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Melting and dissolving of a vertical solid surface
with laminar compositional convection
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We consider laminar compositional convection of buoyant melt released by ablation
of a vertical solid surface into a two-component fluid. Asymptotic solutions are used
to describe separate cases: the ablation rate is either controlled by thermal transport,
corresponding to melting, or by solutal transport, corresponding to dissolution. Melting
is faster and generates a stronger flow than dissolving. We determine the temperature
and solute concentration conditions leading to either melting or dissolving and find
that these conditions do not vary with the strength of the buoyancy that drives
convective flow.
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1. Introduction
The ablation of a solid in a multi-component melt is of interest in a variety of

geophysical, geological and industrial problems. Icebergs float in relatively warm salty
water throughout the polar oceans, molten rock rises to fill magma chambers within
the earth’s crust, and solution mining is used to extract mineral deposits from rock.
If ablation of the solid releases melt of different composition into the neighbouring
fluid, any resulting difference in density can drive convection within the fluid, which
enhances heat and mass transfer from the fluid, and hence the rate of ablation.

As an illustrative example, the rate of ablation of a floating iceberg can be
controlled by either the supply of heat or by the supply of salt from the ocean to
the ice–water interface. If the supply of heat is large then it controls the ablation rate,
and we say that the ice melts into the water. Alternatively, if the thermal driving is
weaker, salt can build up at the solid–liquid interface and dissolve the ice even when
the temperature of the ocean is lower than the melting temperature of 0 ◦C. This
distinction was noted for purely diffusive heat and mass transfer by Woods (1992),
and the melting and dissolving of a horizontal surface with turbulent convection was
studied by Kerr (1994a,b). Dissolving is of particular interest in the polar oceans,
where chemical disequilibrium can generate temperature gradients and heat fluxes that
would not be expected by thermal considerations alone. For example, Notz et al.
(2003) showed that dissolution at the base of sea ice can generate heat transfer from
the ice to the ocean, as recently observed in field measurements (Perovich et al. 2008).
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Melting and dissolving with laminar convection 119

There is also evidence that iceberg disintegration is very sensitive to increases in
temperature. Morgan & Budd (1978) used iceberg size distributions and drift rates
to infer ablation rates of the order of centimetres per day in cool polar waters with
temperatures below 0 ◦C, rising to metres per day in warmer sub-polar waters with
temperatures of 5–8 ◦C. It is not clear to what extent this disintegration is controlled
by mechanical fracture or by thermodynamical ablation. It is possible, however, that an
increase in temperature may lead to strongly enhanced ablation rates as a result of a
transition from slow dissolving to much faster melting.

Whilst turbulent flow will play a role in many geophysical applications, we here
focus on laminar flow to build fundamental insight into the interaction of convection
and phase change. We consider the ablation of a vertical solid surface in a two-
component melt, with laminar compositional convection resulting from the release
of buoyant melt. We investigate how laminar convection modifies the dynamics of
melting and dissolving from the case of diffusive heat and mass transfer considered
by Woods (1992). The results are readily adaptable to the flow of buoyant melt
released by ablation under sloping solid surfaces. The analysis of laminar flow also
provides fundamental insight for future studies of the more complex turbulent flow
that is relevant to icebergs in the ocean. The ablation of an ice surface in warm
salty water has previously been considered in studies of both laminar flow (Carey &
Gebhart 1982a,b) and turbulent flow (Josberger & Martin 1981). Carey & Gebhart
(1982a) found a similarity solution of the boundary-layer equations, that shows
behaviour indicative of melting and dissolving, although the authors did not explore
this distinction.

In § 2 we explain how the thermodynamic conditions at the interface lead to either
melting or dissolving by briefly reviewing the case of phase change where there is no
motion in the fluid and the diffusive solution applies (Woods 1992). We then consider
the influence of laminar, boundary-layer flow driven by the release of buoyant melt.
We focus on the case in which the buoyancy force depends primarily on salinity,
and use the separation of scales between diffusion of heat and diffusion of salt
to construct matched asymptotic solutions that elucidate the physical structure. The
boundary-layer problem is set out in § 3, and scaling is used to indicate the structure
of the boundary layer and magnitude of the ablation rate in the separate cases of
melting and dissolving. The detailed solutions are derived for melting in § 4 and for
dissolving in § 5. In § 6 we consider the conditions that lead to melting or dissolving
and compare the two solutions.

2. Diffusive melting and dissolving
In this section we review the distinction between melting and dissolving and how it

depends on the thermodynamic conditions at the solid–liquid interface (Woods 1992).
A solid of far-field temperature Ts is in contact with a two-component melt of far-
field temperature T∞ and far-field concentration C∞ at a planar interface y = a(t), as
shown in figure 1. The solid has uniform composition Cs. We exemplify the following
discussion by considering a fresh water iceberg, of salinity Cs ≈ 0, in contact with sea
water of far-field salinity C∞, but the analysis is also relevant to other binary melts.
The interface temperature Ti and concentration Ci satisfy an equilibrium liquidus
constraint Ti = TL(Ci) for some function TL(C), which we approximate by the linear
relationship

Ti = TL(Ci)≈ Tm − Γ (Ci − Cs), (2.1)
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FIGURE 1. Schematic illustration of (a) melting and (b) dissolving of a solid of concentration
Cs and far-field temperature Ts in contact with a two-component melt of far-field
concentration C∞ and far-field temperature T∞. The solid–liquid interface is located at
y = a(t) and has temperature Ti and liquid concentration Ci. In the absence of convection,
the rate of ablation is controlled by thermal diffusion for melting and solutal diffusion for
dissolving, as described in the text.

where Tm is the melting temperature at concentration Cs, and Γ describes the rate
of freezing point depression with increasing concentration. For ice in salty water,
Tm ≈ 0 ◦C and Γ ≈ 0.06 ◦C psu−1 (Josberger & Martin 1981).

The rate of phase change is determined from heat and salt budgets. Conservation of
heat across the solid–liquid interface is expressed by the Stefan condition

ρsL
∂a

∂t
= ρscsκs

∂T

∂y

∣∣∣∣
y=a−
− ρlclκl

∂T

∂y

∣∣∣∣
y=a+

, (2.2)

where L is the latent heat of fusion and ρj, cj and κj are the density, heat capacity and
thermal diffusivity of the solid (j= s) and liquid (j= l) phases. Conservation of solute
across the interface is expressed by

ρs(Ci − Cs)
∂a

∂t
=−ρlD

∂C

∂y

∣∣∣∣
y=a+

, (2.3)

where D is the solutal diffusivity.
The two conditions (2.2) and (2.3) allow either the heat flux or the salt flux to

control the rate of phase change ȧ = ∂a/∂t. If the heat supply is large then the heat
flux towards the interface controls the ablation rate via the Stefan condition (2.2) and
the solid melts. For example, Woods (1992) found that when

T∞ − Tm & (D/κl)
1/2[T∞ − TL(C∞)], (2.4)

the solid melts at a rate scaling with thermal diffusion, as illustrated in figure 1(a).
The diffusivity of salt is much smaller than the diffusivity of heat (D� κl), so (2.3)
shows that Ci ≈ Cs in this case. This produces a region of fresh water at the interface,
as indicated in figure 1(a), with large solutal gradients confined to a narrower ‘internal’
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FIGURE 2. A vertical ice surface is in contact with water of uniform far-field temperature T∞,
salinity C∞ and density ρ∞. The ablation of ice releases relatively fresh meltwater of density
ρl < ρ∞, driving a buoyant meltwater flow upwards with velocity (v,w) in a boundary layer
along the surface of the ice. We work in a reference frame in which the interface is stationary
at y = 0, so that the meltwater released at the interface creates a velocity v(0) relative to the
interface. If the molecular viscosity ν is significantly larger than both the thermal diffusivity κ
and the solutal diffusivity D, then the flow can be divided into a buoyant, thermal layer close
to the interface, and an outer inertial flow as illustrated by the dashed line.

solutal boundary layer located away from the interface. On the other hand, if T∞ < Tm,
then the salt flux can control the ablation rate, the solid then dissolves into the
fluid and there is little release of latent heat. However, the interface temperature is
depressed slightly, as shown in figure 1(b).

3. Laminar boundary layer flow driven by buoyancy
The density of a binary melt, such as sea water, usually depends strongly on

the concentration of solute and so we expect the profiles in figure 1 to generate
buoyancy-driven flow that enhances the heat and solute transfer. We focus here on
convection at a vertical solid surface in an unstratified fluid. We follow the formulation
of Josberger & Martin (1981) and Carey & Gebhart (1982a), assuming that the
interface remains quasi-planar and vertical (the non-uniform ablation rate changes the
slope of the boundary over time, but typically such changes are slow). We work
in a reference frame in which the interface is stationary at y = 0, as illustrated in
figure 2. In this reference frame, we expect the flow to be steady and well described
by the incompressible Boussinesq boundary-layer equations. Conservation of mass,
momentum, heat and salt are described by

∂v

∂y
+ ∂w

∂z
= 0, (3.1)

v
∂w

∂y
+ w

∂w

∂z
= ν ∂

2w

∂y2
− g (ρ − ρ∞) /ρl, (3.2)

v
∂T

∂y
+ w

∂T

∂z
= κ ∂

2T

∂y2
, (3.3)

v
∂C

∂y
+ w

∂C

∂z
= D

∂2C

∂y2
, (3.4)
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122 A. J. Wells and M. G. Worster

where we have taken the reference density as ρl, the density of the liquid at the
solid–liquid interface. This system is subject to boundary conditions

v =−ρs

ρl
ȧ, w= 0, T = Ti, C = Ci at y= 0, (3.5a,b,c,d)

T→ T∞, C→ C∞, w→ 0 as y→∞, (3.5e,f,g)

and the thermodynamic conditions (2.1)–(2.3) at the interface. The condition (3.5a)
imposes a non-zero velocity v(0) relative to the moving interface, owing to a
combination of the change in density as ice changes phase into water and the frame
advection that results from the interface receding in the rest frame of the ice. This
system also describes the flow of buoyant melt under a surface inclined at an angle ϕ
to the horizontal by interpreting z as the distance along the slope and replacing g with
the along-slope component of gravity g sinϕ (Gebhart et al. 1988), provided that the
slope angle φ is sufficiently steep to avoid flow separation.

Carey & Gebhart (1982a) described the density ρ by a nonlinear function of
temperature and salinity. We focus on the case of pure compositional convection,
using the approximation

ρ = ρ∞ + ρlβ(C − C∞). (3.6)

This approximation captures the dominant buoyancy driving the flow for ice and
sea water systems, where typically the density ratio (α1T)/(β1C) 6 0.05 for a
characteristic temperature scale 1T , compositional scale 1C and thermal expansion
coefficient α. It also makes the problem more mathematically tractable by neglecting
thermal buoyancy and avoiding the possible complication of bi-directional flow, where
a fresh upward inner flow is accompanied by a cold outer downward flow (Nilson
1985).

There is no imposed length scale in the problem, and so a solution can be found in
terms of a similarity variable

η = y

z

(
1
4
Raz

)1/4

, (3.7)

which scales the horizontal coordinate y by the characteristic thermal boundary layer
thickness for convective flow. We use a local Rayleigh number

Raz = gβ(C∞ − Ci)z3

κlν
, (3.8)

that characterizes the ratio of solutal buoyancy to viscous dissipation across the
thermal boundary layer.

Incompressibility (3.1) is satisfied by use of a streamfunction ψ such that
v = −∂ψ/∂z and w = ∂ψ/∂y, and we define a non-dimensional streamfunction f ,
temperature θ and solute concentration φ by

ψ = 4κl

(
1
4
Raz

)1/4

f (η), θ = T − T∞
Ti − T∞

, φ = C − C∞
Ci − C∞

, (3.9)

so that f ′ represents the vertical velocity. Note that the interfacial temperature
Ti and concentration Ci are unknown a priori and are determined from the
interfacial thermodynamic conditions. Substituting (3.7)–(3.9) into the boundary layer
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Melting and dissolving with laminar convection 123

equations (3.2)–(3.6) we obtain the coupled ordinary differential equations

σ−1(2f ′2 − 3ff ′′)= f ′′′ + φ (3.10)
−3f θ ′ = θ ′′ (3.11)
−3fφ′ = εφ′′ (3.12)

f ′(0)= 0, θ(0)= 1, φ(0)= 1, (3.13)
f ′→ 0, θ→ 0, φ→ 0 as η→∞, (3.14)

where σ = ν/κl is the Prandtl number, ε = 1/Le = D/κl is the inverse of the Lewis
number Le and we use primes to denote derivatives with respect to η (e.g. f ′ = df /dη).

Ablation releases a fluid flux f (0) relative to the solid–liquid interface, made up of
both the blowing velocity that arises if the solid expands when changing phase to a
liquid, and the effective advection that results from the solid–liquid interface receding
in the rest frame of the solid. The dimensional ablation rate is given by (3.5a), which
can be expressed as

ȧ=−ρl

ρs
v(0)= ρl

ρs
3
κl

z

(
1
4
Raz

)1/4

f (0), (3.15)

with f (0) determined from the interface conditions (2.1)–(2.3), which transform to give

3f (0)=
(

1
ST
+ χi

SC

)
θ ′(0), (3.16)

3χif (0)= ε(1− χi)φ
′(0), (3.17)

with ST , SC and χi defined below. In the Appendix we show that the heat flux from
the solid is typically small, and hence it is neglected here. To clarify the description
of transitions between melting and dissolving, the far-field thermal driving and far-field
solute conditions are characterized by the Stefan numbers

ST = L

cl(T∞ − Tm)
, SC = L

clΓ (C∞ − Cs)
, (3.18)

respectively. The total thermal driving on the right-hand side of (3.16) depends on a
combination of the sensible heat available in the far field for melting (1/ST), and the
effective amount of heat that could be made available by depression of the freezing
point temperature at the far-field salinity (1/SC). The partitioning of these terms
in (3.16) is controlled by the ratio

χi = Ci − Cs

C∞ − Cs
= Ti − Tm

TL(C∞)− Tm
, (3.19)

which characterizes the solute concentration at the interface, and hence the interface
temperature as a result of the liquidus relation (2.1). The value of χi is determined as
part of the solution, with 0 6 χi 6 1.

Carey & Gebhart (1982a) integrated a set of equations similar to (3.10)–(3.19)
numerically. We investigate the system asymptotically in order to describe the physical
structure of the boundary layer and the distinction between melting and dissolving of
the solid.

An interesting feature of the system (3.9)–(3.14) and (3.16)–(3.19) is that the fluid
flow is independent of the ratio ρs/ρl of densities of the solid and liquid phases. One
might have expected a significant effect of the blowing velocity for a solid undergoing
a large expansion when changing phase to a liquid. However, we find that the velocity
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124 A. J. Wells and M. G. Worster

v(0) relative to the interface remains constant as we increase ρs/ρl, and instead we
simply find a reduction in the dimensional ablation rate given by (3.15). This is a
consequence of the Stefan condition (2.2) and the condition of mass conservation
at the interface (3.5a), which can be combined to show that the mass flux of fluid
released by ablation is equal to the ratio of the heat flux into the interface and the
latent heat per unit mass L required to change phase, independent of the density of the
solid.

3.1. Boundary layer structure
Further simplification can be obtained in the limit of large Prandtl number and large
Lewis number. For example, cold sea water has σ = ν/κl ≈ 10 and Le = κl/D ≈ 200,
so that viscous forces act over a larger length scale than either thermal or solutal
diffusion. Kuiken (1968) derived matched asymptotic solutions for the buoyant flow at
large Prandtl number next to a fixed heated wall, and Nilson (1985) extended these
to two-component convection. As illustrated in figure 2, the temperature and solute
variations are confined to an inner layer near to the interface, where buoyancy and
viscous forces balance. There is no buoyancy force in the outer region, which is
effectively dragged upwards by the buoyant inner flow. The outer solution does not
influence the inner layer and always takes the form described by Kuiken (1968). The
ablation dynamics are therefore determined by the leading order solution in the inner
layer, which is obtained by setting 1/σ ≈ 0 in the momentum balance (3.10) to yield

f ′′′ + φ = 0, (3.20)

and replacing the far-field boundary conditions (3.14) with

f ′′→ 0, θ→ 0, φ→ 0, (3.21)

so that there is zero shear at the outer edge of the inner layer. For a thermal boundary
layer, Kuiken (1968) showed that this approximation captures the dominant behaviour
for σ as small as 2.

The distinction between melting and dissolving is obtained by considering the
further limit of large Lewis number (Le = κl/D� 1). As Le→∞ (or ε→ 0) the
right-hand side of the solute equation (3.12) becomes small, and so large solutal
gradients can only occur in a narrow boundary layer where f is relatively small. Two
possibilities are illustrated in figure 3 (to be justified later). If the ablation rate is
controlled by a large heat supply, f is large and negative at the interface with strong
advection of meltwater away from the interface. The large solutal gradients φ′ are
then confined to a thin, diffusive boundary layer away from the interface where f is
close to 0, so that u · ∇C ≈ 0 and advection is weak. Hence the diffusive boundary
layer is located precisely at the location where there is a transition between the strong
net advection of melted fluid away from the ice–water interface (f < 0), to inward
advection of fluid (f > 0) due to boundary layer entrainment beyond the diffusive
boundary layer. This is illustrated in figure 3(a) and corresponds to melting, with a
thermally controlled ablation rate generating a large fresh region close to the interface.
The second case (figure 3b) corresponds to the solid dissolving, with a smaller ablation
rate yielding weak advective transport f and large solutal gradients φ′ close to the
interface, and inward advection of fluid further from the interface.

3.2. Scalings for the inner layer and ablation rate
The magnitude of the ablation rate can be determined by considering the scalings in
the inner layer for ε = 1/Le� 1. The buoyancy force is largest at the interface where

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.322


Melting and dissolving with laminar convection 125

f

f

DissolvingMelting

0

1

C = 0

1 1

1

1

0

1

f = O

(a) (b)

u

FIGURE 3. Near-wall temperature, concentration and streamfunction profiles, corresponding
to the structure within the buoyant, thermal region in figure 2. For large Lewis number
the large solutal gradients are confined to a solutal boundary layer in two different cases.
(a) When the solid is melting, large solute gradients are confined to a thin diffusive boundary
layer where the advective transport f → 0, yielding a broad fresh layer close to the interface.
(b) When the solid is dissolving, the solute gradient φ′ is large and f is small close to the
interface.

the salinity is lowest, and so we always have a balance of buoyancy and viscous
forces close to the interface. The heat and solute transfer scalings differ depending on
whether the solid is melting or dissolving.

If the heat flux is large then it controls the ablation rate, and we consider scalings
where θ ′(0) and f (0) are both O(1). The Stefan condition (3.16) is satisfied by
retaining the thermal boundary layer scalings near to the interface, with a large
temperature gradient over a boundary layer of width

η = O(1)⇒ y∼ z

[
gβ(C∞ − Ci)z3

κlν

]−1/4

. (3.22)

The dimensional ablation rate is independent of the solutal diffusivity D and given by

∂a

∂t
= ρlcl(T∞ − Ti)

ρsL

κl

z

[
gβ(C∞ − Ci)z3

4κlν

]1/4

θ ′(0). (3.23)

It scales with the 1/4 power of a Rayleigh number based on solutal buoyancy and
thermal diffusivity, where θ ′(0) is of order unity. This indicates that the supply of heat
controls the width of the region of buoyant fresh meltwater, and hence also controls
the strength of the convective flow. The remaining details of the solution for melting
are derived in § 4.

The alternative case occurs when the salt flux at the interface is large and controls
the ablation rate. The appropriate rescalings are then

η = ε1/4ξ, f (η)= ε3/4F(ξ), θ(η)=Θ(ξ), φ(η)=Φ(ξ), (3.24)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.322
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where F, Θ and Φ are O(1) functions of a rescaled O(1) similarity variable ξ . Setting
1/σ = 0, the inner boundary layer equations (3.11), (3.12) and (3.20) yield

F′′′ +Φ = 0, (3.25)
Θ ′′ + ε3FΘ ′ = 0, (3.26)
Φ ′′ + 3FΦ ′ = 0, (3.27)

with interface boundary conditions

F′(0)= 0, Θ(0)= 1, Φ(0)= 1, (3.28)

and the thermodynamic constraints at the interface yield

ε3F(0)=
(
χi

SC
+ 1

ST

)
Θ ′(0), (3.29)

3χiF(0)= (1− χi)Φ
′(0). (3.30)

Note that the rescalings (3.24) have been chosen so that the dimensionless ablation
rate F(0) is determined by the salt flux into the interface Φ ′(0) in (3.30).

There are large solutal gradients in a boundary layer next to the interface of width

η = O(ε1/4)⇒ y∼ z

[
gβ(C∞ − Ci)z3

Dν

]−1/4

, (3.31)

and a dimensional ablation rate

∂a

∂t
= ρl(C∞ − Ci)

ρs(Ci − Cs)

D

z

[
gβ(C∞ − Ci)z3

4Dν

]1/4

Φ ′(0), (3.32)

where Φ ′(0) = O(1). The ablation rate now scales with the 1/4 power of a Rayleigh
number based on solutal buoyancy and solutal diffusivity, and is independent of the
thermal diffusivity κl. The scaled Stefan condition (3.29) requires that the heat supply
is much weaker, with (

1
ST
+ χi

SC

)
Θ ′(0)= O(ε). (3.33)

By comparing (3.23) and (3.32) we immediately see that melting is a large factor, of
O(Le3/4), faster than dissolving. The remaining details of the solution for dissolving
are derived in § 5.

4. Melting solution
When θ ′(0) = O(1) the solid melts into the liquid, thermal boundary layer scalings

apply and there is an internal solutal boundary layer. The generic structure of the
velocity, temperature and concentration profiles is illustrated in figure 4(a).

We first determine the form of the solution in both the inner and outer thermal
regions, where the governing equations are given by (3.11), (3.12) and (3.20), and
boundary conditions (3.13), (3.16), (3.17) and (3.21). The streamfunction f changes
sign across the compositional boundary layer, so we divide the thermal boundary layer
into an inner region where f < 0 for η < η, and an outer region where f > 0 for
η > η, for some η to be determined. To determine the behaviour for ε � 1 we seek
solutions expanded in powers of ε1/2 to allow matching to the internal boundary layer
solution considered later. The system (3.11), (3.12) and (3.20) is solved order by order
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FIGURE 4. Plots of the boundary layer profiles for both melting and dissolving, with
ε = 0.005. The vertical velocity (f ′ or F′) is shown by a dashed line, the temperature 1 − Θ
is shown by a dotted line and the solute profiles 1 − Φ are given by the solid line. Plot
(a) shows the analytic solution for melting with 1/ST = 2, with the axes scaled in terms of
the coordinate ξ = η/ε1/4 to allow a comparison with the dissolving profiles. Plots (b,c) show
numerical solutions of the inner leading-order ordinary differential equations for dissolving,
with domain width ξ∞ = 3.5. The solutions shown for (b) 1/ST = −0.75, 1/SC = 1, and
(c) 1/ST = −0.01, 1/SC = 1 are discussed further in the text. Note that the vertical velocity
f ′ is plotted by a dashed curve in (a), with f ′ = F′/ε1/2. Hence, the absolute velocity for
melting in (a) is actually asymptotically larger than the velocity for dissolving in (b,c), even
though both f ′ and F′ are O(1) in the figures. The supply of heat is larger for (c) than for (b),
and we observe a transition to incipient melting behaviour.

in increasing powers of ε1/2. The solutal balance (3.12) shows φ′ = 0 at all orders
whenever η 6= η, so that the solute gradient is exponentially small across both the inner
and outer thermal regions. Applying the interface boundary condition φ(0) = 1 and
far-field boundary condition φ(∞)= 0 to the appropriate regions we obtain

φ = 1, η < η and φ = 0, η > η. (4.1a,b)

The leading order solute concentration changes discontinuously at η = η, with an
almost fresh region with dimensional salinity C ≈ Cs confined close to the interface,
changing abruptly to the far-field salinity C = C∞ in a region further from the wall.

Noting that the solute gradient φ′(0) is exponentially small, the condition (3.17) of
solute conservation at the interface requires that the concentration ratio

χi = 0 (4.2)
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at all orders if ablation is to occur with f (0) = O(1). This implies that the interface
salinity is almost identical to that of the solid (i.e. Ci ≈ Cs), and hence the interfacial
temperature is very close to the freshwater melting point (Ti ≈ Tm).

The momentum balance (3.20) can be combined with (4.1a,b) and integrated to
yield the streamfunction

f = 1
6η

3 − 1
2 f ′′(0)η2 + 1

2 f ′′(0)η2 − 1
6η

3, η < η, (4.3)

f = f ′(∞)(η − η), η > η. (4.4)

The boundary conditions f ′(0) = 0 and f ′′(∞) = 0 have been applied here,
corresponding to a no-slip condition at the interface and zero shear in the far field,
and we have used the fact that f (η) = 0 by definition, to simplify the constants of
integration. The buoyancy force is confined to the inner region η < η and drives the
flow according to (4.3). There is no buoyancy in the outer region, and so (4.4) shows
that the vertical velocity f ′ remains constant across this outer layer.

The heat equation (3.11) is integrated, using the streamfunction profiles (4.3)
and (4.4), to yield

θ = 1+ θ ′(0)
∫ η

0
exp

{
1
8 x4 − 1

2 f ′′(0)x3 − [ 1
2η

3 − 3
2 f ′′(0)η2

]
x
}

dx, η < η, (4.5)

θ =−θ ′(η)
√

π

6f ′(∞)erfc

[√
3f ′(∞)

2
(η − η)

]
, η > η, (4.6)

with the temperature θ decaying to its far-field value in the outer thermal layer. We
have applied the boundary conditions θ(0) = 1 and θ(∞) = 0 here, and the constants
θ ′(0) and θ ′(η) are to be determined by asymptotic matching via the solution in the
internal compositional boundary layer. The complementary error function is defined by

erfc [X] = 2√
π

∫ ∞
X

exp[−x2] dx, (4.7)

and for small X can be approximated by

erfc [X] ∼ 1− 2√
π

X + O(X2) as X→ 0. (4.8)

The next stage of the calculation is to solve for the profiles within the internal
solutal boundary layer, which match the inner and outer solutions. The key difference
from the solutal boundary layer for dissolving, described in § 3.2 and considered
later in § 5, is that because the solutal variation occurs away from the interface the
buoyancy force need not be comparable to the viscous forces. The inner layer scaling
breaks down when the advection of salt is weak and comparable to solutal diffusion
so that εφ′′ ∼ fφ′ and now f → 0. As we approach this internal boundary layer, the
streamfunction is linear at leading order with

f (η)∼ f ′(η)(η − η) as η→ η. (4.9)

Balancing advection and diffusion of salt in (3.12) requires the rescaling

η − η = ε1/2ζ, f (η)= ε1/2F(ζ ), φ(η)=Φ(ζ), θ(η)=Θ(ζ), (4.10)

so that the full set of governing equations for the internal boundary layer are

F′′′ + εΦ = 0, (4.11)
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Θ ′′ + ε3FΘ ′ = 0, (4.12)
Φ ′′ + 3FΦ ′ = 0. (4.13)

The boundary conditions come from matching to the inner and outer solutions at the
edges of the internal boundary layer.

The buoyancy force is weak and of O(ε) in the momentum balance (4.11), and
hence integrating (4.11) three times and matching to the outer streamfunction f
using limη→η+ f (η)= limζ→∞ ε1/2F(ζ ) yields

F = f ′(∞)ζ + O(ε), (4.14)

so that the vertical velocity F′ is approximately constant at leading order in the
internal boundary layer. Matching (4.14) to the inner streamfunction f given by (4.3)
requires that limη→η− f (η)= limζ→−∞ ε1/2F(ζ ), yielding

f ′′(0)= η0 + O(ε1/2), f ′(∞)= 1
2η

2
0 + O(ε1/2), (4.15)

after a little algebra, where η = η0 + O(ε1/2) is determined later from the interface
conditions.

Writing Φ = Φ0 + O(ε1/2), the solute balance (4.13), reduces to the leading order
form

Φ ′′0 + 3
2η

2
0ζΦ

′
0 = 0, (4.16)

using (4.14) and (4.15), with boundary conditions

Φ0→ 1 as ζ →−∞ and Φ0→ 0 as ζ →∞ (4.17)

given by matching to (4.1a,b). The solution is

Φ0 = 1
2

erfc

[√
3η0ζ

2

]
, (4.18)

so that the jump in solute concentration is smoothed out by an error-function decay
across the solutal boundary layer.

For ε� 1 the heat equation (4.12) integrates to give

Θ =Θ(0)+Θ ′(0)ζ + O(ε). (4.19)

Matching to the inner and outer temperature profiles (4.5) and (4.6), requires
limη→η− θ(η) = limζ→−∞Θ(ζ) and limη→η+ θ(η) = limζ→∞Θ(ζ), respectively, and
after some algebra we obtain all constants of integration in terms of η0, with the
solution summarized in table 1.

The remaining constant η0 is determined from the Stefan condition (3.16), which
simplifies using χi = 0 to yield the condition

g(η0)≡ η3
0

{∫ η0

0
exp

[
1
8

x4 − 1
2
η0x3 + η3

0x

]
dx+ 1

η0

√
π

3
exp

[
5
8
η4

0

]}
= 1

ST
. (4.32)

The value of η0 depends only on the strength of the far-field thermal driving 1/ST ,
and hence the profiles of all non-dimensional variables are independent of the far-field
salinity. Note that g(0) = 0, and g(x)→∞ as x→∞ so that a solution η0 always
exists for 1/ST > 0.

Typical concentration, velocity and temperature profiles for melting are illustrated
in figure 4(a), for 1/ST = 2 and ε = 0.005. The salinity shows a large fresh region
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Inner thermal:

θ = 1−STη
3
0

∫ η

0
exp

[
1
8

x4 − 1
2
η0x3 + η3

0x

]
dx+ O(ε1/2), (4.20)

φ = 1, (4.21)

f =−1
3
η3

0 +
1
2
η0η

2 − 1
6
η3 + O(ε1/2). (4.22)

Internal solutal:

Θ =STη
2
0

√
π

3
exp

[
5
8
η4

0

]
+ O(ε1/2), (4.23)

Φ = 1
2

erfc

[√
3η0ζ

2

]
+ O(ε1/2), (4.24)

F = 1
2
η2

0ζ + O(ε1/2). (4.25)

ζ = η − η0

ε1/2
, f (η)= ε1/2F(ζ ), θ(η)=Θ(ζ), φ(η)=Φ(ζ). (4.26)

Outer thermal:

θ =STη
2
0

√
π

3
exp

[
5
8
η4

0

]
erfc

[√
3η0(η − η0)

2

]
+ O(ε1/2), (4.27)

φ = 0, (4.28)

f = 1
2
η2

0(η − η0)+ O(ε1/2). (4.29)

Interface:

f (0)=−1
3
η3

0 + O(ε1/2), (4.30)

1
ST
= η3

0

{∫ η0

0
exp

[
1
8

x4 − 1
2
η0x3 + η3

0x

]
dx+ 1

η0

√
π

3
exp

[
5
8
η4

0

]}
. (4.31)

TABLE 1. The leading order asymptotic solutions for the case of melting. The thermal
boundary layer is split into inner and outer regions, joined by an internal solutal boundary
layer for ζ = (η − η0)/ε

1/2 = O(1). The value of η0 is determined by the condition (4.31)
in terms of the thermal Stefan number ST .

with negligible solutal gradient close to the interface, followed by a rapid decay to
the far-field salinity across the narrow internal solutal boundary layer. The vertical
velocity increases with distance from the interface in the inner thermal layer, where the
solute concentration is relatively fresh and buoyancy is significant, before remaining
approximately constant in the outer thermal region, where there is no buoyancy. The
temperature decays slowly across the entire width of the inner and outer thermal
layers.

The interface conditions determine when the ice is melting and the
solution (4.20)–(4.31) can be applied. Firstly, the equation (4.31) for η0 only
has positive solutions for ST > 0, and hence we need T∞ > Tm. The Stefan
condition (3.16) requires 1/ST � ε1/2 as a result of the scaling ansatz that f (0)� ε1/2

and θ ′(0)� ε1/2. The melting solution is therefore valid whenever

cl(T∞ − Tm)

L
� ε1/2, (4.33)
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FIGURE 5. Plot (a) shows the variation of non-dimensional melt rate −f (0) as a function
of non-dimensional far-field temperature 1/ST = cl(T∞ − Tm)/L, for the melting solution.
Plot (b) shows the scaled ablation rate F0(0) = ε3/4f (0) for dissolving and its variation with
far-field temperature 1/ε1/2ST for a variety of salinities given by different values of 1/ε1/2SC.
The ablation rate for dissolving increases with salinity for cold temperatures with ST < 0 (as
indicated by the arrow, which shows the direction of increasing −1/ε1/2SC) and approaches a
uniform curve independent of salinity for larger temperatures with ST > 0.

so that melting occurs whenever the far-field temperature is sufficiently larger than the
freshwater melting point. Note that the condition (4.33) is entirely independent of the
salinity of the fluid.

The non-dimensional ablation rate is given by f (0) according to (4.30), with f < 0
for ablation. Figure 5(a) shows the variation of the magnitude of the ablation rate
with scaled far-field temperature 1/ST , with the region 1/ST � ε1/2 corresponding
to melting. The melt rate −f (0) increases as the thermal driving 1/ST increases,
but the rate of change of −f (0) with 1/ST slows for larger 1/ST . This behaviour
is consistent with the larger temperature difference being partially compensated for
by a wider region of fresh meltwater at the interface which slows the increase in
the temperature gradient, and hence partially offsets the increase in heat flux to the
interface. Note that typically |1/ST | < 0.02 for ice melting in the polar oceans, and
so the saturation of the ablation rate at large values of 1/ST is not relevant to the
ocean, but can be relevant in geological systems where it is possible to find 1/ST ≈ 2
for a basaltic magma intrusion that is ∼440 ◦C hotter than the surrounding rock (Kerr
1994a).

5. Dissolving solution
We now derive the detailed asymptotic solution for ice dissolving, showing that

buoyancy is confined within the inner boundary layer with large solutal gradients,
described by (3.24)–(3.30). There is also an outer thermal layer where there is constant
salinity and velocity, and the temperature adjusts to its far-field value. We consider the
outer layer first, which provides far-field boundary conditions for the inner layer.

The outer layer is characterized by a balance between advection and diffusion of
heat, which suggests the rescaling

ξ = ε−1/2Y , F = ε−1/2F (Y ), Θ =T (Y ), Φ =P(Y ), (5.1)

where the rescaled streamfunction F , temperature T and salinity P are all order-one
functions of the rescaled coordinate Y . The governing equations for the outer layer
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are

F ′′′ + εP = 0, (5.2)
T ′′ + 3FT ′ = 0, (5.3)
εP ′′ + 3FP ′ = 0. (5.4)

The far-field boundary conditions (3.21) yield

F ′′→ 0, T → 0, P→ 0 as Y →∞, (5.5)

with additional boundary conditions to be determined by matching to the inner
solution. Note that the outer velocity f ′ = ε1/2F ′ = O(ε1/2) is relatively weak in
the case of dissolving because the velocity is generated by buoyancy confined to the
narrow solutal boundary layer next to the interface.

In order to match the inner layer scalings we seek solutions expanded in powers
of ε1/4. If F 6= 0 in the outer layer, and P =∑∞n=0Pn(Y )εn/4, then the solute
equation (5.4) requires that all of the P ′

n ≡ 0 throughout the outer layer, and the
far-field boundary conditions result in

P ≡ 0, (5.6)

at all orders. This means that there is no buoyancy in the outer layer, and the outer
momentum balance (5.2) has solutions of the form

F =F (0)+F ′(0)Y , (5.7)

where we have used the boundary condition F ′′(∞) = 0. Hence, the vertical
velocity F ′ is constant across the outer layer. The constants F (0) and F ′(0) are
determined by matching to the inner flow, with the condition limY→0 ε

1/4F (Y ) =
limξ→∞ ε3/4F(ξ) leading to the boundary condition

F′′0(∞)= 0, (5.8)

on the inner solution, and an outer streamfunction

F = F′0(∞)Y + O
(
ε1/4
)
, (5.9)

where F′0(∞) will be determined later from the inner solution.
Using (5.9) the heat equation (5.3) integrates to give the temperature profile

T (Y )=T (0)erfc

[√
3F′0(∞)

2
Y

]
{1+ O(ε1/4)} (5.10)

where one constant of integration has been chosen to satisfy the far-field boundary
condition T (∞)= 0, and T (0) will be found by matching to the inner solution.

With the form of the outer solution determined, we now return to the inner layer
which is described by the scalings (3.24) and governing equations (3.25)–(3.30).
The far-field boundary conditions are obtained from matching to the outer layer,
yielding (5.8), Φ(∞) = 0 and an additional condition from matching the temperature
solutions. Seeking solutions expanded in powers of ε1/4, the heat equation (3.26)
integrates to yield the temperature profile

Θ(ξ)= 1+Θ ′(0)ξ + O(ε), (5.11)
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where we have applied the interface temperature boundary condition Θ(0) = 1.
Matching limY→0 T (Y )= limξ→∞Θ(ξ) yields T (0)= 1 and

Θ ′(0)=−ε1/2

[
6F′0(∞)
π

]1/2

+ O(ε3/4). (5.12)

The temperature gradient is relatively weak at the interface and throughout the inner
layer, with Θ ′(0)= O(ε1/2).

The leading order streamfunction F0 and solute concentration Φ0 for the inner layer
satisfy the fifth order system of coupled ordinary differential equations,

F
′′′
0 +Φ0 = 0, (5.13)

Φ
′′
0 + 3F0Φ

′
0 = 0, (5.14)

subject to the boundary conditions

F′0(0)= 0, Φ0(0)= 1, F′′0(∞)= 0, Φ0(∞)= 0, (5.15)

from the interface conditions (3.28) and matching to the outer solution. The
final boundary condition comes from the coupled thermodynamic conditions (3.29)
and (3.30) at the interface, which can be used to determine the range of far-field
temperatures and salinities that lead to dissolving.

Using the temperature gradient (5.12), the Stefan condition (3.29) requires that

χi =−SC

ST
− 3ε1/2SCF0(0)

[
π

6F′0(∞)
]1/2

+ O(ε3/4SC). (5.16)

The solute condition (3.30) must be satisfied with F(0) and Φ ′(0) both of O(1), and
hence we also require that χi = O(1), so that there is a build up of salt at the interface
and depression of the interface temperature. This can be achieved in two possible
ways.

If ε1/2SC = O(ε1/4), then we have a relatively large supply of solute and (5.16)
gives

χi =−SC

ST
+ O(ε1/4). (5.17)

Noting that interface ablation occurs when F(0) < 0 and hence requires 0< χi < 1, the
condition (5.17) can be used to show that we obtain a dissolving solution when

T∞ < Tm,
clΓ (C∞ − CS)

L
� ε1/2 and 1>

Tm − T∞
Tm − TL(C∞)

� ε1/4. (5.18)

The second case occurs if both 1/SC = O(ε1/2) and 1/ST = O(ε1/2), so that the
supply of heat and solute are both relatively small. We then require that

χi =−SC

ST
− 3ε1/2SCF0(0)

[
π

6F′0(∞)
]1/2

+ O(ε1/4), (5.19)

with F0(0) and F′0(∞) given by the numerical solution of the inner governing
differential equations. Returning to dimensional variables, this requires

cl(T∞ − Tm)

L
= O(ε1/2),

clΓ (C∞ − CS)

L
= O(ε1/2) and

Tm − Ti

Tm − TL(C∞)
� ε1/4,

(5.20)
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Inner solutal:

Θ = 1− ε1/2

[
6F′0(∞)
π

]1/2

ξ + O(ε3/4), (5.21)

F′′′0 +Φ0 = 0, Φ ′′0 + 3F0Φ
′
0 = 0, (5.22)

F′0(0)= 0, Φ0(0)= 1, F′′0(∞)=Φ0(∞)= 0 (5.23)

3χiF0(0)= (1− χi)Φ
′
0(0), (5.24)

χi =−SC

ST
− 3ε1/2SCF0(0)

[
π

6F′0(∞)
]1/2

+ O(ε3/4SC). (5.25)

Outer thermal:

T = erfc

[√
3F′0(∞)

2
Y

]
{1+ O(ε1/4)}, (5.26)

P ≡ 0, (5.27)
F = F′0(∞)Y + O(ε1/4). (5.28)

Scalings:
f (η)= ε3/4F(ξ), θ(η)=Θ(ξ), φ(η)=Φ(ξ), η = ε1/4ξ . (5.29)

f (η)= ε1/4F (Y ), θ(η)=T (Y ), φ(η)=P(Y ), η = ε−1/4Y . (5.30)

TABLE 2. The inner and outer leading order asymptotic solutions for the case of dissolving.
The inner streamfunction F0 and solute concentration Φ0 are determined by a numerical
integration of the system (5.22)–(5.25).

where the exact value of Ti is evaluated by numerical solution of the inner differential
equations. Note that we can have T∞ > Tm in this regime.

The complete leading order solution for the case of dissolving is summarized
in table 2. The leading order streamfunction F0 and solute concentration Φ0 were
determined by a numerical integration of the boundary value problem (5.22)–(5.25)
using a modified shooting method (see Acton 1990, for more details of the standard
shooting procedure). A comparison (not shown here) of the asymptotic solutions to the
corresponding numerical solutions of Carey & Gebhart (1982a) and the experimental
data of Josberger & Martin (1981) and Carey & Gebhart (1982b) shows good
qualitative agreement, with all errors smaller than the asymptotic error bounds.

Figure 4(b,c) shows a selection of inner layer solutions for different values of ST

and SC, corresponding to different far-field temperatures and salinities. Cases (b)
and (c) correspond to the limit (5.18), with the far-field temperature less than the fresh
water melting point (T∞ < Tm). In (b), 1/ST =−0.75, 1/SC = 1 and the solute profile
shows an exponential-like decay across the width of the inner boundary layer. The
vertical velocity grows monotonically and saturates at a constant value at the edge of
the inner layer. Case (c) shows the solution as T∞ approaches Tm, with 1/ST =−0.01
and 1/SC = 1. We begin to see a transition to melting like behaviour, with the
magnitude of the solutal gradient initially increasing as we move away from the
interface, before decaying in the far field. The non-dimensional interface concentration
is χi = 0.01 here, so that the interface is fairly fresh and we are moving beyond the
domain of validity for the dissolving solution.

Figure 5(b) illustrates the variation of the ablation rate −F0(0) with far-field
temperature for the case of weaker solutal driving described by (5.20). The ablation
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T

C

DissolveSolid

Liquidus

Melt

(b)

(a)

Transition

(i)

(ii)

(Ti, Ci)
=

(Tm, Cs)

Ti = Tm –

( ( ))

( ( ))

FIGURE 6. Schematic illustration of regions of melting and dissolving behaviour in the
(C∞,T∞) plane. The solid black line corresponds to the liquidus curve T = TL(C), and
dashed lines indicate regime boundaries. Melting occurs for far-field temperatures sufficiently
larger than the freshwater melting point with T∞ − Tm � (D/κl)

1/2L/cl. Dissolving occurs
for far-field temperatures lower than the freshwater melting point, in the region (a) with
Tm − T∞ � (D/κl)

1/2L/cl and T∞ < Tm. The dissolving scalings are still valid in an
intermediate transition region (b) with T∞ − Tm = O([D/κl]1/2L/cl), although the solutions
begin to approach melting-like behaviour for T∞ > Tm. Also shown are two possible
trajectories in the phase plane, tracing the changes in temperature and salinity of the boundary
layer profiles as we move from the far field with temperature T∞ and salinity C∞ into the
interface at Ti = TL(Ci), for (i) melting and (ii) dissolving.

rate depends strongly on the far-field salinity for temperatures less than the fresh
water melting point (ST < 0), consistent with the ice dissolving controlled by solutal
transport. For larger temperatures (ST > 0), the non-dimensional ablation rate curves
converge to a single curve that is independent of salinity, consistent with the incipient
melting behaviour observed in the boundary layer profiles in figure 4(c).

6. Discussion
We now compare the solutions for dissolving and melting. The transition between

dissolving and melting depends on the far-field temperature and salinity, with
asymptotic conditions for the occurrence of dissolving given by (5.18)–(5.20) and
of melting given by (4.33). The resulting asymptotic boundaries are illustrated in a
(C∞,T∞) phase plane plot in figure 6. We see that the changeover between melting
and dissolving occurs when

1
ST
= cl(T∞ − Tm)

L
= O

([
D

κl

]1/2
)

(6.1)
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Transport
mechanism

Vertical
velocity

Ablation
rate

Solutal boundary
layer width

Thermal boundary
layer width

Laminar
convection

O(ε1/2) O(ε3/4) O(ε1/4) O(ε−1/4)

Diffusion — O(ε1/2) O(ε1/2) O(1)

TABLE 3. Relative magnitude of the dissolving solution properties compared with the
melting solution for each of the vertical velocity, ablation rate, solutal boundary layer
width and thermal boundary layer width. Each table entry shows the ratio of the dissolving
scaling divided by the melting scaling, so that the corresponding velocities, ablation rates
and boundary layer widths would be O(1) for melting. The inverse Lewis number is
ε = D/κl � 1. The differences between transport by laminar convection and transport by
molecular diffusion without fluid flow (Woods 1992) are discussed in the text.

which is the same as the criterion found by Kerr (1994a) for turbulent convection
at a horizontal surface. The condition (6.1) requires a relatively large change in
temperature for systems with a large ratio of latent and specific heats. For example,
an iceberg in the ocean would require a temperature change of about 5 ◦C to
exceed (6.1). The changeover may be more significant in geological systems, where
temperature differences are significantly larger. For the igneous intrusions considered
by Kerr (1994b), the changeover between melting and dissolving can be achieved
with temperature changes of only 1 ◦C. This is small compared with the temperature
differences of order 100 ◦C or more that are often found in such geological settings.

An interesting feature of the transition criteria (5.18)–(5.20) and (4.33) is
that all conditions are entirely independent of the reduced gravity of the flow
g′ = gβ(C∞ − Cs), so that the strength of the buoyancy force has no effect on the
conditions for melting and dissolving. Furthermore, (6.1) shows that the transition
criterion scales with (D/κl)

1/2, similar to the diffusive solution of Woods (1992).
A possible explanation for this transition criterion being independent of buoyancy is
as follows. The boundary-layer equations (3.3)–(3.4) show that advection balances
diffusion for the transport of both heat and salt, and that the advection of fluid
influences both heat and solute transport in the same fashion. Therefore, any change in
ratio of solutal and thermal transport requires a switch in dominance between solutal
and thermal diffusion, and we recover the diffusive scaling (D/κl)

1/2 for transition,
independent of g′ and the strength of the advective flow. Laminar convection does
not alter when melting or dissolving occur, but merely modifies the scalings of the
boundary layer profiles and resulting ablation rates as compared with the diffusive
case. Table 3 compares the ratio of scalings for dissolving and melting, as discussed
below.

For the case of dissolving, there is a solutal boundary layer at the interface of width

y∼ z

[
gβ(C∞ − Ci)z3

Dν

]−1/4

, (6.2)

nested in a wider thermal boundary layer of width

y∼
(κl

D

)1/2
z

[
gβ(C∞ − Ci)z3

Dν

]−1/4

. (6.3)
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The ratio of solutal and thermal boundary layer thicknesses is O([D/κl]1/2) for
dissolving with laminar convection, which also matches the scaling obtained for
diffusive melting and dissolving (Woods 1992), consistent with the reasoning outlined
above.

The vertical velocity for dissolving scales as

w∼ 4D

z

[
gβ(C∞ − Ci)z3

4Dν

]1/2

, (6.4)

depending on a Rayleigh number based on solutal buoyancy and solutal diffusion. This
reflects the fact that, when dissolving, the salt supply controls the ablation rate and
hence the supply of fresh melt water, which in turn provides the buoyancy to drive the
flow. The ablation rate

∂a

∂t
= (C∞ − Ci)

(Ci − Cs)

D

z

[
gβ(C∞ − Ci)z3

4Dν

]1/4

Φ ′(0), (6.5)

is relatively weak because it is controlled by solutal transport, and also scales with a
Rayleigh number based on solutal diffusion.

For melting we find a larger solutal boundary layer width, a larger velocity and
a larger ablation rate because everything is controlled by the more efficient thermal
transport. The solute concentration has a relatively fresh region at the interface, with
the width of this region scaling with the thermal boundary layer thickness,

y∼ z

[
gβ(C∞ − Ci)z3

κlν

]−1/4

. (6.6)

This provides a wide source of buoyancy, so that the vertical velocity

w∼ O

(
4κl

z

[
gβ(C∞ − Cs)z3

4κlν

]1/2
)
, (6.7)

is O([κl/D]1/2) larger for melting than the corresponding scaling (6.4) for dissolving.
The enhanced convective transport also contributes to a larger melting rate,

∂a

∂t
= 3

ρl

ρs

cl(T∞ − Ti)

L

κl

z

[
gβ(C∞ − Cs)z3

4κlν

]1/4

θ ′(0), (6.8)

where θ ′(0) = O(1). The melting rate (6.8) is O([κl/D]3/4) larger than the ablation
rate (6.5) for dissolving, and this will mean the vertical mass flux is also O([κl/D]3/4)
larger for melting. Note that both the velocity and the ablation rate for melting
scale with a Rayleigh number based on thermal transport and solutal buoyancy. This
recognizes the role of the heat supply in controlling the release of fresh meltwater at
the interface, and thereby determining the strength of the resulting buoyancy force.

In the melting case, the main variation in salinity occurs in an internal solutal
boundary layer, away from the interface. This boundary layer occurs about the point
where f → 0, and hence u·∇C→ 0 and u·∇T→ 0, so that advection is comparatively
small. The internal boundary layer is therefore of a diffusive nature, consistent with
its width being O([D/κl]1/2) times the thermal boundary layer width. The widths of
the thermal boundary layer, and also the region of large solutal gradients are both
narrower for melting than for dissolving, with melting generating a larger velocity and
more efficient transport via advection.
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It is also interesting to compare the magnitude of the ablation rates predicted
for convective and diffusive heat and mass transfer. The advection of heat and salt
generated by a convective flow greatly enhances the heat and salt transport into the
interface, and the laminar convective flow therefore has significantly larger ablation
rates. For example, for a 5 cm block of ice in sea water with T∞ = 2 ◦C and
C∞ = 35 psu, (6.8) predicts a depth averaged melt rate ȧ ≈ 15 cm day−1. For purely
diffusive ablation, with no convection, the ice block would only melt by 2 mm in
one day. In addition, the difference in ablation rates between melting and dissolving
is more pronounced with laminar convection, scaling as O([κl/D]3/4) as compared
with O([κl/D]1/2) for diffusive ablation. We note that convection is likely to have
even greater importance in both large-scale oceanic problems and geological magma
intrusions, where the flow will be turbulent over most of the solid surface, and will
significantly enhance the transport of heat and solute. A full quantification of melting
and dissolving in these applications will require an extension of the ideas presented
here to account for turbulent convection at vertical and sloping solid surfaces, and
whether the resulting solutal and thermal boundary layer structures create bidirectional
flow with a fresh buoyant inner flow accompanied by an opposing flow of colder dense
liquid.

7. Summary
We have considered the ablation of a vertical solid surface in a binary solution

resulting from the heat and salt transfer due to laminar convection of buoyant
melt released at the interface. An asymptotic analysis has elucidated differences
between melting, where the ablation rate is controlled by thermal transport, and
dissolving, where solutal transport controls the ablation rate. A surprising result is
that the increase in temperature required for a transition from dissolving to melting
does not change significantly from the criterion for purely diffusive heat and mass
transfer. In particular, this criterion is entirely independent of the reduced gravity,
which characterizes the strength of the buoyancy-driven convection. This is despite
differences in boundary layer profiles and ablation rates between the cases of pure
diffusion and laminar convective flow.

For dissolving with convection, there is a narrow solutal boundary layer, a weak
buoyancy force and hence weak flow, and also a slow ablation rate. All of these
properties are controlled by a balance between advection and solutal diffusion, as
reflected by scalings dependent on a purely solutal Rayleigh number. By comparison,
the ablation rate is thermally controlled for melting, generating a wide region of fresh
fluid near to the solid surface and hence stronger flow and larger ablation rates. The
flow dynamics are controlled by a balance between advection and thermal diffusion
when the solid melts. We also find that the enhanced convective transport yields
larger ablation rates than diffusive transport, and the ablation rates, velocities and
boundary layer thicknesses all vary with height. These interactions between convection
and melting or dissolving may provide insight for the development of models of the
melting of icebergs and Antarctic ice shelves, or melting and dissolution in geological
applications which feature turbulent convective flows.

Appendix. Heat transfer in the solid phase
A full solution of the Stefan condition (2.2) requires the heat transfer qs from the

solid into the interface. However, we can show that qs can be neglected at leading
order for ablation with large Stefan number, as is typical in the polar oceans.
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In the rest frame of the ice, heat transfer is described by the unsteady diffusion
equation

Ṫ = κs∇2T, ỹ< a. (A 1)

This equation simplifies considerably by transforming to the reference frame with
y = ỹ − a, where the solid–liquid interface remains stationary and quasi-vertical,
yielding

−ȧ
∂T

∂y
= κs

∂2T

∂y2
, y< 0. (A 2)

We have assumed here that the transfer of heat is quasi-steady and depends only
weakly on z at leading order. The temperature is fixed in the interior of the solid and
at the interface, yielding boundary conditions

T→ Ts as y→−∞, T = Ti at y= 0. (A 3)

The system (A 2)–(A 3) has a solution

T = Ts + (Ti − Ts) exp
[
−ȧ

y

κs

]
, (A 4)

so that the heat flux from the solid into the interface y= 0 is given by

qs =−ρscsκs
∂T

∂y

∣∣∣∣
y=0

= ρscs(Ti − Ts)ȧ. (A 5)

Recalling from (2.2) that the Stefan condition is

ρsLȧ= ql − qs, (A 6)

we see that the heat flux qs described by (A 5) will play a negligible role whenever the
temperature conditions in the solid yield a large Stefan number

L

cs (Ti − Ts)
� 1. (A 7)

We expect the condition (A 7) to be satisfied for most situations in the polar oceans.
The heat flux qs from the solid can therefore be neglected to simplify the analysis, but
could alternatively be reintroduced in a straightforward fashion by replacing the latent
heat L by L+ cs(Ti − Ts) throughout the analysis.
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H. 2003 Impact of underwater–ice evolution on Arctic summer sea ice. J. Geophys. Res. 108,
16–1–16–12.

PEROVICH, D. K., RICHTER-MENGE, J. A., JONES, K. F. & LIGHT, B. 2008 Sunlight, water
and ice: extreme arctic sea ice melt during the summer of 2007. Geophys. Res. Lett. 35,
doi:10.1029/2008GL034007.

WOODS, A. W. 1992 Melting and dissolving. J. Fluid Mech. 239, 429–448.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://dx.doi.org/10.1029/2008GL034007
https://doi.org/10.1017/jfm.2011.322

	Melting and dissolving of a vertical solid surface with laminar compositional convection
	Introduction
	Diffusive melting and dissolving
	Laminar boundary layer flow driven by buoyancy
	Boundary layer structure
	Scalings for the inner layer and ablation rate

	Melting solution
	Dissolving solution
	Discussion
	Summary
	Appendix. Heat transfer in the solid phase
	References




