Adding Edges to Increase the Chromatic Number of a Graph

ALEXANDR KOSTOCHKA^{1†} and JAROSLAV NEŠETŘIL^{2‡}

¹Department of Mathematics, University of Illinois, Urbana, IL 61801, USA and Sobolev Institute of Mathematics, Novosibirsk, Russia (e-mail: kostochk@math.uiuc.edu)
²Computer Science Institute of Charles University, Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Praha 1, Czech Republic (e-mail nesetril@iuuk.mff.cuni.cz)

Received 18 April 2015; revised 4 February 2016; first published online 31 March 2016

If $n \ge k + 1$ and *G* is a connected *n*-vertex graph, then one can add $\binom{k}{2}$ edges to *G* so that the resulting graph contains the complete graph K_{k+1} . This yields that for any connected graph *G* with at least k + 1 vertices, one can add $\binom{k}{2}$ edges to *G* so that the resulting graph has chromatic number > k. A long time ago, Bollobás suggested that for every $k \ge 3$ there exists a *k*-chromatic graph G_k such that after adding to it any $\binom{k}{2} - 1$ edges, the chromatic number of the resulting graph is still *k*. In this note we prove this conjecture.

2010 Mathematics subject classification : Primary 05C15 Secondary 05C35

1. Introduction

This note is another contribution to the old theme of sparse graphs with high chromatic number [4].

For a positive integer k and a connected graph G with at least k + 1 vertices, let f(G,k) denote the minimum number m of edges such that after adding m edges (and any number of vertices) to G we obtain a graph with chromatic number at least k + 1. Since G is connected, we can add $\binom{k}{2}$ edges to some subtree of G with k edges so that the resulting graph contains the complete graph K_{k+1} . Thus $f(G,k) \leq \binom{k}{2}$ for every connected graph G with at least k + 1 vertices. One may expect that if in addition G is k-chromatic,

[†] Supported in part by NSF grant DMS-1266016 and by grants 15-01-05867 and 16-01-00499 of the Russian Foundation for Basic Research.

[‡] Supported in part by the Project LL1201 ERC-CZ CORES and by CE-ITI P202/12/G061 of GAČR.

then $f(G,k) < \binom{k}{2}$. However, in the 1970s, Bollobás [1] suggested that for every $k \ge 3$ there exists a k-chromatic connected graph G_k with at least k + 1 vertices such that $f(G_k, k) = \binom{k}{2}$. The goal of this note is to prove this conjecture.

In [3], the authors used uniform hypergraphs of large girth to modify the classic construction of Tutte (see [2]) to obtain a sequence of sparse graphs G(k, g) with chromatic number k and girth g. We shall use these graphs to prove our result. The properties of these graphs we shall need are collected in the following lemma.

Lemma 1.1. Let $k \ge 4$ and $g \ge 3$. Then G = G(k, g) has chromatic number k and girth g; furthermore, its vertex set has partition $V_3 \cup V_4 \cup \cdots \cup V_k$ such that

- (a) the sets V_4, \ldots, V_k are independent, and $G[V_3]$ is the disjoint union of cycles;
- (b) for all $3 \le i < j \le k$, each vertex $v \in V_i$ has exactly one neighbour in V_j ; in particular, if $v \in V_3$ then d(v) = k 1.

Our main result, stated next, will be proved in Section 2.

Theorem 1.2. Let $k \ge 4, g \ge k^4$, G = (V, E) = G(k, g) and let H = (V', E') be a graph with $\chi(H) \ge k + 1$. Then $|E(H) \setminus E(G(k, g))| \ge \binom{k}{2}$.

2. Proof of Theorem 1.2

As every graph of chromatic number k + 1 contains a subgraph of minimum degree k, it suffices to show that if H has minimum degree k then

$$|E(H) \setminus E(G(k,g))| \ge \binom{k}{2}.$$
(2.1)

Note that $|V'| \ge \delta(H) + 1 \ge k + 1$. Assuming, as we may, that $V' \subset V$, set G' = G[V']. As remarked at the beginning, (2.1) holds if G' is acyclic. Assume that G' contains a cycle. Since every cycle of G (and so of G') contains at least $g \ge k^4$ vertices, $|V'| \ge k^4$.

For i = 3, ..., k, set $V'_i = V_i \cap V'$ and let W_i denote the set of vertices in V'_i incident with the edges in E(H') - E(G). In particular $V'_3 = W_3$, since in G the vertices in V_3 have degree k - 1. We will prove that

$$|W| \ge k^2$$
 for some *i* with $3 \le i \le k$. (2.2)

This implies $|E'| \ge k^2/2$, and so the theorem.

Suppose (2.2) is false, *i.e.*, $|W_i| < k^2$ for every *i*; thus our task is to arrive at a contradiction. Since

$$|V'| = \left|\bigcup_{i=3}^{k} V'_{i}\right| \ge k^{4},$$

there is an *i* with $|V'_i| > k^3$ and so $|V'_i \setminus W_i| > k^3 - k^2$. Choose the minimum such *i*. Then i > 3 because otherwise we would have $k^2 > |W_3| = |V'_3| > k^3$.

Since $|V'_i \setminus W_i| > k^3 - k^2$, and each vertex in $V'_i \setminus W_i$ has at least k - (k - i) = i neighbours in $V'_3 \cup \cdots \cup V'_{i-1}$, and no vertex in $V'_3 \cup \cdots \cup V'_{i-1}$ has more than one neighbour

in $V_i \supset V'_i \setminus W_i$, the set $V'_i \setminus W_i$ has at least $i|V'_i \setminus W_i|$ neighbours in $V'_3 \cup \cdots \cup V'_{i-1}$. In particular,

$$|V'_3\cup\cdots\cup V'_{i-1}| \ge i|V'_i\setminus W_i| > i(k^3-k^2),$$

and so there is a $j \in \{3, ..., i-1\}$ such that

$$|V'_j| \ge \frac{ik^2(k-1)}{i-3} > k^3,$$

contradicting the minimality of *i*, and completing the proof of (2.2) and the theorem. \Box

Note that the proof yields more than is claimed in the theorem. We did not make use of $\chi(H) \ge k$; we used only that H has a subgraph of minimum degree k. Briefly, *if* $H \supset G(k,g)$ has minimum degree at least k then $|E(H) \setminus E(G(k,g))| \ge {k \choose 2}$, provided $k \ge 4$ and $g \ge k^4$.

Acknowledgement

We thank Béla Bollobás for fruitful discussions and a referee for suggestions greatly improving the presentation of this note.

References

- [1] Bollobás, B. personal communication.
- [2] Descartes, B. (1954) Solution to advanced problem No 4526. Amer. Math. Monthly 61 532.
- [3] Kostochka, A. and Nešetřil, J. (1999) Properties of Descartes' construction of triangle-free graphs with high chromatic number. *Combin. Probab. Comput.* 8 467–472.
- [4] Nešetřil, J. (2013) A combinatorial classic: Sparse graphs with high chromatic number. In Erdős Centennial, Springer, pp. 383–407.