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Abstract. We compute the homology groups of transformation groupoids associated with
odometers and show that certain (Z o Z2)-odometers give rise to counterexamples to the
HK conjecture, which relates the homology of an essentially principal, minimal, ample
groupoid G with the K-theory of C∗r (G). We also show that transformation groupoids of
odometers satisfy the AH conjecture.
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1. Introduction
Given a decreasing sequence (0i )i∈N of finite-index subgroups of a group 0, there is an
action of 0 on lim

←−
0/0i given by left-multiplication. This action is called an odometer,

and it has been extensively studied.
For example, in [18], Orfanos obtained several properties of crossed products associated

to odometers, in the case where the acting group is amenable. In [12], Ioana studied
these actions in the measurable setting, showing orbit equivalence superrigidity when the
acting group has property (T), and, in [6], Cortez and Medynets studied continuous orbit
equivalence and topological full groups of odometers.

In [15], Matui formulated two conjectures about homology groups and K-theory
of second countable, étale, essentially principal, minimal groupoids with unit space
homeomorphic to the Cantor set. The first one (the HK conjecture) predicts that, given
such a groupoid G, holds:

K∗(C∗r (G))'
⊕
k≥0

H2k+∗(G) for ∗ = 0, 1.

The HK conjecture has been verified for several classes of groupoids (see [10, 19] for
recent developments).

The second conjecture (the AH conjecture) relates the abelianization of the topological
full group of G with the two first homology groups of G. It has been verified for principal,
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almost finite groupoids, and groupoids arising from products of one-sided shifts of finite
type [15].

In this note we show that certain (Z o Z2)-odometers are counterexamples to the
HK conjecture. The particular class of (Z o Z2)-odometers that we consider has already
appeared elsewhere (e.g. in [17, §2.4], [9, Example 7.5] and [20, Example 4.3]). Moreover,
in [1, 10.11.5(c)], using a different picture, Blackadar computed the K-theory of the
crossed products associated to these odometers, and in [13], Kumjian showed that these
crossed products are approximately finite-dimensional (AF).

We also show that the AH conjecture holds for transformation groupoids associated to
odometers.

This paper is organized as follows. In §2 we collect basic facts about odometers, and
characterize when an odometer is topologically free. We also describe the K-theory and
homology of odometers, and we recall the the definitions of ample groupoids and their
homology groups.

In §3 we compute the K-theory and homology of certain (Z o Z2)-odometers and show
that they are counterexamples to the HK conjecture. In §4 we show that transformation
groupoids of odometers satisfy the AH conjecture.

2. Preliminaries
2.1. Odometers. Let 0 be a group and (0i )i∈N a sequence of finite-index subgroups of
0 such that, for every i ∈ N, 0i 
 0i+1.

For each i ∈ N, let pi : 0/0i+1→ 0/0i be the surjection given by

pi (γ0i+1) := γ0i for γ ∈ 0. (1)

Let X := lim
←−
(0/0i , pi )= {(xi ) ∈

∏
0/0i : pi (xi+1)= xi , ∀i ∈ N}. Then X is homeo-

morphic to the Cantor set and 0 acts in a minimal way on X by γ (xi ) := (γ xi ), for γ ∈ 0
and (xi ) ∈ X . This action is called an odometer (the terminology is from [6]). See [8, Fait
2.1.4] and [9, Proposition A.1] for more abstract characterizations of odometers.

Note that, if (xi ), (yi ) ∈ X , and there exists i0 such that xi0 = yi0 , then, for 1≤ i ≤ i0,
we have that that xi = yi .

Given j ≥ 1 and g0 j ∈ 0/0 j , let U ( j, g0 j ):={(xi ) ∈ X : x j=g0 j }. Then {U ( j, g0 j ) :

j ∈ N, g0 j ∈ 0/0 j } is a basis for X consisting of compact-open sets.
Recall that an action of a group 0 on a locally compact Hausdorff space Y is said to

be topologically free if, for each γ ∈ 0\{e}, the set of points of Y fixed by γ has empty
interior.

PROPOSITION 2.1. An odometer 0y X := lim
←−

0/0i is topologically free if and only if,
for every γ ∈ ∩0i\{e} and j ≥ 1, there exists b ∈ 0 j such that b−1γ b /∈ ∩0i .

Proof. Suppose that the 0-action is not topologically free. This implies that there exists
γ ′ ∈ 0\{e} and V ⊂ X non-empty and open such that each x ∈ V is fixed by γ ′. Since
the family {U ( j, g0 j ) : j ∈ N, g0 j ∈ 0/0 j } is an open basis for X , there exist j ∈ N and
g0 j ∈ 0/0 j such that U ( j, g0 j ) is fixed pointwise by γ ′. Since U ( j, g0 j )= gU ( j, 0 j ),
it follows that γ := g−1γ ′g fixes U ( j, 0 j ) pointwise.

https://doi.org/10.1017/etds.2019.13 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.13


Homology of odometers 2543

Given b ∈ 0 j , we have (b0i )i∈N ∈U ( j, 0 j ), hence (γ b0i )= (b0i ). Therefore,
b−1γ b ∈ ∩0i . This concludes the backwards implication.

For the converse, assume that there exist γ ∈ ∩0i\{e} and j ≥ 1 such that, for every
b ∈ 0 j , b−1γ b ∈ ∩0i .

Given (gi0i ) ∈U ( j, 0 j ), by the definition of X , we have that, for i ≥ j , gi ∈ 0 j .
Therefore, for i ≥ j , we have that γ gi0i = gi0i , and this implies that γ gi0i = gi0i for
every i .

Hence, γ (gi0i )= (gi0i ) for any (gi0i ) ∈U ( j, 0 j ), and the action is not topologically
free. �

Example 2.2. Recall that the infinite dihedral group is the semidirect product Z o Z2

associated to the action of Z2 on Z by multiplication by −1.
Let (ni ) be a strictly increasing sequence of natural numbers such that ni |ni+1, for every

i ∈ N. Define 0 := Z o Z2 and, for i ≥ 1, 0i := niZ o Z2. Then ∩0i = {(0, 0), (0, 1)}.
Moreover, for j ≥ 1, we have that (n j , 0)(0, 1)(−n j , 0)= (2n j , 1) /∈ ∩0i . Therefore,
0y lim
←−

0/0i is topologically free.

Given 0y lim
←−

0/0i an odometer such that 0i E 0 for every i , the 0-action is free if
and only if ∩0i = {e} (see [7, §2.1]). Furthermore, if the 0-action is topologically free,
then Proposition 2.1 implies that ∩0i = {e}.

Recall that an action of a group 0 on a set X is said to be faithful if, for every γ ∈ 0\{e},
there exists x ∈ X such that γ x 6= x . The group 0 is said to be residually finite if, for
every γ ∈ 0\{e}, there exist a finite group F and a homomorphism ϕ : 0→ F such that
ϕ(γ ) 6= e.

If there exists a faithful 0-odometer 0y lim
←−

0/0i , then, given γ ∈ 0\{e}, there is
j ≥ 1 such that γ acts non-trivially on 0/0 j . In particular, 0 is residually finite (this
remark is from [4]). Conversely, if 0 is countably infinite and residually finite, there exists
a strictly decreasing sequence (0i ) of finite-index normal subgroups of 0 such that ∩0i =

{e}, and the odometer 0y lim
←−

0/0i is free.

2.2. K-theory of odometers. Given a group 0 acting on a compact Hausdorff space X ,
we will denote the canonical copy of 0 in either C(X)or 0 or C(X)o 0 by (δg)g∈0 .

The next result is an easy consequence of [11, Corollary 2.10].

PROPOSITION 2.3. Let 3 be a finite-index subgroup of a group 0. Then

C(0/3)or 0 ' M0/3(C)⊗ C∗r (3).

Proof. Take representatives g1, . . . , gn for 0/3. For 1≤ i ≤ n and g ∈ 0, let h(i, g) ∈3
and σg(i) ∈ {1, . . . , n} be such that

ggi = gσg(i)h(i, g).

Then there is a surjective ∗-homomorphism ψ : C(0/3)o 0→ M0/3(C)⊗ C∗r (3) such
that

ψ(1{l})= el,l ⊗ 1 and ψ(δg)=
∑

eσg(i),i ⊗ δh(i,g) for l ∈ 0/3 and g ∈ 0.
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Let τ be the canonical faithful tracial state on C∗r (3) and ϕ : M0/3(C)→ C(0/3)
be the canonical conditional expectation. Then ϕ ⊗ τ : M0/3(C)⊗ C∗r (3)→ C(0/3)
is a faithful conditional expectation such that (ϕ ⊗ τ) ◦ ψ is the canonical conditional
expectation from C(0/3)o 0 onto C(0/3). In particular, ψ factors through an
isomorphism from C(0/3)or 0 into M0/3(C)⊗ C∗r (3). �

Hence, given an odometer 0y X = lim
←−

0/0i , we have that C(X)or 0 '

lim
−→

C(0/0i )or 0 ' lim
−→

M0/0i (C)⊗ C∗r (0i ) (this has already been observed in [5]).
Therefore,

K∗(C(X)or 0)' lim
−→

K∗(C∗r (0i )). (2)

2.3. Homology of odometers. Given a group 0, we denote by 0′ its commutator
subgroup. Recall that 0ab := 0/0

′ is the abelianization of 0.
Let3 be a finite-index subgroup of a group 0. Let us recall the definition of the transfer

map tr03 : H∗(0)→ H∗(3) (see, for example, [3, §III.9]).
Consider Z as a trivial 3-module and Z0/3 as a permutation 0-module. Let i :3→

0 be the inclusion and ϕ : Z→ Z0/3 be the additive map given by ϕ(1) := δ3. Then
functoriality of H∗ gives a homomorphism (i, ϕ)∗ : H∗(3)→ H∗(0, Z0/3), which, by
Shapiro’s lemma, is an isomorphism.

Also let ψ : Z→ Z0/3 be the additive map given by

ψ(1) :=
∑

x∈0/3

δx .

Note that ψ is 0-equivariant, hence it induces a homomorphism H∗(ψ) : H∗(0)→
H∗(0, Z0/3). Define tr03 := (i, ϕ)

−1
∗ ◦ H∗(ψ) : H∗(0)→ H∗(3).

For ∗ = 0, tr03 : Z→ Z is multiplication by [0 :3].
Take representatives g1, . . . , gn for 0/3. For 1≤ i ≤ n and g ∈ 0, let h(i, g) ∈3 be

such that ggi = gσg(i)h(i, g) for some σg(i) ∈ {1, . . . , n}. Then, for ∗ = 1, tr03 : 0ab→

3ab is given by

tr03(g0
′)=

n∑
i=1

h(i, g)3′. (3)

PROPOSITION 2.4. Let 0y X = lim
←−

0/0i be an odometer. Then

H∗(0, C(X, Z))' lim
−→
(H∗(0i ), tr0i

0i+1
).

Proof. For i ≥ 1, let pi : 0/0i+1→ 0/0i be as in (1) and qi : Z0/0i → Z0/0i+1 be
given by qi ( f ) := f ◦ pi , for f : 0/0i → Z. Note that C(X, Z) and lim

−→
(Z0/0i , qi ) are

isomorphic as 0-modules. Since homology commutes with direct limits, we obtain that

H∗(0, C(X, Z))' lim
−→
(H∗(0, Z0/0i ), H∗(qi )).

Furthermore, for every i ≥ 1, Shapiro’s lemma gives an isomorphism

ϕi : H∗(0i )→ H∗(0, Z0/0i ).

We claim that H∗(qi ) ◦ ϕi = ϕi+1 ◦ tr0i
0i+1

.
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Indeed, let j : 0i → 0 be the inclusion, ψ : Z→ Z0i /0i+1 be the additive map given by
ψ(1) :=

∑
x∈0i /0i+1

δx and θ : Z0i /0i+1 → Z0/0i+1 be the additive map given by θ(δx )=

δx , for x ∈ 0i/0i+1.
One can readily check that ϕi+1 ◦ tr0i

0i+1
= ( j, θ)∗ ◦ H∗(ψ)= H∗(qi ) ◦ ϕi . This con-

cludes the proof of the proposition. �

In particular, for an odometer 0y X = lim
←−

0/0i , we have that

H0(0, C(X, Z))'
{

m
[0 : 0i ]

∈Q : m ∈ Z, i ≥ 1
}
. (4)

2.4. Ample groupoids. A topological groupoid G is said to be ample if G is locally
compact, Hausdorff, étale (in the sense that the range and source maps r, s : G→ G
are local homeomorphisms onto the unit space G(0)), and the unit space G(0) is totally
disconnected.

Let G be an ample groupoid. The orbit of an x ∈ G(0) is the set r(s−1(x)), and the
groupoid is said to be minimal if the orbit of each point of G(0) is dense in G(0).

A bisection is a subset S ⊂ G such that r |S and s|S are injective. Note that if S is open,
then r |S and s|S are homeomorphisms onto their images.

Now assume that G is an ample groupoid with compact unit space. The topological full
group [[G]] is the group of compact-open bisections U such that r(U )= s(U )= G(0).

There is a homomorphism θ from [[G]] to the group of homeomorphisms of G(0), given
by θU := r ◦ (s|U )−1. If G is essentially principal (i.e. int{g ∈ G : r(g)= s(g)} = G(0)),
then θ is injective.

2.5. Homology of ample groupoids. In this subsection we recall the definition of the
homology groups of an ample groupoid ([15, Definition 2.3]; see also the beginning of
[10, §4]).

Given locally compact, Hausdorff spaces X and Y , a local homeomorphism π : X→ Y
induces a homomorphism π∗ : Cc(X, Z)→ Cc(Y, Z) given by

π∗( f )(y) :=
∑

x∈π−1(y)

f (x).

Given an ample groupoid G, and n ≥ 1, let G(n) be the space of sequences
(g1, . . . , gn) ∈ Gn such that the product g1 . . . gn is well defined. The topology in G(n) is
that inherited from the product topology in Gn .

For i = 0, . . . , n, let di : G(n)
→ G(n−1) be given by

di (g1, . . . , gn) :=


(g2, . . . , gn) if i = 0,

(g1, . . . , gi gi+1, . . . , gn) if 1≤ i ≤ n − 1,

(g1, . . . , gn−1) if i = n.

If n = 1, let d0, d1 : G(1)
→ G(0) be the source and range maps, respectively.
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Clearly, the maps di are local homeomorphisms. Define δn : Cc(G(n), Z)→
Cc(G(n−1)) by

δn :=

n∑
i=0

(−1)i di∗ .

Then
0

δ0
←− Cc(G(0), Z) δ1

←− Cc(G(1), Z) δ2
←− . . .

is a chain complex. Denote by Hn(G) := ker δn/ Im δn+1 its homology groups.

Example 2.5. Let ϕ be an action of a group 0 on a compact, totally disconnected,
Hausdorff space X . As a space, the transformation groupoid G associated with ϕ is G :=
0 × X equipped with the product topology. The product of two elements (h, y), (g, x) ∈
G is defined if and only if y = gx , in which case (h, gx)(g, x) := (hg, x). Inversion is
given by (g, x)−1

:= (g−1, gx). The unit space G(0) is naturally identified with X , and G
is ample. Also, G is essentially principal if and only if ϕ is topologically free, and we have
holds that C∗r (G)' C(X)or 0 and H∗(G)' H∗(0, C(X, Z)).

Given g ∈ 0 and A ⊂ X , notice that s({g} × A)= A and r({g} × A)= g A.

Let us now describe the topological full group [[G]]. Take g1, . . . , gn ∈ 0 and
A1, . . . , An ⊂ X clopen sets such that X =

⊔n
i=1 Ai =

⊔n
i=1 gi Ai (disjoint unions). Then

U :=
⋃n

i=1{gi } × Ai is a compact-open bisection and s(U )= r(U )= X . Therefore, U ∈
[[G]]. Conversely, it is easy to see that any U ∈ [[G]] is as above.

3. Counterexamples to the HK conjecture

In [15], Matui conjectured (HK conjecture) that, given a second countable, étale, minimal,
essentially principal groupoid G with unit space homeomorphic to the Cantor set, the
following statement holds:

K∗(C∗r (G))'
⊕
k≥0

H2k+∗(G) for ∗ = 0, 1.

As in Example 2.2, let 0y X = lim
←−

0/0i , with 0 := Z o Z2 and, for i ≥ 1, 0i :=

niZ o Z2, where (ni ) is a strictly increasing sequence of natural numbers such that, for
i ≥ 1, ni |ni+1. We will compute K∗(C(X)o 0) and H∗(0, C(X, Z)), and conclude that
the transformation groupoids associated to these odometers are counterexamples to the HK
conjecture.

Note that 0/0i can be identified with the abelian group Zni = {0, . . . , ni − 1}. The
action of (1, 0) ∈ 0 on an element (xi ) ∈ lim

←−
Zni is given by summing 1 in each entry, and

the action of (0, 1) ∈ 0 is given by multiplying each entry by −1.

Since 0 ' 0i for every i and K1(C∗(Z o Z2))= 0 ([1, 10.11.5(a)]), it follows from (2)
that K1(C(X)o 0)= 0. In fact, C(X)o 0 is an AF algebra (see [2] or [13]).

One can also compute K0(C(X)o 0) by applying (2), but we will instead make use of
the following result of Bratteli, Evans and Kishimoto [2, Theorem 4.1].
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THEOREM 3.1. Given an action of Z o Z2 on the Cantor set X such that the restricted
Z-action is minimal and (0, 1), (1, 1) ∈ Z o Z2 have at most a finite number m(0,1) and
m(1,1) of fixed points, with m(0,1) + m(1,1) > 0, then K0(C(X)o Zo Z2) is isomorphic to

(1+ (0, 1)∗)
(

C(X, Z)
(1− (1, 0)∗)(C(X, Z))

)
⊕ Zm(0,1)+m(1,1) .

Actually, the hypothesis that (0, 1) or (1, 1) must have at least one fixed point does not
appear in [2, Theorem 4.1], but Thomsen showed in [21] that the theorem is false without
this hypothesis.

In order to apply Theorem 3.1 to the odometers of Example 2.2, we need to compute
the number of fixed points of (0, 1), (1, 1) ∈ Z o Z2.

LEMMA 3.2. Let 0y lim
←−

0/0i as in Example 2.2, and denote by m(0,1) and m(1,1) the
number of fixed points of (0, 1) and (1, 1). Then

m(0,1) =


1 if ni+1/ni is even for infinitely many i,

1 if ni is odd for every i,

2 otherwise,

m(1,1) =

{
1 if ni is odd for every i,

0 otherwise.

Proof. An element (xi ) ∈ lim
←−

Zni is a fixed point of (0, 1) if and only if, for every i ,
xi = 0 or xi = ni/2. Likewise, (xi ) is a fixed point of (1, 1) if and only if xi = (ni + 1)/2
for every i .

Therefore, if ni is odd for every i , then the only fixed point of (0, 1) is (0) and the only
fixed point of (1, 1) is ((ni + 1)/2).

If (ni+1)/ni is even for infinitely many i , then (1, 1) admits no fixed points and the only
fixed point of (0, 1) is (0).

Finally, if there exists i0 such that ni0 is even, but (ni+1)/ni is odd for every i ≥ i0,
and i0 is minimal with these properties, then the only fixed points of (0, 1) are (0) and
(0, . . . , 0, ni0/2, ni0+1/2, . . .). Furthermore, (1, 1) does not admit fixed points. �

PROPOSITION 3.3. Let 0y X = lim
←−

0/0i as in Example 2.2. Then

K0(C(X)o 0)'


{

m
ni
: m ∈ Z, i ≥ 1

}
⊕ Z if ni+1/ni is even for infinitely many i,{

m
ni
: m ∈ Z, i ≥ 1

}
⊕ Z2 otherwise.

Proof. In order to apply Theorem 3.1, let us first compute (C(X, Z)/(1− (1, 0)∗)
(C(X, Z))).

Consider the odometer Zy X = lim
←−

Zni . Notice that (C(X, Z)/(1− (1, 0)∗)(C(X,
Z)))' H0(Z, C(X, Z)). Therefore, by (4),

C(X, Z)
(1− (1, 0)∗)(C(X, Z))

'

{
m
ni
: m ∈ Z, i ≥ 1

}
.
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Given j ≥ 1 and k ∈ Zn j , let U ( j, k) := {(xi ) ∈ X : x j = k}. Observe that
((1, 0)∗)k(1U ( j,0))= 1U ( j,k), and (0, 1)∗(1U ( j,k))= 1U ( j,−k). From these facts, it follows
that (0, 1)∗ acts trivially on (C(X, Z)/(1− (1, 0)∗)(C(X, Z))).

The result now is a consequence of Theorem 3.1 and Lemma 3.2. �

The following lemma will be useful for computing the homology of the (Z o Z2)-
odometers that we are investigating in this section.

LEMMA 3.4. Let σ be an involutive homeomorphism on a compact, totally disconnected,
Hausdorff space Y such that Fσ := {y ∈ Y : σ(y)= y} is finite. Then, for k ≥ 0,
H2k+1(Z2, C(Y, Z))= (Z2)

Fσ .

Proof. By [22, Theorem 6.2.2], we have that

H2k+1(Z2, C(Y, Z))=
{ f ∈ C(Y, Z) : f ◦ σ = f }
{ f + f ◦ σ : f ∈ C(Y, Z)}

.

Let E : ({ f ∈ C(Y, Z) : f ◦ σ = f })/({ f + f ◦ σ : f ∈ C(Y, Z)})→ (Z2)
Fσ be given

by evaluation at the points of Fσ . Clearly, E is a well-defined homomorphism, and we will
show that it is bijective.

For each y ∈ Fσ , take Ay ⊂ Y a clopen set such that Ay ∩ Fσ = {y}, and σ(Ay)= Ay .
Note that E([1Ay ])= δy , for every y ∈ Fσ . Hence, E is surjective.

Let us now verify injectivity of E . Take f ∈ C(Y, Z) such that f ◦ σ = f and E([ f ])=
0. We will show that [ f ] = 0. Clearly, we can assume that f |Fσ = 0. Then f can be written
as a linear combination of functions of the form 1B + 1σ(B), for certain B ⊂ Y clopen sets
such that B ∩ σ(B)= ∅. This concludes the proof of the lemma. �

THEOREM 3.5. Let 0y X = lim
←−

0/0i as in Example 2.2. Then, for k ≥ 1,

H0(0, C(X, Z))=
{

m
ni
: m ∈ Z, i ≥ 1

}
,

H2k(0, C(X, Z))= 0,

H2k−1(0, C(X, Z))=

{
Z2 if ni+1/ni is even for infinitely many i,

(Z2)
2 otherwise.

Proof. As Z o Z2 ' Z2 ∗ Z2, it follows from [22, Corollary 6.2.10] and Proposition
2.4 that, for k ≥ 1, H2k(0, C(X, Z))= 0. Moreover, H0(0, C(X, Z))= {m/ni : m ∈ Z,
i ≥ 1} (see (4)).

Furthermore, from Lemmas 3.2 and 3.4, it follows that, for k ≥ 1,

H2k+1(0, C(X, Z))= (Z2)
r ,

where r = 1 if ni+1/ni is even for infinitely many i , and r = 2 otherwise.
Finally, we compute H1(0, C(X, Z)). For every i , (0i )ab ' Z2 × Z2 with canonical

generators (ni , 0)0′i and (0, 1)0′i . Under these identifications, and using (3), it is easy to
see that tr0i

0i+1
: Z2 × Z2→ Z2 × Z2 is given by tr0i

0i+1
(1, 0)= (1, 0) and

tr0i
0i+1

(0, 1)=

{
(1, 0) if ni+1/ni is even,

(0, 1) otherwise.
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It follows from Proposition 2.4 that H1(0, C(X, Z))= (Z2)
r , where r = 1 if ni+1/ni

is even for infinitely many i , and r = 2 otherwise. �

4. On the AH conjecture for odometers
Let G be a second countable, ample, essentially principal and minimal groupoid with unit
space homeomorphic to the Cantor set. Matui conjectured in [15] (AH conjecture) that
there is an exact sequence

H0(G)⊗ Z2
j
−→ [[G]]ab

I
−→ H1(G)→ 0.

The map I : [[G]]ab→ H1(G) is given by I (U [[G]]′) := [1U ], for U ∈ [[G]] (this is
defined for any ample groupoid with compact unit space).

Let us describe j : H0(G)⊗ Z2→ [[G]]ab, for G an ample groupoid with compact
unit space such that the orbit of each point of G(0) has at least three points. Given
F ⊂ G compact-open bisection such that s(F) ∩ r(F)= ∅, notice that τF := F ∪ F−1

∪

(G(0)
\(s(F) ∪ r(F))) ∈ [[G]]. The map j is the unique homomorphism such that

j ([1s(F)] ⊗ 1)= τF [[G]]′ for each such F . See [16, Theorem 7.2] for a proof that j is
well defined. It is easy to see that I ◦ j = 0.

Given a set X , we denote by SX the group of bijections on X .
The proof of the following lemma uses a technique employed in [14, Proposition 2.1]

and [6, Proposition 4.6].

LEMMA 4.1. Let 3 be a finite-index subgroup of 0 and G the transformation groupoid
associated with 0y 0/3. Then [[G]] '30/3 o S0/3 and [[G]]ab '3ab × (S0/3)ab.

Proof. There is an epimorphism θ : [[G]] → S0/3 given by θU := r ◦ (s|U )−1, for U ∈
[[G]]. Fix representatives g1, . . . , gn for 0/3 and define η : S0/3→ [[G]] by η(σ ) :=⋃n

i=1{(gσ(i)g
−1
i , gi3)}, for σ ∈ S0/3. Note that η is a homomorphism which is a right

inverse for θ . In particular, [[G]] ' ker θ o S0/3. Clearly,

ker θ ' g13g−1
1 × · · · × gn3g−1

n '3
0/3.

Therefore, there is an isomorphism from 3ab × (S0/3)ab into [[G]]ab induced by the
embeddings η : S0/3→ [[G]], defined in the previous paragraph, and ζ :3→ [[G]] given
by ζ(λ) := {(λ, 3)} ∪ ({e} × {3}c), for λ ∈3. �

LEMMA 4.2. Let 3 be a finite-index subgroup of 0 such that [0 :3] ≥ 3, and G the
transformation groupoid associated with 0y 0/3. Then the following sequence is split
exact:

0→ H0(G)⊗ Z2
j
−→ [[G]]ab

I
−→ H1(G)→ 0.

Proof. Identify [[G]]ab with 3ab × (S0/3)ab as in the previous lemma. Note that
(S0/3)ab ' Z2 and, by Shapiro’s lemma, H1(G)'3ab and H0(G)⊗ Z2 ' Z2. Under
these identifications, I :3ab × Z2→3ab is the canonical projection, and j : Z2→3ab ×

Z2 is the canonical inclusion. �
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THEOREM 4.3. Let G be the transformation groupoid associated to an odometer 0y
lim
←−

0/0i . The following sequence is exact:

0→ H0(G)⊗ Z2
j
−→ [[G]]ab

I
−→ H1(G)→ 0. (5)

Proof. Given i ∈ N, let Gi be the transformation groupoid associated to 0y 0/0i .
The result follows from the fact that H∗(G)= lim

−→
H∗(Gi ), [[G]]ab = lim

−→
[[Gi ]]ab and

Lemma 4.2. �

Note that, given an odometer 0y X = lim
←−

0/0i ,

H0(0, C(X, Z))⊗ Z2 '

{
0 if [0i : 0i+1] is even for infinitely many i,

Z2 otherwise.

We do not know whether there is an odometer for which the exact sequence (5) does
not split.
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