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SUMMARY
Rapid and efficient dynamic stability control has been one of the important motivations in legged
robot research, especially for legged robots running at high speed and/or on rough terrain. This
paper presents a feasible control strategy, named Hybrid Feedback Control (HFC), for running
systems based on the spring-loaded inverted pendulum principle (SLIP). The HFC strategy, which
comprises two modules (i.e., touchdown angle control and energy compensation), predicts and
regulates touchdown angle of the current cycle and need-to-complement energy input of the next
cycle through hybrid feedback of flying apex state. This strategy can significantly reduce the
computational complexity and enable the system to quickly converge to its control target, meeting
the requirements of real-time control. Simulation experiments on various terrains were conducted
to verify the adaptability of our HFC strategy. Results of these simulation experiments show that
the approach herein can realize the periodical stability control of SLIP systems on different terrain
conditions quickly and effectively.

KEYWORDS: Legged robots; Spring-loaded inverted pendulum (SLIP); Hybrid feedback control;
Energy compensation; Rough terrain.

1. Introduction
In contrast to wheeled and tracked locomotion, legged locomotion shows promising advantages in
traveling speed and rough environment adaption.1 However, due to the redundancy of multiple legs,
joints, and muscles, the legged locomotion exhibits the characteristics of complexity, high–dimension,
and non-linearity. Researchers hope to find a simplified model to effectively describe this movement.
For animals of different kinds, in spite of their diversity in morphology, they share similarities in
aspects of energy metabolism, gait, stride frequency, ground reaction force, etc. Previous research
has shown that humans and animals have a system of leg stiffness control. They can change their
leg stiffness on demand.2–5 Through investigation of the ground reaction force pattern, Full6 found
similarities in vertical ground force of two-, four-, six-, and eight-legged in bouncing. His experimental
research on locomotion has shown that running animals use multiple legs as a single leg. In two-
and four-legged systems, the center of mass (COM) falls to its lowest position at mid-stance just as
compressing a virtual leg spring and rebounds during the second half of the step just as recovering
stored elastic strain energy. Further, the simple spring-loaded inverted pendulum model (SLIP) is
proposed as a template to describe the dynamics of steady legged locomotion over uniform terrain,
initially motivated by biomechanical researchers.7–10 Despite its simple configuration, the SLIP
model is very effective to describe dynamic behaviors of animals of many kinds.11,12 Figure 1 shows
that the motion of two- and four-legged creatures can be equivalent to that of a simple SLIP template.

The SLIP model can provide not only a template for biological legged locomotion but also an
analytical model for robotic systems because its control laws can be extended to facilitate more
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Fig. 1. (Colour online) Motion of two- and four-legged creatures can be equivalent to that of a simple template.

practical leg models.1,11,13–15 One of the most representative examples employing this idea is a series
of hopping machines built by Raibert and his colleagues,16 and after that, many other hopping robots
have been built.17–21 Nevertheless, how to achieve the periodic steady movement becomes one of the
most critical issues for these robots.

Although spring-mass model is quite simple in mechanism, it is not suitable for mathematical
analysis, since the model of hopping is a hybrid dynamic system and the dynamic equations in
stance are non-integrable due to gravity.22,23 Fortunately, many researchers have made their efforts
to address this issue and some approximate analytical solutions have been proposed extensively in
literature.15,24–26 Most notably, neglecting the damping of the spring, Geyer et al. use the Taylor
series expansion to obtain an analytical approximation of the SLIP model with gravity considered.24

This model predicts well the numerical result, which is based on the assumption of a spring angle
during stance. An alternative model is presented by Saranli et al.25 In their work an analytic solution
is obtained to predict the stance trajectories of a dissipative and torque-actuated planar spring-mass
hopper, allowing for a hip torque controller to compensate for damping effects within a stride. These
methods can help us find the fixed point of return map under different initial conditions efficiently.
However, the methods using approximate solutions to characterize the motion of an SLIP model are
sensitive to the initial condition of the system, requiring a large amount of numerical calculations to
obtain appropriate initial conditions. We are able to create the return map using these methods, but
these are not suitable for the real-time control of an SLIP model.

In the actual system, dynamic real-time control of robots moving on complex terrains has been
one of the difficulties in robot control because of the uncertainty of terrain condition and difficulty
in contact state modeling. What needed to be considered are real-time control requirements and the
environment’s influence on system’s energy. Fortunately, many scholars have started their research
on these ideas. Initially, researchers developed some sophisticated control frameworks based on the
assumption that energy in the whole process is preserved.27,28 However, energy loss exists in reality
due to friction, collision, and other factors. From an energy perspective, a walking process of the
spring-mass system is a process of energy transformation from the kinetic to the potential, with an
additional energy injection to compensate for dissipation. Raibert et al.16 actuated his SLIP hopper
with a thrust provided by the hopper’s pneumatic mechanism and improved robot’s adaptability to
multi-terrain locomotion by way of changing its leg length. Zeglin19 employed compliant leg mechan-
isms, simplified the control of locomotion on complex terrain, and achieved good robustness. Arslan
and Saranli29 regulated system energy by changing leg length and stiffness, and realized the deadbeat
control of hopping machines moving on multi-terrain using three control methods, namely Leg
Length Control (LLC), Leg Stiffness Control (LSC), and Two-Phase Stiffness Control (TPSC). This
approach has certain adaptability to requirements of different terrain conditions, but requires relatively
long-time numerical computation. Schmitt and Clark30 proposed the active energy removal (AER)
control strategy based on active energy addition and removal by leg compression and leg extension.
Ahmadi and Buehler31 presented the controlled passive dynamic running (CPDR) controller imposing
desired trajectories via inverse dynamics to reduce energy spent for locomotion. The CPDR strategy
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Fig. 2. (Colour online) The SLIP model with damping.

is able to realize the control of hopping height through energy regulation, but the main concerns of
this adjustment are robot’s vertical velocity components. While these methods have advantages and
disadvantages, currently there remains a challenge in the stability control of the SLIP running robots.

The goal of this paper is to propose a simplified strategy based on SLIP model to achieve stable
periodic motion. With the application of the proposed strategy, the legged system is aimed to have
(i) good real-time performance to meet online requirements, and (ii) better adaptability on uneven
terrain. The remainder of this paper is organized as follows. Section 2 describes the equivalent SLIP
model with damping in consideration. Section 3 introduces the control structure and details of the
Hybrid Feedback Control (HFC) strategy for SLIP stability control. The simulation and results using
the HFC method on several different terrains are shown in Section 4. Finally, the concluding remarks
and the directions of ongoing work are given in Section 5.

2. Equivalent SLIP Model with Damping
The SLIP model assumes that the equivalent weight load is concentrated on a rigid body, and the leg
is massless in order to simplify the complexity of the dynamic computation of the model. Figure 2
illustrates the basic planar SLIP model consisting of a rigid body with mass m attached to a rotating
massless leg, where points A and B denote the COM of the body and the foothold point, respectively,
and point P TD indicates the location of the model in contact with the ground. The touchdown angle
θ is defined as the angle between the spring and the y-axis. As shown in Fig. 2(b), the SLIP model
is actuated with two inputs: torque T applied at the hip, and force F acting along the leg. Worth to
note is that a multi-joint biological leg with bones and muscles is equivalent to a spring with virtual
stiffness k, viscous damping c, and length r between points A and B.

The SLIP model alternates between stance and flight phases during stable running gait as shown
in Fig. 3. The flight phase comprises ascent and descent subphases. In this phase the toe loses contact
with the ground and the body follows a ballistic trajectory due to gravitational force. The stance
phase can be divided into compression and decompression subphases. In this phase the toe remains
stationary on the ground with no torque applied at hip.

TOUCHDOWN, BOTTOM, LIFTOFF, and APEX denote four special transition events in the
whole running cycle and are defined as the boundaries between descent, compression, decompression,
and ascent subphases. For every step, the APEX is triggered when the SLIP reaches its maximum
height, where the vertical velocity decreases to zero. Every apex state can be described to characterize
the current system, the state variables of which include horizontal velocity ẋn at the apex, the maximum
height yAPEX

n , and the total mechanical energy En. The apex return map is defined from the current apex
variable Un[ẋn, y

APEX
n , En] to the next apex variable Un+1[ẋn+1, y

APEX
n+1 , En+1], where n represents

the number of steps counting from 1.
The SLIP model is such a hybrid system that its continuous dynamic change is dependent on the

state of ground contact. There are two different dynamic equations in flight phase and stance phase
respectively. The flight dynamics of the model in Cartesian coordinates can be easily obtained by

{
mẍ = 0
mÿ = −mg

. (1)
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Fig. 3. (Colour online) The SLIP running period, including flight and stance phase with phase transition events.

In the stance phase, the system can be regarded as an inverted pendulum whose hinge is assumed
to be fixed on the ground, and can be described using dynamic equation in polar leg coordinates
following the Lagrangian method as

L = 1

2
mṙ2 + 1

2
mr2θ̇2 − mgr cos θ − 1

2
k

(
r2

0 − 2r0r + r2
)
, (2)

where r0 is the leg rest length of the model.
The motion equations of the stance phase can be derived as

{
mr̈ − mθ̇2r + mg cos θ − k(r0 − r) = −cṙ,

2mrṙθ̇ + mr2θ̈ − mgr sin θ = 0.
(3)

Obviously, Eqs. (3) are coupled nonlinear differential equations, the analytic solution of which
does not exist. Several approximations have been proposed under different assumptions, for example,
simply linearizing the gravitational force, or assuming small enough relative spring compression
rate.15,24–26 However, we want to find a control method to take into account real-time control
requirements and the stability concerns of the periodic motion.

3. Hybrid Feedback Control (HFC)
In spite of the coupling between variables to be controlled, we hope to reduce the complexity of the
system’s stability control from an overall state point of view. Then a control strategy named HFC is
proposed in this paper.

3.1. Control structure for the HFC method
For every SLIP step, the apex state, Un[ẋn, y

APEX
n , En], can be used to characterize the current system.

In order to achieve a stable periodic motion, the goal of the SLIP control system is to make the apex
state, Un[ẋn, y

APEX
n , En], as close as possible to the desired state Udes[ẋdes, y

APEX
des , Edes]. The problem

for the SLIP control system is to determine the appropriate values of the touchdown angle, θTD, and
the compensational energy, �En. Therefore, we propose the HFC strategy to solve these problems
through a real-time feedback control of the two variables. Figure 4 illustrates the control structure of
the HFC strategy.

As shown in Fig. 4, the HFC module consists of two core control modules. One is the touchdown
angle control module and the other is the energy compensation control module. At the beginning
of the SLIP model’s running, a control objective, which can be described by the desired state
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Fig. 4. Control structure schematic of HFC method.

Udes[ẋdes, y
APEX
des , Edes], needs to be set. ẋdes and yAPEX

des represent respectively the desired forward
velocity and the desired maximum vertical height at the apex of the SLIP system, and Edes denotes
the desired total mechanical energy, which can be calculated as follows with variables ẋdes and yAPEX

des :

Edes = mẋ2
des

/
2 + mgyAPEX

des . (4)

The current state Un[ẋn, y
APEX
n , En] can be measured through the sensor module at every apex.

Compared with the desired state, we can get the relative velocity error �ẋn and the relative energy
error �En. Through the touchdown angle control module and the energy compensation control
module, the touchdown angle of the next SLIP step, θTD, and the compensational energy needed in
the next stance phase, �E+

n+1, can be calculated. After that, the torque, Tn+1, and the compensational
force, Fn+1, for the next SLIP step will be obtained from the PD controller and the compensational
force controller. The actuator module guarantees the controlled object to achieve the desired position
and complete the next periodic motion. If in every step the apex state is able to reach the desired state
Udes[ẋdes, y

APEX
des , Edes] under the control of the HFC module, the SLIP system will run stably and

periodically.

3.2. Touchdown angle control strategy
In some previous studies, damping is not considered and the SLIP model is viewed as passive
and conservative. For a current state Un[ẋn, y

APEX
n , En], before touchdown, there is a value of the

touchdown angle θTD at which the system maintains its initial forward speed and apex height after the
stance phase. This point where the SLIP model contacts the ground is referred to the neutral point. As
Hodgins and Raibert32 have mentioned, the neutral point corresponds to a symmetric stance phase,
where the forward speed and apex heights of lift-off and touchdown are equal. If the SLIP system
can be controlled to reach the neutral point in every stride, the model will be able to achieve a stable
periodic cycle.

After that, many methods have been proposed in order to effectively get the neutral point.15,24,25

However, the accurate analytic solution for stance phase remains unsettled. This will result in three
different situations between the touchdown point and the neutral point. As shown in Fig. 5, ẋn and
ẋn+1 represent the forward speed before and after the stance phase respectively, θTD is the touchdown
angle in this step, and P TD and P N denote the touchdown point and the neutral point respectively.
When the touchdown point coincides the neutral point, the system will keep the original state in the
next step (Fig. 5(a), ẋn = ẋn+1). When the touchdown point is perturbed by decreasing the touchdown
angle, which means the touchdown angle is smaller than its value at the neutral point, the system
will accelerate in the next step (Fig. 5(b), ẋn < ẋn+1). On the other hand, when the touchdown angle
is greater than its value at the neutral point, the system will decelerate in the next step (Fig. 5(c),
ẋn > ẋn+1).

However, damping must be taken into account in the actual system. In this case, the SLIP model
is no longer a conservative system. Even if the system receives energy compensation in the stance
phase, it is still difficult to accurately reach the neutral point because of the coupling effects between
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Fig. 5. Three cases of foot placement. (a) Touchdown point coincides with the neutral point. (b) Touchdown
point ahead of the neutral point. (c) Touchdown point back of the neutral point.

system’s dynamic characteristics. Raibert’s foot placement algorithm16 gives us a viable solution.
Therefore, instead of pursuing the exact location of the neutral point, we control the distance between
the touchdown point and the neutral point, using it as a feedback. Although there are some error
fluctuations, the motion of the SLIP model is able to converge to a stable periodical one within a
limited error range. Note that control is based on the previous state as shown in Fig. 3. When the
current forward speed ẋn equals the desired speed ẋdes, it can be assumed that the system motion is
stable and symmetrical. Besides, during the last stance phase, the touchdown point P TD coincides
with the neutral point P N (Fig. 5(a)). If the current forward speed ẋn is smaller than the desired
speed ẋdes, we should set the ground contact point forward the neutral point to create a net forward
acceleration (Fig. 5(b)). On the contrary, if the current forward speed ẋn is greater than the desired
speed ẋdes, we should set the ground contact point behind the neutral point to create a net rearward
acceleration (Fig. 5(c)). Thus, the touchdown angle θTD can be calculated as follows:

θTD
n = arcsin

((
S0

n + �Sn

) /
r0

)
, (5)

where S0
n is half the distance of the horizontal movement of the COM during the stance phase on the

condition that it has achieved symmetry movement, and �Sn is the distance between P TD and P N·
The variable S0

n can be determined as

S0
n = ẋ

avg
n−1 · TS

2
=

(
rTD
n−1 sin θTD

n−1 − rLO
n−1 sin θLO

n−1

)
2 · (

tLO
n−1 − tTD

n−1

) · π

√
m

k
, (6)

where ẋ
avg
n−1 is the average forward speed during the stance phase, and TS is the approximate stance

phase time,21 (rTD
n−1, θ

TD
n−1, t

TD
n−1) and (rLO

n−1, θ
LO
n−1, t

LO
n−1) represent the actual leg length, angle and time

at touchdown and liftoff phases of the previous stance, respectively. These can be obtained through
the sensing system.

As Raibert16 has mentioned, the control system uses a linear function of the error in forward speed
to find a displacement for the foot. Then �Sn can be determined as

�Sn = μ · (ẋn − ẋdes), (7)

where μ is the gain selected to maximize stability. Substituting Eqs. (6) and (7) into Eq. (5) yields

θTD
n = arcsin

(
π

(
rTD
n−1 sin θTD

n−1 − rLO
n−1 sin θLO

n−1

)
2 · r0

(
tLO
n−1 − tTD

n−1

) √
m

k
+ μ · (ẋn − ẋdes)

r0

)
. (8)

https://doi.org/10.1017/S0263574713001239 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001239


HFC for SLIP-based robots running on rough terrain 1071

3.3. Energy compensation strategy
In order to reduce the complexity of the SLIP model, most existing works completely ignore the
effect of damping.14,24 However, in the practical system, a variety of energy consumption ways are
essential, such as drive damping, joint friction damping, foot–ground impact, and so on. We cannot
ignore the damping anymore and should make up for the system energy as accurately as possible for
physical robot platforms. Some studies have also considered energy compensation,16 but the common
method is to add a fixed amount of energy into the system which may be able to meet the requirements
of SLIP model’s steady running on a flat terrain. However, this approach may not work well when
the terrain is uneven. In this paper we attempt to propose a feasible method for energy compensation
even on an uneven ground.

The energy loss can be estimated for the SLIP system on a flat ground.18,33 When the ground is
uneven, the amount of energy loss is no longer easy to calculate accurately. In the HFC method, we
use feedback regulation instead of accurate calculation of the energy loss, and the SLIP model will
gradually converge to the control target within limited steps. As shown in Fig. 3, energy assessment
involves two successive strides with Step(n) and Step(n+1), for example. When the system state
converges to the steady state, the fluctuation of the energy loss gets smaller. Therefore, we assume
that the energy loss of the system to be the same as the previous one. In the Step(n), �E+

n and �E−
n

denote the amount of energy added and lost during the stance phase respectively. After the liftoff
event, the amount of energy loss �E−

n can be calculated as follows:

�E−
n = ETD

n + �E+
n − ELO

n , (9)

where ETD
n and ELO

n denote the total mechanical energy at touchdown event and liftoff event
respectively. The current total system energy consists of the kinetic energy, the gravitational potential
energy relative to the ground and the elastic potential energy of the spring. ETD

n and ELO
n can be

determined as follows:

ETD
n = m

((
ẋTD

n

)2 + (
ẏTD

n

)2
)/

2 + mgrTD
n cos θTD

n + k
(
rTD
n − r0

)2 /
2,

ELO
n = m

(
(ẋLO

n )2 + (
ẏLO

n

)2
)/

2 + mgrLO
n cos θLO

n + k
(
rLO
n − r0

)2 /
2, (10)

where (ẋTD
n , ẏTD

n , rTD
n , θTD

n ) and (ẋLO
n , ẏLO

n , rLO
n , θLO

n ) represent horizontal velocity, vertical velocity,
leg length, and angle at touchdown and liftoff events of the Step(n) respectively. Since the system is
energy-conservative in the flight phase, the total energy of the flight phase of Step(n) and Step(n+1)
can be described with ETD

n and ELO
n respectively, or be characterized by the vertical height and

horizontal velocity of the apex on a flat terrain. Nevertheless, Eq. (9) takes into account terrain
changes. Difference in foothold height alters the potential energy of the system, so in spite of terrain
changes, the variation in the system energy can be obtained easily. Besides, this method needs no
additional sensor to detect apex height. Basic velocity sensor and leg length sensor would be sufficient.

Before the next touchdown event, the amount of compensational energy needs to be estimated
in advance. The HFC method not only considers the energy error between the current and desired
states but also provides an additional value, which may be lost during the next stance phase. Note
that the additional energy is consistent with the energy loss during the previous step. The amount of
compensational energy in the Step(n+1) can be calculated as follows:

�E+
n+1 = Edes + �E−

n − ELO
n . (11)

The value of stride number n starts from one, and the initial value of �E+
n is set to zero. The

HFC method employs feedback regulation and finally achieves a stable energy control for the SLIP
system.

3.4. Optimal choice of the compensational force
In a practical system, actuators provide compensational force to meet the demand of energy
supplement. We compare three control strategies for compensational force and try to find an optimal
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Fig. 6. (Colour online) Three different control strategies for compensation force. (a) Rated Impulse Control
(RIC). (b) Constant Force Control (CFC). (c) Variable Stiffness Control (VSC).

choice in this paper. These strategies are Rated Impulse Control (RIC; Fig. 6(a)), Constant Force
Control (CFC; Fig. 6(b)) and Variable Stiffness Control (VSC; Fig. 6(c)).

The RIC method compensates for the energy loss by providing an impulse along the spring
direction of the system in each stride by actuators. The impulse begins at the time of the maximum
leg compression with the vertical velocity of the system being zero at this moment. In this case, the
compensational force Fn+1 can be calculated based on the theorem of impulse as

F RIC
n+1 =

√
2m · �E+

n+1

dt
, (12)

where dt is the impulse acting time, and the smaller the dt, the more accurate is our result of energy
compensation.

The CFC method provides for the SLIP system a constant force along the spring direction for
energy compensation. This constant force acts during the decompression subphase from the bottom
event to the liftoff event. Similarly, the compensation force Fn+1 can be determined as

F CFC
n+1 = �E+

n+1

r0 − rB

, (13)

where rB represents the leg length at bottom.
The VSC method adjusts the total mechanical energy by controlling leg stiffness during the stance

phase. Inspired by the leg stiffness control system of humans and animals, the decompression leg
stiffness must be greater in order to increase the total system energy. Extra stiffness �k is increased
in the decompression subphase and can be determined as

�k = 2 · �E+
n+1

(r0 − rB)2
. (14)

Thus, the compensational force Fn+1 can be calculated based on the Hooke’s Law as follows:

F VSC
n+1 = �k · (r0 − r) = 2 · �E+

n+1 · (r0 − r)

(r0 − rB)2
. (15)

The above-mentioned methods can realize energy compensation for the SLIP system. However,
there are advantages and disadvantages of these methods. For instance, the RIC method requires small
enough acting time in order to obtain accurate energy compensation values. This is entirely feasible in
the simulation system, but is impractical in the actual system due to the response speed of actuators.
For the CFC method, the constant force can be set during the decompression subphase, nevertheless,
it’s not reasonable that actuators still continue to provide a constant force before the liftoff event.
In comparison, the VSC method is more consistent with the biological regulation mechanism of
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Fig. 7. (Colour online) Simulation model of the SLIP running system in ADAMS.

leg stiffness, and it is achievable in physical robot platforms. Therefore, we choose to use the VSC
method for energy compensation in the HFC method.

4. Simulation and Results
In order to verify the correctness and effectiveness of the HFC method, we design the dynamic
model of the SLIP system on different terrains using ADAMS, which is a virtual prototype analysis
software belonging to MSC Software Corporation, and establish the HFC control model using
MATLAB/Simulink. With the co-simulation technique, we test the real-time stability control for
the SLIP model in a variety of circumstances, such as inplace vertical jumping, running on the flat
terrain, running on the sunken terrain, running down the stairs, and so on. The communication interval
between ADAMS and Simulink is 0.0001 sec for all simulations.

4.1. Simulation modeling
An SLIP running model is established in ADAMS environment. Figure 7 illustrates the detailed
structure and sensor system of the model. Our SLIP system consists of a body, a link, a spring with
damper and a toe (Fig. 7(a)). We regard the equivalent mass of the system to be loaded concentrated
on body COM. The link plays the role of a connector between the body and the spring. In the SLIP
template, there is nothing at the end of the spring and the spring is directly in contact with the ground.
However, a toe is fixed at the end of the spring in our model to facilitate the CONTACT setting in
ADAMS environment. Simulation model should best reflect the actual system, therefore the sensor
and actuator systems are added into the SLIP simulation model. The velocity sensor is set at the body
COM and used to detect the vertical and forward speed of the body COM.

Angle sensor is set on the link, used to obtain swinging angle of the leg. Leg-length sensor, put
on the spring, can detect the real-time change of the leg length in the process of movement. Contact
sensor on the toe measures the contact force between the SLIP system and the ground, and decides
accordingly whether the system has touched or left the ground.

A revolute joint is set between the body and the link, and another translational joint is set between
the link and the toe along the spring. In addition, active controlled actuators include angle actuator and
compensational force actuator, which are set respectively on the link and equivalent spring, realizing
the stability of the system through the outputs of the controlling torque T and the compensational force
F (Fig. 7(b)). The established SLIP model takes physiological index of physical dogs as indicated in
Table I.

The equivalent stiffness of an SLIP model can be regarded as that of two parallel legs. Then
the stiffness of the spring is set to 6 kN/m according to the requirements of equivalent stiffness.
Although link and toe in our model are massless in principle, we set their negligible mass for
dynamic simulation requirements. Physical parameters of the model are shown in Table II. The initial
conditions of simulation experiments include the initial horizontal velocity and the apex height. In
literature we refer to the running speed of the dog as 2.8 m/s,35 with the apex height information
not mentioned. Considering that our proposed method is not sensitive to the initial conditions, we
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Table I. Physiological index of physical dogs34,35.

Description Value

Body mass 23.6 kg
Average leg length 0.5 m
Running speed 2.8 m/s
Front leg stiffness 2.9 kN/m
Rear leg stiffness 1.9 kN/m

Table II. Physical parameters of SLIP model.

Parameter Description Value

mB Mass of the body 23.6 kg
mLink Mass of the link 0.005 kg
mT oe Mass of the toe 0.003 kg
hB Distance between toe and COM 0.7 m
r0 Nominal spring length 0.5 m
k Spring stiffness 6 kN/m
c Spring damping 0.01 kN/m
μ Gain constant 0.1

Fig. 8. (Colour online) Co-simulation model in MATLAB/Simulink.

estimate the distance between the toe and the ground in flight phase as about 100 mm for a running
dog. Adding the distance between the toe and COM (700 mm) and the toe radius (40 mm), the apex
height can be estimated to be 840 mm.

After modeling in ADAMS, we generate the ADAMS control plant and import it into
Matlab/Simulink. Then we convert the HFC strategy into Matlab and design the co-simulation model
in MATLAB/Simulink. Figure 8 shows the co-simulation model for the SLIP running simulation
experiments in this paper.

4.2. Inplace vertical jumping
In order to verify our HFC strategy, first an inplace vertical jumping simulation experiment is designed.
The initial height of the apex is set to a constant value of 840 mm, while both initial and expected
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Fig. 9. (Colour online) Phase portraits for the inplace vertical jumping with different control strategies. (a)
Control without HFC strategy. (b) Control with HFC strategy.

stable horizontal velocities are set to zero. The expected height of the apex is 840 mm. This experiment
focuses itself on the effectiveness verification of dynamic energy compensation of HFC strategy.

We conducted simulation experiments with and without HFC control strategy in application for
comparison. As for the model without HFC control strategy in use, the vertical height of the apex in
flight phase keep decreasing in every cycle due to spring damping and energy dissipation of contact.
While for the model employing HFC control strategy, continuous vertical jumping can be achieved,
with the apex height returning to expected value within two cycles. Figure 9 shows phase portraits of
these two simulations in comparison, with the horizontal axis showing vertical velocity of the body
and the vertical axis presenting its COM height. We can see in the figure that for the system with no
HFC control strategy, the state of the model varies with every cycle and its locomotion is an open loop
periodical locomotion that cannot converge or keep stable (Fig. 9(a)). On the contrary, locomotion
of the system with HFC control strategy converges quickly, forming a closed loop, and realizes the
stable control of the SLIP model (Fig. 9(b)). It is clear that the solution converges to a limit cycle.

4.3. Running on a flat terrain
We additionally set initial horizontal velocity of the model to 2.8 m/s to conduct a running simulation
experiment on a flat terrain. In this experiment, we have to take into consideration not only the
dynamic compensation of the system energy but also the verification of the regulation control of the
model contact angle in every cycle. The initial condition remains unchanged, with the control target
to be a height of periodical apex of 840 mm and a forward speed of 2.8 m/s. The complexity of
the real-time control increases due to the coupling of model’s horizontal velocity and the system’s
energy. The motion sequence diagram of this experiment is shown in Fig. 10.

The simulation results are shown in Fig. 11. The height of the model will decrease after its first
contact with the ground, since the default compensation energy of the first cycle is zero. But from
the second ground contact, the system will recover its energy quickly and realize periodical jumping
(Fig. 11(a)). From the curves of body COM trajectory and horizontal velocity, we can find that the
apex height fluctuates in every cycle, but the fluctuation remains little. This agrees with the fluctuation
of the body COM and the forward speed of the real dog. Figure 11(b) is the phase portrait of this
experiment. We find that except for the relative large variation of return map in the first contact due
to lack of compensational energy, this map in the following cycles returns basically to closed curves,
which means the stable periodical motion of the system is achieved. As shown in the Figs. 11(c)
and (d), the apex height error and the horizontal velocity error are calculated. Relative error quickly
converges to a value within 1%, which means the system has been controlled at the target state,
thereby achieving the desired periodical motion.

4.4. Running on a sunken terrain
Existing strategies are mostly concerned with the control effects of the model on a flat terrain, paying
little attention to the locomotion on an uneven terrain with damping in consideration. We made a
trial to apply our HFC control strategy to a simulation experiment of the model on an uneven terrain,
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Fig. 10. (Colour online) Motion sequence diagram for running on a flat terrain (desired running speed: 2.8 m/s).

Fig. 11. (Colour online) Simulation results for running on a flat terrain. (a) COM trajectory and horizontal
velocity. The desired apex height, yAPEX

des = 840 mm, and the desired horizontal velocity, ẋdes = 2800 mm/s. (b)
Phase plane trajectory. (c) Apex height error. (d) Horizontal velocity error.

since this strategy employing hybrid feedback according to the previous state has certain robustness
and requires no knowledge of terrain.

First, we conduct a simulation of the model on a sunken terrain. Initial condition is set similar
to the previous one, with the initial apex height and the forward speed set at 840 mm and 2.8 m/s
respectively, and the expected control target remains a height of periodical apex of 840 mm and a
forward speed of 2.8 m/s. The sunken height of the terrain that we establish is 50 mm. The system
is supposed to keep its stable periodical movement with no information of terrain, and try to achieve
the expected control target at the meantime. Figure 12 shows the sequence of movements of the SLIP
model running on a sunken terrain.

The simulation results are shown in Fig. 13. Before entering stage 2, the system is able to converge
quickly to the expected as running on a flat terrain. When the model steps into stage 2, the energy
of the system increases due to the sagging of its body COM. Since HFC control strategy employs
hybrid feedback according to a previous state, system state of the first ground contact in stage 2 will
go through great fluctuations, but will converge quickly to target one in the following cycles. Process
of the model from stage 2 to stage 3 is similar. System state of its first contact phase out of stage 2
varies, but can soon converge to a stable state under the regulation of hybrid feedback (Fig. 13(a)).
Figure 13(b) is the phase portrait of current terrain. We can see that although there is fluctuation in
the system state, the motion of the system is still able to actively converge to stable state when terrain
information is unknown, indicating system’s adaptability to different terrain types. The apex height
error and the horizontal velocity error are calculated in Figs. 13(c) and (d). Relative error quickly
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Fig. 12. (Colour online) Motion sequence of running in the sunken terrain (desired running speed: 2.8 m/s).

Fig. 13. (Colour online) Simulation results for the SLIP model running in the sunken terrain. (a) COM
trajectory and horizontal velocity. The sunken height, hsunken = 50 mm, and the desired horizontal velocity,
ẋdes = 2800 mm/s. (b) Phase portrait. (c) Apex height error. (d) Horizontal velocity error.

converges to a value in the range of about 1%, which means the system has been controlled at the
target state, achieving the desired periodical motion.

4.5. Running down the stairs
We continue to establish another type of uneven terrain, i.e. running down the stairs. The height
difference of the stairs is set to 150 mm, 21% of the system length, similar to those in empirical
life. The simulation experiment is still conducted on the condition that the terrain is unknown, with
initial conditions and control target being the same as in the previous experiment. The initial height
is 840 mm and the initial horizontal velocity is 2.8 m/s. The expected control target remains a height
of periodical apex of 840 mm and a forward speed of 2.8 m/s. The motion sequence diagram of this
experiment is shown in the Fig. 14.

The motion trail of the body COM trajectory of the whole simulation process is presented in
Fig. 15(a). It can be seen that the kinetic stability of the system is achieved in the motion process.
Every time the terrain changes, compensational energy varies greatly, leading to motion fluctuation.
This is because the HFC control strategy employs hybrid feedback, which depends on the previous
state. But this variation is controllable and the motion of the system is able to converge in a very short
time. Figure 15(b) is the phase portrait of the stairs terrain from which we can find that the return
map is able to converge to closed curves, indicating the stable periodical motion achieved by the
system. As shown in the Figs. 15(c) and (d), the apex height error and the horizontal velocity error are
calculated. Every time, even when terrain condition changes abruptly, introducing great fluctuations
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Fig. 14. (Colour online) Motion sequence diagram for running down the stairs (desired running speed: 2.8 m/s).

Fig. 15. (Colour online) Simulation results for the SLIP model running down the stairs. (a) COM trajectory
and horizontal velocity. The height of the stairs, hstair = 150 mm, and the desired horizontal velocity, ẋdes =
2800 mm/s. (b) Phase portrait. (c) Apex height error. (d) Horizontal velocity error.

into the system, the relative error quickly converges to a value in the range of about 1%. This means
the system has been controlled at the target state, achieving the desired periodical motion.

5. Conclusions
A stability control strategy based on HFC is proposed for SLIP running systems considering damping
in this paper. The HFC control strategy, including mainly a contact angle controller and a system
energy compensator, predicts the values of the contact angle and the compensational energy of the
next contact phase by way of comparing the current system state with target one and then realizes
the control of the actuators through PD controller and compensational force controller. Because
of its employment of hybrid feedback, HFC control strategy has certain robustness and automatic
adaptability, and is able to achieve the control target of system’s convergence to stability even when
the terrain is unknown.

The HFC control strategy reduces the energy fluctuation of the system since it additionally
compensates for energy depleted in the current cycle with the amount of depletion in the previous
cycle, so a stable periodical motion of the system can be achieved in the shortest time possible.
But this requires that the HFC strategy is able to measure the system state of the previous cycle. If
terrain condition changes, depletion of contact phase changes as well. Using the compensation value
previously calculated will lead to fluctuation in the motion trail of the system, and this is also the

https://doi.org/10.1017/S0263574713001239 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001239


HFC for SLIP-based robots running on rough terrain 1079

reason for the response lag of the system employing HFC control strategy. Considering fluctuation
of the system’s motion trail to certain degree is not only acceptable but also inevitable, the HFC
strategy can get the system state to converge in the shortest time possible to target one, achieving the
periodical stability control of the SLIP system.

To further improve our HFC control strategy, special strategies are applied to the system at the
boundary where terrain changes are under development, and an experimental prototype of the SLIP
running system with the same driving and sensing system as in simulation is in the process of
design and manufacturing. In the following work, we hope to perfect and optimize our HFC control
algorithms, and apply these to real robotic systems to verify its control effects.
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