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Six flow modes are distinguished in the flow-focusing experiments of a liquid jet
forced by a high-speed air stream. The domains of the modes are identified on the
parameter space of the liquid flow rate Ql and the gas pressure drop �pg . The
disturbance wavelength λ and breakup length L of the jet are also measured. A
theoretical model considering axisymmetric disturbances is proposed, and a basic
velocity profile of hyperbolic-tangent function is utilized. The linear temporal and
spatio-temporal instability analyses are carried out using the Chebyshev collocation
method. The effects of the flow parameters and the velocity profile on the flow
instability are discussed. The temporal instability analysis demonstrates that the
interfacial shear causes the instability of short waves and retards the instability of
long waves. Moreover, the spatio-temporal instability analysis gives the transition
boundary between the absolute and convective instability (AI/CI). The most unstable
wavelength predicted by the temporal instability analysis and the AI/CI boundary
predicted by the spatio-temporal instability analysis are in good agreement with the
experimental results.

1. Introduction
The breakup of a liquid jet into droplets and particles with a narrow size distribution

has been increasingly attractive owing to their various applications. The applications in
chemistry, medicine, biology and other subjects can be found in many papers cited by
Lin (2003). Barrero & Loscertales (2007) recently reviewed some top-down methods
based on capillary flows capable of producing particles down to the micrometre
dimension and below. One of them is the so-called flow-focusing (FF) technique
(Gañán-Calvo 1998). The flow, characterized by the formation of a steady microscopic
liquid jet in the core of a high-speed gas stream, is especially advantageous for
production of monodisperse sprays of micrometre size.

The geometry of the FF platform is sketched in figure 1. The FF device consists of
a capillary feed tube of outer diameter Do and inner diameter Di and a small hole
of diameter Dh in a thin plate of thickness D opening up in front of the extremity
of the tube with an offset distance H . The dimensions of Do, Di, Dh, D and H

are all submillimetre. A liquid of flow rate Ql through the tube develops a steady
cusp-like meniscus pressurized by a continuous gas supply with an extra pressure
�pg (i.e. the difference between the pressure in the FF device and the atmospheric
pressure). A thin liquid jet is issued from the vertex of the meniscus through the
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Figure 1. Sketch of the geometry of FF.

hole in connection with the surrounding gas. The main characters of FF have been
summarized by Gañán-Calvo (1998, 1999) as follows:

(i) The gas-to-liquid momentum ratio is very close to unity in FF, i.e.

1

2
ρ1Ū

2
1 ≈ 1

2
ρ2Ū

2
2 , (1.1)

where Ūand ρ are the average velocity and density, and the subscripts 1 and 2
denote the liquid and gas, respectively. Note that (1.1) is determined by the simplified
averaged momentum equation in the axial direction in which the viscous terms are
neglected.

(ii) The diameter of the liquid jet d1 at the orifice exit obeys the first-order scaling
law of the form

d1 ≈
(

8ρ1

π2�pg

)1/4

Q
1/2
l . (1.2)

Note that for given �pg and Ql, d1 is independent of geometric parameters.
Furthermore, both the viscosities μ1,2 and the surface tension σ hardly influence d1.
Herrada et al. (2008b) recently provided an analysis of the corrections of the jet
diameter, d1, accounting for the neglected effects of the viscosity and the surface
tension. They found that expression (1.2) is in good agreement with the experimental
data.

(iii) The main dimensionless parameters governing the breakup process of the
liquid jet in FF are the Reynolds number, the Weber number, the density ratio and
the viscosity ratio. The definitions respectively are

Re =
ρ1Ū1R1

μ1

, We =
ρ1Ū

2
1 R1

σ
, Q =

ρ2

ρ1

, N =
μ2

μ1

, (1.3)

where R1 is the radius of the undisturbed liquid jet, R1 = d1/2. The dimensionless
geometric parameters that have little influence on the process are defined as
Do/R1, Di/R1, Dh/R1, D/R1 and H/R1. Among the dimensionless parameters the
Weber number is the most important.
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Modes in flow focusing and instability of coaxial liquid–gas jets 3

It is well known that the breakup process of a liquid jet is closely associated with
the instability of the jet. The jet instability considering the effects of flow parameters
has been extensively investigated, through various experimental observations and
theoretical instability analyses. The pioneer studies include the temporal instability
analysis by Rayleigh (1878), the spatial instability analysis by Keller, Rubinow &
Tu (1973) and the absolute and convective instability (AI/CI) analysis by Leib &
Goldstein (1986a, b). Two different modes were distinguished: one is the Rayleigh
mode (Rayleigh 1878) resulting in the formation of droplets comparable to the jet
diameter in size, and the other is the Taylor mode (Taylor 1962) for which the size
of droplet is much smaller than that of the jet diameter. It was also found that
for uniform velocity profiles of liquid and gas the spatial instability results are in
good accordance with the temporal analysis, except at sufficiently large jet velocity.
Furthermore, the viscosity of the surrounding gas plays an important role in the
development of jet instability. Lin & Lian (1990, 1993) and Lin & Chen (1998)
investigated the linear instability of a cylindrical viscous liquid jet surrounded by a
viscous gas in a circular pipe, where the basic velocity profiles of the liquid and gas
satisfy exactly the Navier–Stokes equations. It was demonstrated that the mechanism
of the Rayleigh mode is capillary pinching, and the mechanism of the Taylor mode
is the interfacial shear and pressure fluctuation.

When disturbances propagate and amplify only downstream, it is recognized as
convective instability (CI), while when disturbances propagate and amplify both
downstream and upstream it belongs to absolute instability (AI). Huerre & Monkewitz
(1990) reviewed the AI/CI and local/global instability of open flows. At a certain
critical Weber number, the instability changes from CI into AI. Experimental and
numerical studies were carried out to investigate the transition from dripping to jetting
in free liquid jets and co-flowing jets. Clanet & Lasheras (1999), in their experiments in
which a Newtonian fluid was injected vertically downwards into stagnant air, found a
clear hysteresis effect between the transitions of dripping/jetting and jetting/dripping
and further determined the corresponding critical Weber number. Sevilla, Gordillo &
Martı́nez-Bazán (2005) studied the jetting and dripping regimes that appear in a jet
of water with an air stream at the center line. Performing a linear spatio-temporal
instability analysis with a uniform basic velocity profile, they concluded that the
jetting phenomenon is related to CI and that the dripping regime is the consequence
of a transition to AI. Lin & Lian (1993) and Lin (2003) also found that the transition
from dripping to jetting is related to the AI and CI characteristic of the jet.

In spite of the complexity and special geometry in FF, to date many experimental
and theoretical studies have been conducted. Experimental studies include the
investigation of the scaling law of the jet diameter at the hole exit, the influence
of We on the dispersion of particle size and various applications of FF in drug
encapsulation, dye-labelled particles and microfluidic systems (Gañán-Calvo 1998,
1999; Martı́n-Banderas et al. 2005, 2006). Rosell-Llompart & Gañán-Calvo (2008)
recently distinguished two flow regimes in FF depending on the interaction between
the liquid jet and the co-flowing gas stream (e.g. the Weber number). For 1< We< 20
it is ‘capillary flow focusing’ (CFF); for We> 20, it turns into ‘turbulent flow focusing’
(TFF). As to the theoretical study, Gordillo, Pérez-Saborid & Gañán-Calvo (2001)
performed a linear temporal instability analysis of an inviscid jet in FF. They
obtained the basic velocity profiles of the liquid and gas by solving the Navier–
Stokes equations on the slenderness approximation and explained the experimental
results of atomization qualitatively. Gañán-Calvo & Riesco-Chueca (2006) studied
the jetting–dripping transition of a flow-focused viscous liquid jet surrounded by a
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co-flowing immiscible liquid of lower viscosity. In their spatio-temporal instability
analysis, the liquids were supposed to have similar uniform axial velocity profile, and
the analytical dispersion relation obtained by Funada & Joseph (2002) was adopted.
The theoretical results predicted an ‘elbow-like’ boundary curve between the jetting–
dripping transition line on the Re–We parameter space. The experimental results
illustrated the correlation between the AI/CI transition and the onset of dripping.
However, the effects of the nozzle meniscus and imperfect cylindrical jet geometry in
experiments led to some distortion in the results. Herrada et al. (2008b) explored the
flow patterns in FF using direct numerical simulation method. It is reported that the
jetting and dripping conditions could be accurately predicted.

Recently experiments of FF relevant in producing blobs (emulsions or bubbles)
based on the mircochannel device have been increasingly investigated. Extensive
studies of experiments (Anna, Bontoux & Stone 2003; Gordillo et al. 2004; Dollet
et al. 2008; Guillot, Colin & Ajdari 2008) and theories (Guillot et al. 2007; Herrada,
Gañán-Calvo & Guillot 2008a are fulfilled. The FF flow based on the microchannel
device is characterized by a confined flow with low Re and low We, where the gas or
liquid is driven by a pressured liquid flow. Nevertheless, different from the FF flow
concerned in this work, the hypothesis of two-dimensional flow and extremely low Re
are often taken into account in corresponding theoretical analysis.

The great attraction between the experiments and theories motivates our interest
in further studying the FF phenomenon. In this paper, we distinguish experimentally
flow modes in FF and perform the temporal and spatio-temporal instability analyses
of coaxial liquid–gas jets, considering viscosities of both the liquid and the gas and
utilizing nearly realistic velocity profiles. The paper is structured as follows: In § 2 we
distinguish experimentally the flow modes in the standard FF systems and represent
their domains on the main control parameter space Ql–�pg . The wavelength and
breakup length of the liquid jet are measured. In § 3 we establish a theoretical
model taking viscosities of both the liquid and the gas into account. The perturbed
Navier–Stokes equations are linearized, and a basic velocity profile of the hyperbolic-
tangent function is used. In § 4 the temporal instability analysis is performed, and the
most unstable wavelength predicted by the temporal instability analysis is compared
with the experimental results. In § 5 the spatio-temporal instability and the AI/CI
transition are analysed. The comparison of the theoretical results with the experiments
is presented. Finally main conclusions are drawn in § 6.

2. Experimental apparatus and flow modes
2.1. Apparatus description

A brief description of the apparatus and procedure in FF is presented. See Gañán-
Calvo (1998, 1999) for more details. The experiment is carried out in an organic
glass FF device with Di =700 μm, Do =900 μm, Dh = 320 μm, H = 820 μm and
D =900 μm (see figure 1). The mouth of the tube and the inner edge of the orifice
are rounded to minimize the influence of undesirable disturbances. The focused liquid
used in the experiments is water. Its density and viscosity are ρ1 = 998.2 kg m−3 and
μ1 = 0.001 Pa s at T = 20◦C, respectively. The focusing gas is air with ρ2 = 1.25 kg
m−3 and μ2 = 1.79×10−5 Pa s at T = 20◦C. The surface tension is σ =0.073 N m−1.
(Thus the density ratio Q ≈ 0.0013 and the viscosity ratio N ≈ 0.018.)

The liquid is supplied by a syringe pump of flow rate ranging from 0 to 100 ml h−1.
The gas is forced by a gas storage. The pressure difference between the inside and
outside of the FF device is measured with a conventional manometer. A stroboscope
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Figure 2. Flow modes in FF. (a) The domains of the modes on the Ql–�pg plane with
geometric parameters Di =700 μm, Do = 900 μm, Dh = 320 μm, H = 820 μm and D =900 μm;
(b) cone-shaking mode in region I, �pg = 5 kPa, Ql = 10 ml h−1; (c) cone-adhering mode in
region II, �pg = 1 kPa, Ql =40 ml h−1; (d) helical jetting mode in region III, �pg =20 kPa,
Ql = 40 ml h−1; (e) coexisting jetting mode in region IV, �pg = 10 kPa, Ql = 40 ml h−1; (f )
axisymmetric jetting mode in region V, �pg = 3 kPa, Ql = 40 ml h−1; (g) dripping mode in
region VI, �pg = 1.1 kPa, Ql =40 ml h−1; (h) dripping faucet, �pg =1.2 kPa, Ql = 40 ml h−1,
with Dh =415 μm and D = 500 μm differently.

of maximum frequency of 12 kHz and a microscope combined with a CCD camera
are used to capture images.

2.2. Flow modes

In the FF experiments, it is expected to obtain monodisperse and size-controllable
droplets. As is well known, droplets produced by a liquid jet are related to the
characteristic of the jet and the meniscus at the extremity of the capillary tube. In the
electrospray experiments, Jaworek & Krupa (1999) and Chen et al. (2005) studied the
spray modes and their domains. Similarly, here we observe the FF flow modes and
determine their domains on the parameter plane of the liquid flow rate Ql and the
gas pressure drop �pg .

The flow regimes on the Ql–�pg plane and the corresponding photos of the liquid
jet and meniscus are shown in figure 2. The flow rate Ql of water is below 100 ml h−1,
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and the pressure drop �pg of air varies within a range of 0–20 kPa. The following
FF flow modes can be observed:

(i) Cone-shaking mode. For a given pressure drop �pg , there is a critical flow
rate Qlmin, below which the meniscus pulsates periodically with an instantaneous
capillary jet formed. The domain of this mode is marked with I in figure 2(a), and the
corresponding photo is shown in figure 2(b). The three pictures from top to bottom
in figure 2(b) illustrate the meniscus at different times in a period, respectively. A
drop first fills up and then grows until a thin jet issues through the orifice breaking
up into droplets, and ultimately the meniscus recoils. The pulse is perfectly periodic.
At a fixed �pg , the value of Qlmin is obtained by gradually increasing the flow rate Ql

from zero. As �pg increases the values of Qlmin in the experiments first increase and
then keep almost constant. The critical value Qlmin is also inspected when the value of
Ql is decreased from high. The experimental results indicate that the destabilization
of a stable meniscus requires a nearly equivalent critical liquid flow rate. Moreover,
the critical curve is determined by the instability of the meniscus attached to the tube
mouth rather than that of the liquid jet emitted from the vertex of the meniscus. As
the shape of the meniscus depends strongly on the geometric parameters, the values
of Qlmin for the same �pg will be different when the geometric parameters change.
The phenomenon described here is similar to the tip streaming in two-dimensional
liquid–liquid FF (Anna & Mayer 2006). However, their physical mechanisms are far
from the same, because the phenomenon under consideration here is caused by the
tangential forcing at the interface driven by the gas sheath rather than the surfactant
pollution of water surface in tip streaming. Herrada et al. (2008b) recently studied
this flow pattern by direct numerical simulation and also determined the values of
Qlmin for the specific FF geometry.

(ii) Cone-adhering mode. For a given Ql(>Qlmin), there is a critical pressure drop
�pgmin, below which no jet is formed, and the meniscus adheres to the entrance of the
hole. As the pressure drop is too low to produce a focusing gas stream, the liquid just
flows downstream along the boundary of the hole (see figure 2c). This mode, marked
with II in figure 2(a), is named ‘cone-adhering mode’. The value of �pgmin is obtained
in the experiments by gradually decreasing the gas pressure drop �pg at a fixed flow
rate Ql . It can be seen that �pgmin is small and varies along a slightly descending
curve as the value of Ql increases. Furthermore, it is observed in our experiments that
when the hole is broadened (e.g. Dh is larger than 500 μm), and the edge of the hole
becomes far away from the meniscus, there is still a value of �pgmin, below which the
meniscus becomes unstable, and the vertex of the meniscus adheres to the wall of the
hole. The mode in this situation is still the cone-adhering mode.

The two modes described above only exist in FF because of its specific geometry.
Moreover, these modes are closely associated with the geometric parameters (i.e. the
values of Qlmin and �pgmin will be different when the geometric parameters vary).
Apparently, modes I and II are related to the instability of the meniscus (rather than
the jet instability), which is beyond the scope of the present theoretical framework.
Above the values of Qlmin and �pgmin, the meniscus keeps stable all the way, and there
are several other modes related to the breakup of the liquid jet. It is found in the
experiments that the geometric parameters have little influence on the jet breakup as
long as a stable liquid jet is formed, as demonstrated by Gañán-Calvo (1998, 1999).
Therefore the main controllable parameters are Ql and �pg . In our experiments, both
of them can increase to very high values (e.g. Ql > 100 ml h−1, �pg � 20 kPa). At
extremely high-pressure drop �pg , the liquid jet is completely atomized outside the
hole, and droplets in a wide size distribution are formed. This mode is often called
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Modes in flow focusing and instability of coaxial liquid–gas jets 7

‘atomization mode’, belonging to the TFF regime mentioned by Rosell-Llompart &
Gañán-Calvo (2008). On the other hand, as the value of Ql increases, the types of
flow modes hardly vary, and only the domain of each flow mode broadens, and
the transition curve of two neighboring flow modes extends. Hereinafter, the typical
parameter range is adjusted to be Ql < 100 ml h−1 and �pg < 20 kPa. Within this
range the flow modes can be easily distinguished. Photographs of the liquid jets and
steady menisci of different modes are shown in figure 2. These modes are described
in the following.

(iii) Helical jetting mode. For a given Ql(> Qlmin), decreasing the value of �pg

from 20 kPa first leads to a non-axisymmetric mode named ‘helical jetting mode’ (see
figure 2d). The mode is denoted by III on the Ql–�pg plane in figure 2(a). For the
helical jetting mode a non-axisymmetric disturbance spreads along the liquid jet, and
the jet first whips and then breaks up. Droplets formed in the high-speed air stream
are elongated and split into smaller droplets. The surrounding gas stream plays an
important role in the breakup of the liquid jet.

(iv) Axisymmetric jetting mode. For relatively lower values of �pg , an ‘axisymmetric
jetting mode’ dominates in the breakup process of the liquid jet. For the axisymmetric
jetting mode denoted by V on the Ql–�pg plane in figure 2(a), the jet appears
smooth and undisturbed near the exit of the hole. At some distance downstream
wavy disturbances become visible. When the wavy amplitude becomes equal to the
jet radius, the jet breaks up, and both main droplets and satellites are formed (see
figure 2f ). In this mode the liquid jet becomes thicker, and the size of main droplets
is comparable to the diameter of the liquid jet.

(v) Coexisting jetting mode. Between modes III and V there is a transition mode
IV, for which both non-axisymmetric and axisymmetric disturbances exist. Thus it
is called ‘coexisting jetting mode’. It can be seen from figure 2(e) that the droplets
formed at the end of a straight liquid jet move downstream in a whipping way, and
the diameter of droplets is nearly equivalent to that of the jet.

(vi) Dripping mode. As the value of �pg is decreased from the axisymmetric jetting
mode, the unbroken jet is sharply shortened, and ultimately droplets are formed just
at the exit of the hole. This mode, marked with VI in figure 2(a), is named ‘dripping
mode’. In this situation the satellites disappear, and the size of droplets are perfectly
equal but much larger (see figure 2g). As the value of �pg is slightly decreased,
droplets are formed just from the vertex of the meniscus. It should be pointed out
that the dripping mode, mode VI, appears just in a narrow range of �pg . When
the value of �pg is further decreased, the mode turns into the cone-adhering mode.
For this reason, the hysteresis effect between the transitions of dripping/jetting and
jetting/dripping in our experiments is hard to be found. Another dripping mode in
the jetting to dripping process is observed occasionally. It is referred to as ‘dripping
faucet’ (see figure 2h). Note that in figure 2(h) Dh = 415 μm and D = 500 μm, and
the rest geometric parameters are the same as those in figure 2(g). In this situation
the liquid jet outside the hole is irregularly formed and breaks up into droplets after
a short distance downstream. The same phenomenon was observed in a single jet
problem and studied by Clanet & Lasheras (1999).

2.3. Disturbance wavelength and breakup length of the liquid jet

Because of the geometric configuration, the regimes of the jet in FF are quite different
from the experimental observations in Lin & Reitz (1998) in which a single jet was
issued from a nozzle with a circular cross-section. They identified four regimes, the
Rayleigh regime, the first wind-induced regime, the second wind-induced regime and
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Figure 3. (a) Typical photographs of the liquid jet, (b) wavelength λ at the liquid surface,
(c) breakup length L and (e) diameter d1 of the jet for different values of Ql ranging 30–
80 ml h−1 with a step size of 5 ml h−1 at �pg = 5 kPa; (d)L and (f ) d1 for different �pg at
Ql = 40 ml h−1. The continuous lines in (b) represent the theoretical prediction of the temporal
instability analysis, and in (e) and (f ) are those predicted by (1.2).

the atomization regime. In order to illuminate the difference, we collect data about
the liquid jet in a range of experimental parameters, especially in the situation in
which the velocity of the liquid jet is low.

The disturbance wavelength λ at the jet surface, the breakup length of the jet
L defined as the distance between the tube tip and the point at which the first
drop is formed and the diameter of the jet d1 at the hole exit are measured in the
experiments. Figure 3(a) shows the typical photographs of the liquid jet outside the
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Modes in flow focusing and instability of coaxial liquid–gas jets 9

hole exit for �pg = 5 kPa and different values of Ql ranging from 30 to 80 ml h−1

with a step size of 5 ml h−1. Figure 3(b) shows the wavelength λ of the axisymmetric
jetting mode, where the continuous lines represent the theoretical results predicted
by the temporal instability analysis (see § 4). The measured values of the breakup
length L and diameter d1 for different values of Ql and given �pg = 5 kPa and for
different values of �pg and given Ql = 40 ml h−1 are shown in figures 3(c), 3(e),
3(d ) and 3(f ) respectively. It should be pointed out that as the breakup of the
liquid jet is time-dependent, the average values with error bar of λ, L and d1 are
obtained in these figures by measuring hundreds of photographs taken by the CCD
camera.

Figures 3(e) and 3(f ) demonstrate that the values of the jet diameter predicted
by expression (1.2) are in good agreement with the experimental data. Figures 3(a),
3(b), 3(c) and 3(e) show that as the value of Ql increases both main droplets and
satellites become large, and all values of λ, L and d1 increase. It can also be seen
from figure 3(a) that the shape of satellites is elongated from a sphere into a ligament
for larger values of Ql. Figure 3(d) indicates that for a given flow rate Ql = 40 ml
h−1 the breakup of the liquid jet undergoes different variations. For smaller values
of �pg the flow belongs to the dripping mode, and the jet breaks up just from the
vertex of the meniscus, so the breakup length of the jet in this case is kept constant
approximately and equal to the length from the mouth of the capillary tube to the
vertex of the meniscus. As the value of �pg is slightly increased, the breakup point
first moves to the exit of the orifice, and then the breakup length of the liquid jet
jumps to its maximum value. Note that when a dripping faucet mode exists the jump
is absent, and the breakup length is rapidly increased with a small increment of �pg .
After reaching its maximum value, the breakup length tardily decreases as the gas
pressure drop �pg increases. Because the velocity of the liquid jet is independent of
Ql and increases as the value of �pg increases according to (1.1), the breakup length
versus the liquid velocity behaves differently from that of a single jet case with a low
jet velocity in Lin & Reitz (1998) in which the breakup length of the jet increases
almost linearly as the jet velocity increases from the end of the dripping mode. It
will be demonstrated in the theoretical analysis part that the main reason for this
phenomenon is the significant role that the interfacial shear stress plays in the jet
breakup process.

3. Theoretical model
3.1. Formulation

The theoretical model, similar to that of Gordillo et al. (2001), is sketched in figure 4.
Different from the inviscid linear temporal stability analysis in Gordillo et al. (2001),
in this study the viscous linear temporal and spatio-temporal stability analyses are
performed, and the comparison with the experiments is implemented. The following
assumptions are made: (i) Both the liquid and the gas are viscous, incompressible and
Newtonian. (ii) The effect of the mixing layer that develops in the region in which
gas velocity drops to zero is negligible. Therefore, the gas stream can be considered
as a cylinder of radius R2, and the condition at the outside surface is assumed
to be slip. (iii) The effects of gravity and temperature are negligible. (iv) Only the
axisymmetric disturbance is considered, i.e. the azimuthal wavenumber n= 0. As to the
instability of non-axisymmetric disturbance and of the meniscus, further researches are
required.
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Figure 4. Schematic description of FF.

Besides the dimensionless parameters defined in (1.3), we introduce a new
dimensionless parameter, the radius ratio

a = R2/R1. (3.1)

Note that the characteristic scales chosen are length (R1), velocity (Ū1), time (R1/Ū1)
and pressure (ρ1Ū

2
1 ).

The basic velocity is denoted by (Ui(r), 0, 0), where the subscript i = 1, 2 stands for
the liquid and the gas, respectively. The classical process of the normal mode method
is implemented. In the cylindrical coordinates (z, r , θ), the perturbations of the axial
and radial velocity components ũi , ṽi , the pressure p̃i and the displacement of the
interface r̃ are all decomposed into the form of a Fourier exponential, i.e.

(ũi , ṽi , p̃i)(z, r, t) = (ui(r), vi(r), pi(r))e
i(αz−ωt), r̃(z, t) = ηei(αz−ωt), (3.2)

where ui, vi, pi are the amplitudes of the corresponding quantities; η is the initial
disturbance amplitude on the interface; α is the wavenumber; and ω is the frequency.
The governing equations are the linearized Navier–Stokes equations, i.e.

v′
i +

1

r
vi + iαui = 0, (3.3)

u′′
i +

1

r
u′

i − [α2 + Rei(iαUi − iω)]ui − ReiviU
′
i − iαReipi = 0, (3.4)

v′′
i +

1

r
v′

i −
[

1

r2
+ α2 + Rei(iαUi − iω)

]
vi − Reip

′
i = 0, (3.5)

where the prime denotes the derivative with respect to r . In (3.3)–(3.5) two different
Reynolds numbers are defined as Re1 = Re and Re2 = Re × Q/N .

The boundary conditions are

r = 0: v1 = u′
1 = p′

1 = 0, (3.6)

r = 1: iωη = iαU1η − v1, (3.7)

v1 = v2, (3.8)

u1 − u2 + (U ′
1 − U ′

2)η = 0, (3.9)

iαv1 + u′
1 − N(iαv2 + u′

2) + (U ′′
1 − NU ′′

2 )η = 0, (3.10)
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p1 − 2

Re
v′

1 −
(

p2 − 2N

Re
v′

2

)
+

1

We
(1 − α2)η = 0, (3.11)

r = a: v2 = u′
2 = p′

2 = 0, (3.12)

where condition (3.6) expresses the axisymmetric conditions; (3.7) represents the
kinematic condition at the liquid–gas interface; (3.8)–(3.11) express the continuity of
the velocities and shear stress at the jet surface; and (3.12) represents the outside
boundary condition at which the velocity of the gas keeps a non-zero constant
value.

3.2. Basic velocity profile

Various basic velocity profiles were used in instability analysis. For the sake of
simplicity, a uniform velocity profile with a jump at interface is often used for inviscid
models (Li, Yin & Yin 2006). A piecewise linear velocity profile is more practical,
but it has one or more singular points. Lin & Lian (1990) and Lin & Chen (1998)
derived an analytical velocity profile satisfying the Navier–Stokes equations in their
study on the coaxial pipe of viscous fluids. Gordillo et al. (2001) obtained the velocity
profiles in the FF problem by numerically solving the boundary-layer equations. For
given initial velocity profiles of liquid and gas, the evolution of the liquid and gas
flows in space can be computed. However, the algebraic operation is complicated.
In addition, several approximate velocity profiles, e.g. that of error function (Yecko,
Zaleski & Fullana 2002) and that of hyperbolic-tangent function (Sevilla, Gordillo
& Martı́nez-Bazán 2002), were used. In this work we utilize the velocity profile of
hyperbolic-tangent function in two fluids. The basic velocity profile is assumed to be
axisymmetric and unidirectional, i.e. U i =Ui(r)ez(i = 1, 2), where Ui(r) is the velocity
component in the axial direction. In the dimensionless form Ui(r) is

Ui(r) = ai tanh(bi(r − 1)) + ci, (3.13)

where ai, bi , and ci(i = 1, 2) are coefficients to be determined. The basic velocities
satisfy the following conditions:

(i) continuity of the velocity and shear stress at the jet interface

r = 1: U1 = U2, (3.14)

dU1

dr
= N

dU2

dr
; (3.15)

(ii) symmetry of the velocity at the symmetric axis,

r = 0: U1 = 1, (3.16)

dU1

dr
= 0; and (3.17)

(iii) the uniformity velocity at the outside boundary,

r = a: U2 = Ū2/Ū1, (3.18)

dU2

dr
= 0. (3.19)

In terms of (1.1) and (1.3), (3.18) is written as U2 = Q−1/2. Equations (3.17) and
(3.19) are automatically satisfied for large enough values of bi . Therefore two
unknown parameters need to be supposed. We choose the velocity at the interface
Us (i.e. Us = c1) and the slope of the liquid velocity profile at the interface K
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Figure 5. The basic velocity profiles of the liquid jet and gas stream. (a), (b) K = 2,
Q =0.0013, N = 0.018; (c), (d ) Us =1.5, Q = 0.0013, N = 0.018; (e) Q = 0.0013,K =4, Us =2;
(f ) N = 0.018, K = 4, Us = 2.

(i.e. K = (c1 − 1)b1) as controllable parameters, and Ui(r) can be written as

U1(r) = (Us − 1) tanh

[
K

Us − 1
(r − 1)

]
+ Us, (3.20)

U2(r) =
(
Q−1/2 − Us

)
tanh

[
K

N
(
Q−1/2 − Us

) (r − 1)

]
+ Us. (3.21)

The conditions (3.14) and (3.15) are automatically met and (3.16) and (3.18) are
approximately satisfied, because tanh(x) ≈ 1 for large values of x.

It can be seen from (3.20) and (3.21) that the basic velocity profiles are mainly
determined by the values of K and Us. Figure 5 shows the effects of them on the
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Modes in flow focusing and instability of coaxial liquid–gas jets 13

velocity profiles. For convenience, we define conventionally the liquid boundary-layer
thickness � as [U1(r =1 − �) − Us]/(1 − Us) = 0.99 and the gas boundary-layer
thickness δ as [U2(r = 1 + δ) − Us]/(Ū2/Ū1 − Us) = 0.99. In the limit of � → 0 and
δ → 0, the basic velocity profiles approximate to that of a Kelvin–Helmholtz (K-H)
flow. Comparing figure 5(a) with figure 5(b), as the value of Us increases the liquid
boundary-layer thickness � increases, while the gas boundary-layer thickness δ is
kept almost constant. Figures 5(c) and 5(d) show that the values of both � and δ

decrease as the value of K increases. In figures 5(e) and 5(f ) N and Q only influence
the gas stream.

As is well known, the exact basic velocity profile of FF is complicated and spatially
developing. It must be obtained by direct numerical simulation of solving the evolution
of the liquid–gas flow from the pressurized chamber up to the breakup point. In the
present work we utilize basic velocity profile of hyperbolic-tangent function and
local parallel flow approximation, which has great advantage of simplification for the
instability analysis and has been demonstrated capable of predicting the experimental
observations (Lin 2003; Gañán-Calvo & Riesco-Chueca 2006; Herrada et al. 2008a).

4. Temporal instability analysis
In the temporal instability analysis real wavenumber α and complex frequency

ω =ωr+iωi are assumed. The eigenvalue problem in § 3.1 is solved using the Chebyshev
collocation method (Lin & Chen 1998; Lin 2003). The eigenfunctions in the liquid
and gas are expanded in Chebyshev polynomials. The liquid region r ∈ [0, 1] is
mapped into the computational space y ∈ [−1, 1] through the linear transformation

r =
1 + y

2
, (4.1)

and the gas region r ∈ [1, a] is mapped into the computational space y ∈ [−1, 1] by
means of the linear transformation

r =
y(1 − a) + (1 + a)

2
. (4.2)

Finally, a generalized eigenvalue problem is written in the form of

iω[B]φ = [A]φ, (4.3)

where the matrices A and B can be obtained from the governing equations and the
boundary conditions. The corresponding dispersion relation is

D(ω, α; Re, We, Us, K, Q, N) = 0. (4.4)

A MATLAB code based on the function of eig is developed to solve the generalized
eigenvalue problem (4.3). The validity of the code is checked by the classical results of
the axisymmetric flows. The numbers of the collocation points are chosen to satisfy
the desired accuracy. The sensitivity of the complex frequency (ωr , ωi) to the numbers
of the collocation points N1 and N2 as well as the radius ratio a is illustrated in
table 1. In the calculation a =5, N1 = 30 and N2 = 60 provide the complex frequency
with a more than three-digit accuracy. Note that the radius ratio, a, is kept constant
in the dispersion relation (4.4) because it hardly influences the results.

Figure 6 shows the dimensionless growth rate ωi versus the dimensionless
wavenumber α for different basic velocity profiles. The result of the K-H instability
is also represented in the figure. The viscosity ratio N = 0.018 and the density ratio
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14 T. Si, F. Li, X.-Y. Yin and X.-Z. Yin

a N1 N2 ωr ωi

3 30 60 1.29769 0.24775
4 30 60 1.29492 0.24444
5 30 60 1.29452 0.24395
6 30 60 1.29447 0.24388
5 40 60 1.29452 0.24395
5 30 70 1.29452 0.24395

Table 1. Convergence of complex growth rate for different numbers of Chebyshev polynomials
N1 and N2 and the radius ratio a; Re =100, We = 3, Q = 0.0013, N = 0.018, Us =1.3, K = 0.7,
α = 1.

0.8
(a) (b)

0.6

0.5

Us = 1.1

0.4
1.3

1.5

1.7

2.0

0.3

0.2

0.1

0.6 K = 3.0

0.4ωi

0.2

0 1 2 3 4 5 0 1 2 3 4 56
α α

2.5

2.0

1.5

1.0

Kelvin--Helmholtz
Kelvin--Helmholtz

Figure 6. The growth rate ωi versus the wavenumber α. (a) Effect of K with Us =1.2;
(b) effect of Us with the dashed lines for K = 2 and continuous lines for K =1. The other
parameters are We= 3,Re = 100, Q = 0.0013 and N = 0.018.

Q =0.0013 correspond to the water–air FF experiment. As the value of K decreases,
the maximum growth rate ωimax and the corresponding wavenumber αc are decreased
monotonically, and moreover, the unstable region is shrunk. The jet becomes less
unstable because the boundary layers become so thick that the aerodynamic effect
on the instability of the jet is little (Gordillo et al. 2001). For thick boundary layers
the capillary plays a crucial role in the jet instability. On the contrary, if the slopes of
the velocity profiles are sharp, the curves deviate from the K-H instability and extend
to short wavelength region. Figure 6(b) shows that the region of unstable waves is
hardly changed as the value of Us increases from 1.1 to 2 for a fixed slope. Although
the maximum growth rate is decreased, the corresponding wavenumber, which is
larger than that of the K-H instability, varies slightly as the value of Us increases.
The comparison between K = 1 and K = 2 indicates that as the value of K decreases,
the effect of Us on the value of αc becomes tiny. It is concluded that the instability
of the liquid–gas flow is determined mainly by the slope of the velocity profile (i.e.
the interfacial shear stress). Generally, the instability of short waves occurs at large
slopes corresponding to thin boundary layer and large interfacial shear stress, while
the instability of long waves occurs at small slopes. The result is accordant with Lin
& Chen (1998).

The instability of the jet is influenced greatly by the Weber number and Reynolds
number. Figure 7(a) shows the twofold effect of We. There is a critical wavenumber.
When the wavenumber is smaller than the critical value the maximum growth rate
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Figure 7. The growth rate ωi versus the wavenumber α . (a) Effect of We with Re= 100;
(b) effect of Re with We = 3. The other parameters are Us = 1.5, K = 2.5, Q = 0.0013 and
N =0.018.

decreases as the value of We increases, and conversely, the maximum growth rate
increases. It indicates that the surface tension promotes the jet instability in the long-
wavelength region and suppresses the jet instability at short wavelengths. The effect
of Re on the instability of the jet is shown in figure 7(b) for given velocity profiles
and a moderate Weber number. As the value of Re increases, the most unstable
wavenumber αc is increased rapidly, and the maximum growth rate ωimax first keeps
almost unchanged and then decreases until another smaller peak appears. Owing to
the effect of the basic velocity profile, the curve at extremely high Reynolds number
is not close to that of the inviscid case in which the most unstable wavenumber
αc =0.697. Generally, small We and moderate or small Re, as well as velocity profiles
with small K and slightly moderate Us, favour the instability of long waves.

The theoretical predictions and the experimental results are compared on
dimensional parameter space in the following. As is known, the gas pressure drop
�pg can be estimated by the Bernoulli law, i.e.

�pg ≈ 1

2
ρ2Ū

2
2 . (4.5)

The mass of the liquid jet is approximately

Ql ≈ πR2
1Ū1. (4.6)

Substituting (4.5) and (4.6) into (1.3), we obtain (Herrada et al. 2008a)

We =
1

σ

(
8ρ1�p3

g

π2

)1/4

Q
1/2
l , Re =

2

μ1

(
ρ3

1�pg

8π2

)1/4

Q
1/2
l . (4.7)

Apparently, the values of We and Re are determined by Ql and �pg , and �pg affects
the value of We more significantly. Equation (4.7) can also be written as

�pg =
1

2
ρ1

(
σWe

μ1Re

)2

, Ql =
π(μ1Re)3

σρ2
1We

. (4.8)

The effect of Ql on the growth rate ωi is represented in figure 8, for two
different velocity profiles Us = 1.3, K = 1 and Us = 1.3, K = 0.7. It is shown that
as the value of Ql increases the maximum growth rate ωimax decreases, and the
corresponding wavenumber αc increases. As listed in table 2, the most unstable
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�pg (kPa) Ql (ml h−1) Re We K αc d1 (μm) λ (μm)

5 30 91.59 3.97 1 1.031 57.92 176.49
5 50 118.24 5.12 1 1.094 74.78 214.74
5 80 149.66 6.48 1 1.161 94.59 255.95
5 30 91.59 3.97 0.7 0.883 57.92 206.07
5 50 118.24 5.12 0.7 0.922 74.78 254.80
5 80 149.66 6.48 0.7 0.966 94.59 307.62

Table 2. Theoretical prediction of the wavelength λ at the liquid jet surface.

0.4

0.3

Ql = 80 ml h–1

50 ml h–1

30 ml h–1
0.2

0.1

ωi

α
0 1 2 3 4

Figure 8. The growth rate ωi versus the wavenumber α as Ql varies; �pg = 5 kPa, Us = 1.3.
The continuous lines are for K = 1, and the dashed lines are for K = 0.7.

wavelength λ= 2πR1/αc predicted by the temporal instability analysis, which is larger
than the jet diameter, increases gradually as the value of Ql increases. The curves of
the most unstable wavelength λ versus the values of Ql for different velocity profiles
are also illustrated in figure 3(b). It can be seen that the wavelengths predicted for
Us = 1.3 and K = 0.7 are in good agreement with the experiments.

5. Spatio-temporal instability analysis
5.1. Approach of AI/CI

As is well known, the flow is convectively unstable (CI) if an amplified disturbance
generated by a local impulse is swept downstream or upstream away from the source;
otherwise, the flow is absolutely unstable (AI) if the amplified disturbance spreads
both upstream and downstream of the source and finally contaminates the entire flow
domain in the limit of extremely long time. The AI/CI characteristic of the jet is
determined by detecting the solutions of the dispersion relation D(ω , α; Re, We, Us,
K, Q, N) = 0 that have zero group velocity, namely for the complex pair (α0, ω0),

∂ω

∂α

∣∣∣∣
α0

= 0 and ω0 = ω(α0; Re, We, Us, K, Q, N ). (5.1)
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Figure 9. The saddle points on the complex α plane; Re= 100, We = 3, Us = 1.2,
K = 1.6, Q = 0.0013 and N = 0.018.

In general, there are two distinct spatial branches of solutions of D = 0 on the
complex α plane. The two branches will approach each other as the growth rate
ωi is decreased from large positive values, and a saddle point (or called pinching
point) on the complex α plane will occur at point α =α0. Identifying the physical and
unphysical saddle points is needed. The physical saddle point must satisfy the Briggs–
Bers collision criterion (Briggs 1964; Bers 1973; Huerre & Rossi 1998). According
to the Briggs–Bers collision criterion the only relevant complex pair (α0, ω0) is the
physical one if the two branches come respectively from the downstream-propagating
branch α+(ω) and upstream-propagating branch α−(ω ) on the complex α plane. Then
if ω0i < 0 the flow is said to be convectively unstable, while if ω0i > 0, the flow is said
to be absolute unstable.

A MATLAB code based on the function of eig is developed to solve the complex
frequency ω corresponding to the complex wavenumber α for each set of parameters
(Re, We, Us, K, Q, N). A typical contour plot of ωi on the complex α plane is shown
in figure 9 for Re= 100, We =3, Us =1.2, K = 1.6, Q =0.0013 and N =0.018. It can
be seen that there are several saddle points. Apparently, the one at the wavenumber
αI

0 = (1.483, −0.727) satisfies the Briggs–Bers collision criterion, and the corresponding
complex frequency is ωI

0 = (1.412, −0.131). As αi decreases, another saddle point
appears at αII

0 = (1.152, −2.723), but it does not satisfy the Briggs–Bers collision
criterion, as the two branches are all coming from the lower half of α plane. Similarly,
the rest of the saddle points at smaller values of αi do not satisfy the Briggs–Bers
collision criterion. In addition, there are a number of saddle points close to the αi

axis, such as the points (A), (B), (C) and (D), among which the saddle points (A)
and (B) satisfy the Briggs–Bers collision criterion. It must be pointed out that only
the saddle point at the wavenumber αI

0 dominates the jet instability because it has
the largest value of the growth rate ω0i (Juniper 2006). The negative growth rate of
ωI

0 = (1.412, −0.131) indicates a local CI in the situation.
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Figure 10. Effects of the parameters on the saddle points. (a) Re= 500; (b) We = 5; (c)
N = 0.05; (d ) Q = 0.0026; (e) K = 3; (f ) Us = 1.5. The other parameters in the figure are the
same as in figure 9.

5.2. Effects of the physical parameters

The saddle points vary with flow parameters (Re, We, Us, K, Q, N ). Figure 10
represents six typical maps, where only the saddle point ωI

0 dominating the jet
instability is considered. It can be seen from figures 10(b) and 10(f ) that the Weber
number and the velocity at the interface have significant influences on the position
of the saddle point. As the value of We increases, ωI

0 moves away from the real and
imaginary axes, and as the value of Us increases, ωI

0 moves towards larger αr and
smaller −αi . The effects of K and Q are similar to that of We, while the effects of Re
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Figure 11. The AI/CI boundary curves on the Re–We plane.

and N are the opposite. The fact indicates that the surface tension and liquid density
promote the jet instability of long waves, and the liquid viscosity, interfacial stress
and velocity at the interface promote the jet instability of short waves.

The AI/CI transition boundary curves on the Re–We plane are shown in figure 11.
Below the boundary curve the jet is absolutely unstable, and above it the jet is
convectively unstable. It is shown that for co-flowing liquid–gas jets the transition
from CI to AI takes place over a wide value range of Re and a narrow range of We.
The critical Weber number changes greatly at low Reynolds numbers but changes
little at high Reynolds numbers. Leib & Goldstein (1986a, b) found that the transition
Weber number below which an inviscid jet is absolutely unstable is equal to π (further
correction is 3.122). Our result shows that the critical value of We in the viscous case
is much smaller than that in the inviscid case. From this point the interfacial shear
stress plays a significant role in the formation of a convectively unstable jet.

As shown in figure 11, the transition boundary depends on the physical parameters.
Firstly, the basic velocity profile affects greatly the AI/CI boundary. When the value
of Us decreases slightly from 1.25 to 1.2, or the value of K decreases from 1 to 0.6, the
region of AI is enlarged. The result is consistent with that of the temporal instability
analysis. The effects of the density ratio Q and the viscosity ratio N are complicated.
On the one hand, both Q and N influence the basic velocity profiles. On the other
hand, they are involved in the momentum equations of the gas phase. Fortunately,
their effects are limited and predictable. For fixed values of Us and K, the boundary
moves upwards slightly as the value of Q increases; the AI region is diminished at
low value of Re and is broadened at large value of Re as the value of N increases.

It should be noted that the ‘elbow-like’ AI/CI transition boundary in Gañán-Calvo
& Riesco-Chueca (2006) does not exist in this problem. The main reason is that the
parameter regions concerned are different. They considered the Reynolds number of
the order of 10; however, we investigate the AI/CI transition at Re of the order of
102. Comparing with figure 2(b) in Gañán-Calvo & Riesco-Chueca (2006) for the case
of a water jet in the core of air, we find that the AI/CI boundary curves tend to be
coincident, though the values of the transition Weber number are slightly different
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Figure 12. Comparison between the AI/CI boundary prediction and the experimental
dripping/jetting transition on the Ql–�pg plane.

for the same Reynolds number. The discrepancy may arise from the difference of the
basic velocity profile.

5.3. Comparisons with the experiments

The AI/CI boundary curve has been calculated to discover the relation to the onset
of the dripping–jetting transition in experiments (Lin & Lian 1993; Sevilla et al. 2005;
Gañán-Calvo & Riesco-Chueca 2006). For the convenience of comparison with the
experimental results, the boundary curve for Q = 0.0013 and N = 0.018 in figure 11
is redrawn on the Ql–�pg plane in figure 12, where the inverse triangles stand for
the boundary between the dripping modes, mode IV, and axisymmetric jetting mode,
mode V, and the triangles for the transition between the dripping mode, mode IV,
and cone-adhering mode, mode II. It can be seen that the AI/CI boundary curve
predicted by theory approaches the experimental results as the value of K decreases
from 1 to 0.6 and as the value of Us increases from 1.2 to 1.25. The curve for K = 0.6
and Us =1.25 is in good agreement with the experiments. Hence the AI/CI instability
analysis helps to understand the dripping–jetting transition in the experiments.

6. Concluding remarks
In this paper, six different flow modes of water–air FF and corresponding domains

on the Ql–�pg parameter plane are investigated experimentally for the specific
geometry described in figure 2(a). Without loss of generality, the domains of them
are also redrawn on the dimensionless Re–We plane (see figure 13). For relatively
small values of Re, one can identify the cone-shaking mode, mode I, for which
the meniscus pulsates periodically with an instantaneous capillary jet formed. For
extremely small values of We, one can identify the cone-adhering mode, mode II,
where no jet is formed, and the meniscus adheres to the hole. These two modes are
related to the instability of the meniscus. For relatively large values of Re and We,
the meniscus will keep always stable, and as the value of We decreases four other
modes are observed sequentially, namely the helical jetting mode (III), the coexisting
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Figure 13. Six modes on the Re–We plane for the same geometric parameters as in
figure 2(a).

jetting mode (IV), the axisymmetric jetting mode (V) and the dripping mode (VI).
The Weber number is the most important parameter influencing the jetting modes
(i.e. the modes III, IV and V). The critical Weber numbers between modes III/IV
and V/IV are kept at approximately constant values of 8.6 and 6.4, respectively, in
the range of our experiments. The dripping and jetting modes are associated closely
with the instability of the co-flowing liquid–gas jets. Both the dripping mode and
the axisymmetric jetting mode are caused by axisymmetric disturbances (n= 0), the
helical jetting mode by non-axisymmetric ones (n= 1) and the coexisting jetting mode
by both axisymmetric and non-axisymmetric ones. In this study we mainly carry out
the axisymmetric instability (n= 0).

The linear temporal and spatio-temporal instability analyses of coaxial liquid–gas
jets are performed. Both the liquid and the gas are assumed to be viscous, and
the basic velocity profile is supposed to be that of hyperbolic-tangent function. The
temporal instability analysis demonstrates that the interfacial shear stress plays a
significant role in the jet instability; that is it enhances the instability of short waves
and suppresses the instability of long waves. Moreover, the most unstable wavelength
predicted is in good agreement with the experimental results quantitatively. The
transition from dripping to jetting is associated with the AI/CI characteristic of
the jet. The spatio-temporal instability analysis indicates that the AI/CI transition
boundary curve is in good accord with the boundary curve of the dripping–jetting
transition in our FF experiments.

The work was supported by the National Natural Science Foundation of China
Project Nos. 10802084, 10572137.
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Fernendez-Garcia, J. M., Flores-Mosquera, M. & Gañán-Calvo, A. M. 2006 Towards
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