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Evaluation of energetic metabolism in the rat
brain after meningitis induction by Klebsiella
pneumoniae

Barichello T, Simões LR, Generoso JS, Carradore MM, Moreira AP,
Panatto AP, Costa CS, Filho AS, Jeremias IC, Bez GD, Streck E.
Evaluation of energetic metabolism in the rat brain after meningitis
induction by Klebsiella pneumoniae.

Background: Bacterial meningitis is an infection of the central nervous
system characterised by strong inflammatory response. The brain is highly
dependent on ATP, and the cell energy is obtained through oxidative
phosphorylation, a process which requires the action of various respiratory
enzyme complexes and creatine kinase (CK) as an effective buffering
system of cellular ATP levels in tissues that consume high energy.
Objectives: Evaluate the activities of mitochondrial respiratory chain
complexes I, II, III, IV and CK activity in hippocampus and cortex of the
Wistar rat submitted to meningitis by Klebsiella pneumoniae.
Methods: Adult Wistar rats received either 10 μl of sterile saline as a
placebo or an equivalent volume of K. pneumoniae suspension. The
animals were killed in different times at 6, 12, 24 and 48 h after meningitis
induction. Another group was treated with antibiotic, starting at 16 h and
continuing daily until their decapitation at 24 and 48 h after induction.
Results: In the hippocampus, the meningitis group without antibiotic
treatment, the complex I was increased at 24 and 48 h, complex II was
increased at 48 h, complex III was inhibited at 6, 12, 24 and 48 h and in
complex IV all groups with or without antibiotic treatment were inhibited
after meningitis induction, in the cortex there was no alteration.
Discussion: Although descriptive, our results show that antibiotic
prevented in part the changes of the mitochondrial respiratory chain. The
meningitis model could be a good research tool to study the biological
mechanisms involved in the pathophysiology of the K. pneumoniae
meningitis.
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Significant outcomes
• The influence of meningitis by Klebsiella pneumoniae in the creatine kinase (CK) and mitochondrial

respiratory chain activity.
• The meningitis by K. pneumoniae is associated with permanent neurological damage; understand the

illness pathophysiology is the main factor that contributes to the therapeutic success.
• Our study helps to better understand the pathophysiology of meningitis by K. pneumoniae.
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Limitations
• Animal model.
• The results in animal models should be interpreted with caution before correlate with the clinic.
• This study evaluates the animal model of adult rats.

Introduction

Bacterial meningitis remains a major cause of death
and long-term neurologic sequelae worldwide. How-
ever, mortality and morbidity vary by causative
organism, age and geographical location of the
patient (1,2). Klebsiella pneumoniae is a capsu-
lated gram-negative pathogen that is known to
cause infection both in community and mainly as a
hospital-acquired infection presenting as pneumonia,
septicemia and meningitis in patients with some pre-
disposing factors (3,4). Klebsiella pneumoniae has
recently become an increasingly common cause of
the meningitis acute (5) affecting 14–61% of noso-
comial meningitis (6), being particularly devastating
among immunocompromised patients (7) with mor-
tality rates ranging between 30 and 40% (8), how-
ever in Singapore and parts of northern Taiwan the
mortality rate is higher. Furthermore, this pathogen
was the most frequent causative of the meningitis,
bacteremia and septic shock in patients with liver
cirrhosis (9). Furthermore, bacterial meningitis in
young adults in south Taiwan, and (10) in some Asian
areas, there has been an increased incidence in adults
(11). Bacterial invasion in the cerebral spinal fluid
(CSF) promotes the release of bacterial components
like polysaccharide capsule, peptidoglycan, bacte-
rial DNA and lipopolysaccharide (12,13), leading to
the activation of the brain innate immune defence,
releasing a cascade of inflammatory mediators and
leukocytes recruitment (14,15). An excessive release
of pro-inflammatory mediators and reactive oxygen
species could contribute to interrupt the bioenergetic
activity or the metabolic activity in injured neurons
(16,17). The CK is vital for normal energy home-
ostasis by exerting some integrated functions, such
as temporary energy buffering, metabolic capacity,
energy transfer and metabolic control. The brain,
like other tissues with high and variable rates of
ATP metabolism, presents high phosphocreatine con-
centration and CK activity (18–20). Furthermore,
another generating source of ATP is the oxidative
phosphorylation, that is the predominant mitochon-
dria physiological function but additional functions
include the production and detoxification of reac-
tive oxygen species, which is involved in various
forms of apoptosis, cytoplasmic regulation and mito-
chondrial matrix calcium, synthesis and metabolites
catabolism, so, abnormality any of these processes

can lead to mitochondrial dysfunction (21). There-
fore, the main factor that contributes to the therapy
success is to understand the pathogenesis and patho-
physiology of the bacteria in the central nervous
system (CNS) (16). Thus, to clarify a little more the
pathophysiology of this illness, the aim of our study
was to investigate the energetic metabolism in the rat
brain after meningitis induced by K. pneumoniae.

Materials and methods

Infecting organism

Klebsiella pneumoniae was cultured overnight in 10
ml of Todd Hewitt broth, diluted in fresh medium
and grown to logarithmic phase. The culture was
centrifuged for 10 min at (5000 × g) and resuspended
in sterile saline to the concentration of 1 × 106

cfu/ml. The size of the inoculum was confirmed by
quantitative cultures (22,23).

Animal model of meningitis

Adult male Wistar rats (250–300 g body weight),
from our breeding colony were used for the experi-
ments. All procedures were approved by the Animal
Care and Experimentation Committee of UNESC,
Brazil, and followed in accordance with the National
Institute of Health Guide for the Care and Use of
Laboratory Animals (NIH Publications No. 80–23)
revised in 1996. All surgical procedures and bac-
terial inoculations were performed under anaesthe-
sia, consisting of an intraperitoneal administration
of ketamine (6.6 mg/kg), xylazine (0.3 mg/kg) and
acepromazine (0.16 mg/kg) (24,25). Rats underwent
a cisterna magna tap with a 23-gauge needle. The
animals received either 10 μl of sterile saline as
a placebo or an equivalent volume of K. pneumo-
niae suspension. At the time of inoculation, animals
received fluid replacement (2 ml of saline subcu-
taneously) and were subsequently returned to their
cages. The animals were killed in different times
at 6, 12, 24 and 48 h after meningitis induction by
K. pneumoniae (n = 6 in each group). Another group
was treated with antibiotic (ceftriaxone 100 mg/Kg
twice a day, i.p.) starting at 16 h and continuing daily
until their decapitation at 24 and 48 h after meningitis
induction, n = 6 in each group (22,23). The control
group did not receive antibiotic treatment (26).

96

https://doi.org/10.1111/j.1601-5215.2012.00671.x Published online by Cambridge University Press

https://doi.org/10.1111/j.1601-5215.2012.00671.x


Meningitis by Klebsiella pneumoniae

Tissue assessment and homogenate preparation

Hippocampus and cortex were homogenised (1:10,
w/v) in SETH buffer, pH 7.4 (250 mM sucrose,
2 mM EDTA, 10 mM Trizma base, 50 IU/ml
heparin). The homogenates were centrifuged at 800
× g for 10 min and the supernatants kept at −70 ◦C
until used for enzymes activity determination. The
maximal period between homogenate preparation and
enzyme analysis was always less than 5 days. Protein
content was determined by the method described by
Lowry et al. (27) using bovine serum albumin as
standard.

Activities of mitochondrial respiratory chain enzymes

NADH dehydrogenase (complex I) was evaluated
according to the method described by Cassina
and Radi (28) by the rate of NADH-dependent
ferricyanide reduction at 420 nm. The activities
of succinate: DCIP oxidoreductase (complex II)
and succinate: cytochrome c oxidoreductase (com-
plex III) was determined according to the method of
Fischer et al. (29). Complex II activity was measured
by following the decrease in absorbance due to
the reduction of 2,6-DCIP at 600 nm. Complex III
activity was measured by cytochrome c reduction
from succinate. The activity of cytochrome c oxidase
(complex IV) was assayed according to the method
described by Rustin et al. (30), measured by follow-
ing the decrease in absorbance due to the oxidation
of previously reduced cytochrome c at 550 nm. The
activities of the mitochondrial respiratory chain com-
plexes were expressed as nmol/min × mg protein.

CK activity assay

CK was measured in brain homogenates pre-treated
with 0.625 mM lauryl maltoside. The reaction
mixture consisted of 60 mM Tris–HCl, pH 7.5,
containing 7 mM phosphocreatine, 9 mM MgSO4
and approximately 0.4–1.2 μg protein in a final
volume of 100 μl. After 15 min of pre-incubation
at 37 ◦C, the reaction was started by the addition
of 0.3 μmol of ADP plus 0.08 μmol of reduced
glutathione. The reaction was stopped after 10 min by
the addition of 1 μmol of p-hydroxymercuribenzoic
acid. The creatine formed was estimated according
to the colorimetric method of Hughes (31). The
colour was developed by the addition of 100 μl 2%
μ-naphtol and 100 μl 0.05% diacetyl in a final
volume of 1 ml and read spectrophotometrically
after 20 min at 540 nm. Results were expressed as
units/min × mg protein.

Statistics. Data about CK and mitochondrial respi-
ratory chain complexes were analysed by Student’s
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Fig. 1. Kaplan–Meier survival curves of adults Wistar rats
infected by intracisternal inoculation with Klebsiella pneumo-
niae. Results are expressed as percentage of survival over time
with spontaneous death. Rats had a mortality rate of 57.143%.

t-test and are expressed as mean ± SME of five to
six animals in each group. All analyses were per-
formed using the Statistical Package for the Social
Science (SPSS) software version 16.0.

Results

In this study, we evaluated the CK activities and
mitochondrial respiratory chain complexes I, II, III
and IV in hippocampus and cortex of rats submitted
to meningitis by K. pneumoniae.

Survival was analysed by Kaplan–Meier curves
(Fig. 1), including all infected animals from the time
of infection up to 120 h (n = 38). The animals started
dying at 12 h (28.571%) and 24 h (57.143%), after
that time surviving animals were killed until 120 h.

We verified that complex I was increased at 24
and 48 h in hippocampus in meningitis group without
antibiotic treatment (Fig. 2a; p < 0.05); complex II
was increased in hippocampus at 48 h in meningitis
group without antibiotic treatment (Fig. 2b; p <

0.05); complex III was inhibited at 6, 12, 24 and
48 h in hippocampus in meningitis group without
antibiotic treatment (Fig. 2c; p < 0.05) and in
complex IV all groups were inhibited in hippocampus
after meningitis induced by K. pneumoniae (Fig. 2d;
p < 0.05). We also verified that there was no change
in CK activity in both structures (Fig. 3).

Discussion

There has been an increased incidence of meningitis
by Klebsiella sp in adults (11), especially in Asian
countries. Among the gram-negative pathogens
implicated in bacterial meningitis, in Taiwan,
K. pneumoniae most common in adults (32), in
great part this increase in the number of cases is
related to the frequency of neurosurgical procedures,
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Fig. 2. Activity of the mitochondrial respiratory chain complexes I (a), II (b), III (c) and IV (d) in hippocampus and cortex of rats
after meningitis by Klebsiella pneumoniae. Results are expressed as mean ± SD (n = 6) (nmol/min × mg protein). *Statistically
significant when compared with sham group, p < 0.05. #Statistically significant when compared between meningitis groups with
and without antibiotic in the same period.
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Fig. 3. CK activity in hippocampus and cortex of rats after
meningitis by Klebsiella pneumoniae. Results are expressed as
mean ± SD (n = 6) (nmol/min × mg protein). *Statistically
significant when compared with sham group, p < 0.05.
#Statistically significant when compared between meningitis
groups with and without antibiotic in the same period,
p < 0.05.

and the large number of patients with head injury
from motorcycle accidents (33); however, chronic
diseases like diabetes and liver cirrhosis predis-
pose to meningitis (5). Bacterial invasion of the
meninges induces a complex immune response
(34), being that glial cells are an important early
source of pro-inflammatory cytokines during the
CNS infection by K. pneumoniae (35). The complex
host inflammatory response from the white blood
cells leads to mitochondrial damage initiating the
release of the cytochrome c into the cytosol. There
are many evidences that mitochondria participates
in the caspase-dependent pathway resulting caspase

activation and neuronal damage development in
the bacterial meningitis (16,36). Furthermore, the
brain is highly dependent on ATP; most cell energy
is obtained through oxidative phosphorylation, a
process that requires the action of various respiratory
enzyme complexes situated in a special structure of
the inner mitochondrial membrane, the mitochondrial
respiratory chain (37). Another way to get energy
is through the creatine/phosphocreatine/CK system
that is essential for normal energy homeostasis by
exerting some integrated functions, such as, tem-
porary energy buffering, metabolic capacity, energy
transfer and metabolic control (18,38). Meningitis
caused by K. pneumoniae increased complex I at 24
and 48 h and complex II at 48 h in hippocampus. In
a previous study, we also showed increased complex
II at 24 and 48 h in hippocampus among surviving
rats by pneumococcal meningitis (6). The increase
of the complexes I and II could be compensation
mechanisms, because of the decreased activity of
complex III and IV. There was an activity decrease
in complex III at 6, 12, 24 and 48 h; however at 24
and 48 h with antibiotic treatment the levels did not
change in the hippocampus. In complex IV, there
was also an activity decrease in all the times in the
hippocampus. Furthermore, complex III deficiencies
are among the least common respiratory chain abnor-
malities identified to date in humans (39), mutations
in the cytochrome b gene constitute a major cause
of complex III deficiency, and underlie a variety of
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disorders, such as encephalopathy, optic neurophathy
(39), encephalomyopathy (40) although, there are
not clinical findings which are specific for complex
III deficiency (41), likewise, meningitis caused by
K. pneumoniae inhibited the activity of complex III
and IV in the hippocampus. The mitochondrial dys-
function can be responsible of oxidative stress due to
the lack of reactive oxygen species detoxification and
neurological clinical symptoms (21). In autopsy stud-
ies on patients who died from bacterial meningitis,
injure in the CNS was characterised by tissue necro-
sis in the cortical hemispheres and by apoptotic cell
death in the dentate gyrus (42). Hippocampal apop-
tosis is associated with learning and memory deficits
observed in survivors of bacterial meningitis (43).

The meningitis by K. pneumoniae also is asso-
ciated with permanent neurological damage (44),
moreover, understand the illness pathophysiology is
the main factor that contributes to the therapeutic
success (16). Although descriptive and with high rate
mortality our results show that antibiotic prevented
in part the changes of the mitochondrial respira-
tory chain. White blood cells and oxidative stress
are responsible to apoptosis activation; furthermore,
treatment with antibiotics decreases immunogenic
components in the CSF. The complete sterilisation of
Neisseria meningitidis from CSF occurs within 2 h
of given a parenteral third-generation cephalosporin
and the beginning of sterilisation of Streptococcus
pneumoniae from CSF by 4 h into treatment (1).
In previous studies, we verified that early antibi-
otic administration prevented cognitive impairment
induced by meningitis in rats (45) and prevented in
part oxidative stress (22).

We believe that the damage by K. pneumoniae
meningitis is related to mitochondrial respiratory
chain dysfunction. The statistic shows differences
between groups; however, the work do not have sta-
tistical power to generalise the findings. Although
descriptive, our findings suggest that the meningitis
model could be a good research tool to study the bio-
logical mechanisms involved in the pathophysiology
of this illness and the secondary alterations of the
K. pneumoniae meningitis.
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