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Abstract. Probe theory is generally used to find the potential of dust particles
immersed in plasma. The orbital motion limited theory (OML) is often used to
find the potential at the probe surface, but the assumptions underlying this theory
are usually not valid in the case of dust and the more general orbital motion (OM)
theory is much harder to calculate. Solutions are given for the OM theory in a range
of cases applicable to dust. It is shown that the surface potential the full theory
gives reduces to the OML result for small probes. Commonly in dusty plasmas the
OML surface potential is used, with the surrounding distribution given by Debye–
Hückel, or Yukawa theory. This form, however, neglects ion depletion due to the
absorption of particles on the probe surface. In this paper a new analytical solution
to the system is given which is applicable to small probes and dust. This new
expression is equivalent to Yukawa form, but takes ion absorption into account.

1. Introduction
Dust particles may be found immersed in plasma in space or in the laboratory. Probe
theory is generally used to find the potential of these particles. If ions are cold, the
radial motion theory can be used, as developed by Allen et al. (1957). The small
probe limit of this theory has been examined by Kennedy and Allen (2001). If ion
temperature is considered to be finite the purely radial theory is no longer strictly
applicable. The simplest orbital theory is orbital motion limited (OML), which gives
a surface potential independent of the dust particle’s size (Langmuir and Mott-
Smith 1926). OML predicts a surface potential without reference to the potential
profile outside the probe. However, the form of that profile may be such that the
OML potential is not valid. While perhaps the most widely used theory in dusty
plasma work, there is evidence that the conditions for OML to be valid are never met
in the parameter range of interest. In particular, the assumptions underlying OML
theory are usually not valid in the case of dust (Allen et al. 2000). The more general
orbital motion (OM) involves solving simultaneously for the surface potential, the
potential distribution around the probe, and the distribution of ion trajectories (see
Bernstein and Rabinowitz 1959; Laframboise 1966). This theory is much harder to
calculate than the radial motion theory or the OML potential. Commonly, instead of
a Maxwellian ion velocity distribution, the simpler assumption is made that ions are
distributed isotropically with a single kinetic energy. Although Al’Pert et al. (1965)
and Laframboise (1966) obtained solutions for Maxwellian ions, the monoenergetic
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Figure 1. An ion approaching a negatively charged spherical probe from infinity, which just
grazes the probe surface.

approach has been much more common (see, for example, Chen 1965; Nowlin and
Carlile 1991; or Daugherty et al. 1992). Commonly in dusty plasmas the OML
surface potential is used, with the surrounding distribution given by Debye–Hückel
or Yukawa theory. This theory provides a distribution of potential calculated from
a linearized form of the Poisson equation. This form, however, neglects ion depletion
due to the absorption of particles on the probe surface.
In Sec. 2 the OML theory is derived, and it is shown in what circumstances it

is valid. In Sec. 3 the Debye–Hückel potential is derived. In Sec. 4 the complete
orbital motion theory is described in a new formulation. Results are presented for
a wide variety of probe sizes and ion–electron temperature ratios. In Sec. 5 it is
shown that a limiting case of this theory exists for small probes. A new linearized
expression is given which is equivalent to Yukawa form, but takes into account ion
absorption. It is shown that the OML potential is the small probe limit of the result
of the full OM theory. Conclusions are drawn in Sec. 6

2. Orbital motion limited
2.1. Theory description

The name refers to the idea that the angular momentum of the ions imposes a
limit on the maximum ion current, by analogy with space-charge limited theories.
Consider an ion approaching a negatively charged spherical probe from infinity,
which just grazes the probe surface, as seen in Fig. 1. Let v∞ be the velocity
at infinity, R be the probe radius, and h be the impact parameter. The critical
value of h such that the ion should approach the probe surface tangentially is hcrit.
Conservation of energy E gives

E = 1
2Miv

2
∞ = 1

2Miv
2 + eV (r) = 1

2Miv
2
R + eVp (1)

where Mi is the ion mass, e the electron charge, v is the ion speed, and V (r) the
potential at r, vR the ion speed at R and Vp the surface potential. Conservation of
angular momentum J gives

J = mv∞h. (2)

So to graze the probe surface the critical values are:

Jcrit = mv∞hcrit = mvRR. (3)
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Substituting for vR from (3) into (1),

hcrit = R

√
1 − 2eVp

Miv2
∞

(4)

or alternatively,

Jcrit = Miv∞R

√
1 − 2eVp

Miv2
∞

. (5)

Assume that any ions with h smaller than hcrit(v∞) will hit the probe, and that
all other ions will miss. The contribution to the ion current from ions with velocity
v is thus

dI =
{

−ef(v)u(r) d3v J � Jcrit
0 J > Jcrit

(6)

where f(v) is the ion distribution function, u(r) is the radial velocity at r positive
outwards, and r is any radius greater than R. Integrating (6),

Ii = 4πr2

∫
J<Jcrit

ef(v)u(r) d3v. (7)

Using (1) and (2) we change variable from v to E and J :

d3v =
2π

M2
i r2u

J dJ dE (8)

where the radial velocity u is, from (1) and (2),

u =

√
2

Mi
(E − eV ) − J2

M2
i r2

. (9)

We perform the integration at arbitrarily large r in order to use the distribution
in the plasma, which we assume to be Maxwellian,

fM(v) = n0

(
Mi

2πkTi

)3/2

exp
(

−
1
2Miv

2

kTi

)
= n0

(
Mi

2πkTi

)3/2

exp
(

− E

kTi

)
(10)

where n0 is the density far from the probe and Ti is the ion temperature. Sub-
stituting (8) and (10) into (7), and using (5) for the angular momentum limit, we
obtain

Ii = 4πR2en0

√
kTi

2πMi

(
1 − eVp

kTi

)
. (11)

To obtain the floating potential we let Ii = Ie and use the electron surface flux
(see Kennedy and Allen 2001):

Ie = 4πR2n0e

√
kTe

2πme
exp

(
eVp

kTe

)
. (12)

So equating (11) and (12),(
1 +

1
β

ηp

)
exp(ηp) =

√
Mi

me

√
β (13)

where ηp is the normalized surface potential −eVp/kTe and β is the ratio of ion to
electron temperature Ti/Te. Note that the dependence on R cancels out and we are
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Figure 2. OML solutions for floating potential from (18) plotted against ion–electron
temperature ratio β.

E=E´

J>J´

R

Probe/dust grain

Absorption radius

rA

J>J´

J>J´

Figure 3. The absorption radius phenomenon. In the situation illustrated, an ion of energy
E and angular momentum smaller than J ′ will always hit the probe. An ion of energy E and
larger J will not approach closer than r.

left with a relationship between ηp, β, and mass ratio. Figure 2 shows the results
of (13) plotted against a logarithmic scale in β. In laboratory plasmas, it is rare for
β to be greater than 0.1, and in general plasmas values greater than unity are not
expected. The limit of floating potential as ion temperature tends to zero is itself
zero.

2.2. Limitations

There are circumstances when OML is not applicable. Suppose that for a given
energy and angular momentum {E ′, J ′} at some rA > R we have u(rA) = 0, as
shown in Fig. 3. It follows from (9) that an ion with {E ′, J > J ′} has no solution
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Figure 4. Plots of the Debye–Hückel potential (22) for various values of normalized probe
radius Z.

for u(r) at r = rA. From (9) at rA,

E ′ − eV (rA) =
J ′2

2M2
i r2
A

. (14)

Suppose also that in the interval r ∈ {R, rA} for E ′, J ′ positive solutions exist
for u(r). This situation is illustrated in Fig. 4. Assuming all functions are smoothly
varying, an ion with infinitesimally greater angular momentum than J ′ would be
reflected near to rA, while an ion with infinitesimally smaller angular momentum
would strike the probe with finite radial velocity. For no value of J less than J ′

would an ion of energy E ′ approach the probe tangentially. So the definition of Jcrit
in (6) and (7) should now no longer be that given by (5). We call rA an absorption
radius (AR) and if it exists, OML cannot be assumed to apply.

Definition. The absorption radius rA(E) is the smallest radius an ion with energy
E can reach without striking the probe, where such a radius exists.

For OML to be valid we require u(r) > 0 at all r > R for all relevant energies
E and all J < (Jcrit)OML. It is sufficient to require this for all relevant E and r as
follows:
OML valid iff:

E − eV (r) > (E − eVp)
R2

r2
. (15)

Note that V is negative. By ‘all relevant E’ we mean all energies for which the
distribution function f(E) is finite. In the case of Maxwellian velocity distributions
(15) must be true as E → 0. A necessary and sufficient condition is thus:

https://doi.org/10.1017/S0022377803002265 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377803002265


490 R.V. Kennedy and J. E. Allen

where f = fM, OML valid iff:

V (r)
Vp

>
R2

r2
. (16)

The monoenergetic case is less stringent—(15) is used where E is the ion energy.
See Sec. 4.2.2 for a rigorous treatment of the case where ARs exist.

3. Debye–Hückel theory
The Debye–Hückel potential is obtained by assuming a known surface potential on
the probe, and solving the linearized Poisson equation (Bouchoule 1999). Assuming
a Boltzmann relation for electrons

ne(r) = n0 exp
(

eV (r)
kTe

)
(17)

and an ion density of the equivalent form

ni(r) = n0 exp
(

−eV (r)
kTi

)
, (18)

the Poisson equation is

∇2V =
e

ε0
(ne − ni). (19)

Substituting (17) and (18) into (19) with spherical symmetry, and normalizing,

d2V

dζ2
+

2
ζ

dV

dζ
= V (20)

where ζ = r/λDL and λDL is the linearized Debye length:

1
λ2
DL

=
1

λ2
De

+
1

λ2
Di

; (21)

λDe =
√

ε0kTe/n0e2 and λDi =
√

ε0kTi/n0e2 are the electron and ionDebye lengths,
respectively. The analytical solution to (20) is

V = Vp
Z

ζ
exp(Z − ζ) (22)

where Z = R/λDL. Figure 4 shows plots of (22) for various values of Z. It is clear
from the logarithmic plot in the inset that, as Z becomes smaller, a greater part of
the curve follows the vacuum solution V ∝ 1/r2 which is a solution to ∇2V = 0 in
spherical symmetry. This is because, for very small ζ, the two left-hand-side terms
of (20) are much larger than V , but of opposite sign, almost exactly cancelling out.
For this reason, the error caused by linearizing the right-hand side of the Poisson
equation becomes negligible for small Z. Debye–Hückel theory is generally used
for probes of small radius compared to the Debye length, such as dust particles.
This theory gives no information about equilibrium surface potential.

4. Full orbital motion theory
4.1. Introduction

Langmuir’s absorption radius concept was explored further by Bohm et al. (1949),
who obtained a solution for monoenergetic ions with an isotropic distribution far
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from the probe, in the thin-sheath limit. Bohm et al. used a plasma approximation.
Bernstein and Rabinowitz (1959) formulated the complete problem of a spherical
probe in a plasma with Maxwellian electrons and ions of arbitrary distribution,
with a finite sheath thickness. They obtained the solution for monoenergetic ions.
Al’Pert et al. (1965) and Laframboise (1966) extended this approach, introducing

a Maxwellian ion distribution in the plasma. It was found that in this case the
absorption radius was no longer a single quantity, but a function of ion energy
and that this function had finite values for all energies below a certain level for the
parameters they used. Only Laframboise tabulated his results in full, and he did not
find many solutions for R/λDe below unity, possibly due to numerical difficulties.
This is the parameter range of interest regarding dust.
Allen et al. (2000) have shown that for Maxwellian ions the criterion for having

no absorption radius is never met for ion temperatures in the parameter range of
interest.
Many authors have foregone the complete analysis and assumed that the linear

Debye–Hückel shielded potential is applicable (see, for example, Bouchoule 1999).
As this approach assumes ions to be in equilibrium, another method must be used
to obtain the floating potential to be used as the initial parameter.
In this section the OM theory will be developed in full for the case of Maxwellian

ions, and results given for the floating potential and potential distribution. The
results of Allen et al. (2000) are confirmed in Sec. 4.2.4; it is shown, however, that
in the limit of small probe radius the difference between the floating potential
predicted by OML and that obtained from the full OM theory becomes negligible.
Thus the OML result represents the limit of floating potential for small probes, and
OML can usually be used for dusty plasmas in spite of the validity criterion.

4.2. Derivation

4.2.1. General equations. The form of derivation follows that of Bernstein and
Rabinowitz (1959), with differences in the choice of normalization and modific-
ations to take account of a Maxwellian ion velocity distribution.
The full orbital motion theory involves a description of ion motion at all distances

from the probe surface. When (16) is satisfied this theory is compatible with OML.
Consider ions around a spherical probe of radius R. We will solve the Vlasov
equation (or ‘collisionless Boltzmann equation’),

df

dt
= v · ∇f − e

M
∇V · ∇vf = 0 (23)

and Poisson’s equation (19) in the region R � r � ∞. The electron density is given
by (17). For a spherically symmetric, collisionless system we have conservation of
ion energyE and angular momentum J , and (23) has the general solution f(E, J) =
const.

4.2.2. Ion trajectories and effective potential. Figure 5 shows an ion at distance r from
the centre of the probe. The ion has velocity v, comprising a radial component u,
and a tangential component w.
Ion density is given by

ni(r) =
∫

f(v) d3v =
2π

M2
i r2

∫ ∞

0

∫ Jr

0

f(E, J)√
2Mi(E − eV ) − (J2/r2)

J dJ dE. (24)
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Figure 5. An ion at distance r from the centre of a spherical probe. The ion has velocity v,
comprising a radial component u, and a tangential component w.

E

0 J2

J2 = Jr2 (E, r)

J2 = Jcrit2 (E)

f = f - f = f - + f +

f = 0

Figure 6. Schematic representation of the space {E, J2} for the integration. The f terms can
be found by determining whether an ion of properties {E, J} reaches a radius r and whether
it will return.

Let

f = f+ + f− (25)

where f+ represents ions with positive radial velocity (outbound) and f− ions
with negative u (inbound). Figure 6 shows a schematic representation of the space
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{E, J2} for the integration. The f terms can be found by determining whether an
ion of properties {E, J} will:

(a) reach radius r on its way to the surface (f = f− = fM);

(b) reach radius r inbound and outbound (f = f++f− = 2f− = 2fM by symmetry);

(c) not reach radius r (f = 0).

Which case applies is determined by Jr(E, r) (the largest J at which an ion of
energy E can reach r) and Jcrit(E) (the largest J at which an ion will be absorbed).
Note that Jcrit(E) = Jr(E,R).
Integrating with respect to J ,

ni(r) =
2π

M2
i

∫ ∞

0

fM(E)
(√

2Mi(E − eV ) dE −
√

2Mi(E − eV ) −
(
J2
crit(E)/r2

)
+ 2

√
2Mi(E − eV ) −

(
J2

r (E)/r2
))

dE. (26)

To determine Jr we express (1) in terms of the radial velocity and an effective
potential U including angular momentum,

E = 1
2Miu

2 + U(r, J) (27)

where the effective potential, from (1) and (27), is

U(r, J) = eV (r) +
J2

2M2
i r2

. (28)

When E = U , the radial velocity is zero; a particle has reached its minimum
radius and is reflected. If there is no maximum of U at larger radius than r, (27)
and (28),

Jr(E, r) = (Jr)OML =
√

2 Mir
√

E − eV (r), (29)

see Fig. 7(a). We call this (Jr)OML because it is the expression which would apply
if OML were valid. However, if there is a maximum of U larger than E at larger
radius, the particle will be reflected there, as shown in Fig. 7(b). We define J∗(E)
as the angular momentum which gives a peak of U at E. Because U is smooth and
monotonic with J , the smallest J for which the ion will be reflected at any radius is
J∗ where a value exists. When that peak is at a radius larger than r, Jr is given by
J∗. Setting the derivative of U to zero, we obtain Û(r), the locus of turning points,

Û(r) = eV (r) +
r

2
e
dV (r)

dr
. (30)

For J∗, from (27) and (28),

J∗(E) =
√

2 Mir
∗(E)

√
E − eV (r∗) (31)

where r∗ is the largest radius for which Û = E, which will correspond to a maximum
of U if the functions are smooth as we can show a posteriori that V (r) has a 1/r2

form as r → ∞ in the orbital theory, so Û tends to zero. Typically, the potential
close to a small probe has a vacuum-like 1/r form, which gives Û < 0. Larger probes
have a sharper fall near to the surface and may have positive Û . Figure 8 shows
these two general forms of Û . For the ion density integration (26), there are three
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Figure 7. Effective potential energy and the locus of its turning points; the effect of ion
energy being larger than or smaller than the turning point at a given radius. (a) E is larger
than the turning points, so the largest J an ion can have to reach r is determined by the
actual value of the potential at r. (b) E is smaller than a maximum of U which exists at a
larger radius than r. The value of J which causes a maximum at E is the largest an ion can
have to reach r.

ranges of energy, which we define as follows:

(1) when E < E1(r), Jr = Jcrit = J∗;

(2) when E1 < E < E2, Jr = (Jr)OML and Jcrit = J∗;

(3) when E > E2, Jr = (Jr)OML and Jcrit =
√

2 MiR
√

E − eVp = (Jcrit)OML.
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Figure 8. Two general forms of the locus of turning points Û of effective potential energy
curve U . (a) The maxima exist at r larger than rmax; at smaller r only minima exist. (b) Only
maxima exist.

Clearly, when r > rÛmax we have

E1(r) = Û(r). (32)

When r < rÛmax it is necessary to find the crossover point E1 by equating (Jr)OML
with J∗ at each radius and finding the energy; from (29) and (31) we must solve

E1(r∗2(E1) − r2) = r∗2(E1)eV (r∗) − r2eV (r). (33)

Figure 9 shows schematically the relationships between Û(r), eV (r), E1(r), and E2.
Note that E1 is always larger than the minima on the Û curve. As Jcrit = Jr(R),
by definition

E2 = E1(R). (34)

4.2.3. Ion density. Using our definitions of E1 and E2, we divide (26) into three
integrals—from zero to E1, from E1 to E2, and from E2 to infinity. By substituting
these definitions and the Maxwellian (10) into (26),

Ni(ρ) =
1√
π

( ∫ ∞

0

√
ε + φ +

(∫ ε2

ε1

−
∫ ε1

0

)
C(ρ∗) + 2C(P )

)
exp(−ε) dε (35)

where we have normalized as follows,

Ni =
ni
n0

; ρ =
r

λDi
; P =

R

λDi
; ε =

E

kTi
; φ(ρ) = −eV (r)

kTi
; Φ = φ(P ), (36)

and the function C is defined as

C(x) =

√
ε

(
1 − x2

ρ2

)
− [φ(ρ) − φ(x)]

x2

ρ2
. (37)
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Figure 9. Relationships between the potential energy eV (r), locus of effective potential
turning points Û(r), absorption curve E1(r), and critical absorption energy E2.

Integrating analytically where possible,

Ni(ρ) = M(φ) +
1√
π

( ∫ ε2

ε1

−
∫ ε1

0

)
e−εC(ρ∗) dε

+

√
1 − P 2

ρ2
eΦM

(
φ − Φ(P 2/r2)
1 − (P 2/ρ2)

+ ε2

)
(38)

where the function M is given by

M(x) =
√

x

π
+

1
2

exp(x)(1 − erf [
√

x ]) (39)

and erf is the error function, defined as

erf(x) =
1√
π

∫ x

0

exp(−t2) dt. (40)

In this normalization, electron density Ne = ne/n0 is

Ne(ρ) = exp(βφ). (41)

Equation (38) expresses the entire ion density in terms of the radius and the
potential profile. The absorption radius effects introduce the integral terms in the
middle, and cause ε1 and ε2 to be non-zero, where ε1(ρ) = E1(r)/kTi and ε2 =
E2/kTi. Define the normalized locus of turning points as υ̂ = Û/kTi. From (30),

υ̂(ρ) = −φ(ρ) − ρ

2
dφ

dρ
(42)

https://doi.org/10.1017/S0022377803002265 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377803002265


Spherical probes and dust grains. II 497

and the limits of energy integration are, from (32)–(34),

ε1(ρ) =

 ε 	 (ρ∗2 − ρ2)ε
ρ∗2φ∗ − ρ2φ

= 1 ρ < ρ(υ̂max)

υ̂(ρ) ρ > ρ(υ̂max)
(43)

ε2 = ε1(R). (44)

where ρ∗ = ρ 	 υ̂(ρ) = ε and φ∗ = φ(ρ∗).

4.2.4. The plasma solution. Far enough into a plasma from any solid surface, it is
expected that quasi-neutrality will apply, i.e. the electron and ion densities will be
approximately equal. Applying this condition in the present theory, and linearizing
for small potential, (38) and (41) give

φ(ρ) =
1

2(1 + β)

(
e−ε2M(ε2) + Φ(1 − erf

√
ε2 ) +

1√
π

∫ ε2

0

e−ε ρ2

ρ∗2
φ∗ + ε

ε1/2
dε

)
P 2

ρ2
.

(45)
Setting ε2 to zero gives the expression

φ(ρ) =
1 + 2Φ

4(1 + β)
P 2

ρ2
. (46)

The OML solution for Φ in the ion normalization is, from (13),

(1 + Φ) exp(βΦ) =
√

Mi

me

√
β (47)

and it is found that using Φ from (47) in (46) violates the condition (16) for all
reasonable values of Mi, and

β :
V (r)
Vp

>
R2

r2
.

Thus Allen et al. (2000) concluded that the use of OML was questionable for
dusty plasma applications.

4.2.5. Ion current. The ion current Ii is given by integrating the inbound flux over
the velocities:

Ii = 4πR2

∫
u<0

f(v)eu(R) d3v. (48)

Substituting (8) for d3v,

Ii =
8π2e

M2
i

∫ ∞

0

∫ Jcrit

0

f−(E)J dJ dE. (49)

Integrating with respect to J and substituting (5) and (31) for Jcrit,

Ii =
8π2e

M2
i

[ ∫ E2

0

fMr∗2(E − eV [r∗]) dE +
∫ ∞

E2

fMR2(E − eVp) dE

]
. (50)

Substituting (10) for fM, the second integral is analytical. Normalizing for current
using ii = Ii/(4πλ2

Din0e
√

2kTi/Mi),

ii =
P 2(1 + Φ)

2
√

π
− 1

2
√

π

∫ ε2

0

e−ε[P 2(ε + Φ) − ρ∗2(ε + φ[ρ∗])] dε. (51)
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The first term in (51) is the OML current, see (11). In the case of ε2 → 0 we
recover this current (assuming the integrand remains finite), and hence the floating
potential. The integrand in the second term is always positive.

Result. For any solution of the full orbital system, the ion current for a given floating
potential is always less than or equal to the OML ion current.

Corollary. Floating potential in the full orbital system is always greater than or
equal to the OML floating potential.

From a physical point of view any ion which approaches the surface—having
passed any absorption radii along the way—must still satisfy the condition of
having a small enough angular momentum. A potential distribution that produces
absorption radii can prevent some ions from getting far enough to meet that test,
but cannot increase the number of ions that reach the surface.

4.2.6. Solving for the potential profile. To obtain the potential distribution around a
sphere of known surface potential, we must solve the Poisson equation, (19), with
electron and ion density from (17) and (38), respectively. Normalizing (19) and
substituting (17) and (38),

d2φ

dρ2
+

1
ρ

dφ

dρ
= M(φ)

+
1√
π

( ∫ ε2

ε1

−
∫ ε1

0

)
e−ε

√
ε

(
1 − χ

χ∗

)
+

(
φ − φ∗ χ

χ∗

)
dε

+
√

1 − χ e−ε2

[
M (ε2) +

1
2
eε2 (1 − erf ε2) (φ − Φχ)

]
− exp(−βφ).

(52)

Once this is done, we may find the electron and ion currents to the surface, and
adjust the surface potential accordingly to find the floating potential. When ARs
exist, (38) and (52) are functions of the entire potential profile, so an iterative
solution is required. It has been found that a point-and-shoot method works well—
we integrate from the surface outwards to a sufficiently large radius, varying the
initial slope of the potential until the curve meets the plasma solution, (45). A new
program was written to calculate the potential in full—which has not been done
since Laframboise’s work (1966). That work did not contain many results for small
probes or at floating potential.

4.2.7. Results

Floating potential. Results were obtained for a range of β from 0.01 to 1 and a range
of radii from 0.001 to 10λDe. Although it is much more convenient to express (52)
in terms of ion normalized values, results are better shown electron-normalized,
because electron temperature is much easier to measure. Let

ξ =
r

λDe
; Ξ =

R

λDe
; η(ξ) = −eV (r)

kTe
; ηp = η(Ξ). (53)

Figure 10 shows the electron-normalized floating potential as a function of probe
radius. For each temperature, the potential increases with radius. There is a finite
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Figure 10.The electron-normalized floating potential as a function of probe radius for various
ratios of ion to electron temperature β. Results are due to the full OM theory, except for
those for β = 0, which are obtained from the radial motion theory (Kennedy and Allen 2001).
For each temperature ratio, the potential increases with radius. There is a finite asymptote
for small probes which corresponds to the OML potential.

0

1

2

3

N
or

m
al

iz
ed

 p
ot

en
ti

al
,  

η
 =

 –
 e

V
/k

T
e

0.01 0.1 1 2 5

5 10 15
R=10 λDe

Distance from centre, electron Debye lengths

Figure 11. Potential profiles for spherical probes at floating potential from the full orbital
theory, at various ratios of probe radius to Debye length, where ion and electron temperature
are equal.

asymptote for small probes which corresponds to the OML potential, a new result
which is demonstrated in the following section.

Potential profiles. Figure 11 shows potential profiles for spherical probes at floating
potential from the full orbital theory. It is apparent that the profile becomes sharper
as probe radius decreases, as it did in the radial model. In order to expose the
underlying properties of these potential curves we plot them on a logarithmic scale.
Figure 12 shows a logarithmic plot, with potential scaled by the relevant floating
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Figure 12. Logarithmic plot of the results shown in Fig. 10, with potential scaled by
the relevant floating potential and radius scaled by the probe radius. There is usually a
vacuum-like region near the surface where the slope is approximately −1. Far from the
probe, the plasma region has a slope of −2.

potential and radius scaled by the probe radius. In general, there is a vacuum-like
region near the surface where the slope is approximately −1. Far from the probe,
the plasma region has a slope of −2, although this asymptote shifts with R/λDe.
In between there is a transition region, in which the curve crosses the dashed OML
criterion line through the origin of slope −2. The fact that each potential curve
passes beneath this line means that each of these solutions has a finite absorption
radius for some range of energies.

Variation with probe radius. Laframboise (1966) gives results of spatial potential
and density distribution, ion and electron current for ion and electron temperature
ratios varying from 0.1 to unity, but rarely for R/λD < 1, and never for R/λD less
than 0.2. His results were not at floating potential but were specified for various
potentials, often larger than 10kTe. Hence the student of dust will not generally
use these results except as a guide for the accuracy of a calculation mechanism.
Looking at a large probe, as in Fig. 13, we see that within a few probe radii,

the ion and electron densities are approximately equal, and the transition between
the effective sheath and pre-sheath occurs at around eV = − 1

2kTe. The absorption
curve ε1 is very prominent here, having significant values well beyond the sheath
boundary. The Maxwellian, drawn for comparison, is shown to the same scale;
almost all the ions in the distribution have an absorption radius. The largest value
of ε1 in this case is 42.3, and it occurs at the probe surface, so ε2 = υ̂max. The
surface potential is ηp = 3.182, which is close to the thin-sheath limit.
A probe an order of magnitude smaller, with R/λD = 10, has similar character-

istics, but at a different distance scale, as shown in Fig. 14. The surface potential
is somewhat smaller, at 2.815, and υ̂max is only 4.66. It is still an absorption
radius-dominated system however; most ions in the Maxwellian spectrum have an
absorption radius.
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and Ne. Ti/Te = 1; R/λD = 100.
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Figure 14. Surface potential, absorption curve, and ion and electron charge densities Ni

and Ne. Ti/Te = 1; R/λD = 10.

With a probe which has R/λD = 1—shown in Fig. 15—the absorption curve has
changed shape. Now it has a peak, which means that the absorption radii start
some way from the surface. Much less of the ion distribution is affected by this
curve. Also, the plasma region now starts at around r = 5R; the sheath is becoming
large compared to the probe radius. The surface potential for this radius is 2.52,
very close to the OML value.
With a probe of R/λD = 0.1—shown in Fig. 16—we start to approach the dust

regime, and the limit of Laframboise’s results. Now the absorption curve cannot
be clearly seen on the same scale as the potential. The peak has moved much
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further out, and to fully encompass all of the absorption behaviour we must look at
positions many times larger than the probe radius. This has little effect on floating
potential however, which is now 2.505.
Finally, at R/λD = 0.01—shown in Fig. 17—we completely lose sight of the

absorption curve on the scale of the potential. Here, ε1 has little effect on the ion
density or the potential. Empirically it appears that absorption radii have little
effect for these parameters. We recover the OML floating potential ηp = 2.503 (see
Sec. 5).
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Variation with ion–electron temperature ratio. Figure 18 shows three potential curves
which demonstrate the variation of the theoretical results with temperature ratio β.
As β is reduced, the floating potential decreases, also shown in Fig. 18. The potential
curve becomes steeper as β decreases; the system is becoming more influenced by
absorption radius effects. The absorption curve ε1 increases in magnitude due to this
steepening. The extreme case is that of zero ion temperature, which cannot be solved
using this method. Effectively in this case, every ion which approaches the probe
has an absorption radius at infinity, and all linearizations of ion-normalized energies
become untenable, involving a division by zero. Hence in this case we change the
calculation method completely and use the radial motion theory. Generally as β is
reduced the calculation becomes slower and more difficult to control.

5. Limiting theory of small probe radius
5.1. Linear theory and solution

In Sec. 4.2.4 it was shown that as ε2 goes to zero we recover the OML expressions
for the ion current and surface potential. Here it will be shown that ε2 diminishes
with the ratio of probe radius to Debye length.
Taking (52), and eliminating terms above first order in 1/ρ2 (we will use ζ for

consistency) and φ, assuming also that the integral term is negligibly small (to be
confirmed a posteriori),

d2φ

dζ2
+

1
ζ

dφ

dζ
= φ − 1 + 2Φ

4
Z2

ζ2
. (54)

Compare (54) to the Debye–Hückel equation, (20), which lacks the latter term of
the charge density. This term, −(1 + 2Φ)Z2/(4ζ2) represents the ion deficit due to
absorption on the probe surface, which is neglected in the Debye–Hückel analysis.
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Equation (54) has the analytical solution,

φ = eZ−ζ Z

ζ
Φ +

1 + 2Φ
8(1 + β)

Z2

ζ
e−ζ(eζf(ζ) − eZf(Z)) (55)

where we have used a distance-normalization based on the linearized Debye length
λL, so that ζ = r/λDL and Z = R/λDL. Note that exf(x) is monotonic, therefore the
latter term in (55) is always positive and φ is always larger than the Debye–Hückel
solution. The function f is defined as

f(x) = e−xEi(x) − exEi(−x)

where Ei is the exponential integral function,

Ei(x) = −
∫ ∞

−z

e−t

t
dt. (56)

Figure 19 shows a potential plot from (55) compared to the Debye–Hückel
solution and the full solution for the same surface potential. The linear theory
gives an excellent fit to the full solution at small radius. The difference lies in the
inverse square behaviour at larger radius, which is reproduced accurately by the new
model, whereas the Debye–Hückel potential vanishes exponentially. The argument
of Sec. 3 still applies—the linearization is correct at small potential, and irrelevant
at larger potential provided that most of the potential follows a vacuum-like inverse
power curve.
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5.2. Absorption radius in the small probe limit

Now compare (52) to (54). Aside from the linearization, the difference is that the
integral term must be neglected. In order to do this, ε2 and ε1 must vanish as P

tends to zero. Consider the effective potential locus of extrema υ̂ = Û/kTi. From
(30),

υ̂(ρ) = −φ − ρ

2
φ′(ρ). (57)

Substituting (55) into (57),

υ̂(ζ) =
1
2

Z

ζ

(
eZ−ζ(ζ − 1)Φ − Z

1 + 2Φ
8(1 + β)

(f(ζ) + ζg(ζ) + (ζ − 1)eZ−ζf(Z))
)

. (58)

We seek the maximum of (58). In the limit of small Z, (58) reduces to

υ̂(ζ) =
1
2

Z

ζ
eZ−ζ(ζ − 1)Φ (59)

which is also the expression when theDebye–Hückel potential applies. Equation (59)
has an analytical maximum υ̂max at ζ = 1.618 03 equal to 0.037 87ZΦ, which
of course reduces to zero as P or Z tends to zero. As ε2 must be less than this
maximum, we have shown that ε2 reduces to zero as Z → 0. All values of ε1 are
less than υ̂max, so the entire integral in (52) becomes negligible (the integrand can
be shown to remain finite). Furthermore, (51) reduces to the OML current of (11)
as ε2 vanishes, so we obtain the OML potential in the limit of small probe radius.

6. Conclusions
Calculations have been performed for the full orbital theory with a Maxwellian ion
distribution, showing clearly the form of the potential, densities, and absorption
curve for various parameters. It has been shown from first principles that the
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OML surface potential is the limiting solution to the complete orbital motion
theory for vanishing probe radius divided by any appropriate Debye length. An
analytical solution has been given which applies in this limit. Both of these results
are pertinent to dusty plasma applications, wherein R/λD is usually expected to
be small compared to unity.
This analysis assumes that ion motion is collisionless. It may also be that col-

lisions have the effect of depleting ion angular momentum, thus increasing the
ion current, and reducing the equilibrium potential. Collisions may also lead to
ions becoming trapped in closed orbits around the dust grain, when the effective
potential has a local maximum (see, for example, Goree 1994).
Considering the calculated surface potentials, it is clear that even a small ion

temperature gives rise to a significantly larger potential than is predicted by radial
motion theory (see Kennedy and Allen 2001). This difference increases as probe
size becomes smaller. In the case of dust it seems that, of the theories considered,
the orbital theory, either in full or simplified, is most appropriate for dusty plasma
work.
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