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Shock–contact–shock solutions of the Riemann
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This paper presents an analytical study of the Riemann problem for dilute granular
gas using initial conditions that result in a shock–contact–shock wave structure. The
Euler equations for molecular gas were perturbed with small granular energy dissipation,
resulting in an approximate analytical solution that is valid for early evolution time. This
approximate analytical solution shows good agreement with the numerical solution of the
full problem obtained using a shock-capturing scheme. It is shown that the wave structure
of the Riemann problem for dilute granular gas follows that of molecular gas. However,
the variables in regions between the discontinuities are functions of both space and time.
Our solution shows that the ‘density overshoot’ – reported by Reddy & Alam (J. Fluid
Mech., vol. 779, 2015, R2) – is not part of the shock layer but a signature of the density
variation in the star region between the left and right shocks, with the maximum density
occurring at the contact discontinuity.
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1. Introduction

Granular gas is a widely used model for describing fluidised granular flows (Goldhirsch
2003). On the microscopic level, it assumes that the grains undergo binary, instantaneous
and inelastic collisions (Campbell 1990; Goldhirsch 2003). Similar to molecular gas, the
macroscopic description of granular gas can be obtained by dividing the microscopic
motion of grains into streaming and fluctuating components, with the former represented
by the bulk velocity and the latter by the granular temperature (Campbell 1990; Goldhirsch
2008). This results in compressible hydrodynamic field equations with additional sink
terms accounting for the dissipation of granular temperature due to inelastic collisions.
In order to complete the hydrodynamic description to the Euler order, equations of state
relating density, granular temperature and pressure have been proposed for different
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regimes of dilute or dense flows (Jenkins & Richman 1985; Goldshtein & Shapiro
1995; Sirmas et al. 2012; Sirmas & Radulescu 2019). Additional constitutive relations
describing the diffusive effects have been derived from the kinetic theory of granular
flow (Jenkins & Richman 1985; Campbell 2006) to obtain the Navier–Stokes-order
equations.

Compared to molecular gas, the flow of granular gas can become supersonic even
under more relaxed flow conditions – for example, as a result of self-organised dynamics
during its uniform cooling (Esipov & Pöschel 1997) and gravitational sedimentation
(Almazán et al. 2015, 2017) – because its granular temperature is often smaller than its
bulk velocity (Tan & Goldhirsch 1998; Goldshtein, Alexeev & Shapiro 2003), which
could result in the formation of shock and expansion (Goldshtein, Shapiro & Gutfinger
1996b; Goldshtein et al. 2002) waves. Shock waves in fluidised granular flows have been
noticed in canonical compressible flow configurations using both molecular dynamics
(Rericha et al. 2001; Padgett, Mazzoleni & Faw 2015; Sirmas & Radulescu 2015) and
hydrodynamic (Matveev 1983; Goldshtein, Shapiro & Gutfinger 1996a; Kamenetsky et al.
2000; Rericha et al. 2001; Sirmas & Radulescu 2019) simulations, as well as experiments
(Rericha et al. 2001; Heil et al. 2004; Khan et al. 2020), in both one-dimensional
(Matveev 1983; Goldshtein et al. 1996a; Kamenetsky et al. 2000; Sirmas & Radulescu
2015, 2019) and two-dimensional (Rericha et al. 2001; Wassgren et al. 2003; Heil et al.
2004; Soleymani, Zamankhan & Polashenski 2004; Padgett et al. 2015; Khan et al.
2020) flows. A shock wave appears in the Euler-order hydrodynamic simulations as
a line with zero thickness where the flow variables jump (Kamenetsky et al. 2000;
Sirmas & Radulescu 2019). However, a shock layer with small but non-zero thickness
appears by including the diffusive effects in the Navier–Stokes-order description (Reddy &
Alam 2015).

A simple one-dimensional flow configuration that has been used to generate planar
shock waves is the steady piston motion in a quiescent granular gas (Goldshtein et al.
1996a; Kamenetsky et al. 2000; Sirmas & Radulescu 2015, 2019). In the moving-piston
frame of reference, this problem is identical to a granular gas colliding with a fixed wall, a
configuration that was studied by Matveev (1983) assuming zero granular temperature for
the oncoming flow in front of the shock and steady-state conditions. Similar to molecular
gas, the jump relations across the shock showed that both pressure and density increase
while the absolute velocity decreases. In the region behind the shock, the analytical
solution showed that both pressure and density increase monotonically whereas the
absolute velocity decreases to become zero at the wall. Matveev (1983) allowed the density
behind the shock to become infinite at the wall because the used equation of state does not
take into account the volumetric effects due to the size of the particles. This shortcoming
was later avoided in a study of the moving-piston problem where Goldshtein et al. (1996a)
divided the region behind the shock into a fluidised region and a solid block (stagnant
layer) region. The steady-state analytical solutions of Goldshtein et al. (1996a) showed
that the behaviour of the fluidised region is similar to that observed by Matveev (1983).
The solid region, however, has almost constant spatial profiles of temperature, velocity
and density, whereby the density is equal to that of maximum packing. In subsequent
studies (Kamenetsky et al. 2000; Sirmas & Radulescu 2019), time-dependent solutions
were obtained by solving the Euler equations numerically, employing a dense granular gas
equation of state, which confirmed the existence of these two regions – fluidised region
and solid block. Furthermore, it was shown that the shock attains a steady speed after
a long evolution time, where the shock strength decreases, confirming the argument of
both Matveev (1983) and Goldshtein et al. (1996a). A slightly different problem, though
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its solution has similar features to the piston problem, is the wall collision of granular
gas falling under the action of gravity (Pareschi & Russo 2005; Serna & Marquina 2005;
Kamath & Du 2009; Aursand et al. 2014).

A more general flow configuration, which can generate planar shock waves in addition
to other elementary waves such as rarefactions and contact discontinuities, is the Riemann
problem. In hyperbolic systems of conservation laws such as the one-dimensional Euler
equations for molecular gas, the Riemann problem is an initial value problem with
initial data structure consisting of two constant left and right states separated by a
discontinuity (LeVeque 2002; Toro 2013). Its solution consists of three elementary
waves whose types depend on the values of the initial jump condition in the three
primitive variables: density, velocity and pressure. The middle wave is always a contact
discontinuity, and the two outer waves are either shocks or rarefactions. The solutions for
shock–contact–shock (SCS) wave structure consist of four constant regions separated by
these three discontinuities. For dense granular gas, numerical solutions of the Riemann
problem include a study by Serna & Marquina (2007) using a previously developed
shock-capturing scheme (Serna & Marquina 2005). The initial left state of Serna &
Marquina (2007) was supersonic positive flow, and their initial right state was quiescent
gas. These initial conditions resulted in an SCS wave structure, which they referred to
as ‘blast wave’, whereby they observed a cluster region near the contact discontinuity.
A later study by Kamath & Du (2009) developed a Roe-average shock-capturing
scheme that showed similar clustering behaviour for the same problem as in Serna &
Marquina (2007). Both these studies (Serna & Marquina 2007; Kamath & Du 2009),
however, did not explore other initial conditions for the one-dimensional SCS solution
structure.

For dilute granular gas, the Riemann problem was studied computationally in a series
of papers (Reddy, Ansumali & Alam 2014; Reddy & Alam 2015, 2016). A key study
(Reddy & Alam 2015) solved both the Euler and Navier–Stokes equations with supersonic
initial left state and the initial right state was calculated using Rankine–Hugoniot (RH)
jump relations for a stationary shock wave. For molecular gas, a set-up with such initial
conditions is used to examine the ability of numerical schemes to capture the details
– location and strength – of a single stationary shock wave (Toro 2013, p. 102). In
the Euler-order simulations of Reddy & Alam (2015), the early-time evolution showed
a sharp increase in the density behind the shock, reaching a maximum value before
decreasing monotonically to the initial right state. This behaviour also appeared in
their Navier–Stokes-order simulations, though this sharp profile was smeared due to
the diffusive effects. This density profile persisted for long time, with the maximum
value of density increasing with time, and was thus called ‘density overshoot’. Reddy &
Alam (2015) argued that this behaviour of continuous build-up of density can be traced
to ‘pressure instability which drives cluster formation due to collisional cooling’, an
argument that has been restated in their recent study (Reddy & Alam 2020). However,
it is not clear how such argument can be followed systematically from the mathematical
description of dilute granular gas. Thus, the aim of the present paper is to further
understand the solution structure of the Riemann problem for dilute granular gas. Based
on a regular perturbation method, we develop an approximate analytical solution for SCS
cases, which provides mathematical explanation for the ‘density overshoot’ noticed by
Reddy & Alam (2015). Moreover, this analytical solution describes the behaviour of
both piston (Matveev 1983; Goldshtein et al. 1996a; Kamenetsky et al. 2000; Sirmas &
Radulescu 2019) and blast wave (Serna & Marquina 2007; Kamath & Du 2009) problems
in their dilute limit.
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2. Governing equations

We consider the Riemann problem for one-dimensional Euler equations describing the
temporal (t) and spatial (x) evolution of dilute granular gas from a discontinuous initial
state. For unsteady flow without diffusive effects, the continuity, momentum and energy
equations are (Reddy & Alam 2015)

∂ρ

∂t
+ ∂

∂x
(ρu) = 0, (2.1)

∂

∂t
(ρu) + ∂

∂x
(ρu2 + ρθ) = 0, (2.2)

∂

∂t
(ρu2 + 3ρθ) + ∂

∂x
(ρu3 + 5ρθu) = −3D, (2.3)

where ρ = ρ(t, x), u = u(t, x) and θ = θ(t, x) are the density, velocity and temperature.
The key difference between the Euler equations for dilute granular gas and those for

molecular gas is the granular energy dissipation due to inelastic collisions, which is
accounted for by the right-hand side of the energy equation (2.3),

D = 4
3 a1nd2√π ρθ3/2, (2.4)

where n = ρ/m is the number density, with m being the particle mass. The other
parameters depend on the inelastic coefficient, α, as

a1 = (1 − α2)(1 + 3
16 a2), (2.5)

a2 = 16(1 − α)(1 − 2α2)

30α2(1 − α) + 81 − 17α
. (2.6)

The initial conditions of the Riemann problem are two constant initial states with a jump
discontinuity in between as

[ρ(0, x) u(0, x) θ(0, x)]T =
{

[ρL(0) uL(0) θL(0)]T , x < 0,

[ρR(0) uR(0) θR(0)]T , x > 0,
(2.7)

where the subscripts L and R denote the left and right states. Following Reddy & Alam
(2015), we use the initial left state to write the governing equations in the dimensionless
form by introducing the following scaling:

x̄ = x
lL(0)

, t̄ = t
√

θL(0)

lL(0)
, ρ̄ = ρ

ρL(0)
, ū = u√

θL(0)
, θ̄ = θ

θL(0)
. (2.8a–e)

The length scale, lL, is the mean free path,

lL = 16μL

5ρL
√

2πθL
, (2.9)

where μL is the shear viscosity,

μL = 5
4

m
d2

√
θL

π
a3, (2.10)

a3 = 1

(1 + α)(3 − α)(1 − 1
32 a2)

. (2.11)
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Figure 1. Effect of the inelastic coefficient, α, on the dissipation parameter, ε.

The governing equations in the dimensionless form, after dropping the bars, are thus
written as

∂ρ

∂t
+ ∂

∂x
(ρu) = 0, (2.12)

∂

∂t
(ρu) + ∂

∂x
(ρu2 + ρθ) = 0, (2.13)

∂

∂t
(ρu2 + 3ρθ) + ∂

∂x
(ρu3 + 5ρθu) = −ερ2θ3/2, (2.14)

where ε is the parameter accountable for the dissipation of granular energy,

ε = 16√
2π

a1a3. (2.15)

3. Analytical solution for small granular energy dissipation

Figure 1 shows the effect of the inelastic coefficient, α, on the dissipation parameter, ε, as
given by (2.15). It is clear that ε vanishes for perfectly elastic collisions, α = 1, recovering
the Euler equations for molecular gas. For slightly inelastic collisions, α > 0.98, ε is small
with values less than 0.1. Thus, it is possible to solve the Euler equations for dilute granular
gas by perturbing those for molecular gas with the dissipation term on the right-hand
side of the energy equation (2.15) in the limiting case of small dissipation parameter,
0 < ε � 1.

Using Taylor series expansion in the powers of ε, we seek a solution for the three
variables ρ, u and θ in the form of a regular perturbation series as

ρ = ρ0 + ερ1 + · · · , u = u0 + εu1 + · · · , θ = θ0 + εθ1 + · · · , (3.1a–c)

where the subscripts 0 and 1 denote the leading and first orders of the expansion.
Substituting the expansion (3.1) into the dimensionless governing equations (2.12), (2.13)
and (2.14) and omitting the higher-order terms, O(ε)2, we obtain two systems of equations
for O(ε0) and O(ε1). The leading-order system, O(ε0), is

∂ρ0

∂t
+ ∂

∂x
(ρ0u0) = 0, (3.2)
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∂

∂t
(ρ0u0) + ∂

∂x
(ρ0u0

2 + ρ0θ0) = 0, (3.3)

∂

∂t
(ρ0u0

2 + 3ρ0θ0) + ∂

∂x
(ρ0u0

3 + 5ρ0θ0u0) = 0. (3.4)

The first-order system, O(ε1), is

∂ρ1

∂t
+ u0

∂ρ1

∂x
+ ρ0

∂u1

∂x
= 0, (3.5)

u0
∂ρ1

∂t
+ ρ0

∂u1

∂t
+ ∂

∂x
[(u0

2 + θ0)ρ1 + 2ρ0u0u1 + ρ0θ1] = 0, (3.6)

∂

∂t
[(u0

2 + 3θ0)ρ1 + 2ρ0u0u1 + 3ρ0θ1]

+ ∂

∂x
[(u0

3 + 5θ0u0)ρ1 + ρ0(3u0
2 + 5θ0)u1 + 5ρ0u0θ1] = −ρ0

2θ0
3/2. (3.7)

Both the leading- and first-order systems are hyperbolic: the former is the nonlinear
Euler equations for molecular gas, and the latter is a linear system with source term. The
first-order system is coupled to the leading-order system through the variables ρ0, u0 and
θ0. Thus, we ought to obtain the solution of the leading-order system first and then use it
to solve the first-order system.

3.1. Shock–contact–shock solutions of O(ε0)

The Euler equations for molecular gas, (3.2), (3.3) and (3.4), which describe the
leading-order terms of the expansion (3.1), have well-known solutions (Toro 2013) for
the Riemann problem with initial conditions similar to (2.7). Here, we consider the cases
where the initial conditions result in an SCS solution structure as shown in figure 2. This
solution structure consists of four constant regions – L, L∗, R∗ and R – separated by these
three elementary waves where the variables ρ0, u0 and θ0 are discontinuous. The variables
of the left (L) and right (R) regions have, throughout the time domain, the same values as
their initial states. A left shock, Sl, separates the regions L and L∗. Similarly, a right shock,
Sr, separates the regions R and R∗. The contact discontinuity, S∗, separates the regions L∗
and R∗, both referred to as the star region. The pressure is defined using the equation of
state for dilute granular gas as (Reddy & Alam 2015; Sirmas & Radulescu 2019)

p0 = ρ0θ0. (3.8)

The exact solution of the Riemann problem for SCS wave structure (Toro 2013) is
obtained by solving, using Newton’s method, the following nonlinear equation for the
pressure of the star region, p0,∗,

( p0,∗ − p0,L)

[
AL

p0,∗ + BL

]1/2

+ ( p0,∗ − p0,R)

[
AR

p0,∗ + BR

]1/2

+ (u0,R − u0,L) = 0,

(3.9)

AL = 2
(γ + 1)ρ0,L

, BL = (γ − 1)

(γ + 1)
p0,L, AR = 2

(γ + 1)ρ0,R
, BR = (γ − 1)

(γ + 1)
p0,R,

(3.10a–d)

where γ = 5/3 is the specific heat ratio of dilute granular gas (Matveev 1983; Reddy &
Alam 2015), the same value as that of monatomic molecular gas. After obtaining p0,∗, the
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x
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Sl S∗ Sr

RL

L∗ R∗

Figure 2. SCS solution structure.

velocity in the star region, u0,∗, which is equal to the speed of the contact discontinuity,
S∗, is obtained using the following equation:

u0,∗ = 1
2
(u0,R + u0,L) + 1

2

{
( p0,∗ − p0,R)

[
AR

p0,∗ + BR

]1/2

− ( p0,∗ − p0,L)

[
AL

p0,∗ + BL

]1/2
}

. (3.11)

The rest of the variables are obtained directly from the pressure in the star region, p0,∗.
The density in the region L∗ is

ρ0,L∗ = ρ0,L

[
p0,∗
p0,L

+ γ − 1
γ + 1

] [(
γ − 1
γ + 1

)
p0,∗
p0,L

+ 1
]−1

. (3.12)

The speed of the left shock is

Sl = u0,L − a0,L

[(
γ + 1

2γ

)
p0,∗
p0,L

+ γ − 1
2γ

]1/2

, (3.13)

where a is the speed of sound, which is defined for dilute granular gas as (Reddy & Alam
2015)

a =
√

γ θ. (3.14)

The density in the region R∗ is

ρ0,R∗ = ρ0,R

[
p0,∗
p0,R

+ γ − 1
γ + 1

] [(
γ − 1
γ + 1

)
p0,∗
p0,R

+ 1
]−1

. (3.15)

The speed of the right shock is

Sr = u0,R + a0,R

[(
γ + 1

2γ

)
p0,∗
p0,R

+ γ − 1
2γ

]1/2

. (3.16)

Note that the velocity and pressure are continuous across the contact whereas the density
and temperature are discontinuous. In addition to the Euler equations for molecular gas,
RH jump conditions across the shocks are used to derive this SCS solution at the leading
order, O(ε0).
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3.2. Analytical solution of O(ε1)

The governing equations, (3.5), (3.6) and (3.7), describing the evolution of the first-order
terms of the expansion (3.1), constitute a linear hyperbolic system with source term. In
vector form it reads

CU t + DUx = E, (3.17)

where the subscripts t and x denote time and space derivatives. The vector U defines the
variables of the first-order terms as

U = [ρ1 u1 θ1]T. (3.18)

The matrices C and D are

C =
⎡
⎣ 1 0 0

u0 ρ0 0
u0

2 + 3θ0 2ρ0u0 3ρ0

⎤
⎦ , (3.19)

D =
⎡
⎣ u0 ρ0 0

u0
2 + θ0 2ρ0u0 ρ0

u0
3 + 5θ0u0 ρ0(3u0

2 + 5θ0) 5ρ0u0

⎤
⎦ . (3.20)

The source term of (3.17) is given by the vector E as

E = [0 0 − ρ0
2θ0

3/2]
T
. (3.21)

The first step to solve this system is to multiply (3.17) by the inverse of the matrix C,

C−1 =
⎡
⎣ 1 0 0

−u0ρ0
−1 ρ0

−1 0
(u0

2 − 3θ0)(3ρ0)
−1 −2u0(3ρ0)

−1 (3ρ0)
−1

⎤
⎦ , (3.22)

which results in the following canonical form:

U t + YUx = Γ , Γ = 1
3 [0 0 −ρ0θ0

3/2]
T
, Y =

⎡
⎣ u0 ρ0 0

θ0ρ0
−1 u0 1

0 2
3θ0 u0

⎤
⎦ .

(3.23a–c)

The eigenvalues of the matrix Y are

λ(1) = u0 −
√

γ θ0, λ(2) = u0, λ(3) = u0 +
√

γ θ0, (3.24a–c)

which are the same eigenvalues as for the leading-order problem describing the Euler
equations for molecular gas; see (3.2), (3.3) and (3.4). Because the matrix Y is
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diagonalisable, it can be written as

Y = PGP−1, (3.25)

where G = diag(λ(1), λ(2), λ(3)) is the eigenvalues matrix and P is the matrix of the right
eigenvectors,

P =
⎡
⎣ −ρ0a0

−1 1 ρ0a0
−1

1 0 1
−2θ0(3a0)

−1 −θ0ρ0
−1 2θ0(3a0)

−1

⎤
⎦ . (3.26)

Thus, the first-order system, O(ε1), can now be written as

U t + PGP−1Ux = Γ . (3.27)

Let

U = PV , (3.28)

where V = [v(1) v(2) v(3)]T is the vector of Riemann variables. Since P is constant (in
each region), (3.27) can be written as

PV t + PGV x = Γ . (3.29)

Multiply (3.29) by the inverse of P,

P−1 =
⎡
⎣−θ0(2ρ0a0)

−1 1
2 −(2a0)

−1

2
5 0 −ρ0(γ θ0)

−1

θ0(2ρ0a0)
−1 1

2 (2a0)
−1

⎤
⎦ , (3.30)

in order to decouple the system as

V t + GV x = F , (3.31)

where the source term, F = P−1Γ , is

F = 1
6γ

[ρ0θ0
√

γ 2ρ0
2
√

θ0 − ρ0θ0
√

γ ]
T
. (3.32)

Now, since the system of equations has been decoupled, the general solution for each
Riemann variable, v(1), v(2) and v(3), can be obtained independently. The governing
equation for an arbitrary Riemann variable, v(i), where the superscript index i = 1, 2, 3
denotes the order of the Riemann variable (first, second and third), can be written as

∂v(i)

∂t
+ λ(i) ∂v(i)

∂x
= f (i), (3.33)

where the characteristics, λ(i), are given by (3.24) and the source terms, f (i), by (3.31).
Transform (3.33) by changing the independent variables as

ε = t, ζ (i) = x − λ(i)t. (3.34a,b)

Note that the variable ε is global for all v(i), but the variable ζ (i) is not global because it
depends on the characteristics, λ(i), which are different for each Riemann variable, v(i).

915 A48-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

94
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.94


Y.M. Fouda

The derivatives of the new variables (ε, ζ (i)) with respect to the old variables (t, x) are

∂ε

∂t
= 1,

∂ε

∂x
= 0,

∂ζ (i)

∂t
= −λ(i), ∂ζ (i)

∂x
= 1. (3.35a–d)

Using the chain rule and (3.35) to transform the time and space derivatives of v(i) from
the old coordinate system (t, x) to the new one (ε, ζ (i)) as

∂v(i)

∂t
= ∂v(i)

∂ε
− λ(i) ∂v(i)

∂ζ (i) ,
∂v(i)

∂x
= ∂v(i)

∂ζ (i) . (3.36a,b)

By substituting (3.36) into (3.33), we obtain the governing equation for an arbitrary
Riemann variable, v(i), as a function of the independent variable, ε, as

∂v(i)

∂ε
= f (i), (3.37)

whose general solution is obtained by integrating with respect to ε as

v(i)(ε, ζ (i)) = f (i)ε + g(i)(ζ (i)), (3.38)

where g(i)(ζ (i)) is an integration function to be determined from the initial conditions.
It is obvious that the initial conditions along the line t = 0 are zero for all Riemann
variables, v(1), v(2) and v(3), as expected for problems solved by regular perturbation of
the governing equations. However, these initial conditions along the line t = 0 do not give
enough information to solve the Cauchy problem for the first-order hyperbolic system of
equations, O(ε1). In (3.33), the slopes of the linear characteristic lines, λ(i), and the source
terms, f (i), jump from one region to another because, in principle, the solution of the
leading-order system, O(ε0), is discontinuous along the lines Sl, S∗ and Sr as shown in
figure 2. The jump in the characteristic lines, λ(i), means that the independent variable,
ζ (i), also jumps from one region to another, see (3.34), resulting in the same discontinuous
domain of the leading-order system shown in figure 2. Accordingly, we need to specify a
procedure to prescribe the initial conditions for the star regions, L∗ and R∗. An assumption
is made now with regards to the jump in v(1), v(2) and v(3) at the discontinuities. We will
not apply RH jump conditions for O(ε1), but we will assume, unless the characteristic
structure shows otherwise, that each Riemann variable is continuous across the domain
regions. With regards to the solution sequence in the regions L, L∗, R∗ and R for each v(i),
we will apply a procedure based on its characteristic structure, λ(i), which is described in
detail in the following sections.

3.2.1. First Riemann variable
Figure 3 shows the first characteristic field, λ(1), associated with the first Riemann variable,
v(1). This characteristic field impinges on the left shock, Sl, and crosses both the contact
discontinuity, S∗, and the right shock, Sr, from the right (LeVeque 2002, p. 262). This
characteristic structure implies that the initial conditions of the left and right states have
two independent ranges of influence. The range of influence of the initial left state (t =
0, x < 0) terminates at the left of Sl. On the other hand, the range of influence of the initial
right state (t = 0, x > 0) terminates at the right of Sl. Based on this characteristic structure,
we solve v(1) in two independent cycles, each of which describes one of these ranges of
influence.
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x
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Sl S∗ Sr

Figure 3. Structure of the first characteristic field, λ(1).

In the first cycle, we start from the initial left state and solve up to Sl approaching it
from the left. In the second cycle, we start from the initial right state and solve up to Sl
approaching it from the right. As shown in figure 3, the first cycle consists of the region L
only. The solution of the Cauchy problem in this region is straightforward by prescribing
the initial conditions at the line t = 0, x < 0, where v(1) = 0. The second solution cycle
consists of three regions, R, R∗ and L∗, that should be solved sequentially. The solution
in the region R is obtained, in a similar way to the region L, by prescribing the initial
conditions at the line t = 0, x > 0, where v(1) = 0. Subsequently, the solution in the region
R∗ is obtained by prescribing a continuity initial condition for v(1) along Sr. Then, we solve
the Cauchy problem for the region L∗, in a similar fashion, by prescribing a continuity
initial condition for v(1) along S∗. Thus, the three regions of the second solution cycle
are now connected to each other in a proper order that takes into account the domain of
dependence and range of influence. The mathematical details of this solution procedure
are as follows.

For the region L, the initial condition is expressed as

vL
(1)(ε = t = 0, ζL

(1)) = 0. (3.39)

Thus, the function of integration, gL
(1)(ζL

(1)), is zero, and the solution of v(1) in the region
L is

vL
(1)(t, x) = fL(1)t. (3.40)

Since the initial condition of the region R has similar form to that of L (3.39), it is
straightforward to show that the solution of v(1) in the region R is

vR
(1)(t, x) = fR(1)t. (3.41)

Now, to determine the solution of v(1) in the region R∗, we write the general solution as

vR∗
(1)(ε, ζR∗

(1)) = fR∗
(1)ε + gR∗

(1)(ζR∗
(1)). (3.42)

The initial curve of the region R∗ coincides with the right shock location whose equation
is

t = x
Sr

. (3.43)
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The initial condition for v(1) in the region R∗ is defined along Sr using the continuity
assumption of v(1) as

vR∗
(1)

(
t = x

Sr
, x
)

= vR
(1)

(
t = x

Sr
, x
)

. (3.44)

This initial condition should be expressed in terms of the transformed variables (ε, ζR∗
(1))

in order to obtain the function of integration, gR∗
(1)(ζR∗

(1)). Since the transformation of
the time variable from (t, x) to (ε, ζR∗

(1)) is global for all regions, t = ε, equation (3.41) in
the coordinates (ε, ζR∗

(1)) is

vR
(1)(ε, ζR∗

(1)) = fR(1)ε. (3.45)

Moreover, it is straightforward by using (3.34) to express the old variables (t, x) in terms
of the new variables (ε, ζR∗

(1)) as

t = ε, x = ζR∗
(1) + λR∗

(1)ε. (3.46a,b)

Substituting (3.46) into (3.43) gives the initial curve of the region R∗ in terms of the
transformed variables (ε, ζR∗

(1)) as

ε = ζR∗
(1)

Sr − λR∗
(1)

. (3.47)

Now, substituting (3.47) into (3.42) and (3.45) gives the left- and right-hand sides of (3.44),
respectively. This enables us to obtain the integration function,

gR∗
(1)(ζR∗

(1)) =
[

fR(1) − fR∗
(1)

Sr − λR∗
(1)

]
ζR∗

(1). (3.48)

By substituting (3.48) into the general solution in the region R∗, (3.42), we obtain the
solution in terms of the new variables (ε, ζR∗

(1)) as

vR∗
(1) = fR∗

(1)ε +
[

fR(1) − fR∗
(1)

Sr − λR∗
(1)

]
ζR∗

(1). (3.49)

The last step in obtaining vR∗
(1) is to transform (3.49) from (ε, ζR∗

(1)) to (t, x) by inverting
(3.46), which has a similar form to (3.34), and substituting it into (3.49) as

vR∗
(1) = cR∗

(1)t + bR∗
(1)x,

cR∗
(1) = fR∗

(1)Sr − fR(1)λR∗
(1)

Sr − λR∗
(1)

, bR∗
(1) = fR(1) − fR∗

(1)

Sr − λR∗
(1)

.

⎫⎪⎬
⎪⎭ (3.50)

Now, we shall obtain the solution in the region L∗ using a similar procedure to that for
R∗. The general solution in the region L∗ is similar to (3.38) as

vL∗
(1)(ε, ζL∗

(1)) = fL∗
(1)ε + gL∗

(1)(ζL∗
(1)). (3.51)

Using the continuity assumption, the initial condition of the region L∗ is defined along the
contact discontinuity, S∗, in a similar fashion to (3.44) as

vL∗
(1)

(
t = x

S∗
, x
)

= vR∗
(1)

(
t = x

S∗
, x
)

. (3.52)
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For the region L∗, the coordinate transformation from (t, x) to (ε, ζL∗
(1)) is similar to

(3.46), but the jump in the characteristic slope from λR∗
(1) to λL∗

(1) should be taken into
account as

t = ε, x = ζL∗
(1) + λL∗

(1)ε. (3.53a,b)

Substitute (3.53) into (3.50) in order to obtain vR∗
(1) as a function of the new coordinates

(ε, ζL∗
(1)) as

vR∗
(1)(ε, ζL∗

(1)) = [cR∗
(1) + bR∗

(1)λL∗
(1)]ε + bR∗

(1)ζL∗
(1). (3.54)

The initial curve of the region L∗ is along the contact discontinuity, S∗, which is defined
in the new coordinates (ε, ζL∗

(1)) in a similar fashion to (3.47) as

ε = ζL∗
(1)

S∗−λL∗
(1)

. (3.55)

Substituting (3.55) into (3.54) gives vR∗
(1) at S∗ in terms of ζL∗

(1) as

vR∗
(1)

(
ε = ζL∗

(1)

S∗−λL∗
(1)

, ζL∗
(1)

)
=
[

cR∗
(1) + bR∗

(1)S∗
S∗−λL∗

(1)

]
ζL∗

(1). (3.56)

Substituting (3.55) into (3.51) gives vL∗
(1) at S∗ in terms of ζL∗

(1) as

vL∗
(1)

(
ε = ζL∗

(1)

S∗−λL∗
(1)

, ζL∗
(1)

)
= fL∗

(1)

[
ζL∗

(1)

S∗−λL∗
(1)

]
+ gL∗

(1)(ζL∗
(1)). (3.57)

To obtain the integration function, substitute (3.56) and (3.57) into (3.52), resulting in

gL∗
(1)(ζL∗

(1)) =
[

cR∗
(1) + bR∗

(1)S∗−fL∗
(1)

S∗−λL∗
(1)

]
ζL∗

(1). (3.58)

After obtaining gL∗
(1)(ζL∗

(1)), we need to transform the solution in the region L∗, given
by (3.51) and (3.58), from (ε, ζL∗

(1)) to (t, x) by inverting equation (3.53), which results in
the final solution in the region L∗ as

vL∗
(1)(t, x) = [fL∗

(1) − q(1)λL∗
(1)]t + q(1)x,

q(1) = cR∗
(1) + bR∗

(1)S∗−fL∗
(1)

S∗−λL∗
(1)

,

⎫⎪⎬
⎪⎭ (3.59)

where cR∗
(1) and bR∗

(1) are given by the solution of the region R∗ as shown in (3.50).
Now, we have obtained v(1) in the four regions of the domain, L, R, R∗ and L∗, as

given by (3.40), (3.41), (3.50) and (3.59), respectively. The solution shows that both outer
regions, L and R, are linear functions of time, and the star regions, L∗ and R∗, are linear
functions of both time and space. The solution of v(1) is continuous across all the regions
except at the left shock, Sl, which separates the regions L and L∗. In principle, the slope of
v(1) jumps across all regions because it is a function of the solution of the leading-order
system.
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Figure 4. Structure of the second characteristic field, λ(2).

3.2.2. Second Riemann variable
Figure 4 shows the second characteristic field, λ(2), associated with the second Riemann
variable, v(2). This characteristic field is parallel to S∗ on both its sides and crosses Sl from
the left and Sr from the right. Similar to v(2), this characteristic structure implies that there
are two independent ranges of influence and accordingly two solution cycles that meet at
S∗. In the first solution cycle, we start from the initial left state and solve for L and L∗ until
we reach S∗ from the left. In the second solution cycle, we start from the initial right state
and solve for R and R∗ until we reach S∗ from the right. The initial conditions for both
L and R are zero at the line t = 0, and those for L∗ and R∗ assume continuous v(2) along
Sl and Sr, respectively. The mathematical details are as follows.

For the first solution cycle, we start with the region L whose solution has the same form
as the first Riemann variable, vL

(1), given by (3.40), as

vL
(2)(t, x) = fL(2)t. (3.60)

In the region L∗, the general solution is

vL∗
(2)(ε, ζL∗

(2)) = fL∗
(2)ε + gL∗

(2)(ζL∗
(2)). (3.61)

The initial condition of the region L∗ is based on the continuous assumption of v(2) at the
left shock,

vL∗
(2)

(
t = x

Sl
, x
)

= vL
(2)

(
t = x

Sl
, x
)

. (3.62)

Since the transformation of the time variable from (t, x) to (ε, ζL∗
(2)) is global for all

regions, t = ε, equation (3.60) in the new coordinates (ε, ζL∗
(2)) is

vL
(2)(ε, ζL∗

(2)) = fL(2)ε. (3.63)

Similar to (3.47) and (3.55), the initial curve of the region L∗ is defined in (ε, ζL∗
(2)) as

ε = ζL∗
(2)

Sl − λL∗
(2)

. (3.64)

Substituting (3.64) into (3.63) gives vL
(2) at the left shock, Sl, in terms of ζL∗

(2) as

vL
(2)

(
ε = ζL∗

(2)

Sl − λL∗
(2)

, ζL∗
(2)

)
=
[

fL(2)

Sl − λL∗
(2)

]
ζL∗

(2). (3.65)
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By substituting (3.64) into (3.61), we obtain vL∗
(2) at Sl in terms of ζL∗

(2) as

vL∗
(2)

(
ε = ζL∗

(2)

Sl − λL∗
(2)

, ζL∗
(2)

)
=
[

fL∗
(2)

Sl − λL∗
(2)

]
ζL∗

(2) + gL∗
(2)(ζL∗

(2)). (3.66)

Substituting (3.65) and (3.66) into (3.62) enables us to obtain the function of integration,

gL∗
(2)(ζL∗

(2)) =
[

fL(2) − fL∗
(2)

Sl − λL∗
(2)

]
ζL∗

(2). (3.67)

Thus, the final solution in the region L∗ in the new coordinates (ε, ζL∗
(2)) is

vL∗
(2)(ε, ζL∗

(2)) = fL∗
(2)ε +

[
fL(2) − fL∗

(2)

Sl − λL∗
(2)

]
ζL∗

(2). (3.68)

Now, to transform equation (3.68) back to the coordinates (t, x), we adapt (3.34) to the
region L∗ and the second Riemann variable, v(2), as

ε = t, ζL∗
(2) = x − λL∗

(2)t, (3.69a,b)

which when substituted into (3.68) gives the solution of vL∗
(2) in (t, x) as

vL∗
(2)(t, x) = cL∗

(2)t + bL∗
(2)x,

cL∗
(2) = fL∗

(2)Sl − fL(2)λL∗
(2)

Sl − λL∗
(2)

, bL∗
(2) = fL(2) − fL∗

(2)

Sl − λL∗
(2)

.

⎫⎪⎬
⎪⎭ (3.70)

We have so far obtained the solution of v(2) in the regions L and L∗, reaching the contact
discontinuity, S∗, from the left in the first solution cycle. To start the second cycle, the
solution of vR

(2) has the same form as vR
(1), given by (3.41), as

vR
(2) = fR(2)t. (3.71)

In the region R∗, the general solution is

vR∗
(2) = fR∗

(2)ε + gR∗
(2)(ζR∗

(2)). (3.72)

In order to obtain the solution in the region R∗, we follow a similar procedure to that used
for the region L∗. We equate the value of the second Riemann variable in the region R to
that of the region R∗ along the right shock, Sr, resulting in the solution being

vR∗
(2)(t, x) = cR∗

(2)t + bR∗
(2)x,

cR∗
(2) = fR∗

(2)Sr − fR(2)λR∗
(2)

Sr − λR∗
(2)

, bR∗
(2) = fR(2) − fR∗

(2)

Sr − λR∗
(2)

,

⎫⎪⎬
⎪⎭ (3.73)

which ends the second cycle of the solution for v(2) on the right of the contact
discontinuity, S∗.

Now, we have obtained the solution of v(2) in the four regions of the domain, L, L∗, R∗
and R, as given by (3.60), (3.70), (3.71) and (3.73), respectively. Note that, in (3.70) and
(3.73), both λR∗

(2) and λL∗
(2) are equal to S∗ because λ(2) is linearly degenerate (LeVeque
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Figure 5. Structure of the third characteristic field, λ(3).

2002; Toro 2013). In a similar behaviour to that of v(1), both outer regions, L and R, are
linear functions of time, and the star regions, L∗ and R∗, are linear functions of both time
and space. The solution of v(2) is continuous across all the regions except at the contact
discontinuity, S∗, which separates L∗ and R∗. Furthermore, the slope of v(2) has a similar
behaviour to that of v(1): it jumps across all regions because it is a function of the solution
of the leading-order system.

3.2.3. Third Riemann variable
Figure 5 shows the third characteristic field, λ(3), associated with the third Riemann
variable, v(3). The procedure used to obtain v(3) in the four domain regions, L, L∗, R∗ and
R, is similar to that for v(1). However, the two cycles of solution are different because, for
the case of v(3), its characteristics field, λ(3), impinges on the right shock, Sr, and crosses
both Sl and S∗ from the left. Thus, we start the first solution cycle from the line t = 0,
x < 0, and solve in the regions L, L∗ and R∗ sequentially. Again, the initial condition of the
region L is zero. The regions L∗ and R∗ are connected to the regions L and L∗, respectively,
using the continuity assumption of v(3) along the corresponding discontinuities. In the
second solution cycle, the initial condition is defined along the line t = 0, x > 0, to solve
in the region R approaching Sr from the right. The mathematical details are described
briefly as follows.

For the first solution cycle of v(3), we start with the region L, whose solution has the
same form as the first and second Riemann variables, given by (3.40) and (3.60), as

vL
(3)(t, x) = fL(3)t. (3.74)

For the region L∗, the general solution in the new coordinates (ε, ζL∗
(3)) is

vL∗
(3)(ε, ζL∗

(3)) = fL∗
(3)ε + gL∗

(3)(ζL∗
(3)), (3.75)

and its initial curve is the line along the left shock, Sl, which is defined in (ε, ζL∗
(3)) in a

similar fashion to (3.64) as

ε = ζL∗
(3)

Sl − λL∗
(3)

. (3.76)
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Substituting (3.76) into (3.74) and noting that t = ε, we get vL
(3) at Sl as

vL
(3)

(
ε = ζL∗

(3)

Sl − λL∗
(3)

, ζL∗
(3)

)
=
[

fL(3)

Sl − λL∗
(3)

]
ζL∗

(3), (3.77)

and according to our assumption of continuous v(3) along Sl, the initial condition for the
region L∗ is defined as

vL∗
(3)

(
ε = ζL∗

(3)

Sl − λL∗
(3)

, ζL∗
(3)

)
= vL

(3)

(
ε = ζL∗

(3)

Sl − λL∗
(3)

, ζL∗
(3)

)
. (3.78)

Substituting (3.75) into the left-hand side of (3.78) and (3.77) into its right-hand side
enables us to obtain the integration function,

gL∗
(3)(ζL∗

(3)) =
[

fL(3) − fL∗
(3)

Sl − λL∗
(3)

]
ζL∗

(3). (3.79)

Substituting (3.79) into the general solution of vL∗
(3), given by (3.75), then transforming

to (t, x), according to (3.34), results in the solution of v(3) in the region L∗,

vL∗
(3)(t, x) = cL∗

(3)t + bL∗
(3)x,

cL∗
(3) = fL∗

(3)Sl − fL(3)λL∗
(3)

Sl − λL∗
(3)

, bL∗
(3) = fL(3) − fL∗

(3)

Sl − λL∗
(3)

.

⎫⎪⎬
⎪⎭ (3.80)

The subsequent step is to solve in the region R∗ whose general solution is

vR∗
(3)(ε, ζR∗

(3)) = fR∗
(3)ε + gR∗

(3)(ζR∗
(3)). (3.81)

The initial curve of the region R∗ coincides with the contact discontinuity, S∗, which is
defined in the new coordinates (ε, ζR∗

(3)) in a similar fashion to (3.55) as

ε = ζR∗
(3)

S∗−λR∗
(3)

. (3.82)

According to our assumption of continuous v(3) along S∗, the initial condition of the region
R∗ is

vR∗
(3)

(
ε = ζR∗

(3)

S∗−λR∗
(3)

, ζR∗
(3)

)
= vL∗

(3)

(
ε = ζR∗

(3)

S∗−λR∗
(3)

, ζR∗
(3)

)
. (3.83)

In order to obtain the right-hand side of (3.83), we need to write (3.80) in the new local
coordinates of the region R∗, (ε, ζR∗

(3)), by adapting the inverse of transformation (3.34)
as

vL∗
(3)(ε, ζR∗

(3)) = cL∗
(3)ε + bL∗

(3)[ζR∗
(3) + λR∗

(3)ε]. (3.84)

In (3.81), the left-hand side is obtained by substituting (3.82) into (3.81), and the right-hand
side is obtained by substituting (3.82) into (3.84). This results in obtaining the function of
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integration for the region R∗ as

gR∗
(3)(ζR∗

(3)) =
[

cL∗
(3) + bL∗

(3)S∗−fR∗
(3)

S∗−λR∗
(3)

]
ζR∗

(3). (3.85)

To obtain the final solution of the third Riemann variable in the region R∗, vR∗
(3), in terms

of the original variables (t, x), we apply the generic transformation (3.34) to both the
general solution (3.81) and the integration function (3.85), resulting in

vR∗
(3)(t, x) = [fR∗

(3) − q(3)λR∗
(3)]t + q(3)x,

q(3) = cL∗
(3) + bL∗

(3)S∗−fR∗
(3)

S∗−λR∗
(3)

,

⎫⎪⎬
⎪⎭ (3.86)

which ends the first solution cycle of the third Riemann variable v(3) by reaching the left
shock, Sl, from the left. The second cycle consists of solving v(3) in the region R only,
which is similar to both vR

(1) and vR
(2), as

vR
(3)(t, x) = fR(3)t. (3.87)

Now, we have obtained v(3) in the four regions of the domain, L, L∗, R∗ and R, as given
by (3.74), (3.80), (3.86) and (3.87), respectively. In a similar behaviour to that of v(1) and
v(2), the solution shows that both outer regions, L and R, are linear functions of time, and
the star regions, L∗ and R∗, are linear functions of both time and space. The solution of v(3)

is continuous across all regions except at the right shock, Sr, which separates the regions
R∗ and R. Furthermore, the slope of v(3) has a similar behaviour to that of v(1) and v(2):
it jumps across all regions, because it is a function of the solution of the leading-order
system.

3.2.4. Primitive variables
After obtaining the Riemann variables vector, V = [v(1) v(2) v(3)]T, in all four regions (L,
L∗, R∗ and R), we transform it back to the primitive variables vector, U = [ρ1 u1 θ1]T,
using (3.26) and (3.28) as

ρ1 = −
[
ρ0

a0

]
v(1) + v(2) +

[
ρ0

a0

]
v(3), (3.88)

u1 = v(1) + v(3), (3.89)

θ1 = −
[

2θ0

3a0

]
v(1) −

[
θ0

ρ0

]
v(2) +

[
2θ0

3a0

]
v(3). (3.90)

Note that the coefficients of the Riemann variables in (3.88), (3.89) and (3.90) jump
across the domain regions, L, L∗, R∗ and R, because they are obtained from the solution of
the leading-order problem, O(ε0); see § 3.1.

3.3. Solution structure and accuracy
Now, we have solved, analytically, the Riemann problem for dilute granular gas for the
case of SCS wave structure using a regular perturbation method. Similar to molecular gas,
the solution consists of four regions, L, L∗, R∗ and R, separated by three discontinuities,
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Sl, S∗ and Sr. A key difference between this solution and that of molecular gas is that
the variables in these regions are not, in principle, constant with time and space. The
accuracy of our solution is first order in the domain regions, but the speeds of the shocks
and contact discontinuity are of leading-order accuracy because the characteristics of the
first-order problem are the same as those of the leading-order problem: straight lines in the
(x, t) plane. However, the strength of these discontinuities is not entirely of leading-order
accuracy because the solution of the first-order problem permits discontinuities across
these lines for all Riemann variables, which is carried to ρ1, u1 and θ1. We did not use
RH conditions to obtain the jump in the Riemann variables across the discontinuous lines,
Sl, S∗ and Sr, because this would require an iterative solution as the Riemann variables
become coupled. Accordingly, the continuity assumption of the Riemann variables along
some discontinuous lines was used in order to obtain an explicit analytical solution that is
valid for early evolution time.

4. Numerical solution method

The analytical solution presented in § 3 is valid for small ε and early evolution time. In
order to test these assumptions, we solve, numerically, the Riemann problem for dilute
granular gas given by (2.12), (2.13) and (2.14). This system of hyperbolic balance laws can
be expressed in vector form as

Qt + H(Q)x = Z(Q), Q = [ρ ρu ρu2 + 3ρθ ]
T
,

H(Q) = [(ρu) (ρu2 + ρθ) (ρu3 + 5ρθu)]
T
, Z(Q) = [0 0 − ερ2θ3/2]

T
.

⎫⎬
⎭

(4.1)
Reddy & Alam (2015) used a splitting technique to the solve this non-homogeneous

system, which we use in this paper. For each computational time step, splitting techniques
(Toro 2013, pp. 531–542) consist of two successive steps. The first step is solving, using

an appropriate shock-capturing technique, the conservative system

Qh
t + H(Qh)x = 0, (4.2)

where the superscript h denotes the corresponding homogeneous variables. In the second
step, the solution is updated for each time, tj, using Qh as the initial condition,

Qt = Z(Q), Q(x, tj) = Qh(x, tj). (4.3a,b)

We implemented the relaxation scheme of Jin & Xin (1995), which was used by
Reddy & Alam (2015), to solve the conservative system (4.2). In our simulations, the
relaxation parameter was 10−8, the same value as used by Reddy & Alam (2015), and
the positive diagonal matrix was diag(1.0, 1.68, 5.045). We used a first-order upwind
scheme with a uniform step size of 1.5 × 10−3 for spatial discretisation, and a second-order
total variation diminishing Runge–Kutta splitting scheme with a uniform time step size
of 5 × 10−5 for temporal discretisation, which resulted in a Courant–Friedrichs–Lewy
number of 0.168. For the solution of the second step (4.3a,b), we used the Euler method
for time integration. Our code implementation and numerical parameters were verified by
the excellent agreement of our results with Reddy & Alam (2015); see § 5.3.
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Figure 6. Comparisons between analytical (solid) and numerical (dashed) solutions for symmetric initial
conditions, ε = 0.05.

5. Results and discussion

The aim of this section is to understand the solution structure of the Riemann problem for
dilute granular gas and to validate the assumptions of our approximate analytical solution.
We compare our analytical solution (§ 3) with the numerical solution (§ 4) for three cases
of initial conditions, i.e. symmetric, asymmetric and single shock, using different values
of ε. The comparisons presented here are for the three primitive variables, ρ, u and θ ,
shown at early evolution times, t = 1, 2 and 4.

5.1. Symmetric
The symmetric case considered here is the collision between two opposite supersonic
gas streams of equal Mach number, MaL = MaR = 1.2. In molecular gas, the solution
structure for this case consists of left and right shocks of equal strength travelling in
opposite directions and a trivial, where both density and temperature do not jump,
stationary contact discontinuity (Toro 2013, p. 129).
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Figure 7. Comparisons between analytical (solid) and numerical (dashed) solutions for symmetric initial
conditions, ε = 0.1.

Figures 6, 7 and 8 show comparisons between the analytical and numerical solutions for
three values of the dissipation parameter: ε = 0.05, 0.1 and 0.2, respectively. For all values
of ε, one can notice similar qualitative behaviour in the two solution approaches. At any
time instant, the spatial profiles of all three variables, density, velocity and temperature,
are uniform in the outer (L and R) regions. Then each of these variables undergoes an
equal jump – absolute value for velocity – across both the left and right shocks due to
the symmetry of the initial conditions. One can also notice in all density and temperature
profiles the stationary trivial contact discontinuity that separates the regions L∗ and R∗ at
x = 0. Across this contact discontinuity, the gradients of both density and temperature are
discontinuous, but the velocity gradient is continuous. In the regions L∗ and R∗, all the
variables change with both space and time. At any time instant, the density increases in
the region L∗ (behind the left shock) and decreases in the region R∗ (increases behind the
right shock) whereas the temperature has the opposite trend. Throughout the star region,
the velocity is continuous and decreases monotonically.

By comparing the profiles at different time instants in the outer regions (L and R) for
each value of ε, it is noticed that both density and velocity are constant with time, but the
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Figure 8. Comparisons between analytical (solid) and numerical (dashed) solutions for symmetric initial
conditions, ε = 0.2.

granular temperature decreases due to inelastic collisions. In the star region, the maximum
value of density and minimum value of granular temperature, both occurring at the contact
discontinuity, increases and decreases with time, respectively. Note that the profiles of
either half-spaces (x > 0 or x < 0) are qualitatively similar to a piston moving in quiescent
granular gas in the moving-piston frame of reference (Matveev 1983; Goldshtein et al.
1996a; Kamenetsky et al. 2000; Sirmas & Radulescu 2019); see § 1.

After showing the consistent qualitative similarities between the two solution
approaches, we now discuss the quantitative discrepancies. For a small value of dissipation
parameter, ε = 0.05, shown in figure 6, there is an excellent agreement between the two
solution approaches, though there are slight discrepancies at later time, t = 4. In figure 7,
where the dissipation parameter is increased to a moderate value of ε = 0.1, discrepancies
are noticed in the locations and strengths of both shocks as well as the density and
temperature profiles, especially at t = 4. The discrepancies in the locations of the shocks
are expected because our analytical solution assumes straight-line characteristics, resulting
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Figure 9. Comparisons between analytical (solid) and numerical (dashed) solutions for asymmetric initial
conditions, ε = 0.05.

in constant shock speeds that are equal to those of molecular gas. On the contrary, the
characteristics of the full problem, solved numerically, are curved, resulting in variable
shock speeds. The discrepancies in the strengths of the shocks are due to not using RH
jump conditions in the analytical solution at O(ε1). The discrepancies in the star region
profiles, for example the temperature, are due to these two effects as well as the neglected
higher-order effects. In figure 8, where ε = 0.2, all these discrepancies become more
pronounced even at earlier time, t = 2.

5.2. Asymmetric
In this section, we consider the asymmetric case, where the left state is supersonic and the
right state is at rest. This configuration is similar to that of Serna & Marquina (2007) and
Kamath & Du (2009). Here, the initial left Mach number is the same as that of § 5.1 at
MaL = 1.2, but the initial right granular temperature is decreased to θR = 0.6. In contrast
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Figure 10. Comparisons between analytical (solid) and numerical (dashed) solutions for asymmetric initial
conditions, ε = 0.1.

to § 5.1, the molecular gas solution for these initial conditions is not symmetric; thus, the
contact discontinuity is not trivial.

Figures 9, 10 and 11 show comparisons between the analytical and numerical solutions
for the same values of the dissipation parameter as used in § 5.1, ε = 0.05, 0.1 and 0.2,
respectively. Again, there is a consistent qualitative agreement between the two solution
approaches. For all values of ε and t, the jump across the middle contact discontinuity is
clear in the asymmetric profiles and gradients of both density and temperature. Similar
to § 5.1, the density increases in the region L∗ (behind the left shock) and decreases in
the region R∗ (increases behind the right shock) whereas the granular temperature has
the opposite trend. Moreover, the velocity profiles and gradients are continuous along the
contact (similar to molecular gas), and the velocity decreases in the star region (L∗ and
R∗) between the two shocks. Similar to § 5.1, the maximum value of density and minimum
value of granular temperature in the star region, both at the contact discontinuity, increases
and decreases with time, respectively.
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Figure 11. Comparisons between analytical (solid) and numerical (dashed) solutions for asymmetric initial
conditions, ε = 0.2.

θ0,L∗ θ0,R∗ ρ0,L∗ ρ0,R∗ Sl u0,∗ = S∗ Sr

1.1948 1.1948 1.2973 1.2973 0 1.1942 2.6053

Table 1. Solution of the Riemann problem for molecular gas using the initial conditions of Reddy & Alam
(2015).

In a similar behaviour to figure 6, there is excellent quantitative agreement between
the analytical and numerical solutions using a small value of dissipation parameter of ε =
0.05, as shown in figure 9. In figure 10, where the dissipation parameter is moderate at ε =
0.1, there are discrepancies between the two solution approaches, especially for later time,
t = 4. For a high dissipation parameter of ε = 0.2 shown in figure 11, the discrepancies
between the two solution approaches are even more pronounced and keep increasing with
time. Similar to figure 8, the noticed discrepancies are in the shock strengths and speeds
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Figure 12. Comparisons between analytical (solid) and numerical (dashed) solutions for single shock initial
conditions, ε = 0.1.

as well as the density and temperature profiles in the star region. The speed of the contact
discontinuity is, however, nearly identical in the two solution approaches.

5.3. Single shock
Here, our simulations employ the same initial conditions as in Reddy & Alam (2015). The
initial left state is supersonic at MaL = 1.2, and the initial right state is obtained using RH
conditions for a stationary shock (Reddy & Alam 2015),

ρ0,R

ρ0,L
= (γ + 1)MaL

2

2 + (γ − 1)MaL
2 = u0,L

u0,R
, (5.1)

θR

θL
= (2γ MaL

2 − (γ − 1))((γ − 1)MaL
2 + 2)

(γ + 1)2MaL
2 , (5.2)
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Figure 13. Comparisons between analytical (solid) and numerical (dashed) solutions for single shock initial
conditions, ε = 0.2.

which shows that θR = 1.1948, ρR = 1.2973 and uR = 1.1942. Since p0,R > p0,L and the
following conditions are satisfied (Toro 2013, pp. 119–126),

(u0,R − u0,L) + 2aR

γ − 1

[(
p0,L

p0,R

)(γ−1)/2γ

− 1

]
< 0, (5.3a)

(u0,R − u0,L) + (p0,R − p0,L)

[
AL

p0,R + BL

]1/2

< 0, (5.3b)

the wave structure for this case is SCS. The solution of the Riemann problem for molecular
gas, see § 3.1, using these initial conditions is shown in table 1. Indeed, these initial
conditions result in a stationary left shock wave for molecular gas. However, this left shock
appears as if it is the only discontinuity because both the contact discontinuity, S∗, and the
right shock, Sr, are trivial with zero strength.

915 A48-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

94
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.94


Y.M. Fouda

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55

t = 1

0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55

t = 2

0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

0 2 4 6 8 10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55

t = 4

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

ρ u θ

ρ u θ

ρ

x
0 2 4 6 8 10

x
0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

x

u θ

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 14. Comparisons between analytical (solid) and numerical (dashed) solutions for single shock initial
conditions, ε = 0.30299.

Figures 12, 13 and 14 show comparisons between the analytical and numerical solutions
for dilute granular gas with ε = 0.1, 0.2 and 0.30299, respectively. Note that, for the case
of ε = 0.30299 shown in figure 14, the inelastic coefficient is 0.9, the same value as used
by Reddy & Alam (2015). Similar to §§ 5.1 and 5.2, it is clear that there is consistent
qualitative agreement between the two solution approaches; moreover, there is very good
quantitative agreement for ε = 0.1 at early evolution time; see figure 12.

In figures 12, 13 and 14, the density, velocity and temperature profiles show the
propagation of a left shock, where these variables jump abruptly. The density behind
the left shock (in the region L∗) increases until reaching a maximum value at the trivial
contact discontinuity. Then it decreases, in the region R∗, reaching a minimum value at
the trivial right shock before remaining constant in the region R. This density profile was
called ‘density overshoot’ by Reddy & Alam (2015). In their Navier–Stokes simulations of
this problem, this sharp variation in the density profiles was smeared due to the diffusive
effects. Thus, Reddy & Alam (2015) claimed that this ‘density overshoot’ is part of the
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shock layer, which is not true: these overshoots are mere signatures of the density increase
in the region L∗ and its decrease in the region R∗,with its maximum value occurring at the
contact discontinuity as consistently shown in §§ 5.1 and 5.2. The velocity and temperature
profiles also show consistent behaviour where they vary in the star regions. Accordingly, in
contrast to molecular gas, these initial conditions, given by (5.1) and (5.2), cannot be used
to generate a single planar shock wave in granular gas. However, such a single shock wave
can be generated, in either half-space, by the symmetric conditions shown in § 5.1, because
the contact discontinuity is trivial and either the left or the right half-space contains a
single shock wave.

6. Conclusions

In this paper, we studied the solutions of the Riemann problem for dilute granular gas
using initial conditions that result in a shock–contact–shock (SCS) wave structure. We
used a regular perturbation method to solve the problem analytically for a small value of
the dissipation parameter that is valid for early evolution time. The leading order of the
solution is that of molecular gas in which all the variables are constant in the domain
regions – L, L∗, R∗ and R – but discontinuous across the three elementary waves. The
first-order solution shows that all the variables in the star regions (L∗ and R∗) vary,
in principle, with both space and time. In the outer regions (L and R), the granular
temperature is the only variable that varies with time due to inelastic collisions. The
comparisons of our approximate analytical solution with the numerical solution of the full
problem show excellent qualitative agreement in all the cases studied and good quantitative
agreement for ε = 0.05 and 0.1. Our solution shows that the ‘density overshoot’ reported
by Reddy & Alam (2015) is not part of the shock layer, but a mere signature of the density
variation in the star regions between the left and right shocks, with its maximum value
occurring at the contact discontinuity. Thus, an initial data structure that results in a
single shock for molecular gas cannot generate a single shock structure for granular gas.
Symmetric initial conditions can be used, however, to generate such structure.
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