
conditions at y= 0 for turbulent statistics.

2.2.10. Quadrant analysis
The statistics previously discussed depicted large variations near the plane of the

crests that depend on the shape of the surface. The correlation affecting more the
turbulent kinetic energy production is 〈u1u2〉, therefore it is worth analysing the
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profiles of the correlation coefficient Cu1u2 = 〈σ1σ2〉 in figure 14(a) (σi = ui/〈u2
i 〉

1/2).
The interesting feature of this figure consists in a large influence of the type of surface
on the values of −Cu1u2 near the plane of the crests. The satisfactory independence
in the outer region, corroborating the Townsend similarity hypothesis, can be better
appreciated by plotting −Cu1u2 versus y. In the presence of smooth walls from the
Lee & Moser (2015) data it can be observed that −Cu1u2 is almost independent
on the Reynolds number for Rτ > 1000; it grows from a value equal to 0.2 at
the wall to 0.40 at the location of maximum turbulent kinetic energy production.
This correlation coefficient is linked to the flow structures, whose contribution can be
gathered through the quadrant analysis described by Wallace (2016). This contribution
varies across the channel accordingly to the kind of flow structure. For instance
by plotting the contribution of the four quadrants Q1(+σ1, +σ2), Q2(−σ1, +σ2),
Q3(−σ1, −σ2), Q4(+σ1, −σ2) to Cu1u2 across the channel it can be observed that
the second and fourth quadrants prevail over the first and third. The ejection and
sweeps events contribute to Q2 and Q4, and for their relevance has been deeply
investigated. Wallace (2016) defined the events in the first and third quadrants as
outward and inward interactions and their contributions are constant moving far from
the wall, as is shown in figure 14(b). For y+ < 20 Q4 prevails over Q2, and the
location where the two are equal is close to the location of the first change of sign
of (d2

〈u2
2〉/dx2

2)
+ separating the sheet-dominated from the tubular-dominated regions.

For each roughness the profiles of Qi behave similarly to those in figure 14(b). More
interestingly the change of sign between Q4 and Q2 varies accordingly to the variation
of the zero crossing point in figure 8(a).

Figure 11(e) shows that the production of turbulent kinetic energy for smooth walls
grows in the region dominated by the sweep events. The joint p.d.f. P(q1, q2), or more
interestingly the covariance integrated q1q2P(q1, q2), has been calculated at y+≈ 2 for
any surface. This is the distance at which figure 14(a) shows large variations strictly
linked to the different shape of the corrugation. The values of Cu1u2 together with the
contribution of the four quadrants are given in table 2 and are indicated by the black
open squares in figure 14(a). The greater values of Cu1u2 are obtained by the CS and
TT flows for the large increase of the Q4 contribution. The comparison between the
covariance integrated plots for SM (figure 15a) and that for CS (figure 15d) depicts
more minor changes for the quadrant with σ1 < 0 than for those with σ1 > 0. The
same behaviour is observed in figure 15(c) for the TT surface. The contours in the
first quadrant have a complex shape, due to the form of the surface affecting the
ejections of high intensity in the CS and TT surfaces. From visualisations of σ2 it
can be appreciated that, for the corrugations with a large solid region, at the plane
of the crests, the shape of the surfaces is visible up to distances y+ ≈ 10. On the
other hand, from the σ1 contours it is difficult to recognise the shape of the underlying
surface, however it is clear that the elongation of the longitudinal structures is strongly
reduced for the CS and TT surfaces. In the sheet-dominated region the p.d.f. profiles,
evaluated by the joint p.d.f., for the CS and TT surfaces are symmetric for σ2 and
positive skewed for the σ1. Due to the weak σ2 disturbance in the TS flow the profiles
of the quadrant contributions, the covariance integrated contours in figure 15(b) and
the relative p.d.f. do not change much with respect to those of the SM surface. The
−Cu1u2 for the surfaces with longitudinal bars are smaller in particular for the LLS
and the LS surfaces, due to the reduction of Q4 and the increase of Q1. This is clearly
depicted in figure 15(e) and figure 15( f ). The corresponding visualisations, not shown,
emphasise the formation of long streamwise structures with the positive streaks over
the cavities and the negative over the solid. For LLS the magnitude of the peaks in
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ß1

ß1

ß2

ß2

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 15. (Colour online) The covariance integrated q1q2P(q1, q2) at y+ ≈ 5 between
u1 and u2 with contour increments ∆= 0.00001 (a) SM, (b) TS, (c) TT , (d) CS, (e) LLS,
( f ) LS, (g) LT , (h) LTS, the minimum is σi =−4 and the maximum σi = 4.

the layers with σ1 > 0 is smaller than that for LS. The symmetric p.d.f. of σ2 do not
change, instead the p.d.f. of σ1 present, for both surfaces, a sharp decrease leading
to negative values of the skewness coefficient. For the LT and for the LTS surfaces
−Cu1u2 increases with respect to the flows past longitudinal square bars due to the
increase of the Q2 contribution. For LT the highest value of Q2 is given in table 2; it
is confirmed by the contours in figure 15(g).

2.2.11. Turbulent stress visualisations
For the flows past rough surfaces it is interesting to visualise the distribution of

the stresses ulum in planes x1–x3 parallel to the plane of the crests. As was done for
the three-dimensional visualisations of ω2 in figure 10 the stresses are evaluated by
one realisation and are shown only in a quarter of the computational domain. The
subscripts l and m may indicate either the components in the Cartesian reference
system or those in the frame aligned with the eigenvalues of the strain tensor Sij.
The contours in figure 16 are done for ρlm(x1, x3) = (ulum(x1, x3) − Rlm)/Rlm, with
Rlm= (1/N1N3)ΣN1ΣN3ulum(x1, x3), at the distance y+≈ 5 from the plane of the crests.
Usually the streaks are visualised through contours of σ1 producing a picture with
elongated positive and negative regions similar to those in figure 16(a1) for ρ11. The
yellow positive layers have few peaks with high values (magenta coloured) the less
intense blue negative are located in wider elongated structures. The contours of ρ22
in figure 16(b1) depict regions of small size with a large number of intense positive
values. This implies for u2 a large flatness factor, and agrees with the covariance
integrated distribution in figure 15(a). High values of negative ρ12 (green coloured)
can be detected in figure 16(c1), in correspondence of the high values of ρ22. The
contours of the ραα in figure 16(d1) and of ργ γ in figure 16(e1) are similar, and close
to those of ρ11 in figure 16(a1). Rγ γ in figure 11(b) for SM was greater than Rαα in
figure 11(a), this difference, in the visualisations, cannot be appreciated due to the
normalisation of ρlm. The anisotropy at y+ ≈ 5, in the Cartesian reference frame, is
clearly illustrated by comparing figure 16(a1) and figure 16(b1). In the strain rate
reference system the anisotropy is visually appreciated by comparing the contours
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d3)(d1) (d2)

(e3)(e1) (e2)

FIGURE 16. (Colour online) Contours of (a1) ρ11, (b1) ρ22, (c1) ρ12, (d1) ραα, (e1)
ργ γ at y+ ≈ 5 considering only half of the computational domain in x1 and x3 with
increments ∆ = 0.25, yellow positive, blue negative for < 5 magenta positive, for > 5
green negative; left SM, centre LTS, right CS.

of ρββ , not shown and equal to those of ρ33, with those in in figure 16(d1) and in
figure 16(e1).

The figures in the central column for the LTS flow of ρ11 (figure 16a2), ραα
(figure 16d2) and ργ γ (figure 16e2) are similar to those for SM, with more elongated
positive regions due to the effects of the underlying surface, barely visible. On
the other hand, large differences can be appreciated between the contours of ρ22
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(figure 16b2) and ρ12 (figure 16c2) and the corresponding figure for SM in the
left column. For LTS the formation of spanwise coherent structures with intense
positive peaks is clear, in correspondence with these, strong negative ρ12 values
appear. The common features of the LTS and SM surfaces are the strong influence
of the u2 fluctuations on the turbulent stress 〈u1u2〉 and therefore on the production
of turbulence. This is a further proof that the u2 fluctuations are those characterising
wall turbulence. In the presence of smooth walls the streaks do not form in particular
locations. For the LLS corrugations the streaks are linked to the underlying surfaces
as can be observed in visualisations, not shown for sake of brevity. The influence
of the underlying surface can be appreciated in the visualisations for the CS flow
in the right column of figure 16. In this case the disturbances generated within the
roughness layer are strong enough to destroy the near-wall anisotropy. The contours
of ρ11 (figure 16a3), ραα (figure 16d3) and ργ γ (figure 16e3) show that the elongated
streamwise structures are not any more visible, and that their size is approximately
the same as that of ρ22. Therefore the tendency towards the isotropy in the near-wall
layer is clearly depicted. In the presence of strong u2 and u1 disturbances it is found
that the intense negative values of ρ12 in figure 16(c3) are strongly correlated with
those of ρ22 in figure 16(b3) and also with the ρ11. To conclude, the stress distribution
in the near-wall layer is strictly linked to the staggered distribution of the cubes inside
the corrugation.

3. Concluding remarks

This paper is focused on the connection between turbulent structures and production
of turbulent kinetic energy. Emphasis has been directed towards statistics seldom
considered in the analysis of wall-bounded flows. Namely the full dissipation rate,
the shear parameter and different expression for the production of turbulent kinetic
energy. The canonical two-dimensional turbulent channel has been investigated by
taking the data from DNS at high and low friction velocity Reynolds numbers. In a
recent review paper Jiménez (2018) reported the debate about the eventual universality
of wall-bounded flows by increasing the Reynolds number. He shortly discussed the
shear parameter S∗ without discussing the universality of this parameter for y+ < 20.
Since S+ does not vary with the Reynolds number, in the present paper the eddy
turnover time in wall units has been evaluated by DNS data, leading to the conclusion
that it shows a good universality. The eddy turnover time can also be defined as the
ratio between q2+ and the full rate of dissipation D+k , in this case it has been found
that it grows linearly for y+ < 1, and that in the outer region, by increasing the
Reynolds number, tends to a linear growth. The constants of proportionality in the
two regions are different, therefore there is a small layer with constant q2+/D+k
connecting the two regions with linear growth. This layer is located in the region
where the ribbon-like structures overcome the tubular structures, and where the
turbulent kinetic energy grows. The formation of regions with q2+/D+k ∝ y+ can be
a first indication that the flow structures near the wall and those in the outer region
are of the same kind. Those near the wall move fast and those in the outer layer are
slow. The constant of proportionality near the wall is greater than that in the outer
region. From the data it can also be observed that, at Rτ = 5200, in the outer region
the linear growth is not fully established but that there is a tendency to it. However,
our view is that it will be indeed achieved by simulations at a slightly higher Re.
From the data it was also possible to conclude that the maximum turbulent kinetic
energy production scales at high Reynolds numbers and that the maximum is located
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at a distance from the wall where there is the transition between sheet-dominated
and rods-dominated layers. Namely in the region where the ribbon unstable structures
roll-up to become tubular structures. Finally it was found that the rate of isotropic
dissipation largely depends on the Reynolds number, and that the full rate dissipation
does not.

Flows past smooth walls have well-defined boundary conditions for the velocity
fields. These boundary conditions can be varied by changing the shape of the walls.
Through the DNS of flows past several kind of corrugations it was observed that it
is easy to increase the resistance, and rather difficult to reduce it. Drag reduction
is obtained when the viscous stress at the plane of the crests reduces more than
the increase of the turbulent stress 〈u1u2〉. In this regard it is interesting to look at
the results of Arenas et al. (2018) with drag reduction, for any kind of corrugation,
achieved by imposing u2 = 0 at the plane of the crests. In real applications this
is a very difficult task, but from a mathematical point of view is important. The
simulations of flows past several types of corrugations allowed us to reach the
conclusion that a universal behaviour cannot be found. However, the parametrisation
of rough walls can be obtained through the normal to the wall stress at the plane
of the crests. This result can give insight to improve turbulence RANS closures,
for instance the Spalart–Almaras model. It was also observed that in RANS the
reproduction of the turbulent kinetic energy budget is simpler by considering the full
rate of dissipation instead of the isotropic rate of dissipation. The flow structures
near the plane of the crests for corrugations generating intense u2 fluctuations tend
to become more isotropic. For the drag reducing corrugations spanwise coherent
structures form which are easily detected by the u2 contours and even better by
pressure contours. These structures were observed at high Reynolds number by
Raupach, Finningan & Brunet (1996) in flows past canopies. They claimed that these
structures were generated by inflectional velocity profiles similar to those occurring
in mixing layers. In the experiment the drag was greater than that in presence of
smooth walls. Similar conclusions were reached by García-Mayoral & Jiménez (2011)
by simulations of flows past square bars in the case of breakdown of drag reduction
and the spanwise structures were barely visualised. In the present simulations the
spanwise structures were observed only in the drag reducing corrugations and it has
been observed that a large role should be attributed to the pressure. More simulations
are currently being performed to investigate how important these structures are.
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