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Abstract

We present a representation formula for translating soliton surfaces to the mean curvature flow in Euclidean
space R4 and give examples of conformal parameterisations for translating soliton surfaces.
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1. Introduction

Recent decades have seen intense study of solitons for the mean curvature flow.
The simplest example is the grim reaper y = ln(cos x) which moves by downward
translation under the mean curvature flow. There are geometric dualities between
solitons for the mean curvature flow and minimal submanifolds [4, 16, 18].

A surface is a translator [18] for the mean curvature flow when its mean curvature
vector field agrees with the normal component of a constant Killing vector field.
Translators arise as Hamilton’s convex eternal solutions and Huisken–Sinestrari Type
II singularities for the mean curvature flow, and provide a natural generalisation of
minimal surfaces.

Altschuler and Wu [1] showed the existence of the convex, rotationally symmetric,
entire graphical translator. Clutterbuck et al. [3] constructed the winglike bigraphical
translators, which are analogous to catenoids. Halldorsson [5] proved the existence of
helicoidal translators. Nguyen [14] used Scherk’s minimal towers to desingularise the
intersection of a grim reaper product and a plane, and obtained a complete embedded
translator. See also her generalisation [15].

Our main goal is to adapt the splitting of the generalised Gauss map of oriented
surfaces in R4 to construct an explicit Weierstrass-type representation formula for
translators in R4.
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2. Main results

We first introduce the complexification of the generalised Gauss map. Inside the
complex projective space CP3, we take the variety

Q2 = {[ζ] = [ζ1 : · · · : ζ4] ∈ CP3 : ζ2
1 + · · · + ζ

2
4 = 0},

which becomes a model for the Grassmannian manifold G2,2 of oriented planes in
R

4. Hoffman and Osserman [6, 7] defined the generalised Gauss map of a conformal
immersion X : Σ→ R4, z �→ X(z), as follows:

G(z) =
[
∂X
∂z

]
= [1 + g1g2, i(1 − g1g2), g1 − g2,−i(g1 + g2)] ∈ Q2 ⊂ CP3.

We call the induced pair (g1, g2) the complexified Gauss map of the immersion X.

LEMMA 2.1 (Poincaré’s lemma). Let ξ : Ω→ C be a function on a simply connected
domain Ω ⊂ C. If ∂ξ(z)/∂z ∈ R for all z ∈ Ω, then there exists a function x : Ω→ R
such that ∂x(z)/∂z = ξ(z).

THEOREM 2.2 (Correspondence from null curves in C4 to translators in R4). Let
(g1, g2) be a pair of nowhere-holomorphic C2 functions from a simply connected
domain Ω ⊂ C to the open unit disc D := {w ∈ C | |w| < 1} satisfying the compatibility
condition

F :=
(g1)z

(1 − g1g2)(1 + |g1|2)
=

(g2)z

(1 − g1g2)(1 + |g2|2)
, z ∈ Ω. (2.1)

Assume that one of the following two integrability conditions holds on Ω:

0 = (g1)zz +

( g2

1 − g1g2
− g1

1 + |g1|2
)
(g1)z(g1)z +

g1 + g2

(1 − g1g2)(1 + |g1|2)
|(g1)z|2, (2.2)

0 = (g2)zz +

( g1

1 − g1g2
− g2

1 + |g2|2
)
(g2)z(g2)z +

g1 + g2

(1 − g1g2)(1 + |g2|2)
|(g2)z|2. (2.3)

(a) Both (2.2) and (2.3) hold. (In fact, we claim that (2.2) is equivalent to (2.3).)
(b) The complex curve φ := (φ1, φ2, φ3, φ4) : Ω→ C4 defined by

φ = f (1 + g1g2, i(1 − g1g2), g1 − g2,−i(g1 + g2)), f := −2iF ,

satisfies the following three properties on the domain Ω:

(b1) nullity: φ · φ = φ2
1 + φ

2
2 + φ

2
3 + φ

2
4 = 0;

(b2) nondegeneracy: |φ|2 = |φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 > 0;
(b3) integrability: ∂φ/∂z = (∂φ1/∂z, ∂φ2/∂z, ∂φ3/∂z, ∂φ4/∂z) ∈ R4.

(c) Integrating the complex null immersion φ : Ω→ C4 yields a translator Σ in R4.

(c1) There exists a conformal immersion X = (x1, x2, x3, x4) : Ω→ R4 satisfying
Xz = φ.
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(c2) The induced metric ds2 on the z-domain Ω by the immersion X is

ds2 =
16 |(g1)z|2

|1 − g1g2|2
· 1 + |g2|2

1 + |g1|2
|dz|2 =

16 |(g2)z|2

|1 − g1g2|2
· 1 + |g1|2

1 + |g2|2
|dz|2.

(c3) The pair (g1, g2) is the complexified Gauss map of the surface Σ = X(Ω),
that is, the generalised Gauss map of the conformal immersion X is

[Xz] = [1 + g1g2, i(1 − g1g2), g1 − g2,−i(g1 + g2)] ∈ Q2 ⊂ CP3.

(c4) The surface Σ becomes a translator with translating velocity given by −e4 =

(0, 0, 0,−1).

PROOF. Step A. For the proof of (a), we first set up the notation

L := (g1)zz +

( g2

1 − g1g2
− g1

1 + |g1|2
)
(g1)z(g1)z +

g1 + g2

(1 − g1g2)(1 + |g1|2)
|(g1)z|2,

R := (g2)zz +

( g1

1 − g1g2
− g2

1 + |g2|2
)
(g2)z(g2)z +

g1 + g2

(1 − g1g2)(1 + |g2|2)
|(g2z|2.

We first assume only (2.1). Taking the conjugation in (2.1) yields

F =
(g2)z

(1 − g1g2)(1 + |g2|2)
=

(g1)z

(1 − g1g2))(1 + |g1|2)
.

Taking this into account,

Fz

F =
(g1)zz

(g1)z
+

( g2

1 − g1g2
− g1

1 + |g1|2
)
(g1)z +

( 1 + |g2|2

1 − g1g2
− 1
)
· g1

1 + |g1|2
(g1)z

=
L

(g1)z
− F[g1(1 − |g2|2) + g2(1 − |g1|2)]

and
Fz

F =
(g2)zz

(g2)z
+

( g1

1 − g2g2
− g2

1 + |g2|2
)
(g2)z +

( 1 + |g1|2

1 − g1g2
− 1
)
· g2

1 + |g2|2
(g2)z

=
R

(g2)z
− F[g1(1 − |g2|2) + g2(1 − |g1|2)].

From these two equalities,
L

(g1)z
=
R

(g2)z
,

which gives the desired implications: (2.2)⇐⇒ L = 0⇐⇒ R = 0⇐⇒ (2.3).

Step B. We deduce several equalities which will be used in the proof of (b) and (c).
According to (a), from now on, we assume that both (2.2) and (2.3) hold. Since both
L and R vanish, the previous equalities imply

Fz = −|F |2[g1(1 − |g2|2) + g2(1 − |g1|2)].
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Conjugating this and using the definition f = −2iF , we arrive at the equality

fz =
i
2
| f |2[g1(1 − |g2|2) + g2(1 − |g1|2)]. (2.4)

The compatibility condition (2.1) can be written in terms of f = −2iF as

f =
2i(g1)z

(1 − g1g2)(1 + |g1|2)
=

2i(g2)z

(1 − g1g2)(1 + |g2|2)
. (2.5)

It immediately follows from (2.4) and (2.5) that

( f g1)z = fzg1 + (g1)z f = − i
2
| f |2(1 − 2g1g2 + |g1|2|g2|2) (2.6)

and

( f g2)z = fzg2 + (g2)z f = − i
2
| f |2(1 − 2g1g2 + |g1|2|g2|2). (2.7)

Another computation taking into account (2.5) and (2.6) shows that

( f g1g2)z = ( f g1)zg2 + (g2)z f g1 = −
i
2
| f |2[g1(1 − |g2|2) + g2(1 − |g1|2)]. (2.8)

Step C. Our aim here is to establish the claims in (b) on the complex curve

φ = (φ1, φ2, φ3, φ4) = f (1 + g1g2, i(1 − g1g2), g1 − g2,−i(g1 + g2)).

First, the equality in (b1) is obvious. Next, by the assumptions on g1 and g2, we see
that f = −2iF never vanishes. Assertion (b2) follows from the equality

|φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 = 2| f |2(1 + |g1|2)(1 + |g2|2). (2.9)

We employ the equalities in step B to show assertion (b3). Combining (2.4), (2.6),
(2.7) and (2.8) and the definition of φ, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ1)z = | f |2[(1 − |g2|2)Im g1 + (1 − |g1|2)Im g2],
(φ2)z = −| f |2[(1 − |g2|2)Re g1 + (1 − |g1|2)Re g2],
(φ3)z = 2| f |2 Im (g1g2),
(φ4)z = −| f |2[1 − 2Re (g1g2) + |g1|2|g2|2].

(2.10)

These four equalities guarantee the integrability condition(
∂φ1

∂z
,
∂φ2

∂z
,
∂φ3

∂z
,
∂φ4

∂z

)
∈ R4.

Step D. We prove claims (c1), (c2) and (c3). Thanks to (b3), we can integrate the curve
φ. Since Ω is simply connected, applying Lemma 2.1 to the complex curve φ shows
the existence of a function X = (x1, x2, x3, x4) : Ω→ R4 satisfying

Xz = φ = f (1 + g1g2, i(1 − g1g2), g1 − g2,−i(g1 + g2)).
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This and the nullity of φ guarantee that the mapping X is conformal. From (2.9), the
induced metric ds2 = Λ2|dz|2 by the immersion X is

ds2 = Λ2|dz|2 = 4| f |2(1 + |g1|2)(1 + |g2|2)|dz|2. (2.11)

Since f never vanishes, this completes the proof of (c1). Combining (2.5) and (2.11)
gives the equality in (c2). The integrability Xz = φ and the definition of φ give

[Xz] = [1 + g1g2, i(1 − g1g2), g1 − g2,−i(g1 + g2)],

which completes the proof of (c3).

Step E. Finally, we prove claim (c4). First, we find the normal component of the vector
field −e4 = (0, 0, 0,−1) in terms of g1 and g2. We compute

(−e4)⊥ = −e4 −
[(Xu

Λ
· (−e4)

)Xu

Λ
+

(Xv

Λ
· (−e4)

)Xv

Λ

]

= −e4 +
2
Λ2 [(Xz · e4)Xz + (Xz · e4)Xz]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
4
Λ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Re (φ1φ4)
Re (φ2φ4)
Re (φ3φ4)
|φ4|2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Combining this with (2.10), and (2.11) yields

(−e4)⊥ =
1

(1 + |g1|2)(1 + |g2|2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
[(1 − |g2|2)Im g1 + (1 − |g1|2)Im g2]
−[(1 − |g2|2)Re g1 + (1 − |g1|2)Re g2]

2 Im (g1g2)
−[1 − 2Re (g1g2) + |g1|2|g2|2]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Second, we find the mean curvature vector

H = 	ds2 X =
4
Λ2

∂

∂z

(
∂

∂z
X
)
=

4
Λ2φz

on the surface Σ = X(Ω). Using this, (2.10) and (2.11), we can write the mean curvature
vectorH in terms of g1 and g2:

H = 1

(1 + |g1|2)(1 + |g2|2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
[(1 − |g2|2)Im g1 + (1 − |g1|2)Im g2]
−[(1 − |g2|2)Re g1 + (1 − |g1|2)Re g2]

2 Im (g1g2)
−[1 − 2Re (g1g2) + |g1|2|g2|2]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

We therefore conclude thatH = (−e4)⊥. �

REMARK 2.3 (Ilmanen’s correspondence). Theorem 2.2 generalises the classical
Weierstrass construction from holomorphic null immersions in C3 to conformal
minimal immersions in R3. The key ingredient behind Theorem 2.2 is the Ilmanen
correspondence between translators and minimal surfaces (see [8, 18]). We deform the
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flat metric of R4 conformally to introduce the four-dimensional Riemannian manifold

I4 = (R4, e−x4 (dx2
1 + dx2

2 + dx2
3 + dx2

4)).

Any conformal immersion X : Ω→ R4 of a downward translator with the translating
velocity −e4 = (0, 0, 0,−1) in Euclidean space R4 can then be identified as a conformal
minimal immersion X : Ω→ I4.

EXAMPLE 2.4 (The Hamiltonian stationary Lagrangian translator in C2). Interesting
Lagrangian translators in the complex plane C2 are described in [2, 10, 12]. In 2010,
Castro and Lerma [2, Corollary 2] classified all Hamiltonian stationary Lagrangian
translators in C2. Locally, they are unique up to dilations (except for the totally
geodesic ones) [2, Corollary 3]. The point of this example is to explicitly recover the
Hoffman–Osserman Gauss map of the Castro–Lerma translator in R4 = C2.

We first notice that Theorem 2.2 still holds when we regard the prescribed Gauss
map (g1, g2) as a pair of functions from a simply connected domain Ω to the complex
plane (not just the unit disc). However, in this case, the induced mapping X : Ω→ R4

of the translator may admit the branch points where g1g2 = 1 (or equivalently,
g1g2 = 1).

Imposing the additional condition |g1| = 1 produces Lagrangian translators with
the velocity −e4 = (0, 0, 0,−1). Then the integrability condition in (c1) for downward
translators can be rewritten as

Xz = ((x1)z, (x2)z, (x3)z, (x4)z) = −θz
(1 + g1g2

g1 − g2
, i

1 − g1g2

g1 − g2
, 1,−i

g1 + g2

g1 − g2

)
,

where θ denotes the Lagrangian angle with ig1 = eiθ. The third term (x3)z = −θz can be
compared to [2, Proposition 1], [10, Proposition 2.5] and [13, Proposition 2.1].

We consider a complexified Gauss map of the form,

(g1(z), g2(z)) = (eiv,G(u)eiv), z = u + iv ∈ R + iR,

for some R-valued function G, and aim to solve the system (2.1) and (2.2). First, the
compatibility condition (2.1) induces the ordinary differential equation

1
2
=

1
1 + G2

(
G − dG

du

)

and a canonical solution is G(u) = (u + 1)/(u − 1). It is straightforward to check that

(g1(z), g2(z)) = (eiv,G(u)eiv) =
(
eiv,

u + 1
u − 1

eiv
)

satisfies the integrability condition (2.2). Then the induced Lagrangian translator Σ
with the velocity −e4 admits the conformal parameterisation

X(u, v) =
(
u sin v,−u cos v,−v,− 1

2 u2).
Since the induced metric on Σ is ds2 = (1 + u2)(du2 + dv2), the Lagrangian angle
function θ(u, v) = 1

2π + v with ig1 = eiθ is harmonic on Σ. This Hamiltonian stationary
Lagrangian translator Σwith the velocity (0, 0, 0,−1) coincides with the Castro–Lerma
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translator [2, Corollary 2] with the velocity (1, 0, 0, 0) by a suitable change of
coordinates.

THEOREM 2.5 (Correspondence from null curves in C3 to translators in R3). Given a
nowhere-holomorphic C2 function G : Ω→ D from a simply connected domainΩ ⊂ C
to the open unit disc D := {w ∈ C | |w| < 1} satisfying the translator equation

Gzz + 2
G |G|2

1 − |G|4
GzGz + 2

G

1 − |G|4
|Gz|2 = 0, z ∈ Ω, (2.12)

we associate a complex curve φ = φG = (φ1, φ2, φ3) : Ω→ C3 by

φ =
2Gz

|G|4 − 1
(1 − G2, i(1 + G2), 2G).

(a) The complex curve φ satisfies the following three properties on the domain Ω:

(a1) nullity: φ · φ = φ2
1 + φ

2
2 + φ

2
3 = 0;

(a2) nondegeneracy: |φ|2 = |φ1|2 + |φ2|2 + |φ3|2 > 0;
(a3) integrability: ∂φ/∂z = (∂φ1/∂z, ∂φ2∂z, ∂φ3/∂z) ∈ R3.

(b) Integrating Xz = φ onΩ yields a downward translator Σ = X(Ω) with the velocity
−e3 = (0, 0,−1) in R3. The prescribed map G becomes the complexified Gauss
map of the induced surface Σ = X(Ω) via the stereographic projection from the
north pole. The induced metric ds2 by the immersion X is

ds2 =
16 |Gz|2

(|G|2 − 1)
2 |dz|2.

PROOF. We take (g1, g2) = (iG, iG) in Theorem 2.2. �

REMARK 2.6. For the same Weierstrass representation formula for translators in
R

3 with the same Gauss map equation, see the recent preprint by Martínez and
Martínez-Triviño [11, Proposition 2.2 and Theorem 3.2].

EXAMPLE 2.7 (Grim reaper product as an analogue of Scherk’s surface)

(a) An application of our representation formula in Theorem 2.5 to the solution

G(z) = G(u + iv) = tanh u ∈ (−1, 1), u + iv ∈ C,

of the translator equation (2.12) yields the conformal immersion X : R2 → R3

given by

X(u, v) = (x1, x2, x3) = (−2tan−1(tanh u), 2v,− ln(cosh(2u))),

(b) This represents the graphical translator with the translating velocity −e3:

x3 = F (x1, x2) = ln(cos x1), (x1, x2) ∈
(
−π

2
,
π

2

)
× R.
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It can be viewed as an analogue of the classical Jenkins–Serrin minimal graph
[9, 17], discovered by Scherk in 1834,

x3 = ln(cos x1) − ln(cos x2), (x1, x2) ∈
(
−π

2
,
π

2

)
×
(
−π

2
,
π

2

)
.

EXAMPLE 2.8 (Deformations of the grim reaper product). Let θ ∈ R be a constant.

(a) We begin with the solution G = Gθ(z) of the translator equation (2.12):

G(z) = G(u + iv) =
cosh θ sinh(2u) + i sinh θ

1 + cosh θ cosh(2u)
, u + iv ∈ C.

Theorem 2.5 induces the conformal immersion Xθ = (x1, x2, x3) : R2 → R3 given
by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1(u, v) = −2 cosh θ tan−1(tanh u),
x2(u, v) = sinh θ ln(cosh(2u)) + 2v,
x3(u, v) = − ln(cosh(2u)) + 2v sinh θ.

The translator Gθ = Xθ(R2) has the translating velocity (0, 0,−1).
(b) Using the patch Xθ, we find that the Gauss map of the translator Gθ lies on a half

circle. Let us introduce a new linear coordinate

x0 =
1

cosh θ
x2 +

sinh θ
cosh θ

x3

and an orthonormal basis

U1 = (1, 0, 0), Uθ2 =
(
0,− sinh θ

cosh θ
,

1
cosh θ

)
, Uθ3 =

(
0,

1
cosh θ

,
sinh θ
cosh θ

)
.

The surface Gθ admits a patch

(x1, x2, x3) = X̂θ(x1, x0) = x1U1 + Tθ(x1)Uθ2 + x0Uθ3.

Here, Tθ(·) = cosh θ ln(cos(·/cosh θ)) is a parabolic rescaling of the downward
unit-speed grim reaper function. The surface Gθ can be obtained by translating a
parabolically rescaled grim reaper curve in the plane spanned byU1 andUθ2.

(c) The one-parameter family {Gθ}θ∈R of translators with the same translating velocity
has a simple geometric description. Applying a suitable rotation in the ambient
space R3 to the grim reaper product G0 with velocity −U0

2 = (0, 0,−1),

(x1, x0) ∈
(
−π

2
,
π

2

)
× R �→ X̂0(x1, x0) = x1U1 + T0(x1)U0

2 + x0U0
3,

we obtain the congruent surface parameterised by

(x1, x0) ∈
(
−π

2
,
π

2

)
× R �→ x1U1 + T0(x1)Uθ2 + x0Uθ3,

which translates with the rotated velocity −Uθ2 under the mean curvature flow.
However, we observe that this rotated surface can also be viewed as a translator
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with new velocity − cosh θU0
2 = (0, 0,− cosh θ). The surface Gθ parameterised by

(x1, x0) ∈
(
−π

2
cosh θ,

π

2
cosh θ

)
× R �→ X̂θ(x1, x0) = x1U1 + Tθ(x1)Uθ2 + x0Uθ3,

translates with velocity −U0
2 = (0, 0,−1) under the mean curvature flow.
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