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SUMMARY
This paper considers the problem of controlling the motion
of nonholonomic mechanical systems in the presence of
uncertainty regarding the system model and state. It is
proposed that a simple and effective solution to this problem
can be obtained by first using a reduction procedure to
obtain a lower dimensional system which retains the
mechanical system structure of the original system, and then
adaptively controlling the reduced system in such a way that
the complete system is driven to the goal configuration. This
approach is shown to be easy to implement and to ensure
accurate motion control despite measurement and model
uncertainty. The efficacy of the proposed control strategy is
illustrated through computer simulations and preliminary
hardware experiments with nonholonomic mechanical sys-
tems arising from both explicit kinematic constraints and
symmetries of the system dynamics.

KEYWORDS: Nonholonomic systems; Reduction; Adaptation;
Motion control.

1. INTRODUCTION
There is significant interest in controlling the motion of
mechanical systems in the presence of uncertainty regarding
the system model and state. This challenging problem
becomes even more difficult when the system is “under-
actuated”, that is, possesses fewer actuators than
configuration degrees of freedom. A particularly interesting
class of underactuated systems consists of those systems for
which only a proper subspace of the space of generalized
velocities is accessible at each configuration. This situation
occurs, for instance, when a system is subject to non-
holonomic (nonintegrable) constraints on its kinematics,
and can also arise in systems with symmetric dynamics. As
we shall see, (classical) nonholonomic systems and sym-
metric systems possess a very similar structure, and we will
find it convenient in what follows to refer to both classes of
systems as nonholonomic systems. Observe that non-
holonomic systems are of considerable importance in
applications. For example, nonholonomic constraints arise
in systems with rolling contact, such as wheeled (and other)
mobile robots and multifingered robotic hands, and in
symmetric systems when the symmetry leads to non-
integrable constraints, such as space robots with angular
momentum conservation.

One consequence of the practical importance of non-

holonomic mechanical systems is that the problem of
controlling the motion of these systems in an effective
manner has attracted considerable attention in recent years.
Most of the work reported to date on controlling non-
holonomic systems has focused on the kinematic control
problem, in which it is assumed that the system velocities
are the control inputs and that the system can be adequately
represented using the system kinematic model. However,
there are important reasons for formulating the non-
holonomic system control problem at the dynamic control
level, where the control inputs are those produced by the
system actuators and the system model contains the
mechanical system dynamics. For example, since this is the
level at which control actually takes place in practice,
designing controllers at this level can lead to significant
improvements in performance and implementability and can
help in the early identification and resolution of difficulties.
It is interesting to consider the problem of controlling
holonomically constrained robotic manipulators in this
regard: the kinematic control problem in this case is trivial,
but the dynamic control problem is nevertheless quite
challenging. Another motivation for considering the
dynamic control problem is that certain classes of non-
holonomic systems are most naturally studied at this level,
so that such an approach broadens the scope of potential
applications. Recognizing the importance of addressing the
nonholonomic system control problem at the dynamic
control level, several researchers have considered this
problem in recent years [e.g. references 1–5]. Significant
progress has been made in understanding the fundamental
characteristics of these systems, and several useful dynamic
controllers have been proposed. However, virtually all of the
dynamic control strategies proposed to date have been
developed by assuming that the full dynamic model is
precisely known and that the entire system state is
measurable. Exceptions to this trend include the papers,6–8

which propose control strategies that can compensate for the
effects of dynamic model uncertainty, and the paper,8 which
presents a controller that can be implemented without
system velocity measurements.

Our own work in the area of uncertain nonholonomic
mechanical system control consists of the papers9,10 and the
present contribution. The main result in reference [9] is a
class of algorithms for controlling a nonholonomic system
to a desired configuration by first planning and then tracking
an appropriate trajectory, while the work in reference [10]
extends this result by providing an algorithm for stabilizing
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a nonholonomic system to a goal configuration. Each of the
controllers given in references [9,10] can be implemented
without knowledge of the system dynamic model and each
is verified through an extensive computer simulation study.
The present paper proposes that a simple and effective
solution to the problem of controlling uncertain non-
holonomic mechanical systems can be obtained by
employing a combination of reduction and adaptation. The
process of reduction, taken from geometric mechanics [e.g.
reference 11], permits the original mechanical system
dynamics to be represented in terms of another mechanical
system of reduced dimension plus an associated kinematic
map. This reduced system is then made to track any desired
trajectory in the space of the “reducing” coordinates, using
only configuration measurements and without knowledge of
the reduced system model, by employing the performance-
based adaptive control methodology recently developed by
the authors [e.g. references 12, 13]. Techniques based on
differential flatness14 and geometric phase11 are presented
for choosing a trajectory for the reducing coordinates which
produces the desired motion for the complete system, and a
method is given for accomplishing this objective even if
there is (linearly parameterizable) uncertainty in the non-
holonomic constraints. The efficacy of the proposed
approach is illustrated through both computer simulations
and preliminary hardware experiments with two classes of
nonholonomic mechanical systems: those with explicit
constraints on the system kinematics, such as arise in
systems with rolling contact, and those with constraints
which result from the presence of a symmetry of the system
dynamics, such as occur in systems for which angular
momentum is conserved.

2. PROPOSED CONTROL METHOD
In this section we consider the motion control problem for
uncertain nonholonomic mechanical systems. We begin by
applying the process of reduction [e.g. reference 11] to the
original nonholonomic mechanical system model to obtain a
new system model consisting of the reduced order mechan-
ical system plus an associated kinematic map. This
reduction process is carried out for nonholonomic mechan-
ical systems arising from both explicit kinematic constraints
and symmetries of the system dynamics, and indeed this
reformulation clearly exhibits the structural similarity of
these two classes of systems. We then show how adaptation
can be used to permit these (reduced) nonholonomic
mechanical systems to be accurately controlled despite the
presence of model and measurement uncertainty.

2.1 Reduction
Consider first the class of nonholonomic mechanical
systems arising from the presence of explicit constraints on
the system kinematics; these systems can be modeled as
[e.g. reference 1]

M(x)T = H*(x)ẍ + V*cc(x, ẋ)ẋ+G*(x) + AT(x)l (1a)

A(x)ẋ = 0 (1b)

where xPRn is the vector of system generalized coor-
dinates, T P Rp is the vector of actuator inputs,

M : Rn→Rn3 p is bounded and of full rank, H* : Rn→Rn3 n is
the system inertia matrix, V*cc : Rn

3 Rn→Rn3 n quantifies
Coriolis and centripetal acceleration effects, G* : Rn→Rn

arises from the system potential energy, A : Rn→Rm3 n is a
bounded full rank matrix quantifying the nonholonomic
constraints, lPRm is the vector of constraint multipliers,
and all functions are assumed to be smooth. The mechanical
system dynamics (1) possesses considerable structure. For
example, for any set of generalized coordinates x, the matrix
H* is symmetric and positive definite, the matrix V*cc

depends linearly on ẋ, and the matrices H* and V*cc are
related according to Ḣ*=V*cc +V*cc

T. Additionally, we will
assume in what follows that the inertia matrix H* and
potential energy gradient G* are bounded functions with
bounded first partial derivatives; these latter properties hold
for virtually all mechanical systems of practical interest.

The rows of A, say aiPR13 n for i=1, 2, . . . , m, are
smooth covectors on the configuration space Rn which
quantify explicit kinematic constraints imposed on the
system velocities. These constraints could arise from rolling
contact, for example. We will assume that these constraints
cannot be integrated to yield constraints on the configura-
tion coordinates x; this assumption is made more precise
below. It is well-known that the presence of these non-
holonomic constraints complicates the control problem
considerably. For instance, in this case the basic problem of
stabilizing the system (1) to some goal configuration xd

cannot be solved using standard techniques.15,16 This
difficulty is only increased in the case of control in the
presence of measurement and model uncertainty. One
means of simplifying the problem of controlling these
systems is to employ a reduction procedure to decrease the
dimension of the dynamics (1). Observe that the assumption
that A is full rank implies that the codistribution spanned by
the rows ai has dimension m. The annihilator of this
codistribution is then an r = n2m dimensional smooth
distribution D=span[r1(x), r2(x), . . . , rr(x)], where the ri are
smooth vector fields on the configuration space which
satisfy Ari = 0 ;x. Defining R=[r1, r2, . . . , rr]PRn3 r

permits this relationship to be expressed more concisely as
AR=0. As an example, let the matrix A be partitioned as
A=[A1 A2], with A1PRm3 m and A2PRm3 r and where A1 is
nonsingular (this is always possible, possibly with a
reordering of the configuration coordinates). Then R can be
constructed as follows:

R=F 2A 21
1 A2

Ir
G (2)

where Ir is the r3 r identity matrix. Consider now the
involutive closure of D, denoted D* and defined as the
smallest involutive distribution containing D. We will
assume in what follows that D* has constant rank n on the
configuration space. In this case, Frobenius’ theorem [e.g.
reference 17] shows that the constraints are nonintegrable
and there is no explicit constraint on the configuration
space; thus the dimension of the space of realizable
velocities is smaller than the dimension of the configuration
space.
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Now define a partition of x corresponding to the partition
specified for A, so that x=[xT

1 xT
2]

T with x1PRm and x2PRr.
Observe that the definition (2) and the constraint equation
(1b) imply that the system velocities are determined by ẋ2

via ẋ=R(x)ẋ2. This parameterization then permits (1) to be
reformulated as

ẋ1 =A*(x)ẋ2 (3a)

F=H(x)ẍ2 +Vcc(x, ẋ2)ẋ2 +G(x) (3b)

where A* = 2A 21
1 A2, F = RTMT, H = RTH*R, Vcc =RT(H*Ṙ+

V*ccR), and G=RTG*. In what follows, it is assumed that
p ≥ r and RT M is full rank, so that any desired F can be
realized through proper specification of T and the system
(3b) is fully actuated. Note that (3) consists of a “reduced”
dynamic model (3b), which defines the evolution of the
“reducing outputs” x2, together with a purely kinematic
relationship (3a). Therefore the representation (3) provides a
simpler description of the nonholonomic mechanical system
than that given in (1). Moreover, as shown in the next
lemma, the dynamics (3b) retains much of the mechanical
system structure of the original system (1).

Lemma 1: The dynamic model terms H, G are bounded
functions of x whose time derivatives Ḣ, Ġ are also bounded
in x and depend linearly on ẋ2, the matrix H is symmetric
and positive definite, and the matrices H and Vcc are related
according to Ḣ=Vcc +VT

cc. Additionally, Vcc(x, ẋ2)y=Vcc(x,
y)ẋ2 for any vector y, and if y and ẏ are bounded then Vcc(x,
y) is bounded and V̇cc(x, y) grows linearly with ẋ2.

Proof: All of the properties can be established through
direct calculation using the definitions of H, Vcc, and G and
the properties of H*, V*cc, and G* (see reference [9]). j

We now turn our attention to those nonholonomic
mechanical systems which arise from the presence of a
symmetry in the system dynamics. More specifically,
consider the class of mechanical systems for which the
system Lagrangian is G-invariant for some Lie group G
(see, for example, reference [11] for a discussion of G-
invariant Lagrangian systems), and suppose for
concreteness that G=SO(2) (more general situations can be
treated using techniques similar to those developed here,
although there may be technical complications). By decom-
posing the configuration space into irreducible
representations of SO(2), it is always possible to choose
(local) configuration coordinates x so that each component
transforms as xi→xi +nia for some integer ni and aP[0, 2p).
The coordinates for which nj = 0 (i.e., the invariant coor-
dinates) are then local coordinates for Rn/G. We collect
these together and write x=[xT

1 xT
2]T, where x2PRr are the

invariants and x1PRm transform nontrivially. Choosing
coordinates in this way permits the G-invariant system
Lagrangian to be written in the form L(x, ẋ)= ẋT H*(x2)ẋ/
22U(x2) for some potential U and inertia matrix

H* =F J1(x2)

QT(x2)
Q(x2)
J2(x2)

G (4)

with submatrices J1, J2, Q which are independent of x1.

Let us restrict our attention to those systems for which the
control input T does not break the symmetry of the
dynamics; no generality is lost with this assumption
because, if this is not the case, then the x1 variables can be
controlled directly and the (controlled) system is not
nonholonomic by our definition. The fact that L is
independent of x1 means that in this case the Euler-Lagrange
equations corresponding to the x1 coordinates have the
character of a velocity constraint:

L
ẋ1

= J1(x2)ẋ1 +Q(x2)ẋ2 =1 (5)

where 1PRm is constant. If the system starts from rest then
1=0 and (5) can be used to parameterize the system
velocities via ẋ = R(x2)ẋ2, with R defined as

R =F2J21
1 Q
Ir

G (6)

We again assume that the smallest involutive distribution
containing the span of the columns of R has constant rank n,
in which case Frobenius’ theorem [e.g. reference 17] shows
that the constraints (5) are nonintegrable and the system is
nonholonomic.

Now an analysis which exactly parallels the one given
above for classical nonholonomic systems can be applied to
reduce the original 2n-dimensional symmetric mechanical
system to a 2r-dimensional mechanical system together
with m kinematic equations:

ẋ1 = A**(x2)ẋ2 (7a)

F = H(x2)ẍ2 + Vcc(x2, ẋ2)ẋ2 + G(x2) (7b)

where A** =2J 21
1 Q and F = B(x2)T for some matrix

BPRr3 p which depends only on x2 (because the inputs do
not break the system symmetry). It is assumed that p≥r and
B is full rank, so that any desired F can be realized through
proper specification of T and the system (7b) is fully
actuated. Note that (7b) is a 2r order differential equation
which defines the evolution of the 2r states (x2, ẋ2), and that
the behavior of the remaining configuration coordinates x1 is
completely determined by the kinematic relationship (7a).
Moreover, an analysis virtually identical to the one
summarized in Lermma 1 can be used to show that the
reduced system (7b) retains the mechanical system structure
of the original system.

Reduced representations have now been obtained for both
classical nonholonomic and symmetric nonholonomic
mechanical systems. Examination of these reduced models
reveals that the model (3) contains the model (7) as a special
case (corresponding to the situation in which the Lagrangian
L(x, ẋ), distribution D, and input matrix are independent of
the configuration coordinates x1). Thus, in what follows, we
focus on developing control algorithms for the non-
holonomic mechanical system (3), with the implicit
understanding that all such schemes are directly implement-
able with the system (7) as well.
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2.2 Adaptation
We now consider the problem of controlling the motion of
nonholonomic mechanical systems in the presence of
measurement and model uncertainty. More specifically, we
address the problem of driving the system (3) from any
initial state (x(0), ẋ(0)) to any desired equilibrium state
(xd, 0) in the presence of uncertainty regarding the dynamic
model (3b) and the kinematic model (3a); additionally, we
will assume in much of our development that only
configuration measurements are available for feedback. It is
shown in reference [1] that the system (1) is small time
locally controllable at any equilibrium state (xd, 0), so that
this problem is solvable. However, as mentioned above, it is
also known that the problem cannot be solved using
standard methods such as stabilization via continuous static
feedback.15,16 Here we propose that this control problem be
addressed by dividing the problem into two subproblems:
(1.) generate a trajectory for the “reducing output” x2 which
will take the entire system to the goal configuration, and (2.)
track the desired trajectory for x2 using the control input F.
We begin our implementation of this approach by introduc-
ing a strategy for control in the presence of uncertainty
associated with the system dynamics (3b), and then show
how this strategy can be generalized to handle (linearly
parameterizable) uncertainty in the kinematic model (3a).

One type of nonholonomic system for which trajectory
generation is straightforward is the class of so-called
differentially flat systems [e.g. reference 14]. A system with
states sPR2n and inputs uPRp is differentially flat if we can
find outputs yPRp of the form

y = h1(s, u, u̇, . . . , u(q)) (8a)

which are differentially independent and satisfy

s = h2(y, ẏ, . . . , y(s)) (8b)

u = h3(y, ẏ, . . . , y(s)) (8c)

for functions hi and integers q, s. Differentially flat systems
have attracted considerable attention recently and, while
there are no general methods for determining whether or not
a particular system is flat, it is known that many systems of
interest in applications are flat. For example, all of the
following are flat5: wheeled mobile robots and cars, a tractor
pulling N trailers, hopping robots, underwater vehicles,
various electromechanical drives, and (planar) satellite/
manipulator systems. In view of the useful structural
properties exhibited by flat systems and their importance in
nonholonomic applications, we will devote some attention
to these systems in what follows.

While differentially flat systems possess many interesting
properties, our objective here will be simply to exploit
flatness to solve the problem of finding a feasible trajectory
taking the system (3) from its initial configuration to the
final desired configuration xd. With flat systems there is a
one to one correspondence between trajectories (s(t), u(t))
of the system and curves y(t) in the flat output space. As a
consequence, the trajectory generation problem is easily
solved for flat systems: given an initial state and desired
final state for the system, determine (from (8b)) the values
for the outputs and derivatives of outputs (y(0), ẏ(0), . . . ,
y(s)(0)) and (y(T), ẏ(T), . . . , y(s)(T)) corresponding to these

initial and final states. Then any curve in the flat output
space with the required initial and final location, slope,
curvature, and so on defines a feasible trajectory for the full
system (3) which produces the requisite motion. Note that
this curve fitting problem is standard and can be efficiently
solved in a number of ways.

Given this trajectory generation scheme for flat non-
holonomic system, we now turn to the problem of causing
(3) to track a given trajectory. Observe that the evolution of
the system is completely determined by the behaviour of the
reducing outputs x2 (because the evolution of x1 is related to
that of x2 through a kinematic map). The behaviour of x2 is,
in turn, governed by the reduced system (3b), and this
system is shown in Lemma 1 to inherit all of the “nice”
mechanical system structure of the original system. Thus
the trajectory tracking problem for the complete system (3)
can be solved by applying to (3b) any adaptive or robust
control law for mechanical systems which does not require
model information or rate measurements; for example, any
of the control schemes presented in references [18–21]
could be used. In what follows, we observe that the
performance-based adaptive control methodology recently
proposed by the authors [e.g. references 12, 13] can be
utilized to design a controller for the (reduced) mechanical
system (3b), and give one such tracking strategy. More
specifically, we note that the following adaptive control
scheme can be used to track any desired trajectory x2d(t) for
x2 without rate measurements or knowledge of the system
dynamic model:

F = A(t)ẍ2d + B(t)ẋ2d + f(t) + k1g
2w + k2g

2e

ẇ=22gw+g2ė (9)

where e=x2d 2x2 is the trajectory tracking error, w provides
a means of injecting damping into the closed-loop system
without using rate measurements, k1, k2, g are positive scalar
constants, and f(t)PRr, A(t)PRr3 r, B(t)PRr3 r are (feedfor-
ward) adaptive gains which are adjusted according to the
following simple update laws:

ḟ=2s1f+b1q

Ȧ=2s2A+b2qẍT
2d (10)

Ḃ=2s3B+b3qẋT
2d

where q= ė+k2e/k 1g2w /g represents a weighted and
filtered error term and the si and bi are positive scalar
adaptation gains. Observe that this control law is composed
of a linear first order compensator for stabilization together
with an adaptive feedforward component for tracking. The
feedforward terms Aẍ2d, Bẋ2d, and f are intended to
compensate for the dynamic model terms Hẍ2, Vccẋ2, and G,
respectively, and this compensation permits accurate track-
ing control to be achieved in an efficient manner. Inspection
of the scheme (9), (10) reveals that the proposed controller
is implementable without velocity information because,
although ẇ, ḟ, Ȧ, and Ḃ depend on ė, the control law terms
w, f, A, and B can be integrated so as to depend only on e
and the desired trajectory. Moreover, this adaptive control
strategy does not require knowledge of the system “regres-
sor matrix” or any other information concerning the
dynamics (3b); note that this model independence is
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particularly attractive for the present application because the
mechanical system (3b) is the result of a reduction
procedure and is often quite difficult to compute explicitly.

The suitability of the adaptive tracking controller (9), (10)
is indicated by the following lemma.

Lemma 2: The adaptive controller (9), (10) ensures that
(3b) evolves in such a way that e, ė, w, f, A, B are
semiglobally uniformly bounded and the tracking error e, ė
converges exponentially to a neighborhood of the origin
which can be made arbitrarily small.

Proof: The proof follows immediately from the proof of
Theorem 2 in reference [13] once it is observed that (3b) is
a fully actuated mechanical system. j

Observe that we now have a means of defining a
trajectory for the r-dimensional flat output y which ensures
that the mechanical system (3) evolves as desired, and we
also have a strategy for controlling the r-dimensional vector
of reducing outputs x2 associated with the reduced system
(3b). It can be shown that the flat output y and the reducing
output x2 can never be identical,9 so that we cannot simply
specify the desired trajectory yd(t) for the flat output and
then generate the control input F which ensures that x2(=y)
in (3b) tracks this trajectory. However, it is possible to adopt
essentially this strategy by adding one additional step in the
algorithm. Thus we have:

Algorithm 1:

(i) Given an initial state (x(0), ẋ2(0)) and a goal state (xd,
0), determine the sets of flat outputs and derivatives of
outputs (y(0), ẏ(0), . . . , y(s)(0)) and (y(T), ẏ(T), . . . ,
y(s)(T)) corresponding to the initial and goal states.
Find a smooth curve yd(t) in the flat output space
connecting these initial and final output values.

(ii) Use the relation x2d(t) = h4(yd(t), . . . , y(s)
d (t)) (for h4

obtained from h2 in (8b)) to determine the desired
trajectory for x2.

(iii) Track the desired trajectory x2d(t) for the configuration
x2 of the reduced system (3b) using the adaptive
scheme (9), (10) (or any other suitable tracking
strategy).

Note that Algorithm 1 provides a simple and computation-
ally efficient means of controlling the motion of the
nonholonomic system (3), and that the scheme can be
implemented without rate measurements or knowledge of
the system dynamics (3b).

While differential flatness appears to be a useful system
property to exploit when solving the trajectory generation
problem for (flat) nonholonomic systems, there are at
present no general methods for determining whether or not
a given system is flat or, if a system is flat, what the flat
outputs might be. Thus it is desirable to identify other
structural properties of nonholonomic systems that can be
used for control purposes, and to develop strategies for
controlling systems which possess this structure.

Toward this end, consider the nonholonomic mechanical
system (3) and suppose that the system constraint matrix A*
is independent of x1. Such systems are known as (con-
trolled) Caplygin systems and are common in applications;1

for example, the symmetric systems (7) are Caplygin

systems. Observe that, as before, the evolution of the
reducing coordinates x2 can be controlled by properly
specifying the input F, and that the resulting trajectory for x2

completely determines the behaviour of the remaining
configuration coordinates x1. In this case, however, the
relationship between the evolution of x1 and x2 is simplified.
This observation is used in reference [1] to develop an
algorithm for controlling the motion of the full system
configuration x. The algorithm proposed in reference [1] is
based on the use of geometric phase, which is the extent to
which a closed path in the x2 space fails to be closed in the
configuration space, to maneuver both x1 and x2 to their
desired values. We now present a version of this control
algorithm which is implementable without model informa-
tion or rate measurements. Consider the problem of
transferring the Caplygin system from an arbitrary initial
state (x0

1, x
0
2, ẋ

0
2) to a user specified goal configuration, and

suppose for simplicity of notation that the goal configura-
tion is the origin.

Algorithm 2:

(i) Given an initial state (x0
1, x

0
2, ẋ

0
2), drive the system (3b)

to the origin in the (x2, ẋ2) reduced state space in finite
time using the trajectory tracking scheme (9), (10).
Observe that this can be accomplished using any
smooth path between (x0

2, ẋ0
2) and (0, 0) and that, in

general, the resulting state of the system will be (x1
1, 0,

0) for some nonzero x1
1.

(ii) Find a closed path (or series of closed paths) in the x2

space which produces the desired geometric phase in
the configuration space, so that (x1

1, 0, 0) is transferred
to (0, 0, 0).

(iii) Track the desired trajectory x2d(t) for x2 using the
adaptive scheme (9), (10).

In order to successfully implement this approach to
controlling (3), we must determine a closed path P in the x2

space which satisfies the geometric phase condition

x1
1 =2 E

P

A*(x2)dx2

Explicit characterization of such closed paths P can be
achieved for several systems of practical interest (see, for
instance references [1,5]); however, some systems may
require a more general computational approach [e.g.
reference 5]. In any case, once such a closed path in the x2

space is found it is clear that Algorithm 2 will produce the
desired evolution of (3).

Implicit in the development of the control algorithms
given above is the assumption that there is no uncertainty
associated with the kinematic relationship (3a), so that a
trajectory can be specified for x2 which produces the
requisite x1 motion. This can be a reasonable assumption for
many nonholonomic systems but is certainly not always the
case. Consider, for example, the situation in which the
nonholonomic constraints are a consequence of a symmetry
of the system dynamics, as in (7a). In this case, the
constraints depend on the inertial parameters of the system,
and it is often desirable to permit these parameters to be
uncertain.
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In view of these considerations, we now turn our attention
to the case in which there is uncertainty in the constraint
(3a), and present control algorithms for driving the system
to the goal configuration xd despite this uncertainty. Observe
first that any uncertainty in the kinematic constraints which
is associated with inertial parameters (such as occur with
symmetric systems) can always be linearly parameterized
by slightly modifying (3a) as follows:

ẋ1 =Pg(x, ẋ1, ẋ2) (11)

where the map g is known and the matrix P is unknown.
Indeed, the existence of such a linear parameterization is a
direct consequence of the well-known property that the
inertial parameters appear linearly in the mechanical system
dynamic model [e.g. reference 22]. Additionally, this linear
parameterization property also holds for many systems with
uncertain kinematic parameters; one such example is
described in Section 3 below.

Suppose that we have an estimate for P, say P̂, and that
this estimate is used (as in Algorithms 1 and 2) to determine
a desired trajectory for the reducing output which is
designed to cause both x1 and x2 to evolve to their desired
values x1d and x2d, respectively. That is, suppose x2d(t) is
specified so that x2d(0)=x2(0), x2d(T)=x2d, and

Dx1d = E
P

^
Pg(x, ẋ1, ẋ2)dt

where P is the path corresponding to x2d(t) and
Dx1d = x1d 2x1(0). Now, since P≠P̂ in general, this trajectory
will not actually drive the system to the goal configuration.
However, we can use the error associated with this process
to improve our estimate for P and ultimately ensure
convergence of x to xd. Toward this end, define the predicted
value of ẋ1, denoted ˆ̇x1, as follows:

ˆ̇x1 = P̂g(x, ẋ1, ẋ2) (12)

Comparing (11) and (12) we see that if P = P̂ then ẋ1 = ˆ̇x1 and
the x2d(t) specified in the trajectory generation process will
ensure that the entire system evolves as desired. If ẋ1 ≠ ˆ̇x1

then we can adjust our estimate P̂, and the corresponding
desired trajectory x2d(t), so that ˆ̇x1(t) converges to ˆ̇x1(t) and
the entire system converges to the goal configuration xd. It
turns out that it is useful to update the parameter estimate P̂
at discrete instants tk, chosen so that tk+1 2 tk = T, since this
permits convenient recalculation of the appropriate reducing
output trajectory x2d(t) and also enhances the robustness of
the estimation process. One such estimation scheme is the
subject of the next lemma.

Lemma 3: Suppose that the parameter estimate P̂ is
updated according to

P̂(tk+1) = P̂(tk)+DPk

DPk = 2
a

T Etk +T

tk

EgT

(1+ igi2)
dt

where E= ˆ̇x1 2 ẋ1 and a is a positive constant. If x2d(t) is
computed based on this estimate and a is not chosen too
large then x→xd as t→∞ .

Proof: Let F= P̂2P and Fk =F(tk). Then the Lyapunov
function candidate

Vk =
1
2

tr[FkF
T
k]

leads to

DVk =2
h

2
tr[FkRkF

T
k] ≤ 0

provided a is not chosen too large, where Rk is a positive
semidefinite matrix obtained through routine manipulation
and h is a positive constant. Thus Vk is a Lyapunov function,
and we have shown that all signals are bounded. Moreover,
since the sequence Vk is non-increasing and bounded below
(by zero), it can be concluded that DVk converges to zero.
Standard arguments can then be used to show that E
converges to zero,23 and this in turn implies convergence of
x to xd. j

The adaptation strategy proposed in Lemma 3 allows us
to give algorithms for controlling mechanical systems with
uncertainty in the nonholonomic constraints which parallel
Algorithms 1 and 2. It should be noted, however, that these
algorithms will in general require rate measurements
because this information is utilized in the adaptation scheme
given in Lemma 3.

Algorithm 3:

(i) Given an initial state (x(0), ẋ2(0)) and a goal state (xd,
0), determine estimates of the sets (y(0), . . . , y(s)(0))
and (y(T), . . . , y(s)(T)) corresponding to the initial and
goal states. Find a smooth curve yd(t) in the flat output
space connecting these initial and final output values.

(ii) Use the relation x2d(t) = h4(yd(t), . . . , y(s)
d (t)) (for h4

obtained from h2 in (8b)) to determine the desired
trajectory for x2.

(iii) Track the desired trajectory x2d(t) using the adaptive
controller (9), (10).

(iv) Use the adaptation strategy given in Lemma 3 to adjust
the estimate for the desired flat output trajectory yd(t)
and repeat steps (ii) and (iii).

(v) Repeat step (iv) until the system converges to the goal
state (xd, 0).

Algorithm 4:

(i) Given an initial state (x0
1, x

0
2, ẋ

0
2), drive the system (3b)

to the origin in the (x2, ẋ2) reduced state space in finite
time using the trajectory tracking scheme (9), (10).
Observe that, in general, the resulting state of the
system will be (x1

1, 0, 0) (for some nonzero x1
1).

(ii) Determine an estimate for a closed path P in the x2

space which produces the desired geometric phase in
the configuration space, so that (x1

1, 0, 0) is transferred
to (0, 0, 0).

(iii) Track the desired x2d(t) using the adaptive controller
(9), (10).

(iv) Use the adaptation strategy given in Lemma 3 to adjust
the estimate for the path P, and repeat step (iii).
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(v) Repeat step (iv) until the system converges to the goal
state (xd, 0).

3. CASE STUDIES
We now apply the proposed approach to controlling
uncertain nonholonomic mechanical systems to three such
systems: a two wheel mobile robot, a three wheel mobile
robot, and a “free-flying” space robot. The mobile robots are
representative of the class of nonholonomic systems which
result from explicit constraints on the system kinematics,
while the free-flying space robot is an example of a system
with a nonholonomic constraint arising from the presence of
symmetry in the system dynamics. To provide a basis for
comparison, an adaptive dynamic feedback linearizing
controller is also implemented in the simulations with the
three wheel mobile robot. The case study with the free-
flying space robot includes the results of both computer
simulations and preliminary hardware experiments.

3.1 Two wheel mobile robot
The first system considered in this series of case studies is
the simple two wheel mobile robot (with front castor for
balance) shown in Figure 1 and described in reference [9].
For this system, the dynamic model (1) has the following
form:

mẍ = l cos u2 (T1 +T2) sin u

mÿ = l sin u + (T1 +T2) cos u
(13)

Jü = (T1 2T2)

0 = ẋ cosu + ẏ sin u

where x, y, u are the position and orientation coordinates of
the (axle of the) mobile robot, m, J are the system inertial
parameters, l is the constraint multiplier, and T1, T2 are the
torques provided at the wheels. This system is differentially
flat with flat outputs y=[x y]T and reducing outputs
x2 =[x u ]T. Since the system is flat and there is no
uncertainty associated with the kinematic constraints,
Algorithm 1 can be applied to ensure that the mobile robot
moves from any initial state to any desired final configura-
tion.

The simulation considered here illustrates the capability
of Algorithm 1 to drive the system to the origin from
various initial configurations with no model information or
rate measurements. The trajectory generation phase of
Algorithm 1 is accomplished by fitting a fifth order
polynomial for each flat output coordinate to the necessary
end point conditions. This output curve is then used to
specify a desired trajectory for the reducing output x2d(t),
and the adaptive tracking scheme (9), (10) is utilized to
track this trajectory. The algorithm is applied to the
mathematical model of the mobile robot through computer
simulation with a sampling period of two milliseconds. The
system model parameters are defined as m = J = 10, and the
controller parameters k1, k2, g are set as follows: k1 = 10,
k2 = 20, g = 5. The controller terms w, f, A, and B are set to
zero initially, and the adaptation parameters are set as
follows: s i = 0.01 and bi = 100 ; i. It is noted that no
attempt was made to “tune” the controller gains to obtain
the best possible performance. The control strategy given in
Algorithm 1 was tested using a wide range of initial
conditions; sample results are given in Figure 2 and indicate
that the motion of the system is accurately controlled.

3.2 Three wheel mobile robot
The proposed approach to nonholonomic system control is
now applied via computer simulation to the three wheel
mobile robot shown in Figure 3. The dynamic model (1) has

Fig. 1. Illustration of two wheel mobile robot.
Fig. 2. Response of x, y coordinates of two wheel mobile robot
using Algorithm 1 for four sample initial conditions.
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the following form for this system:

cos u

sin u

l sin f cos f

0

0

0

0

1

T=

m
0
0
0

0
m
0
0

0
0

(Ir +If)
If

0
0
If

If

ẍ

+

2sin u

cos u

0

0

2sin(u+f)

cos(u+f)

l cos f

0

l (14)

F 2 sin u

2 sin (u+f)

cos u

cos (u+f)

0

l cos f

0

0Gẋ=0

where (x, y) is the rear axle position, u and f are the body
angle and steering angle, respectively, x=[x y u f]T P R4 is
the system configuration vector, Ir, If, m are the system
inertia parameters, l is the wheel base length, T P R2 is the
control input, and l P R2 is the vector of constraint
multipliers.

This system is differentially flat with flat outputs y= [x y]T

and reducing outputs x2 =[u f]T. Observe that in this case
the kinematic constraints contain the parameter l, which
may or may not be uncertain. Thus in what follows we first
assume that l is accurately known and apply Algorithm 1
for motion control of the mobile robot, and we then consider
the possibility that l is uncertain and utilize Algorithm 3 to
move the mobile robot to the goal configuration despite this
uncertainty.

Consider first the case in which l is assumed to be
accurately known and Algorithm 1 is used to drive the
system to the origin from various initial configurations with
no model information or rate measurements. The trajectory
generation phase of Algorithm 1 is accomplished by fitting
a fifth order polynomial for each flat output coordinate to
the necessary end point conditions. This output curve is then
used to determine the desired trajectory for the reducing
output x2d(t), and the adaptive tracking scheme (9), (10) is
utilized to track this trajectory. The algorithm is applied to
the mathematical model of the mobile robot through
computer simulation with a sampling period of two
milliseconds. The system model parameters are defined as
l = 1, m = If = Ir =10. All controller parameters are set to the
values used in the previous simulation, despite the fact that
the two mobile robots have quite different properties. This
choice for the controller terms is made to demonstrate that
these gains need not be tuned for a particular system to
obtain good performance.

To provide a basis for evaluating the performance of the
proposed approach to motion control, an adaptive controller
developed using the dynamic feedback linearization
approach is also used to control the mobile robot. More
specifically, a dynamic feedback linearizing control scheme
[e.g. reference 17] is designed for kinematic control of the
mobile robot, assuming velocities are inputs, and these
velocities are then tracked using an adaptive velocity
tracking controller for mechanical systems which closely
resembles the position tracking scheme (9), (10). Note that
such a controller can always be developed for flat non-
holonomic systems because flatness implies dynamic
feedback linearizability.14 Sample results obtained using
Algorithm 1 and the dynamic feedback linearizing con-
troller just described are given in Figure 4a. These results
indicate that both schemes accomplish the desired motion
control, but that Algorithm 1 achieves noticeably better
accuracy. It is worth mentioning that considerable effort was
required to tune the gains for the dynamic feedback
linearizing scheme in order to obtain acceptable perform-
ance, while very little effort was needed to determine gains
for Algorithm 1 (indeed, we simply used the gains from the
previous simulation); this provides an indication of the ease
with which the proposed approach can be implemented
relative to other methods.

We next consider the case in which our estimate of l is
assumed to contain some uncertainty, and use Algorithm 3
to control the system. The trajectory generation phase of
Algorithm 3 is accomplished by fitting a fifth order
polynomial for each flat output coordinate to the given end
conditions. This output curve is then used to specify the
desired trajectory for the reducing output x2d(t), and theFig. 3. Illustration of three wheel vehicle.
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adaptive tracking scheme (9), (10) is utilized to track this
trajectory. The algorithm is applied to the mathematical
model of the mobile robot using exactly the procedure
described above. The estimation strategy given in Lemma 3
is implemented with a = 10 and with two different initial

estimates for l : l̂(0) = 1.2 and l̂(0) = 0.8. In this simulation,
the mobile robot is initially at rest with configuration
x(0) = 10, y(0) = 10, u(0) = 0°, f(0) = 0°, and is commanded
to smoothly move to the origin. As specified in Algorithm
3, this objective is attained by repeatedly planning and
tracking trajectories for the reducing outputs until con-
vergence to the goal is achieved. As seen in Figure 4b, in the
present application convergence to the goal requires only
two trajectories. It is interesting to note that when l is
(initially) underestimated the system overshoots the goal
and must back up in the second trajectory, while the
opposite situation occurs when l is overestimated.

3.3 Free-flying space robot
Finally, we turn our attention to a symmetric mechanical
system: a simple model of a “free-flying” space robot (see
Figure 5). The system is modeled as a rigid “vehicle” with
inertia J pinned to the ground at its center of mass, and a
two link planar “manipulator” with link lengths l1, l2 and
link masses m1, m2, assumed for simplicity to be concen-
trated at the distal ends of the two links. The manipulator
has two actuators, one at each joint, while the vehicle‘s
pinned connection to the ground is unactuated. Note that
pinning the vehicle in this way permits the body to rotate
freely but prevents translation. Thus the nonholonomic
constraint arising from angular momentum conservation is
retained, while the holonomic constraints arising from
linear momentum conservation in a truly “free-flying” space
system are replaced with holonomic pinned constraints;
observe that this simplifies the subsequent analysis but
removes none of the essential structure of the system. Let f
denote the angle of the vehicle and (u1, u2) be coordinates
for the manipulator. It is easily verified that in this case the
system model is of the form (7), where the mechanical
system dynamics (7b) is standard and the kinematic map
(7a) can be obtained from the nonholonomic constraint
corresponding to angular momentum conservation.

In symmetric coordinates the Lagrangian for this system
can be written

Fig. 4. (a) Response of x, y coordinates of three wheel vehicle using Algorithm 1 (dashed) and adaptive dynamic feedback linearization
controller (solid). (b) Response of x, y coordinates of three wheel vehicle using Algorithm 3 with l̂ (0)=1.2 (solid) and l̂ (0)=0.8
(dashed).

Fig. 5. Illustration of free-flying space robot.

Nonholonomic systems 257

https://doi.org/10.1017/S0263574799000922 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799000922


L=
1
2

Jḟ2 +
1
2

(m1 +m2)l
2
1(ḟ+ u̇1)

2 +
1
2

m2l
2
2(ḟ+ u̇1 + u̇2)

2

+m2l1l2 cos u2(ḟ+ u̇1)(ḟ+ u̇1 + u̇2)

where f is the orientation of the platform relative to a fixed
axis in the plane, u1 is the angle of the first link relative to
the platform, and u2 the angle of the second link relative to
the first. It is clear that (u1, u2) are reducing outputs for this

system. Additionally, it can be seen that the Lagrangian L is
independent of f and that this coordinate is unactuated.
Because of these facts the Euler-Lagrange equation corre-
sponding to f leads to a conservation law, which if the
system starts at rest can be written

[J+(m1 +m2)l
2
1 +m2l

2
2]ḟ+[(m1 +m2)l

2
1 +m2l

2
2]u̇1 +m2l

2
2u̇2

=2m2l1l2 cos u2(2ḟ+2u̇1 + u̇2)

Examination of this constraint reveals that

y1 =[J+(m1 +m2)l
2
1 +m2l

2
2]f+[(m1 +m2)l

2
1 +m2l

2
2]u1 +m2l

2
2u2

y2 =m2l1l2(2f+2u1 +u2)

are a set of flat outputs for the system. Note that in this case
the flat output curves cannot be specified arbitrarily, as was
the case with the mobile robots above, and instead must be
chosen so that the differential inequalities |̇y1/̇y2|≤1 are
satisfied; this situation is not uncommon with symmetric flat
systems.

For this system, we first present simulation results for the
case in which all of the parameters are assumed known and
Algorithm 1 is used to drive the system to the goal
configuration. The path in flat output space is computed by
requiring that ẏ1/̇y2 =±1 at the endpoints of the accessible
range of u1. Additionally, we assume the existence of
practical limits on the apparatus due to imperfect construc-
tion which will generally occur in real systems. In
particular, in this simulation, we assume that 235°<u1 <0°
which corresponds to a real robotic platform in our
laboratory. Figure 6a shows the path in flat output space and
illustrates the effect of the differential inequalities on the flat
trajectory. Figure 6b shows the convergence of the angle of
the platform f to the goal fd =20°.

Next we consider the case in which there is uncertainty in
the kinematic constraints, and use Algorithm 3 to control
the system. A linearly parametrized form of the conserva-
tion law is

ḟ=2
1
J
{[(m1 +m2)l

2
1 +m2l

2
2]ḟ+[(m1 +m2)l

2
1 +m2l

2
1]u̇1 +m2l

2
2u̇2

+2m2l1l2 cos u2(ḟ+ u̇1 + u̇2)}

Fig. 6. (a) Response of y1, y2 coordinates of free-flying space
robot using Algorithm 1 (b) Desired (solid) and actual (dotted)
evolution of f coordinate of free-flying space robot using
Algorithm 1 (c) Desired (solid) and actual (dotted) evolution of f
coordinate of free-flying space robot using Algorithm 3.

Fig. 7. Free-flying space robot experimental testbed.
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where we identify the quantities p1 =(m1 +m2)l
2
1/J, p2 =m2l

2
2/

J, and p3 =m2l1l2/J as the uncertain parameters. For purposes
of the simulation we set J=20, l1 = l2 =1, and m1 =m2 =10.
The estimation strategy given in Lemma 3 is implemented
with a=10 and initial estimates p̂i = 0.5pi. The free-flying
space robot is initially at rest with configuraion f=0°,
u1 =u2 =0°, and is commanded to smoothly move to f=20°,
u1 =u2 =0°. As specified in Algorithm 3, this objective is
attained by repeatedly planning and tracking trajectories for
the reducing outputs until convergence to the goal is
achieved. As seen in Figure 6c, f converges to the desired
value of f=20° after only two such trajectories.

The performance of the proposed approach for control-
ling nonholonomic mechanical systems was also verified
through preliminary hardware experiments with a labo-
ratory version of the simple “free flying” space robot
described above. The facility utilized for this study is the
New Mexico State University Robotics Laboratory. The
experimental testbed consists of a three degree of freedom
manipulator/vehicle system similar to the one used in the
simulation study (see Figure 7), together with the associated
controller electronics and control computer. All control
software is written in ‘C’ and is hosted on an IBM-
compatible 486 personal computer. The manipulator is
constructed so that l1 = l2 =0.38m and so that the arm’s mass
distribution can be accurately approximated as consisting of
point masses at the distal ends of the two links. The end-
effector of the arm is designed to accept a variety of
payloads, and the vehicle’s rotational inertia is also
adjustable. In the present preliminary set of experiments the
end-effector payload is chosen to be large relative to the
remaining mass of the arm, and the vehicle inertia is
adjusted to be roughly twice that of the arm when the arm
is outstretched. For the experiment presented here the
control law is applied to the robot with a sampling period of
seven milliseconds. All controller parameters and adaptation
gains for the tracking controller are set to values similar to
those used in the simulation study described above.

In contrast to the other case studies, in this experiment we
achieve motion control for the robotic system using ideas

based on geometric phase. More specifically, Algorithm 4
is utilized to drive the manipulator/vehicle system from its
initial position f=u1 =f=u2 =0° to the goal configuration
f=30°, u1 =u1 =0°. The control algorithm is implemented in
a few trials first, to obtain an estimate for the uncertain
parameter P̂ (which in the present case is a scalar), and is
then used to accomplish the motion control objective. The
experiment was repeated ten times. A sample plot depicting
the motion of the platform for one trial is given in Figure 8.
In each trial the final manipulator configuration was
achieved with good accuracy; this is to be expected, of
course, since the manipulator coordinates are the reducing
outputs for this system and are controlled directly.  The
average final vehicle configuration was f=31.9° (Figure 8
shows a typical run), indicating that the proposed approach
is capable of controlling the entire system configuration
with reasonable accuracy.

4. CONCLUSIONS
This paper considers the problem of controlling non-
holonomic mechanical systems in the presence of
incomplete information concerning the system model and
state, and proposes that a simple and effective solution to
this problem can be obtained through the use of reduction
and adaptation. It is shown that this approach is easy to
implement and ensures accurate motion control despite
limited measurements and uncertainty regarding the system
model. The performance of the proposed method is
illustrated through applications with nonholonomic
mechanical systems arising from both explicit kinematic
constraints and symmetries of the system dynamics. Future
work will include a detailed study of the performance of the
proposed control algorithms in applications which require
high levels of reliability and autonomy, such as operations
in remote and hazardous environments.
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