
Confirmation Measures and Sensitivity

Olav B. Vassend*y

Stanley Stevens draws a useful distinction among ordinal scales, interval scales, and ratio
scales. Most recent discussions of confirmation measures have proceeded on the ordinal
level of analysis. In this article, I give a more quantitative analysis. In particular, I show
that the requirement that our desired confirmation measure be at least an interval mea-
sure naturally yields necessary conditions that jointly entail the log-likelihood measure.
Thus, I conclude that the log-likelihood measure is the only good candidate interval ðor
ratioÞ measure.

1. Introduction. Suppose our preferred confirmation measure, c, outputs
the numbers cðH1, EÞ5 0.1, cðH2, EÞ5 0.2, cðH3, EÞ5 0.3, cðH4, EÞ5 50
for hypotheses H1, H2, H3, and H4, given evidence E. It is natural to want to
say that H1 and H2 are confirmed to roughly the same ðlowÞ degree by E and
that H4 is confirmed by E to a much higher degree than either H1 or H2. We
might also want to say that the difference in confirmation conferred by E on
H1 as opposed to on H2 is the same as the difference in confirmation con-
ferred by E on H2 as opposed to on H3. If we make any of the preceding
assertions, we are implicitly relying on the assumption that it is legitimate
to interpret the differences between the numbers outputted by measure c. In
other words, we are assuming that c is at least an interval measure in the
terminology of Stevens ð1946Þ. In this article I show how the preceding
assumption, when properly spelled out, places stringent requirements on c
that considerably narrow down the field of potential confirmation measures.
In fact, I show that only the log-likelihood measure meets the requirements.
My argument does not, however, establish that the log-likelihood measure
is the true measure of confirmation; the argument only shows that the log
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likelihood is the only candidate interval or ratio measure. This leaves it open
that there is no adequate confirmation measure that is at least an interval
measure.
I start by laying out my background assumptions in section 2. In section 3,

I make the requirements on c more precise. In section 4, I show how these
requirements entail that c is the log-likelihood measure. In section 5, I dis-
cuss the implications of the argument and consider a couple of objections.

2. Background Assumptions. According to a criterion of confirmation uni-
versally agreed on among Bayesians, E confirms H just in case PrðH |EÞ >
PrðHÞ.1 Although this criterion suffices to answer the binary question whether
E confirms H, it does not answer the quantitative question whether E con-
firms H to a high degree, nor does it answer the comparative question which
of two hypotheses is confirmed more by E.2 In order to answer either of the
preceding types of questions, one needs a confirmation measure that quan-
tifies the degree to which E confirms ðor disconfirmsÞ H. What follows is a
small sample of the measures that have been offered in the literature:

The plain ratio measure, rðH ; EÞ5 Pr ðH jEÞ=PrðHÞ.
The log-ratio measure, lrðH ; EÞ5 logrðH ; EÞ.
The difference measure, dðH ; EÞ5 Pr ðH jEÞ2 PrðHÞ.
The log-likelihood measure, lðH ; EÞ5 log ðPr ðEjHÞ=PrðEj: HÞÞ.
The alternative difference measure, sðH ; EÞ5 Pr ðH jEÞ2 PrðH j: EÞ.3

Since Bayesians analyze confirmation in terms of probability, and since
the probability distribution over the algebra generated by H and E is de-
termined by PrðH |EÞ, PrðHÞ, and PrðEÞ, it has become standard to assume
that any confirmation measure can be expressed as a function of PrðH |EÞ,
PrðHÞ, and PrðEÞ. The preceding assumption is essentially the requirement
that Crupi, Chater, and Tentori ð2013Þ call “formality.” A strong case can,
however, be made for not allowing our measure of confirmation to depend
on PrðEÞ. As Atkinson ð2009Þ points out, if we let cðH, EÞ be a function of
PrðEÞ, then cðH, EÞ can change even if we add to E a piece of irrelevant
“evidence” E 0 that is probabilistically independent of H and E and of their
conjunction. To see this, suppose that cðH, EÞ5 f ðPrðHÞ, PrðH |EÞ, PrðEÞÞ.
Let E 0 be any proposition whatsoever that is independent of H, E, and

1. Disconfirmation happens when the inequality sign is reversed, and when there is an
equality sign we have confirmation neutrality.

2. Carnap ð1962Þ was the first philosopher to draw the distinction among these three
questions.

3. This measure is also sometimes called the Joyce-Christensen measure, after Joyce
ð1999Þ and Christensen ð1999Þ.
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H&E.4 Then cðH, E&E 0Þ 5 f ðPrðHÞ, PrðH |E&E 0Þ, PrðE&E 0ÞÞ 5 f ðPrðHÞ,
PrðH |EÞ, PrðEÞPrðE 0ÞÞ. If f depends on the third argument, we can find
some probability function Pr such that f ðPrðHÞ, PrðH |EÞ, PrðEÞPrðE 0ÞÞ ≠
f ðPrðHÞ, PrðH |EÞ, PrðEÞÞ and thus such that cðH, E&E 0Þ ≠ cðH, EÞ. How-
ever, this is clearly counterintuitive, since E 0 is probabilistically indepen-
dent of H and E and therefore should not have any impact on the confir-
mation of H. So we conclude that f should not depend on PrðEÞ.
Since I find the preceding argument convincing, I assume that the con-

firmation measure we are looking for is of the following form: cðH, EÞ 5
f ðPrðHÞ, PrðH |EÞÞ. Since there is no a priori restriction on what credences
an agent may have except that these credences must lie somewhere in the
interval ½0, 1�, I assume that f is defined on all of ½0, 1� * ½0, 1�. Note that, as
Huber ð2008Þ points out, this is not the same as assuming that any particular
probability distribution Prð*Þ is continuous.
The preceding two assumptions are summed up in the following re-

quirement:

Strong Formality ðSFÞ. Any confirmation measure is of the following form:
cðH, EÞ5 f ðPrðHÞ, PrðH |EÞÞ, where f is a function defined on all of ½0, 1� *
½0, 1�.

It should be noted that SF excludes some of the confirmation measures that
have been offered in the literature.5 I briefly address lingering objections to
SF in section 5. Finally, I also adopt the following convention:

Confirmation Convention ðCCÞ.

cðH ; EÞ :
> 0 if Pr (HjE) > Pr(H),
5 0 if Pr (HjE) 5 Pr(H),
< 0 if Pr (HjE) < Pr(H).

8<
:

CC is sometimes taken to be part of the definition of what a confirmation
measure is ðe.g., by Fitelson 2001Þ. Although I think it is a mistake to think
of CC in this way, I adopt CC in this article for convenience. CC has the
role of setting 0 as the number that signifies confirmation neutrality.

3. TheMain Requirement on c. Suppose we witness a coin being flipped
10 times, and our task is to assign a credence to the proposition that the coin
comes up heads on the eleventh flip. If we do not in advance know anything
about the coin’s bias, it is reasonable to guess that the coin will come up

4. I am of course assuming here that H and E are fixed.

5. In particular, the alternative difference measure.
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heads with probability H/10 on the eleventh flip, where H is the number of
times the coin comes up heads in the 10 initial flips.6 In making this guess,
we are setting our credence in the coin landing heads equal to the observed
frequency of heads. This move is reasonable since the law of large numbers
guarantees that the observed frequency of heads converges in probability to
the coin’s actual bias. The observed frequency of heads does not necessar-
ily equal the coin’s bias after just 10 flips, however. In fact, statistics tells
us that the confidence interval around the observed frequency can be ap-
proximated by ±p̂ z 1=nð Þp̂ð12 p̂Þ½ �1=2, where p̂ is the observed frequency,
n is the sample size ðin this case, 10 coin flipsÞ, and z is determined by our
desired confidence level.
For example, suppose we witness four heads in 10 coin flips and we set

our confidence level to 95%. In that case, z 5 1.96, p̂5 0:4, and the cal-
culated confidence interval is approximately ½0.1, 0.7�. Clearly, the confi-
dence interval in this case is rather large. Given our evidence, we can do no
better than to estimate the coin’s bias as 0.4. However, we also need to
realize that if the 10 flips were repeated, we would probably end up with a
slightly different value for p̂: we should acknowledge that credences are
bound to vary with our varying evidence.
The above example illustrates one way that variability can sneak into our

credences: if our credence is calibrated to frequency data, then our credence
inherits the variability intrinsic to the frequency data. However, even if we
set our credence by other means than frequency data, we must admit that
rational credences are intrinsically somewhat variable. For example, if the
sky looks ominous and I guess that there is a 75% chance that it is going to
rain ðor perhaps my betting behavior reveals that this is my credence that
it is going to rainÞ, I must concede that another agent whose credence ðor
revealed credenceÞ is 74% or 76% is just as rational as I am: I do not have
either the evidence or the expertise to discriminate between these credences.
And even if I do have good evidence as well as expertise, I must admit that
I am almost never in a position where I have all the evidence, and had I been
provided with somewhat different evidence, I would have ended up with a
somewhat different credence.
That our credences are variable is a fact of life that any rational agent

must face squarely. It is not hard to see that this fact also affects Bayesian
confirmation theory. Bayesian confirmation measures are defined in terms
of credences and are therefore infected by the variability inherent in cre-
dences. If Bayesian confirmation measures are necessarily affected by var-
iable credences, I contend that we should want a confirmation measure that
is affected by such variability in a systematic and predictable way. We
should want this even if we only care about the ordinal properties of con-

6. This assumes 0 < H < 10.
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firmation measures. Suppose, for instance, that our confirmation measure is
very sensitive to minor variations in the prior or the posterior. In that case, if
we find out that cðH, EÞ > cðH 0, E 0Þ, we cannot necessarily be confident that
H truly is better confirmed by E thanH0 is by E 0 because a small variation in
our credence in H or H 0 might well flip the inequality sign so that we in-
stead have cðH, EÞ < cðH 0, E 0Þ. In order to be confident that cðH, EÞ really is
better confirmed than cðH 0, E 0Þ, we need to be assured that the inequality
sign is stable. Now, we can be assured that the inequality is stable as long
as cðH, EÞ2 cðH 0, E 0Þ is of “significant size.” But in order for us to be able
to determine that cðH, EÞ2 cðH 0, E 0Þ is “of significant size,” we need to be
able to draw meaningful and robust conclusions from this difference.
Thus, even ifwe are primarily interested in the ordinal ranking of evidence-

hypothesis pairs provided by c, we still want to be able to draw conclusions
from the difference cðH, EÞ 2 cðH 0, E 0Þ. However, if c is very sensitive
to small variations in the priors or posteriors of H and H 0, then the quantity
cðH, EÞ 2 cðH 0, E 0Þ is unstable: it could easily have been different, since
our priors or posteriors could easily have been slightly different ðe.g., if we
calibrated our priors to frequency dataÞ. We are therefore only justified in
interpreting the difference cðH, EÞ 2 cðH 0, E 0Þ if c is relatively insensitive
to small variations in the priors and posteriors.
Suppose, moreover, that slight variations in small priors ðor posteriorsÞ

have a larger effect on c’s output than do slight variations in larger priors.
Then we cannot compare the quantity cðH, EÞ 2 cðH 0, EÞ to the quantity
cðH 00, EÞ 2 cðH 0, EÞ unless our prior credences in H 00 and H are approxi-
mately the same. In order for us to be able to compare cðH, EÞ2 cðH0, EÞ to
cðH 00, EÞ 2 cðH 0, EÞ in cases in which our prior credences in H 00 and H are
very different, we need c to be uniformly insensitive to small variations in
the prior ðand the posteriorÞ. We can sum up the preceding two remarks as
follows:

Main Requirement ðMRÞ. We are justified in interpreting and drawing
conclusions from the quantity cðH, EÞ 2 cðH 0, E 0Þ only if c is uniformly
insensitive to small variations in PrðHÞ and PrðH |EÞ.

As it stands, MR is vague. What counts as a small variation in a credence?
Moreover, what does it mean, concretely, for c to be uniformly insensitive
to such variations? To get a better handle on these questions, let us for-
malize the important quantities that occur in MR. Following SF, we are
assuming that c is of the form cðH, EÞ5 f ðPrðHÞ, PrðH |EÞÞ. For simplicity,
let us put PrðHÞ5 x and PrðH |EÞ5 y, so that c5 fðx, yÞ.According to MR,
we require that f be uniformly insensitive to small variations in x and y. I
will use vðp, εÞ to capture the notion of a small variation in the probability
p, where ε is a parameter denoting the size of the variation. Moreover, I
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will use Dx
εcðx; yÞ to denote the variation in c that results from a variation of

size ε about x. That is to say,

Dx
εcðx; yÞ5 f ðvðx; εÞ; yÞ2 f ðx; yÞ: ð1Þ

Similarly, I will use Dy
εcðx; yÞ to denote the variation in c that results from

a variation of size ε about y. Thus,

Dy
εcðx; yÞ5 f ðx; vðy; εÞÞ2 f ðx; yÞ: ð2Þ

The next step is to get a better grip on MR by investigating the terms that
occur in ð1Þ and ð2Þ. In sections 3.1–3.3, that is what I do.

3.1. What Is Uniform Insensitivity? First, the demand that c be uni-
formly insensitive to variations in the prior and the posterior now has an easy
formal counterpart: it is simply the demand that for different values x1, x2, y1,
and y2 of x and y, we have D

x1
ε cðx1; y1Þ5 Dx2

ε cðx2; y2Þ5 Dx2
ε cðx2; y1Þ, and so

on, and Dy1
ε cðx1; y1Þ5 Dy2

ε cðx2; y2Þ5 Dy2
ε cðx1; y2Þ, and so on. Thus, across

different values of x and y, a small variation in c will mean the same thing.
More important, this means that we can consider Dx

εcðx; yÞ as purely a
function of ε, and likewise for Dy

εcðx; yÞ. From now on, I therefore write

gðεÞ ≔ Dx
εcðx; yÞ:

hðεÞ ≔ Dy
εcðx; yÞ:

ð3Þ
ð4Þ

In order to figure out what the requirement that c be insensitive to small
variations amounts to, we need to figure out how to quantify variations in
credences. It is to this question that I now turn.

3.2. What Is a Small Variation in a Credence? Given a credence
x, what counts as a small variation in x? This question turns out to have a
more subtle answer than one might expect. Using the notation from equa-
tions ð1Þ and ð2Þ, what we are looking for is the form of the function vðx, εÞ.
Perhaps the most natural functional form to consider is the following one:
vðx, εÞ 5 x 1 ε. On this model, a small variation in the probability x is
modeled as the addition of a ðsmall positive or negativeÞ number to x. How-
ever, if we consider specific examples, we see that this model is too crude. For
example, supposing that x 5 0.5, we might consider 0.05 a small variation
relative to x. But if we consider x5 0.00001 instead, then 0.05 is no longer
small relative to x; instead, it is now several orders of magnitude bigger.
The above example shows that the additive model cannot be right. An

easy fix is to scale the size of the variation with the size of x. In other
words, we might suggest the following form for v: vðx, εÞ 5 x 1 xε. This
adjustment solves the problem mentioned in the previous paragraph. Ac-
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cording to the new v, a variation of size 0.025 about 0.5 is “equal” to a
variation of 0.0000005 about 0.00001. In contrast to the previous additive
model, vðx, εÞ 5 x 1 xε is a “multiplicative” model of variability, as we
can see by instead writing it in the following form: vðx, εÞ 5 xð1 1 εÞ.
However, the multiplicative model, although much better than the ad-

ditive model, is still insufficient. One problem is purely mathematical. Since
vðx, εÞ is supposed to correspond to a small shift in probability, we should
require that 0 ≤ vðx, εÞ ≤ 1, for all values of x and ε. However, x 1 xε can
easily be larger than 1, for example, if x 5 0.9 and ε 5 0.2.7 The other
problem is that vðx, εÞ treats values of x close to 0 very differently from
values of x close to 1. For instance, a variation where ε5 0.1 will be scaled
to 0.001 when x5 0.01. But when x5 0.99, the same εwill be scaled to just
0.099. This is very problematic, since for every hypothesis H in which we
have a credence of 0.99, there corresponds a hypothesis in which we have
a credence of 0.01, namely, :H. But a small variation in our credence in
H is necessarily also a small variation in our credence in :H, simply be-
cause Prð:HÞ 5 1 2 PrðHÞ: H and :H should therefore be treated sym-
metrically by v. There is an easy fix to both of the preceding problems: if we
scale ε by xð1 2 xÞ instead, then first of all we have 0 ≤ x 1 εxð1 2 xÞ ≤ 1,
and thus 0 ≤ vðx, εÞ ≤ 1. Second of all, H and :H are now treated sym-
metrically. From the preceding considerations, we therefore end up with the
following functional form for v: vðx, εÞ 5 x 1 xð1 2 xÞε.
There is a completely different argument by which we can arrive at the

same functional form for v. As I mentioned in the example at the beginning
of section 3, credences are sometimes calibrated to frequency data. This is,
for example, usually the case if H is a medical hypothesis. Suppose H
represents the hypothesis that a person P has disease X, for instance. The
rational prior credence in H ðbefore a medical examination has taken placeÞ
is then the frequency of observed cases of X in the population from which
P is drawn. The frequency of observed cases of X can be modeled as the
outcome of a binomial process having mean PrðHÞ and variance propor-
tional to PrðHÞð12 PrðHÞÞ. Suppose we observe the frequency frðĤÞ. Then
the estimated variance is proportional to frðĤÞð12 frðĤÞÞ. The variance is
maximal at frðĤÞ5 0:5 and decreases as frðĤÞ moves closer to 0 or to 1.
Arguably, it makes a lot of sense in this case for the variability in one’s
credence to vary with the variance in the frequency data. But that is exactly
what vðx, εÞ 5 x 1 xð1 2 xÞε does: it scales credence variability by the
variance in the data.
From all the preceding considerations, I conclude that what follows is the

most plausible functional form for v:8

7. This is also a problem for the additive model.

8. I do not claim to have excluded all other possible functional forms for v.
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vðx; εÞ5 x1 xð12 xÞε: ð5Þ

3.3. Uniform Insensitivity to Small Variations in the Prior and
Posterior. The next step is to understand what insensitivity amounts to.
To say that c is insensitive to small variations in the prior or posterior is to
say that such variations have a small effect on confirmation: the most nat-
ural way to formalize this requirement is in terms of continuity. Since gðεÞ
represents the change in confirmation resulting from a change ðby εÞ in
probability, a natural continuity requirement for c would be that g and h
should be continuous at 0.
However, continuity is too weak a requirement. Even if a function is

continuous, it is still possible for it to be very sensitive to small variations.
For instance, the function f ðxÞ 5 1,000,000x is continuous ðeverywhereÞ
but is at the same time very sensitive to small perturbations of x. Sensitivity
to perturbations is most naturally measured by looking at how the derivative
behaves. Minimally, we should therefore require that g and h be differen-
tiable at 0. The next natural requirement would be to demand that the de-
rivative of both g and h be bounded by some “small” number. Of course,
pursuing such a requirement would require a discussion of what is to count
as a “small” number in this context. Since I do not actually need a re-
quirement of this sort in my argument in the next section, I will not pursue
a discussion of these issues here. The only upshot from this section is
therefore that g and h should be differentiable at 0.

4. The Main Result. Let me summarize where we are. Our desire to be
able to draw conclusions from differences in confirmation, that is, from ex-
pressions of the form cðH, EÞ2 cðH 0, E 0Þ, led us to the requirement that c be
uniformly insensitive to small variations in PrðHÞ and PrðH |EÞ. In sections
3.1–3.3, I made the various components of this requirement more precise.
Putting all these components together, we have

Formal Version of the Main Requirement ðMRÞ. We are justified in
drawing conclusions from the difference cðH, EÞ 2 cðH 0, E 0Þ only if the fol-
lowing conditions are all met:

1. f ðvðx; εÞ; yÞ2 f ðx; yÞ5 gðεÞ, where
2. gðεÞ does not depend on either x or y
3. gðεÞ is differentiable at 0
4. vðx; εÞ5 x1 xð12 xÞε
5. f ðx; vðy; εÞ2 f ðx; yÞ5 hðεÞ, where
6. hðεÞ does not depend on either x or y
7. hðεÞ is differentiable at 0.
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Note that 5–7 are just 1–3 except that they hold for h instead of for g. Note
also that MR is essentially epistemic. It says that “we” ði.e., agents in-
terested in confirmationÞ are only justified in drawing conclusions ðof any
kindÞ from cðH, EÞ 2 cðH 0, E 0Þ if certain formal conditions are met. These
conditions ensure that cðH, EÞ behaves reasonably well. Together with SF
and CC, the conditions in MR entail the log-likelihood measure, as I show
next.

Main Result. If MR is true, SF is assumed, and CC is adopted as a con-
vention, then

cðH ; EÞ5 log
PrðE jHÞ
PrðE j: HÞ ;

where the identity is unique up to multiplication by a positive number.

Proof. Starting with 1 from MR, we have

f ðvðx; εÞ; yÞ2 f ðx; yÞ5 gðεÞ: ð6Þ

If we divide each side by xð1 2 xÞ ε, we get

f ðvðx; εÞ; yÞ2 f ðx; yÞ
xð12 xÞε 5

gðεÞ
xð12 xÞε : ð7Þ

Next, we let ε → 0:

lim
ε→0

f ðvðx; εÞ; yÞ2 f ðx; yÞ
xð12 xÞε 5 lim

ε→0

gðεÞ
xð12 xÞε : ð8Þ

Since g is differentiable at 0 ðfrom part 3 of MRÞ, the right-hand side of the
above equation is just 1=xð12 xÞ½ �g0ð0Þ. Since the limit exists on the right-
hand side of the equation, it must exit on the left side as well. But the left
side is just y=yxð Þf ðx; yÞ. We therefore have

y
yx

f ðx; yÞ5 1

xð12 xÞ g
0ð0Þ: ð9Þ

Next, we take the antiderivative of each side of ð9Þ with respect to x. Since g
and hence g 0ð0Þ does not depend on x ðfrom part 2 of MRÞ, we have

f ðx; yÞ5 g0ð0Þðlog x2 logð12 xÞÞ1 C: ð10Þ
Here, C is a number that depends on y but not on x. If we perform the above
calculations again starting instead with f ð0:5; vðy; εÞÞ2 f ð0:5; yÞ5 hðεÞ
and using ð10Þ, we find that
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C 5 h0ð0Þðlog y2 logð12 yÞÞ1 K: ð11Þ

Here, K is just a constant ði.e., it depends on neither x nor yÞ. We therefore
have

f ðx; yÞ5 g0ð0Þðlog x2 log ð12 xÞÞ1 h
0ð0Þðlog y2 logð12 yÞÞ1 K:

ð12Þ
Now set x 5 y 5 0.5. The second part of CC then entails that K 5 0. Next,
set x 5 y. Then CC entails

g0ð0Þðlog x2 log ð12 xÞÞ1 h0ð0Þðlog x2 logð12 xÞÞ5 0: ð13Þ

This in turn entails that g0ð0Þ 5 2h0ð0Þ. Thus, we have
f ðx; yÞ5 2h0ð0Þðlog x2 log ð12 xÞÞ1 h0ð0Þðlog y2 logð12 yÞÞ

5 h
0ð0Þlog y

12 y
� 12 x

x
:

ð14Þ

ð15Þ

Remembering that x5 PrðHÞ and y5 PrðH |EÞ, ð14Þ and ð15Þ together with
SF entail

cðH ; EÞ5 f ðPrðHÞ; PrðHjEÞÞ

5 h0ð0Þlog PrðHjEÞ
12 PrðHjEÞ � 12 PrðHÞ

PrðHÞ

5 h0ð0Þlog PrðHjEÞ
PrðHÞ � Prð:HÞ

Prð:HjEÞ

5 h0ð0Þlog Pr ðHjEÞ � PrðEÞ
PrðHÞ � Prð:HÞ

Pr ð:HjEÞ � PrðEÞ

5 h0ð0Þlog PrðEjHÞ
PrðEj:HÞ :

ð16Þ

ð17Þ

ð18Þ

ð19Þ

ð20Þ

Finally, CC entails that h0ð0Þ must be a positive number. Thus, cðH, EÞ 5 l,
up to multiplication by a positive number. QED

5. Discussion and Objections. In the previous section, I showed that MR,
SF, and CC jointly entail the log-likelihood confirmation measure, l. The
proof entails l up to multiplication by a positive number. That is to say, if
logðPrðEjHÞ/PrðEj:HÞÞ is a legitimate confirmation measure, then so is a�
logðPrðEjHÞ/PrðEj:HÞÞ, for a > 0; the argument does not establish that any
particular logarithmic base is better than another. In Stevens’s ð1946Þ ter-
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minology, our measure is apparently a ratio measure, meaning that we are
justified in interpreting both intervals and ratios between outputs of the
measure. Analogously, mass is also a ratio measure since it makes sense to
say both that the difference between 2 and 4 kilograms is the same as the
difference between 4 and 6 kilograms and that 4 kilograms is twice as big as
2 kilograms. It therefore appears that my conclusion is stronger than what I
set out to establish: in the introduction, I said that the goal was to find a
confirmation measure that can be interpreted as at least an interval measure.
But the proof in the previous section actually establishes that l is a ratio
measure under the conditions specified.9

The second thing to notice about my argument is that it does not actually
establish that the log-likelihood measure is the true confirmation measure.
This is because MR merely gives necessary conditions and no sufficient
ones. Thus, what my argument shows is really a conditional statement: if
there is any interval confirmation measure, then that measure is l. The pre-
ceding conditional is, of course, equivalent to the following disjunction:
either there is no interval confirmation measure or the only interval con-
firmation measure is l.
The third and final observation I will make about the argument is that it

clearly depends very much on the choice of v. In section 3.2 I considered and
rejected two other measures of variability: the additive measure, vðx, εÞ 5
x 1 ε, and the multiplicative measure, vðx, εÞ 5 x 1 xε. It is natural to ask
what confirmation measures we end up with if we instead use these alter-
native measures of credence variability. The answer, although I will not
show this here, is that the additive measure yields the difference confirma-
tion measure, d, whereas the multiplicative measure yields the log-ratio
confirmation measure, lr. We can therefore see that d and lr “embody”
defective measures of credence variability: arguably, that is a strike against
these measures.
Next, I consider a couple of objections to the argument. First, my argu-

ment is obviously only sound if the assumptions in MR are correct. How-
ever, the assumptions in MR might remind the reader of assumptions made
in Good ð1960, 1984Þ and Milne ð1996Þ. These assumptions have been
criticized by Fitelson as being “strong and implausible” ð2001, 28–29 n. 43Þ
and for having “no intuitive connection to material desiderata for inductive
logic” ð2006, 506 n. 12Þ.
Why does my argument escape Fitelson’s criticisms? How is my argu-

ment different from the arguments made by Good and Milne? The answer is
that, whereas Good and Milne are not interested in the interval properties of
their confirmation measures, and the various mathematical assumptions
they make therefore seem unmotivated, all the properties listed in MR arise

9. I owe thanks to a reviewer who persuaded me of this.
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naturally out of our wish to have a confirmation measure that is at least an
interval measure.
Finally, one may object to some of the other background assumptions

I make in section 1. In particular, SF may be accused of being too strong
since it excludes the alternative difference measure right off the bat. My
reply to this objection is as follows: the argument in section 4 can be car-
ried out without SF, but the resulting analysis does not yield the alternative
difference measure or any other recognizable confirmation measure. Thus,
even if one rejects SF, one cannot use the type of argument I have given
in this article to argue for the alternative difference measure or other stan-
dard measures that depend nontrivially on PrðEÞ.10

6. Conclusion. I have argued that there is a set of conditions that any
confirmation measure must meet in order to justifiably be interpreted as an
interval measure. Furthermore, I have shown that these necessary condi-
tions, together with an additional plausible assumption and a widely ac-
cepted convention, jointly entail the log-likelihood measure. My argument
does not show that l is an interval measure, but it does show that it is the
only measure that stands the chance of being one. Nor does the argument
in this article show that l is the “true” confirmation measure. However, to
the extent that we care about our measure’s being an interval measure, we
should regard the conclusion in this article as favoring l as our preferred
measure.
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