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On the energy instability of liquid crystals
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The direct Lyapunov method is used to investigate the stability of general equilibria of a

nematic liquid crystal. First, we prove the converse Lagrange theorem stating that an

equilibrium is unstable to small perturbations if the distortion energy has no minimum at this

equilibrium (i.e. if the second variation of the distortion energy evaluated at the equilibrium is

not positive definite). The proof is constructive rather than abstract : we explicitly construct a

functional that grows exponentially with time by virtue of linearized equations of motion

provided the condition of the theorem is satisfied. We obtain an explicit formula that gives the

dependence of the perturbation growth rate upon the equilibrium considered and the initial

data for the perturbation. Secondly, we obtain the upper and lower bounds for growing

solutions of the linearized problem, and we identify the initial data corresponding to the most

unstable mode (i.e. to the perturbation with maximal growth rate). All results are obtained in

quite a general formulation: a nematic is inside a three-dimensional domain of an arbitrary

shape and strong anchoring on the boundary is supposed; the standard equations of

nematodynamics are employed as the governing equations.

1 Introduction

Studies of the stability properties of various equilibrium configurations of liquid crystals

have a long history [1] that may be traced back to the experiments by Freedericks & Zolina

[2]. During the last two decades, the interest in instabilities of liquid crystal equilibria

(especially in instabilities driven by external electro-magnetic fields) increased due to their

applications to electro-optic display devices. The common recipe (which has been exploited

in numerous publications [1, 3, 4]) for making a conclusion about stability or instability of

a given equilibrium configuration is based on energy arguments : if the free energy of the

distortion (plus magnetic energy if an external magnetic field is present) has a local

minimum at the equilibrium considered then this equilibrium configuration is stable to

small perturbations, otherwise it is unstable. The first (direct) part of this statement is an

analogue of the Lagrange theorem in finite-dimensional mechanics and is certainly true.

The exact meaning of ‘stability ’ in this case will be addressed in §3 of the present paper.

The second (converse) part concerning instability (called the converse Lagrange theorem)

is less obvious and requires more careful treatment. Even though conclusions about

instability in the case of no free energy minimum seem physically reasonable and are

confirmed experimentally for many particular situations [5, 6], we cannot assert a priori that

this is true in the general situation. A classical example from finite-dimensional mechanics

when the system has no minimum at an equilibrium but this equilibrium is stable may be
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found in [7] (see also [8, 9]). In continuum mechanics the situation is much more

complicated and, as was pointed out in [10–12], it is always necessary to prove the

corresponding proposition (the converse Lagrange theorem).

The major aims of the paper are : (i) to prove, in the linear approximation, the converse

Lagrange theorem for general equilibria of nematic liquid crystals, our consideration being

restricted to a simple case of equilibria without external electro-magnetic fields ; (ii) to

obtain the lower and upper bounds for the growing solutions of the corresponding

linearized problem and to identify a perturbation with the maximal growth rate.

For simple geometries of a domain containing a nematic it is possible to show the

instability (under the condition of the converse Lagrange theorem) by the usual normal

mode technique [13]. In the general situation of an arbitrary domain this is, however,

impossible. We therefore adopt a more general technique – the direct Lyapunov method,

which allows us to treat the problem in a general formulation (without even solving the

equations of motion). The main idea of the method (e.g. see [8, 9]) is to construct a positive

definite (with respect to perturbations) functional that changes monotonically with time by

virtue of the equations governing the evolution of perturbations (a non-increasing

functional will prove stability and an increasing functional will prove instability). To

construct such a functional, we exploit some general ideas recently developed in

hydrodynamic stability theory [10–12].

We start with the formulation of the basic equations of nematodynamics in §2 and

identify the basic equilibrium state as an exact solution of these equations. In §3 we

formulate the linearized stability problem and discuss the (direct) Lagrange theorem. Then,

in §4, we construct the Lyapunov functional. The result of §4 is the basic inequality (4±5)

that gives an exponential decrease of an energy-type functional, this inequality being true

for any equilibrium configuration of nematic. In §5 we use this inequality to obtain the

lower bound (5±7) for the growing solutions of the linearized problem. This lower bound

is the central result of the paper. It states that the perturbations increase exponentially with

time, the growth rate being given by an explicit formula. Finally, in §6 we obtain the upper

bound for the growing perturbations to identify the most unstable mode (the perturbation

with the maximum value of the growth rate).

2 Basic equations

Let τ be a three-dimensional domain entirely filled with a nematic liquid crystal. The

boundary ¥τ of the domain τ is fixed; x3 (x
"
,x

#
,x

$
) are Cartesian coordinates. The state

of a nematic at every point is described by density ρ, pressure p, velocity u¯ (u
"
, u

#
, u

$
) and

a vector n¯ (n
"
, n

#
, n

$
) (called the ‘director ’), normalized so that

n#¯ 1, (2.1)

which characterizes the orientation of the molecular axes in space. We consider an

incompressible nematic ρ3 const. Equations of motion are taken in a form proposed first

by the Harvard group [14] (see also [1, §5.1]) :
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In equations (2.2)–(2.4) we use the notations and terminology introduced by de Gennes

[1]. The summation convention is used, σe

ik
is the Ericksen (equilibrium) stress, σs

ik
is the

symmetric part of the viscous stress, h is the molecular field, F
d
is the free energy (per unit

volume of nematic) due to the distortion of n, k
"
,k

#
,k

$
are the Frank elastic constants†,

λ is the ‘reactive parameter ’, γ, ν
"
, ν

#
, ν

$
are the dissipation coefficients. Note that the

constants λ,γ, ν
"
, ν

#
, ν

$
are related to the Leslie coefficients α

"
,α

#
,α

$
,α

%
,α

&
,α

'
by the

equations [1] :
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The boundary conditions are taken in the simplest form, namely the director n on ¥τ has

a prescribed, fixed orientation (a strong anchoring condition) and the velocity is zero

(no-slip condition) :

n(x)¯ n
b
(x), u¯ 0 on ¥τ. (2.5)

An equilibrium state of a nematic liquid crystal

n(x)¯ n!(x), n¯ 0, p¯ p(x) (2.6)

is described by equations that are consistent with (2.2) :

p(x)¯ const®F
d
(x), hv ¯ 0. (2.7)

The first of equations (2.7) expresses the balance of forces in the equilibrium, the second

represents the balance of moments [1, 3].

3 The stability problem

In this section we shall formulate the stability problem for the equilibrium (2.6) as well as

briefly discussing the (direct) Lagrange theorem for nematic liquid crystals.

† Note that the Frank elastic constants k
"
,k

#
,k

$
must be positive to provide the stability of a

homogeneous state n¯ const.
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Consider an infinitesimal perturbation of the basic equilibrium state (2.6) in the form

n(x, t)¯ n!(x)­n4 (x, t), u(x, t)¯ 0­u4 (x, t), h(x, t)¯ h!(x)­h4 (x, t), etc.

where n4 (x, t) is the disturbance director, u4 (x, t) is the disturbance velocity, h4 (x, t) is the

disturbance molecular field, etc. On substituting these expressions into equations (2.2),

(2.3), neglecting all terms quadratic in disturbances and then dropping ‘tildes ’ to simplify

the notation, we obtain the linearized equations of motion
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From here on, u, n, Ω
ik
, A

ik
, σe

ik
, σs
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, hv etc. denote the infinitesimal disturbances of the

corresponding equilibrium quantities, e.g. σe
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¯®pδ
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.

The linearized version of (2.1) is

n[n!¯ 0. (3.3)

The boundary conditions for perturbations are

u¯ 0, n¯ 0 on ¥τ. (3.4)

Equations (3.1), (3.2) with boundary conditions (3.4) completely describe the evolution of

small perturbations of the basic state (2.6). (In spite of the considerable simplification

resulting from linearization, a general analysis of these equations has never been done. To

a certain extent we shall do this in the present paper.)

It may be shown (see Appendix A) that the equation expressing energy dissipation for

the linearized problem (3.1)–(3.4) is

Ed 3 ¥
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In (3.5e) we have used the notations µ
"
3 2ν

#
, µ

#
3 2(ν

$
®ν

#
), µ

$
3 2(ν

"
­ν

#
®2ν

$
). The

functionals E, K, Π
#
and D can be treated as the total, kinetic, potential energies and the
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energy dissipation for the linearized problem. According to their definitions, the functionals

K and D are positive definite while the functional Π
#

can be either positive definite or

indefinite in sign for various equilibria.

There is an important connection between the properties of the functional Π
#

and the

stability properties of the corresponding equilibrium state. Indeed, if Π
#

is a positive

definite functional, i.e.

Π
#
" 0 for all n(x)J 0, (3.6)

then the total energy E is also positive definite, and E, which is quadratic in perturbations,

may therefore be taken as a norm to measure the deviation of a perturbed state of nematic

from an unperturbed one. The energy equality (3.5a) and the fact that D is a positive

definite functional then give the estimate

E(t)%E(0), (3.7)

so that the norm of a perturbation at any time t is bounded by the norm of this perturbation

at initial instant t¯ 0, and the corresponding equilibrium is therefore linearly stable (in the

sense of Lyapunov).

Here we are interested in an opposite situation when the functional Π
#

is indefinite in

sign. In this case, there exists such a set 1 of functions n(x) that :

Π
#
! 0 for n(x) `1, (3.8a)

Π
#
& 0 for n(x) a1, (3.8b)

One of our major aims here is to show that an equilibrium state is unstable provided Π
#

is indefinite in sign (i.e. the set 1 defined by (3.8) is not empty).

The properties of the functional Π
#
(and, as a consequence, the stability properties of the

equilibrium (2.6)) have, in turn, a close connection with the properties of the potential

energy of distortion:

Π
d
3&

τ

F
d
dτ. (3.9)

It may be shown that on the set of smooth functions n(x) that are subject to the constraint

(2.1) and that satisfy the boundary condition (2.5) the functional Π
d
has a critical point at

the equilibrium n!(x), i.e. the first variation of the functional

Π3Π
d
­

1

2&τ

α n# dτ (3.10)

is equal to zero:

δΠ¯ 0. (3.11)

In equation (3.10), α is the Lagrange multiplier for the constraint (2.1). In fact, the

variational principle (3.11) is the usual way to obtain the equilibrium equations (2.6) [1, 3].

The local properties of the functional Π (in the vicinity of a critical point) are determined

by its second variation δ#Π. The functional Π has a local minimum at n!(x) (2.6) if the

second variation δ#Π is positive definite. Accordingly, Π had has a local ‘saddle point ’ at

(2.6) if it is indefinite in sign.
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In our case, the second variation is given by the equation
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which after substitution of equation (2.4e), and some manipulations, can be written as
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where δζ3 curl δn.

Comparing this with equation (3.5c), one can see that up to the change of notation

nU δn the functional Π
#
is the same as the second variation δ#Π. Therefore, the case of a

positive definite functional Π
#
corresponds to a positive definite δ#Π, and hence to a local

minimum of Π, so that the above conclusion about stability may be formulated as the

(direct) Langrange theorem: the equilibrium (2.6) is linearly stable if the free energy of

distortion has a local minimum at this equilibrium. Accordingly, the converse Lagrange

theorem whose proof will be given in §§4–5 states that the equilibrium (2.6) is linearly

unstable if the free energy of distortion has a local ‘saddle point ’ at this equilibrium.

4 Basic inequality

In this section, we shall establish an equality that gives a basis for obtaining lower and

upper bounds for the solutions of the linearized problem (3.1)–(3.4) in §§5–6.

Let us introduce the Lagrangian displacements of fluid particles ξ(x, t) defined by the

equation

¥
t
ξ¯ u in τ

with boundary condition ξ¯ 0 on ¥τ. ξ(x, t) describes the displacement of a fluid element

in the perturbed flow relative to its location x in the unperturbed state (2.6). Then formal

integration of equation (3.2) over time gives the relation between fields ξ and n :
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Let us now consider the functionals first introduced in [11] :
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By differentiating the functional X with respect to time and subsequent transformations, it

may be shown that (see Appendix B)

Xd ¯ 4(K®Π
#
)¯ 8K®4E. (4.3)

Equation (4.3) is called the ‘generalized virial equality’ [11] (the reason for this is that M0

(4.2a) is an analogue of the virial of classical finite-dimensional mechanics).

Multiplying equation (4.3) by a constant factor (®s}2) and adding the result to equation

(3.5a) we find
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Let s" 0. Then, since K
s
and D

s
cannot be negative, it follows from (4.4a) that

E
s
% 2sE

s
.

Integration of this inequality over time gives

E
s
(t)%E

s
(0) exp (2st). (4.5)

Note that (4.5) holds true for any solutions of the problem (3.1)–(3.4) and for any positive

values of s. Note also that so far we have not placed any restriction on the form of the

potential energy functional Π
#
.

The inequality (4.5) will play an essential role in the subsequent analysis ; all the results

that follow will be obtained using this inequality.

5 Lower bound

In this section, we shall demonstrate that under the condition (3.8a) of no potential energy

minimum at a given equilibrium n!(x) there exist solutions of the linearized problem

(3.1)–(3.4) that grow with time, and we shall obtain a lower bound for these solutions.
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Suppose that the condition (3.8a) is satisfied. This means that we can take the initial data

for n(x, t) such that

n(x, 0) `1,

and therefore,

Π
#
(0)! 0. (5.1)

Let us show that under condition (5.1) it is always possible to choose E
s
(0)! 0 (if it is so

then exponential growth of perturbations follows directly from inequality (4.5)). According

to equations (4.4) we have

E
s
(0)¯ s#M(0)­sA(0)­E(0), A(0)3 "

#
(G(0)®Md (0)).

We choose the initial data u(x, 0) for the velocity field such that K(0)! rΠ
#
(0)r, and hence

E(0)! 0. Then E
s
(0) is a quadratic polynomial in s with a positive coefficient M(0) of s# and

with a negative constant term E(0). Therefore the conditions s" 0 and E
s
(0)! 0 determine

the interval of admissible values of s :
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It is obvious that S
"
" 0 for any initial data which are consistent with condition E(0)! 0.

We now show that E
s
(0)! 0 implies exponential growth with time of the solutions of the

problem (3.1)–(3.4). From the fact that K
s
& 0 and from the definition of Π

s
, it follows that
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This and equation (4.5) give

Π
#
(t)!E

s
(0) exp(2st). (5.3)

For any s from the interval defined by equations (5.2) this inequality means that the

potential energy Π
#
(t) is exponentially decreasing with time from its negative initial value

Π
#
(0), so that, in absolute value, Π

#
is growing. The expression (3.5c) for Π

#
is quite

complicated. To extract the part of Π
#

which is really growing with time we need to

transform (3.5c) to more convenient form.

Consider now the functional Π
#
(t). By using the identities
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From equation (5.4), it follows that

Π
#
&®I, (5.5)

where

I(t)3
1
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#
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#
(n¬ζ!)#­k

$
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$
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Since the integrand in (5.6) is a positive definite quadratic form of the perturbation of the

director and its spatial derivatives, it may therefore be taken as a norm to measure the

difference between perturbed and unperturbed states. The inequalities (5.3), (5.5) give the

estimate

I(t)" rE
s
(0)r exp(2st) (5.7)

with any s from the interval (5.2). Inequality (5.7) gives the lower bound for the solutions

of the linearized problem. This means that small deviations of the director from its

equilibrium orientation grow exponentially with time, and this fact, in turn, implies linear

instability of the equilibrium state. Thus, we have proved the converse Lagrange theorem

for nematic liquid crystals.

It also follows from equation (5.7) that the lower bound for growth rate of the solutions

of the problem (3.6)–(3.9) is given by the constant S
"
®δ, where δ is any number from the

interval (5.2) ; in particular, δ may be an arbitrarily small number. Note that S
"

is

completely determined by the initial data for perturbations. The upper limit for the growth

rate corresponds to the maximum value of the parameter S
"

for all possible initial fields

n(x, 0), ξ(x, 0) and u(x, 0). The problem of maximizing S
"

is quite complicated. It may

however be considerably simplified by considering a particular class of the solutions that,

as will be clear later, corresponds to the maximal growth rate.

Consider such a class of solutions of the problem (3.1)–(3.4) for which the initial values

of velocity and Lagrangian displacements of fluid particles are related by the equation

u(x, 0)¯ sξ(x, 0). (5.8)

It follows from (4.4c), (5.8) that

K
s
(0)¯ 0, E

s
(0)¯Π

s
(0). (5.9)

Since

2Π
s
(0)3 2Π

#
(0)­sG(0)­s#M(0),

both conditions s" 0, E
s
(0)! 0 are equivalent to choosing s from the interval

0! s!S
#
, (5.10a)

where

S
#
3®

G(0)

2M(0)
­90 G(0)

2M(0)1#®2Π
#
(0)

M(0) :"#. (5.10b)

Since Π
#
(0)! 0, the parameter S

#
is always positive. Note also that S

#
depends only on

ξ(x, 0), n(x, 0), while S
"
depends on ξ(x, 0), n(x, 0) and u(x, 0)). The dependence of S

#
(and S

"

as well) upon h# (x, 0) is supposed to have been eliminated by using the relationship (4.1b).
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From (4.5), (5.5), (5.9), we easily obtain the inequality

I(t)" rΠ
S
#
−δ(0)r exp[2(S

#
®δ) t], (5.11)

which holds for any δ from the interval (5.10a). Inequality (5.11) shows that S
#
®δ (δ may

be arbitrarily small) gives the lower bound for the growth rate of the solutions of the

problem (3.6)–(3.9) from the class defined by equation (5.8).

Let us show now that

S
#
²n(x, 0), ξ(x, 0)´&S

"
²n(x, 0), ξ(x, 0), u(x, 0)´ (5.12)

for any field u(x, 0) compatible with the condition E(0)! 0. To do this, it is sufficient to

show that any s from the interval (5.2) is also in the interval (5.10). Suppose that s* is such

that 0! s*!S
"
. This means that E

s*
(0)! 0. On the other hand, since E

s*
(0)3

K
s*
(0)­Π

s*
(0)&Π

s*
(0), we have: E

s*
(0)! 03Π

s*
(0)! 0. Hence, 0! s*!S

#
. We have

thus proved that s* ` (0,S
"
)3 s* ` (0,S

#
) and, therefore, S

"
%S

#
.

In the next section it will be shown that the perturbations from the class (5.8) are the most

unstable ones because the greatest growth rate corresponds to the disturbance for which the

quantity S
#

is maximal.

6 Upper bound

The upper bound for the growing perturbations also follows from the basic inequality (4.5).

To obtain the upper bound we have to find a value of s for which the functional Π
s

is

positive definite for all admissible fields ξ and n. Then E
s
will be also positive definite and,

as a consequence, the basic inequality (4.5) will give the upper bound for the growing

perturbations. Let
S*3 sup

ξ, n

S
#
, (6.1)

where supS
#

is calculated on the set of smooth functions ξ(x, 0) satisfying the conditions

div ξ¯ 0 in τ, ξ¯ 0 on ¥τ, and on the set 1 (defined by (3.8)) of functions n(x, 0).

Now let s"S*. Then for all n(x, 0) `1 we have Π
s
(0)" 0. On the other hand, for all

n(x, 0) a1, Π(0)& 0 and hence Π
s
(0)& 0. The functional Π

s
(0) is thus positive definite for

all admissible fields n(x, 0), ξ(x, 0). Equations (4.4b, c) then show that E
s
(0) is also positive

definite for all fields n(x, 0), ξ(x, 0) and u(x, 0). Obviously, the same conclusion is valid for

E
s
(t). Therefore, from (4.5) we obtain the following inequality :

E
S*+ε(t)%E

S*+ε(0) exp[2(S*­ε) t] (6.2)

for any ε" 0. Since E
s
is a positive definite quadratic functional of the perturbations, this

inequality gives the upper bound for the growing solutions of the problem (3.1)–(3.4).

According to equation (5.11), the growth rate of a perturbation may be greater than

S*®δ with arbitrarily small δ. On the other hand, according to (6.2), it must be less than

S*­ε with arbitrarily small ε. We therefore identify S* as the growth rate of the most

unstable perturbation.

7 Concluding remarks

In this paper, we have applied the direct Lyapunov method to prove the converse Lagrange

theorem for nematic liquid crystals. The theorem states that an equilibrium alignment of

a nematic is unstable (in linear approximation) if the free energy of distortion has no
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minimum at this equilibrium. We supposed that a nematic was confined in a three-

dimensional domain of an arbitrary form and that on the boundary of the domain the

director had a prescribed, fixed orientation.

Using the techniques recently developed in the hydrodynamic stability theory [10–12] we

have constructed a Lyapunov functional and have obtained the lower bound for growing

solutions of the linearized problem, the latter ensured an exponential growth of small

perturbations of the basic equilibrium state. We have then obtained the upper bound for

these solutions with the aim of identifying the most unstable perturbation.

Much remains to be done in this area, particularly the problem of calculating the

maximal growth rate (6.1) (it involves maximizing the functional S
#

(5.10b) on all

admissible fields ξ and n and is quite complicated; it may be solved numerically at least in

the case of a simple geometry of the domain). This is the subject of a continuing

investigation.

The results of this paper can be generalized to the case of nematic equilibria in an

external electro-magnetic field. In this case, estimates analogous to (5.11), (6.2) may give

an approach for evaluating the growth rate of perturbations and eventually may lead to a

prediction of the time interval needed for switching between configurations of different

energy by using electric fields. This will also be the subject of a future communication.

Similar theories can be developed for other types of liquid crystals such as cholesterics

and smectics.
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Appendix A. Derivation of the energy equation (3.5a)

It is convenient to rewrite the disturbance energy (3.5b) in the form

E¯&
τ

% dτ, %3 "

#
ρu

i
u
i
­F

#
­"

#
(n![h!) n

i
n
i
, (A 1)

where

2F
#
3

¥#F
d

¥n!
i
¥n!

j

n
i
n
j
­2

¥#F
d

¥n!
i
¥(¥

k
n!
j
)
n
i
¥
k
n
j
­

¥#F
d

¥(¥
i
n!
j
) ¥(¥

k
n!
l
)
¥
i
n
j
¥
k
n
l
­(n![h!) n

i
n
i
, (A 2)

so that F
#
represents the second term in the expansion of the distortion energy F

d
(n

i
, ¥

k
n
i
)

(2.4e) in the Taylor series at the point (n!
i
, ¥

k
n!
i
).

It may be shown that

π
ki

3
¥π!

ki

¥n!
j

n
j
­

¥π!
ki

¥(¥
l
n!
j
)
¥
l
n
j
¯

¥F
#

¥(¥
k
n
i
)

and that

¥#F
d

¥n!
i
¥n!

j

n
j
­

¥#F
d

¥n!
i
¥(¥

l
n!
j
)
¥
l
n
j
¯

¥F
#

¥n
i

.
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Therefore, the disturbance molecular field h can be presented in the form

h
i
¯ ¥

k
π
ki
®¥F

#
}¥n

i
, π

ki
¯ ¥F

#
}¥(¥

k
n
i
). (A 3)

Note also that the linear (in disturbances) part of the transverse component of the

molecular field is given by

hv ¯ h®n(n![h!)®n!(n![h). (A 4)

In deriving this equation we have used equation (3.3) and the fact that h! has no transverse

component.

We now calculate the derivative of % with respect to time. Observe first that

¥
t
F
#
¯

¥F
#

¥n
i

¥
t
n
i
­

¥F
#

¥(¥
k
n
i
)
¥
t
(¥

k
n
i
)¯

¥F
#

¥n
i

¥
t
n
i
­π

ki
¥
t
(¥

k
n
i
)

¯
¥F

#

¥n
i

¥
t
n
i
®¥

k
π
ki

¥
t
n
i
­¥

k
(π

ki
¥
t
n
i
)¯®h

i
¥
t
n
i
­¥

k
(π

ki
¥
t
n
i
). (A 5)

Using this equation and equations (A 4) and (3.3), we immediately obtain

¥
t
(F

#
­"

#
(n![h!) n

i
n
i
)¯®hv

i
¥
t
n
i
­¥

k
(π

ki
¥
t
n
i
). (A 6)

It can be shown from equation (3.2) that

hv

i
¥
t
n
i
¯®hv

i
u
k
¥
k
n!
i
­

1

γ
(hv)#­"

#
¥
k
u
i
(hv

i
n!
k
®hv

k
n!
i
)­

λ

2
(hv

i
n!
k
­hv

k
n!
i
). (A 7)

From (3.1), after simple manipulations, we obtain

¥
t
("
#
ρu#)¯®"

#
¥
k
u
i
(n!

i
hv

k
®n!

k
hv

i
)­

λ

2
(n!

i
hv

k
­n!

k
hv

i
)

®d
ik

A
ik
®u

i
¥
k
B

ik
­¥

k
[u

i
(®pδ

ik
­"

#
(n!

i
hv

k
®n!

k
hv

i
)­σs

ik
)], (A 8)

where d
ik

is defined by equation (3.5e) and

B
ik

3π!
kl

¥
i
n
l
­π

kl
¥
i
n!
l
.

Then equations (A 6), (A 7), (A 8) give

¥
t
%¯ ¥

t
("
#
ρu

i
u
i
­F

#
­"

#
(n![h!) n

i
n
i
)¯ hv

i
u
k
¥
k
n!
i
®u

i
¥
k
B

ik

®
1

γ
(hv)#®d

ik
A

ik
­¥

k
[π

ki
¥
t
n
i
­u

i
(®pδ

ik
­"

#
(n!

i
hv

k
®n!

k
hv

i
)­σs

ik
)]. (A 9)

By standard manipulations it can be shown that

¥
k
B

ik
¯ hv

k
¥
i
n
k
­¥

i
F
"
, (A 10)

where F
"

is linear in the disturbances part of the distortion energy F
d
:

F
"
3

¥F
d

¥n!
l

n
l
­

¥F
d

¥(¥
k
n!
l
)
¥
k
n
l
.
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Finally, substituting (A 10) into (A 9) gives the equation

¥
t
%¯®

1

γ
(hv)#®d

ik
A

ik
­¥

k
X

ik
, (A 11)

where

X
ik

3π
ki

¥
t
n
i
­u

i
(®(p­F

"
) δ

ik
­"

#
(n!

i
hv

k
®n!

k
hv

i
)­σs

ik
).

Integrating (A 11) over τ and using boundary condition (3.9) results in the energy equation

(3.5a).

Appendix B. Derivation of the ‘generalized virial equation’ (4.3)

Using the definition of the field ξ and equations (3.1) and (4.2), we obtain

MX }2¯&
τ
(ρu

i
u
i
­ξ

i 0®¥
i
p®¥

k
B

ik
­"

#
¥
k
(n!

i
hv

k
®n!

k
hv

i
)®

λ

2
¥
k
(n!

i
hv

k
­n!

k
hv

i
)­¥

k
d
ik1* dτ.

After integrating by parts and using boundary condition ξ¯ 0 on ¥τ we find

MX }2¯ 2K­&
τ
(®ξ

i
¥
k
B

ik
®ξ

ik
d
ik
®"

#
¥
k
ξ
i
(n!

i
hv

k
®n!

k
hv

i
)­

λ

2
¥
k
ξ
i
(n!

i
hv

k
­n!

k
hv

i
)* dτ. (B 1)

It follows from (4.1a) that

hv

i
n
i
¯®ξ

k
hv

i
¥
k
n!
i
®"

#
¥
k
ξ
i
(n!

i
hv

k
®n!

k
hv

i
)­

λ

2
¥
k
ξ
i
(n!

i
hv

k
­n!

k
hv

i
)­

1

γ
hv

i
h#
i
. (B 2)

Taking account of (B 2) we can rewrite equation (B 1) in the form

MX }2¯ 2K­&
τ
(®ξ

i
¥
k
B

ik
®ξ

ik
d
ik
­ξ

k
hv

i
¥
k
n!
i
­hv

i
n
i
®

1

γ
hv

i
h#
i* dτ. (B 3)

Using equation (A 10), we immediately obtain

MX }2¯ 2K­&
τ
(hv

i
n
i
®ξ

ik
d
ik
®

1

γ
hv

i
h#
i* dτ. (B 4)

It may be shown by standard calculations that the ‘potential energy’ Π
#
given the equation

(3.5c) can also be written as

Π
#
¯®

1

2&τ

hv

i
n
i
dτ. (B 5)

After using equation (B 5) and the definition of the functional G from (4.2b), equation (B 4)

takes the form

MX ¯ 4(K®Π
#
)®Gd ,

which, in view of the definition of X in (4.2b), coincides with equation (4.3).
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