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We generate predictions for the fluctuating pressure field in turbulent pipe flow by
reformulating the resolvent analysis of McKeon and Sharma (J. Fluid Mech., vol. 658,
2010, pp. 336–382) in terms of the so-called primitive variables. Under this analysis,
the nonlinear convective terms in the Fourier-transformed Navier–Stokes equations
(NSE) are treated as a forcing that is mapped to a velocity and pressure response by
the resolvent of the linearized Navier–Stokes operator. At each wavenumber–frequency
combination, the turbulent velocity and pressure field are represented by the
most-amplified (rank-1) response modes, identified via a singular value decomposition
of the resolvent. We show that these rank-1 response modes reconcile many of the
key relationships among the velocity field, coherent structure (i.e. hairpin vortices),
and the high-amplitude wall-pressure events observed in previous experiments and
direct numerical simulations (DNS). A Green’s function representation shows that
the pressure fields obtained under this analysis correspond primarily to the fast
pressure contribution arising from the linear interaction between the mean shear and
the turbulent wall-normal velocity. Recovering the slow pressure requires an explicit
treatment of the nonlinear interactions between the Fourier response modes. By
considering the velocity and pressure fields associated with the triadically consistent
mode combination studied by Sharma and McKeon (J. Fluid Mech., vol. 728, 2013,
pp. 196–238), we identify the possibility of an apparent amplitude modulation effect in
the pressure field, similar to that observed for the streamwise velocity field. However,
unlike the streamwise velocity, for which the large scales of the flow are in phase
with the envelope of the small-scale activity close to the wall, we expect there to be
a π/2 phase difference between the large-scale wall-pressure and the envelope of the
small-scale activity. Finally, we generate spectral predictions based on a rank-1 model
assuming broadband forcing across all wavenumber–frequency combinations. Despite
the significant simplifying assumptions, this approach reproduces trends observed
in previous DNS for the wavenumber spectra of velocity and pressure, and for the
scale-dependence of wall-pressure propagation speed.
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Pressure from the resolvent analysis 39

1. Introduction
From noise generation to structural vibration and fatigue, the fluctuating pressure

field induced by wall-bounded turbulent flows is important across a range of
engineering problems. Further, the wall-pressure field is coupled to velocity fluctuations
across the entire domain via a Poisson equation, and the wall-parallel gradient in wall
pressure is directly proportional to the flux of vorticity from the wall (Koumoutsakos
1999). As a result, an improved understanding of the wall-pressure field can also
contribute significantly to the development and implementation of effective control,
especially because wall-based sensing represents the only truly practical option in
most flows of engineering interest.

Unfortunately, there are many technical challenges associated with obtaining
accurate wall-pressure measurements. The small spatial scales associated with
turbulent flows impose severe sensor size limitations (Schewe 1983; Klewicki,
Priyadarshana & Metzger 2008). The presence of significant background noise and
structural vibration results in inherently noisy measurements that require careful
correction (Tsuji et al. 2007, 2012). Given these difficulties, our understanding of
the wall-pressure field beneath turbulent flows lags behind our understanding of the
fluctuating velocity fields.

Recent advances in direct numerical simulation (DNS) (e.g. Jimenez & Hoyas
2008), along with improved pressure measurement techniques and the development
of large-scale, high-Reynolds-number flow facilities (Tsuji et al. 2007; Klewicki et al.
2008) have provided significant insight into the statistical nature of the pressure field.
However, the structural nature and origin of the pressure field is less well established.
An accurate structural description requires temporally and spatially resolved pressure
data. A characterization of the origin of these pressure structures also requires
simultaneous velocity information. The resulting storage and processing requirements
compound any technical challenges associated with obtaining such data in the first
place.

1.1. Structure and origin of wall-pressure fluctuations
Broadly, numerical (Kim 1989; Jimenez & Hoyas 2008) and experimental (Klewicki
et al. 2008) results agree that, unlike the streamwise velocity fluctuations, wall-
pressure fluctuations tend to be circular in terms of aspect ratio (i.e. comparable
streamwise and spanwise length scales). Laboratory measurements also suggest that
the wall-pressure field consists of at least two distinct groups of structures. The first
group consists of large-scale, low-frequency fluctuations that originate from velocity
structures in the outer regions of the flow (e.g. Thomas & Bull 1983; Snarski &
Lueptow 1995). The second group consists of high-frequency, small-scale disturbances
that originate from structures in the buffer region of the flow (e.g. Schewe 1983;
Johansson, Her & Haritonidis 1987). These small-scale disturbances have been shown
to be responsible for large-amplitude pressure spikes that contribute significantly to
the long-time root-mean-square (r.m.s.) wall pressure. Further, recent measurements
by Ghaemi & Scarano (2013) show that these high-amplitude pressure peaks are
correlated with distinct hairpin-like structures in the flow field.

DNS results (Kim 1989) and experimental observations (Schewe 1983; Johansson
et al. 1987) suggest that the small-scale structures tend to have length scales
l+ ∼O(100–200) and propagate at speeds c+ ≈ 11–13 (note: throughout this paper, a
superscript + denotes normalization with respect to the inner units: friction velocity,
uτ , and viscosity, ν). Ghaemi & Scarano (2013) suggest slightly higher propagation
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40 M. Luhar, A. S. Sharma and B. J. McKeon

speeds for the high-amplitude pressure peaks, c+ ≈ 14. Beyond this, there is no
general consensus on the typical length scales and propagation speeds associated
with the wall-pressure field. Broadband propagation speeds for wall pressure reported
in the literature range from 0.5UCL to 0.8UCL, where UCL represents the centreline
or free-stream velocity depending on geometry (Bull 1967; Thomas & Bull 1983;
Kim 1989; Choi & Moin 1990; Snarski & Lueptow 1995; Hu, Morfey & Sandham
2002). However, it is clear that a single broadband propagation speed is inappropriate
for translating Eulerian wall-pressure measurements into structural features. Both
DNS (e.g. Choi & Moin 1990; Hu et al. 2002) and experiment (e.g. Bull 1967;
Dinkelacker et al. 1977; Snarski & Lueptow 1995; Klewicki et al. 2008) suggest a
scale dependence; larger wall-pressure structures tend to propagate faster than smaller
wall-pressure structures.

The spectral model developed by Panton & Linebarger (1974) suggests that the
propagation speed for wall pressure exhibits an overlap layer dominated by structures
that scale linearly with distance from the wall, consistent with the attached-eddy
hypothesis first proposed by Townsend and later developed by Perry and coworkers
(e.g. Perry & Chong 1982; Perry, Henbest & Chong 1986; Perry & Marusic 1995).
More recently, Ahn, Graham & Rizzi (2010) have extended the attached-eddy
concept to generate a structure-based model for wall-pressure fluctuations. This
model superposes contributions from individual eddies of an assumed horseshoe-like
shape, with a number density that yields total circulation consonant with the mean
velocity profile. The pressure contributions from individual eddies are estimated by
solving the governing Poisson equation, assuming that the so-called fast source term
arising from the linear interaction between the mean shear and the wall-normal
velocity is dominant. Despite the simplifying assumptions, the model developed by
Ahn et al. (2010) generates predictions which agree well with previous experiment
and simulation, suggesting that the attached-eddy concept may also provide insight
into the structure of the wall-pressure field.

The measurements of Thomas & Bull (1983) suggest an interdependence between
the large- and small-scale wall-pressure structures. Specifically, Thomas & Bull (1983)
observed that the smoothed, rectified high-frequency pressure fluctuations (i.e. the
envelope of the high-frequency fluctuations) and the low-frequency fluctuations
were correlated, and that the envelope of the high-frequency pressure fluctuations
was approximately π/2 out of phase with the low-frequency pressure fluctuations.
In contrast, the envelope of the high-frequency wall shear stress was observed to
be nearly in phase with the low-frequency wall shear stress. The latter result is
consistent with the apparent amplitude modulation of the near-wall, small-scale
velocity fluctuations due to the footprint of the so-called very large-scale motions
(VLSMs) observed in previous studies (Bandhyopadhyay & Hussain 1984; Mathis,
Hutchins & Marusic 2009; Marusic, Mathis & Hutchins 2010; Mathis, Hutchins
& Marusic 2011). Hence, it may be possible to observe an apparent amplitude
modulation in the wall-pressure field as well, albeit with a different phase relationship
between the small and large scales. However, bear in mind that a direct comparison
between the measurements of Thomas & Bull (1983) and the more recent amplitude
modulation studies is not strictly appropriate. The experiments of Thomas & Bull
(1983) were performed at lower Reynolds number and the large-scale structures
they observed had much smaller length scales, ≈0.5δ where δ is the boundary layer
thickness, compared to the VLSMs of length O(10δ–20δ) thought to modulate the
near-wall velocity and shear stress (Marusic et al. 2010).
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1.2. Outline
To provide further insight into the structure and origin of the wall-pressure field
under turbulent flows, this paper extends the resolvent analysis proposed by McKeon
& Sharma (2010). For brevity, we only consider turbulent pipe flow. However, given
the broad similarity in flow characteristics across the canonical flow configurations
(pipes, channels, boundary layers; Monty et al. 2009), we expect our results to be
generally applicable, at least in the near-wall region.

The resolvent analysis interprets the Navier–Stokes equations (NSE), Fourier
transformed in the streamwise and azimuthal directions, and in time, as a forcing–
response system. The nonlinear convective terms in the NSE are treated as the forcing
which creates the turbulent velocity field in response. The transfer function that maps
this forcing to a velocity response is the well-known resolvent operator. Note that
Fourier modes are the most appropriate bases for decomposition in the homogeneous
directions. To identify an appropriate basis for the inhomogeneous wall-normal
direction, the resolvent analysis employs a gain-based decomposition. Specifically,
at each wavenumber–frequency combination, a singular value decomposition of
the resolvent operator identifies the forcing and response modes (i.e. profiles in
the wall-normal direction) that have the highest input–output gain. In other words,
this decomposition identifies the velocity response that is most amplified for an
unstructured forcing to the system. McKeon & Sharma (2010) show that, in general,
these highly amplified response modes are helical, propagating velocity structures
that resemble three-dimensional versions of the near-singular critical-layer solutions
obtained via classical Orr–Sommerfeld–Squire analyses.

More recently, Sharma & McKeon (2013) have shown that structures resembling
hairpin vortices arise naturally from the superposition of a pair of obliquely
propagating velocity response modes, with azimuthal wavenumber ±n. More complex
structures, such as modulating packets of hairpin vortices, arise from the superposition
of three mode pairs that are triadically consistent in terms of frequency and
wavenumber. Sharma & McKeon (2013) consider such mode combinations to be
turbulence kernels. In this paper, we describe the wall-pressure field associated
with such model structures. In particular, we consider the relationship between the
velocity and pressure fields associated with the wavenumber–frequency combinations
shown in table 1 at Reynolds number Re = 2ŪR/ν = 75 000 (R+ = 1800), where
Ū is the bulk-averaged mean velocity and R is pipe radius. This Reynolds number
corresponds roughly to the experimental conditions of Thomas & Bull (1983) and
Johansson et al. (1987), and the highest Reynolds number achieved in DNS by
Jimenez & Hoyas (2008). The smaller, near-wall mode kb serves as a model for the
high-intensity high-frequency buffer layer structures observed in previous experiments.
The combination of triadically consistent modes k1, k2, and k3 (table 1) represents
the turbulence kernel studied by Sharma & McKeon (2013). Here, we extend this
kernel to include pressure information, and we employ it to consider the relationship
between the small- and large-scale wall-pressure field.

The remainder of this paper is structured as follows: § 2 describes the extension
of the resolvent analysis of McKeon & Sharma (2010) to yield pressure information.
We also develop a Green’s function solution to provide further insight into the origin
of the pressure field. Section 3 describes the velocity and pressure fields predicted for
individual wavenumber–frequency combinations (particularly mode kb), and compares
the predictions to experimental observations. Section 4 presents results pertaining to
the turbulence kernel comprising modes k1, k2, and k3. In § 5, we make additional
simplifying assumptions to yield predictions for wavenumber spectra (§ 5.1), and
propagation speed (§ 5.2). Conclusions are presented in § 6.
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k (λ+x ) n (λ+θ ) c=ω/k (c+) a

Near-wall mode
kb ±60 (190) ±60 (190) 1/2 (12.5)
Turbulence kernel
k1 ±6 (1900) ±6 (1900) 2/3 (16.6) 1
k2 ±1 (11 500) ±6 (1900) 2/3 (16.6) 4.5
k3 ±7 (1650) ±12 (960) 2/3 (16.6) −0.83i

TABLE 1. Streamwise (k) and spanwise (n) wavenumbers, and speed c for modes used
frequently in this paper. The wavenumbers are normalized by pipe radius, and the speed is
normalized by the mean centreline velocity. Also shown are inner-normalized estimates for
the wavelength (λ+x , λ+θ ) and the wave speed (c+) at Reynolds number Re= 75 000 (R+=
1800). The amplitude, a, describes the relative magnitude and phase of the three triadically
consistent modes k1, k2, and k3 that make up the turbulence kernel considered in § 4.

2. Approach
A summary of previous studies within the broad resolvent analysis framework can

be found in McKeon, Jacobi & Sharma (2013). In this paper, we develop the resolvent
analysis further to better understand the pressure field in wall-bounded turbulent flows.

2.1. Resolvent analysis
We consider fully developed turbulent pipe flow. In the light of the cylindrical
geometry, the statistical homogeneity in the streamwise direction, and stationarity
in time, the turbulent velocity (ũ) and pressure (p̃) fields can be expressed as
a superposition of Fourier modes with streamwise wavenumber k, azimuthal
wavenumber n (constrained to be an integer), and frequency ω:[

ũ(x, y, θ, t)
p̃(x, y, θ, t)

]
=
∑

n

∫ ∞
−∞

∫ ∞
−∞

[
uk(y)
pk(y)

]
ei(kx+nθ−ωt) dk dω (2.1)

where x and θ are the streamwise and azimuthal coordinates, and t is time. The wall-
normal coordinate is y = 1 − r, where r is the radial coordinate normalized by the
pipe radius, R. With this decomposition, each wavenumber–frequency combination k=
(k, n, c=ω/k) represents a helical wave propagating downstream with speed c.

The mean velocity profile and pressure field are expressed as u0 = (U(y), 0, 0)
and p0 = P(x), and the fluctuating velocity and pressure fields are expressed as u =
(u, v,w)= ũ−u0 and p= p̃−p0. The first (U,u), second (v), and third (w) components
of the velocity field represent the streamwise, wall-normal, and azimuthal velocities,
respectively. Note that this paper employs both radial and wall-normal coordinates
(figure 1). For notational convenience, most mathematical operations are presented
in terms of the radial coordinate (r) and velocity (v̂). To ensure consistency with
boundary layer and channel flow studies, the results are presented almost exclusively
in terms of the wall-normal coordinate (y) and velocity (v).

Under the Fourier representation shown in (2.1), at each wavenumber–frequency
combination k the NSE for turbulent pipe flow can be expressed in dimensionless
form as:

(−iω+ ikU)uk + vkU′ex +∇pk − Re−1∇2uk = f k, (2.2)
∇ · uk = 0. (2.3)
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FIGURE 1. Schematic showing coordinate system. The x-axis goes into the page.

Here, Re is the Reynolds number, U′ is the mean shear ex is the unit vector in
the streamwise direction, and the nonlinear convective terms at each wavenumber–
frequency combination are lumped into a forcing term, f k = (−u · ∇u)k. Equations
(2.2) and (2.3) can be re-arranged to arrive at the following input–output (or
forcing–response) relationship:[

uk
pk

]
=
(
−iω

[
I

0

]
−
[
Lk −∇
∇

T 0

])−1 [
I
0

]
f k

= H̃k f k. (2.4)

The nonlinear terms (f k) are interpreted as a forcing to the linear Navier–Stokes
system, and the resolvent operator, H̃k, maps this forcing to velocity (uk) and
pressure (pk) responses. In (2.4), I is the identity operator, ∇ and ∇T represent the
gradient and divergence operators, and Lk(k, U, Re) is the linear Navier–Stokes
operator:

Lk =


−ikU + D+ r−2

Re
−∂U
∂r

0

0 −ikU + D
Re

−2inr−2

Re

0
2inr−2

Re
−ikU + D

Re

 (2.5)

where D=−k2 − (n2 + 1)r−2 + ∂2
r + r−1∂r represents the Laplacian.

The original resolvent analysis of McKeon & Sharma (2010) projected the NSE
onto a series of divergence-free basis functions that satisfied the correct boundary
conditions at the wall (uk= 0). This projection satisfies mass continuity and eliminates
the pressure term in the momentum equations (Meseguer & Trefethen 2003). Instead
of employing this projection, in this paper we formulate the resolvent operator
directly from the so-called primitive variable (2.4). Pressure and mass continuity are
retained explicitly. This extension permits direct access to pressure information, and
it also allows consideration of alternative boundary conditions (e.g. Luhar, Sharma &
McKeon 2013, 2014).

Following McKeon & Sharma (2010), we perform a singular value decomposition
of the resolvent operator H̃k, discretized using a Chebyshev pseudospectral method,
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to identify high-gain forcing and response directions under an energy norm. To avoid
the singularity at r = 0, we follow the method outlined in Trefethen (2000, Chapter
11). The grid is generated on an even number (2N) of points for r ∈ [−1, 1]. The
N points for r ∈ (0, 1] are retained and the [N × N] matrices for differentiation are
formulated from their [2N × 2N] counterparts by taking advantage of the appropriate
odd/even symmetry conditions across r = 0 for the velocity and pressure fields. To
enforce an energy norm within the primitive-variable formulation employed here, the
forcing–response system shown in (2.4) is scaled such that:

[
Wu 0

] [uk
pk

]
=
([

Wu 0
]
H̃kW−1

f

)
Wf f k (2.6)

or
Wuuk = H̃ S

k Wf f k. (2.7)

Here, the discretized resolvent operator H̃k is a [4× 3] block matrix and the scaled
resolvent operator H̃ S

k is a [3× 3] block matrix. The [3× 3] block diagonal matrices
Wu and Wf incorporate numerical quadrature weights which ensure that a singular
value decomposition of the scaled resolvent operator:

H̃ S
k =

∑
m

ψk,mσk,mφ
∗
k,m (2.8)

where
σk,1 >σk,2 · · ·>σk,m > 0, (2.9)

φ∗k,lφk,m = δlm, ψ∗k,lψk,m = δlm, (2.10a,b)

yields forcing modes f k,m=W−1
f φk,m and velocity response modes uk,m=W−1

u ψk,m with
unit energy over the pipe cross-section. In other words, with the scaling shown in (2.6)
or (2.7) the orthonormality conditions shown in (2.10) translate to:∫ 1

0
f ∗k,l f k,m r dr= δlm,

∫ 1

0
u∗k,luk,m r dr= δlm. (2.11a,b)

The superscript ∗ in (2.10) and (2.11) denotes a conjugate transpose.
From (2.6) or (2.7), and (2.8), it is evident that if forcing is aligned in the direction

of f k,m = W−1
f φk,m with unit energy, a velocity response is created in the direction

of uk,m =W−1
u ψk,m with energy σ 2

k,m. Thus, for unit forcing across all f k,m, the most
energetic (i.e. highest σk) velocity response occurs in the direction of uk,1.

Due to the energy norm imposed through the scaling in (2.6) or (2.7), the singular
value decomposition of the scaled resolvent operator (2.8) does not immediately yield
the pressure fields, pk,m, associated with the response modes, uk,m. The pressure field
is recovered by reverting to the unscaled formulation shown in (2.4). Specifically, we
have:

σk,m

[
uk,m
pk,m

]
= H̃k f k,m. (2.12)

Note that an energy norm is a natural choice for the gain analysis pursued here.
Under this norm, the singular value decomposition identifies the forcing direction that
leads to the most amplified, in terms of kinetic energy, velocity response. However,
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bear in mind that alternative norms can also be imposed by scaling the resolvent
appropriately. For instance, the scaling matrix Wu may be altered such that the
integrals in (2.11) weight each component of velocity differently. Alternatively, the
scaling factor

[
Wu 0

]
in (2.6), which only weights the velocity components, may

be replaced by something that only weights the pressure field,
[
0 Wp

]
, such that

the singular value decomposition identifies the forcing modes that lead to the largest
pressure response. We refer to this alternative scaling as a pressure norm.

Based on the form of the resolvent operator in (2.4), McKeon & Sharma (2010)
suggest that large amplification (high σk) can arise through two mechanisms: via
the linear coupling between mean shear (U′) and wall-normal velocity (vk), which
is responsible for the non-normal nature of the resolvent operator; and when the
velocity responses are localized near a critical layer, yc, where the phase speed of the
modes matches the local mean velocity, c=ω/k=U(yc), such that the diagonal term
is (kU − ω)≈ 0. In the latter case, the velocity response modes closely resemble the
critical-layer solutions obtained from classical linear Orr–Sommerfeld–Squire analyses.
Extending the concepts of linear stability analysis to the present turbulent case, the
first singular response modes uk,1 can loosely be interpreted as the least-damped
velocity fields at the wavenumber–frequency combinations k. They are sustained by
minimal forcing in the direction of f k,1.

Importantly, a recent study by Moarref et al. (2013) shows that the resolvent
operators are low-rank at wavenumber–frequency combinations that are energetic
in real turbulence. Only a limited number of input directions are highly amplified
(i.e. σk,m decreases sharply with increasing m) and so the velocity field uk may be
reasonably approximated by combining the first few singular response modes. In many
cases, the first singular response mode, uk,1, tends to be so highly amplified that it
is expected to dominate the velocity field at that wavenumber–frequency combination,
as long as a non-zero component of forcing exists along f k,1 in the real flow. Indeed,
Moarref et al. (2013) and Sharma & McKeon (2013) show that many of the key
statistical and structural properties of wall turbulence can be captured with rank-1
models (i.e. uk ∝ uk,1). Therefore, we consider only the first singular response modes
for the remainder of this paper. For notational convenience, we drop the additional
subscript 1.

Note that the resolvent analysis only predicts the velocity response mode shape
(uk) and gain (σk) at each wavenumber–frequency combination. It does not predict
the relative amplitude and phase of each uk present in the real flow. Throughout this
paper, we use the term resolvent modes to refer to the normalized velocity fields uk
obtained from the singular value decomposition (i.e. with unit energy across the pipe
cross-section, (2.11)). As is evident from (2.4)–(2.10), the amplitude and phase of each
resolvent mode uk present in the flow depends on the amplitude and phase of the
nonlinear forcing f k.

Note also that construction of the resolvent operators (2.4) requires information
regarding the mean velocity profile, U. For simplicity, in this paper we assume a
mean velocity profile, obtained from experimental (McKeon et al. 2004) or DNS
(Wu & Moin 2008) data. In a more complete model, the mean velocity profile
must be sustained through the summation of the mean Reynolds stress contributions
from individual modes. Since a wide range of wavenumber–frequency combinations
contribute to the mean Reynolds stress, this requires consideration of many resolvent
modes and an explicit treatment of the link between u and f (McKeon et al. 2013).
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2.2. Pressure Poisson equation and Green’s function solution
To better understand the origin of the pressure fields obtained under the resolvent
analysis, we consider a Green’s function representation. Taking the divergence of
the momentum equation (2.2) yields the Poisson equation for the turbulent pressure
field in incompressible flows. The source terms in the pressure Poisson equation
consist of a linear contribution arising from the product of the mean shear (U′) and
streamwise gradient of wall-normal velocity (ikvk), and a nonlinear contribution from
the interaction between the fluctuating velocity components (∇ · f k):

∇2pk =−2ikvkU′ +∇ · f k. (2.13)

From the wall-normal momentum equation, it can be shown that the fluctuating
pressure field must satisfy the following inhomogeneous Neumann boundary condition
at the wall:

∂pk

∂r

∣∣∣∣
r=1

= 1
Re

[
1
r
∂

∂r

(
r
∂v̂k

∂r

)]
r=1

. (2.14)

Following previous literature (e.g. Kim 1989), we split the pressure field into three
separate components: the so-called fast pressure (pk,f ) generated due to the linear
source terms, the slow pressure (pk,s) due to the nonlinear source terms, and the
Stokes pressure (pk,st) due to the inhomogeneous boundary condition. These pressure
components individually satisfy the following equations:

∇2pk,f =−2ikvkU′,
∂pk,f

∂r

∣∣∣∣
r=1

= 0, (2.15a,b)

∇2pk,s =∇ · f k,
∂pk,s

∂r

∣∣∣∣
r=1

= 0, (2.16a,b)

∇2pk,st = 0,
∂pk,st

∂r

∣∣∣∣
r=1

= 1
Re

[
1
r
∂

∂r

(
r
∂v̂k

∂r

)]
r=1

. (2.17a,b)

The DNS of Kim (1989) and Jimenez & Hoyas (2008) suggest that the slow pressure
tends to be larger than the fast pressure, except very close to the wall, where the fast
pressure is more important. However, in general, the magnitude of both the slow and
fast terms is comparable. The Stokes pressure tends to be negligible at high Reynolds
number.

For a source at r′, the Green’s function for the fast and slow components of pressure
in turbulent pipe flow satisfies:

∇2Gk = 1
r
∂

∂r

(
r
∂Gk

∂r

)
−
(

k2 + n2

r2

)
Gk = 1

r
δ(r− r′), (2.18)

∂Gk

∂r

∣∣∣∣
r=1

= 0, (2.19)

where δ represents the Dirac delta. Integrating (2.18) across the delta function yields
the following matching conditions at the source:

∂Gk

∂r

∣∣∣∣
r′+ε
− ∂Gk

∂r

∣∣∣∣
r′−ε
=
ε→0

1
r′
, (2.20)

Gk|r′+ε −Gk|r′−ε =
ε→0

0. (2.21)
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For r′ 6= r, (2.18) represents a modified Bessel equation. So, the Green’s function can
be expressed in terms of the modified Bessel functions, In and Kn. With some algebra,
it can be shown that the solution to (2.18) that satisfies (2.19)–(2.21) for k 6= 0 and
n 6= 0 is:

Gk(r, r′)=
{
−AkIn(kr′)In(kr)− In(kr′)Kn(kr), 1 > r > r′,
−AkIn(kr′)In(kr)− In(kr)Kn(kr′), 0 6 r 6 r′,

(2.22)

with
Ak = Kn−1(k)+Kn+1(k)

In−1(k)+ In+1(k)
(2.23)

(cf. the Green’s function for turbulent channel flow, Kim 1989). Using Gk, the fast
and slow pressure become:

pk,f (r)=
∫ 1

0
Gk(r, r′)

(
−2ikv̂k

∂U
∂r

∣∣∣∣
r′

)
r′ dr′, (2.24)

pk,s(r)=
∫ 1

0
Gk(r, r′)

(
∇ · f k

)
r′ dr′. (2.25)

Further, it is straightforward to show that the Stokes pressure satisfies:

pk,st(r)=
[

In(kr)
In−1(k)+ In+1(k)

]
2

kRe

[
1
r
∂

∂r

(
r
∂v̂k

∂r

)]
r=1

. (2.26)

Note that (2.18)–(2.26) have been expressed in terms of the radial coordinate, r.
However, unless otherwise stated, the discussion below is framed in terms of the
wall-normal coordinate y= (1− r) and velocity.

The magnitude of the Green’s function at the wall (y= 0) corresponding to a source
located at the wall (y′ = 0) is shown in figure 2(a). It is clear that the magnitude of
the Green’s function decreases with increasing streamwise and spanwise wavenumbers.
Thus, for identical source strengths, larger structures (lower k, n) generate stronger
pressure fields. However, bear in mind that the source terms for the pressure Poisson
equation (2.13) depend on gradients in the velocity fields. These gradients are likely
to be larger for the smaller-scale structures.

Figure 2(b) shows the variation in the Green’s functions at the wall (y = 0) for
varying source locations (y′), for the four different wavenumber combinations shown
in table 1: k1 = (k, n)= (6, 6), k2 = (1, 6), and k3 = (7, 12), along with kb = (60, 60).
The streamwise wavenumber k is normalized based on pipe radius, such that k = 1
corresponds to a streamwise wavelength 2πR. The Green’s functions corresponding to
higher wavenumbers (e.g. kb, k3) decay very rapidly away from the wall compared to
those for the lower wavenumbers (e.g. k2). Thus, larger-scale structures in the velocity
field are likely to have a longer-range influence on wall pressure.

3. Individual resolvent modes
In this section, we describe the structure of the velocity and pressure fields

predicted under the resolvent analysis for the modes kb and k1 (§ 3.1). These
results are discussed in the context of previous experimental measurements linking
high-amplitude pressure peaks to buffer-region velocity structures (Johansson et al.
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FIGURE 2. (a) Log-spaced contours showing the magnitude of the Green’s function at
the wall (y = 0) for source terms at the wall (y′ = 0). The solid lines show contours
at (−0.25, −0.75, −1.25, −1.75). (b) Green’s functions for wall pressure for the four
wavenumber combinations marked in (a): k1 = (6, 6), k2 = (1, 6), k3 = (7, 12), and
kb = (60, 60).

1987; Snarski & Lueptow 1995), the recently observed link between the pressure
peaks and structures resembling hairpin vortex packets (Ghaemi & Scarano 2013),
and the splat–spin interpretation of the pressure field proposed by Bradshaw & Koh
(1981) (§ 3.2). We also consider the relative contributions of the fast, slow and Stokes
pressure, and the effect of a pure pressure norm on the resolvent modes (§ 3.3).

3.1. Relationship between velocity and pressure fields
Figure 3 shows the magnitude and phase of the velocity and pressure fields for
the modes kb and k1 at Re = 75 000 (R+ = 1800). The mode kb represents a
helical wave of streamwise and spanwise wavelength λ+θ ≈ λ+x ≈ 190, propagating
downstream at 50 % of the pipe centreline speed, c+ = 12.5. The mode k1 represents
a velocity structure of streamwise and spanwise wavelength λ+θ ≈ λ+x ≈ 1900,
propagating downstream at 2/3 of the pipe centreline speed, c+ = 16.6 (table 1).
The critical layers for kb and k1, where mode speed matches the local mean velocity
U+(y+c )= c+, fall at y+c ≈ 23 and y+c ≈ 110, respectively. Although we only consider
two wavenumber–frequency combinations in this section, the results presented below
are generally representative of the velocity and pressure fields predicted under the
resolvent analysis.

The velocity magnitude and phase profiles shown in figure 3 reveal some features
common to many resolvent modes (McKeon & Sharma 2010; McKeon et al. 2013;
Sharma & McKeon 2013). For instance, the magnitude of the streamwise velocity uk
peaks at, or very near, the critical layer, while the wall-normal velocity vk peaks at
a location slightly further away from the wall (figure 3a,c). Note that the velocity
magnitudes are generally larger for mode kb compared to mode k1 due to the energy-
normalization shown in (2.11). The resolvent modes have unit kinetic energy when
integrated over the pipe cross-section. Since the smaller mode kb has a smaller wall-
normal extent, the magnitudes of the velocity fields are larger.
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FIGURE 3. Vertical profiles showing the magnitude (a,c) and phase (b,d) of the
streamwise (bold black line) and wall-normal (dash-dotted black line) velocity, and the
pressure field (solid grey line) for modes kb (a,b) and k1 (c,d). The dashed grey lines
show the pressure field predicted by a Green’s function solution, assuming contributions
only from the fast source term. The fine black lines represent the velocity fields predicted
under the original resolvent analysis of McKeon & Sharma (2010). Note that the bold and
fine black lines are hard to distinguish because they are almost identical.

For both resolvent modes, the phase of the wall-normal velocity is approximately
constant in y (figure 3b,d), while the phase of the streamwise velocity decreases by
π across the critical layer, i.e. across y+c ≈ 10–40 for mode kb and across y+c ≈ 50–170
for mode k1. Further, the wall-normal velocity is approximately π out of phase with
the streamwise velocity at the critical layer. These phase profiles are typical of the
critical layer solutions expected from linear analysis of the Orr–Sommerfeld–Squire
equations (McKeon & Sharma 2010; McKeon et al. 2013). The π phase difference
between the wall-normal and streamwise velocity at the critical layer comes about
due to the leading-order balance between the mean shear and viscous terms in the
u-momentum equation. Specifically, (−iω + ikU) = 0 at the critical layer and the
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nonlinear forcing term does not contribute significantly to the momentum balance for
highly amplified response modes. As a result, we expect the following balance: vkU′∼
∇2uk (2.2). Since the mean shear is positive (U′ > 0), we have sign(vk)= sign(∇2uk)

at the critical layer, i.e. the streamwise velocity is maximum (minimum) in regions of
negative (positive) wall-normal velocity.

Note that figure 3 shows the velocity structure predicted by both the present
primitive-variable resolvent analysis (bold black lines) and the projection-based
analysis (fine black lines) pursued by McKeon & Sharma (2010) at identical grid
resolutions: N= 400 points in r ∈ (0, 1]. For the modes shown in table 1, the singular
values predicted by the present analysis converged to within 1 % of those predicted
by McKeon & Sharma (2010) for N > 150. Therefore, all the results presented
in this paper employ grid resolutions N > 150. There are very minor differences
in the magnitude and phase of the streamwise velocity near y+ ≈ 30 for mode kb
(figure 3a,b). For mode k1 (figure 3c,d), the magnitude and phase of the velocity
fields agree within plotting accuracy. For both modes, the maximum difference in
magnitude between the velocity profiles is of O(0.01). Similarly, the velocity fields
predicted for the other modes shown in table 1, k2 and k3, also agree within O(0.01).
Thus, despite the differences in formulation between the present study and that of
McKeon & Sharma (2010), the velocity structure associated with individual resolvent
modes appears to be almost identical. However, the present analysis has the advantage
that it also provides information regarding the pressure field associated with individual
resolvent modes.

The variation in the magnitude of the pressure field is less pronounced (grey lines
in figure 3a,c) than that of the velocity fields. There is a discernible peak in the
pressure field near the critical layer for mode kb, and the magnitude of the pressure
field decays above the critical layer. A peak in pressure is less evident for the longer
mode k1, and the decay in the magnitude of the pressure field above the critical layer
is slower. Similar to the wall-normal velocity, the phase of the pressure field does
not vary significantly in the wall-normal direction (grey lines in figure 3b,d). Further,
there is a near-constant π/2 phase difference between the pressure and wall-normal
velocity field. This means that the wall-normal velocity leads (lags) the pressure in
space (time), as shown in figure 4.

The constant π/2 phase difference between pressure and wall-normal velocity
suggests that the primary contribution to the pressure field for the resolvent
modes comes from the fast source term in the Poisson equation (2.13) such that
∇2pk ∼ −ikvkU′. This is further supported by the Green’s function solutions for
the fast pressure shown in figure 3 (dashed grey lines) computed using (2.24).
There is close agreement between the Green’s function solution and the pressure
obtained directly from the resolvent analysis for mode kb (figure 3a,b), and the
computed pressure fields are almost identical in phase and magnitude for mode k1
(figure 3c,d). Note that these observations pertaining to modes kb and k1 are generally
representative; pressure fields for the resolvent modes tend to be dominated by the
linear, fast component. The reason for this dominance and the relative contributions
of the slow and Stokes pressure are discussed further in § 3.3.

Figure 4(a) shows the velocity and pressure structure associated with the mode kb in
physical space. As expected for Fourier modes, the velocity and pressure fields exhibit
alternating positive and negative regions, dictated by the streamwise wavelength
λ+x ≈ 190. Consistent with the phase profiles shown in figure 3(b), isocontours of the
wall-normal velocity (dashed black lines) and pressure (shading) remain upright and
out of phase. The pressure field exhibits maxima in regions of increasing wall-normal
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FIGURE 4. (a) Normalized contours of the streamwise velocity (solid lines), wall-normal
velocity (dashed lines) and pressure field (shading) for mode kb. The bold lines denote
positive velocities and the fine lines denote negative velocities. The contours are plotted
at normalized velocity values ±0.4, ±0.8. (b) Temporal variation in the normalized
wall-pressure field (solid grey line), and the streamwise (solid black line) and wall-normal
velocities (dashed black line) at the critical layer, y+c . The dashed grey line shows the fast
component of pressure.

velocity and minima in regions of decreasing wall-normal velocity, a consequence
of the π/2 phase difference between the fast pressure and the wall-normal velocity
fields. The decrease in the phase of the streamwise velocity across the critical layer
translates into velocity isocontours that lean in the streamwise direction (solid lines).
Importantly, all of these observations are consistent with the spatial correlations
for pressure and velocity presented in previous DNS and the experimental studies:
correlation isocontours for streamwise velocity lean downstream (e.g. Marusic &
Heuer 2007; Guala, Metzger & McKeon 2011), while isocontours for wall-normal
velocity and pressure remain vertical (e.g. Kim 1989; Ghaemi & Scarano 2013).

The conditionally averaged (variable-interval time averages around the passage
of high-amplitude wall-pressure peaks) velocity and pressure measurements made
by Johansson et al. (1987) at Reynolds number similar to that considered here
(δ+ ≈ 1800, where δ is boundary layer thickness) showed that high-amplitude peaks
in wall pressure originated from velocity structures in the buffer region of the
flow, with characteristic length scale L+ ≈ 150 and speed propagation c+ ≈ 12.
Johansson et al. (1987) noted that positive wall-pressure peaks were associated with
periods of increasing streamwise velocity and decreasing wall-normal velocity at
y+ ≈ 15. Figure 4(b), which shows the time-varying wall pressure and critical-layer
velocities associated with the resolvent mode kb (λ+x ≈ 190, c+ ≈ 12.5), reproduces
these observations. Further, Johansson et al. (1987) found that the amplitude of
the wall-pressure peaks scaled linearly with the velocities measured at y+ ≈ 15,
and therefore suggested that the linear, fast pressure contribution arising from the
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turbulence–mean shear interaction dominates the conditional averages. Again, this
is broadly consistent with present results, which indicate that the fast component
dominates the pressure field associated with the resolvent modes. Given these
similarities, we suggest that velocity and pressure measurements made by Johansson
et al. (1987) can be attributed to the presence of velocity structures resembling
resolvent mode kb in the real flow.

3.2. Structure associated with individual resolvent modes
Sharma & McKeon (2013) show that the velocity fields associated with certain
individual resolvent modes naturally give rise to hairpin-like structures. Here, we
consider the relationship between such structures and the pressure field, providing
further insight into the recent measurements of Ghaemi & Scarano (2013), which
show a bi-directional link between high-amplitude wall-pressure peaks and hairpin
vortices.

Figure 5 shows the vortex structure and pressure associated with the wavenumber–
frequency combination kb, summing contributions from both the left- and right-handed
resolvent modes, k+b = (60, 60, 0.5) and k−b = (60, −60, 0.5). Modes with positive n
create velocity structures that resemble right-handed helical propagating waves, and
modes with negative n create left-handed helical waves. Aside from this chirality, the
resolvent modes are structurally identical. With just +n or −n modes, the velocity
and pressure fields would align obliquely to the x axis. Superposing both ±n leads to
velocity and pressure fields that align in the streamwise direction.

The swirling strength (imaginary component of the complex-conjugate eigenvalue
of the velocity gradient tensor, see Chakraborty, Balachandar & Adrian 2005)
isosurfaces for this mode combination presented in figure 5(a) show heads with
alternate regions of prograde (i.e. in the direction of the mean shear) and retrograde
azimuthal vorticity, along with legs aligned in the streamwise/wall-normal direction.
Although the resolvent modes themselves generate an equal number of prograde
and retrograde heads, Sharma & McKeon (2013) show that the presence of the
shear associated with the mean velocity profile suppresses the retrograde heads and
strengthens the prograde heads, creating hairpin-like structures. This is illustrated in
figure 5(b), which assumes that the amplitude of the mean velocity profile, U, is 100×
that of the resolvent modes k+b and k−b . Figure 5(c) shows that the legs of the hairpin
vortices are associated with counter-rotating motions in the azimuthal/wall-normal
plane. The wall-normal velocity is positive immediately upstream of the hairpin
heads (nkθ/2π = 0.5, 1.5 in figure 5c). Figure 5(d) shows that sweeps (u > 0 and
v < 0, x+ ≈ 150–200) occur immediately downstream of the hairpin heads, while
ejections (u< 0 and v > 0, x+≈ 250–300) occur immediately upstream of the hairpin
heads.

Consistent with many previous observations (e.g. O’Farrell & Martin 2009), the
heads of the hairpin vortices lie above wall-pressure minima (figure 5b). This can be
attributed to the π/2 phase difference between the wall-normal velocity and pressure
fields. The hairpin heads are associated with rapidly decreasing wall-normal velocity
in x, which results in a pressure minimum (see e.g. x+ ≈ 100–150 in figure 5d). The
shear layer where the downward sweeps meet the upward ejections is associated with
regions of positive pressure (x+≈ 220 in figure 5d). All of these structural features are
consistent with the comprehensive recent measurements made by Ghaemi & Scarano
(2013), who show that positive peaks in wall pressure occur where the sweeps and
ejections associated with the hairpin vortices meet, while negative wall-pressure events
are associated with the vortex cores.
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FIGURE 5. (a,b) Isosurfaces of constant swirling strength (at 50 % of maximum) for mode
kb: (a) represents the resolvent mode alone, while (b) includes the effect of the mean
shear. The isosurfaces are shaded based on the local azimuthal vorticity. Red denotes
prograde vorticity (i.e. in the direction of mean shear) and blue denotes retrograde vorticity.
The contours beneath the swirl isosurfaces show the wall-pressure field. Bold contours
show positive pressure while fine contours show negative pressure at normalized intervals
±(0.4, 0.8). (c) Velocity, pressure and swirl in the azimuthal–wall-normal plane. The
vectors show the local wall-normal and azimuthal velocities. The background shading
shows the pressure field, and the red–blue shaded isosurfaces show the swirl field. Plot (c)
corresponds to streamwise location x+ = 0 in (b). (d) Streamlines for mode kb, including
the mean shear. Some streamlines have been left incomplete for clarity. Isocontours of
constant swirling strength (at 50 % of maximum) are shown in red. The background
shading represents the pressure field. Plot (d) corresponds to the azimuthal location
nbθ/2π= 1 in (b).
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Note that the relationships between hairpin-like structures, wall-pressure peaks and
the velocity fields discussed thus far (Johansson et al. 1987; O’Farrell & Martin 2009;
Ghaemi & Scarano 2013) are observed only through conditional sampling or averaging
of measurements. Instantaneous snapshots of the flow field do not show such clear
relationships. In effect, the conditioning removes all the uncorrelated activity, leaving
behind structure that is coherent. The results can then be interpreted in terms of the
velocity and length scales that dominate the flow field for the specific conditioning
event under consideration (e.g. high-amplitude pressure peaks). As discussed in Sharma
& McKeon (2013), the resolvent analysis effectively works in reverse: it predicts the
structure associated with specified length and velocity scales.

The results presented in this section can also be interpreted in terms of the splat and
spin interpretation of pressure suggested by Bradshaw & Koh (1981). Specifically,
Bradshaw & Koh (1981) showed that the source terms for the pressure Poisson
equation can be divided into two parts: one related to the square of the strain rate,
and one related to the square of vorticity:

∇2p= (−S2 + 1
2 |Ω|2

)
. (3.1)

Here, S2 is the sum of squares of the principal rates of strain and |Ω| is the magnitude
of the vorticity vector. Thus, negative source terms arise from the rate-of-strain
contribution (splat), while positive source terms arise from the vorticity contribution
(spin). Since ∇2p is positive in regions of minimum pressure and negative in regions
of maximum pressure, Bradshaw & Koh (1981) concluded that the spin contribution
leads to negative pressures and the splat contribution leads to positive pressures.

As noted earlier, the pressure fields obtained under the resolvent analysis for mode
kb correspond primarily to the fast pressure, with source term −2(∂vk/∂x)U′ (2.13).
The mean shear, U′, is positive and so regions with increasing wall-normal velocity
in x yield a splat contribution to pressure (negative source terms), while regions with
decreasing wall-normal velocity yield a spin contribution (positive source terms). This
distinction between the splat and spin contributions to pressure is illustrated by the
streamline patterns shown in figure 5(d). As expected intuitively, the hairpin vortex
cores generate a negative spin contribution to pressure, while the shear layers where
the sweeps meet the ejections generate a positive splat contribution.

Finally, note that the streamlines shown in figure 5(d) resemble the well-known cat’s
eye patterns associated with two-dimensional, inviscid Kelvin–Stuart vortices. Sharma
& McKeon (2013) suggest that the resolvent modes may be interpreted as the three-
dimensional equivalent, albeit arising without an inflection point in the mean velocity
profile and regularized due to viscosity.

3.3. Pressure norm
The dominance of the fast pressure for modes kb and k1 observed in § 3.1 suggests
that the resolvent analysis pursued here generates forcing mode shapes that are near
solenoidal, such that the slow source term in the pressure Poisson equation is almost
zero, ∇ · f k≈ 0 (2.25). This is supported by the observation that the normalized slow
pressure contribution for mode kb is of O(10−9) under the energy norm (figure 6).
Unlike McKeon & Sharma (2010) who projected the NSE onto divergence-free bases
(thereby setting the slow pressure to exactly zero), we do not enforce solenoidal f k in
this paper. Solenoidal forcing arises naturally from the singular value decomposition
as the input direction that leads to the largest velocity response (i.e. highest σk) under
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FIGURE 6. (a) Wall-normal variation in the magnitude of the pressure field (solid grey
lines), and the streamwise (solid black lines) and wall-normal (dash-dotted lines) velocity
fields. As before, the dashed grey lines denote the fast pressure. (b) Magnitude of the slow
pressure field (pkb,s, solid lines) and Stokes pressure (pkb,st dash-dotted lines), normalized
by the total pressure (pkb ). In both panels, bold lines show predictions made under the
energy norm and fine lines show predictions under the pressure norm. Note that the bold
and fine dash-dotted lines in (a) and (b) overlap. The normalized slow pressure predicted
under an energy norm is not visible in (b) because it has magnitude of O(10−9).

an energy norm. Physically, this can be attributed to the Helmholtz decomposition (see
e.g. Foias et al. 2001). Forcing that is not divergence-free does not contribute directly
to the velocity field, and so a singular value decomposition under an energy norm
(2.11) cannot identify non-solenoidal forcing as the most amplified input direction.

To see if the resolvent analysis yields different results under a pressure norm,
we replace the scaling factor

[
Wu 0

]
in (2.6) with

[
0 Wp

]
. This ensures that the

orthonormality constraints on the singular response modes (2.10) translate to:∫ 1

0
p∗k,lpk,m r dr= δlm (3.2)

such that the singular value decomposition identifies the forcing and response
directions that yield the largest area-integrated fluctuating pressure.

Figure 6(a) compares the singular value-weighted velocity and pressure fields
obtained under the energy norm for mode kb (bold lines) with those obtained under
the pressure norm, i.e. by weighting the intensity of the pressure fluctuations alone
(fine lines). The velocity and pressure fields have been weighted by the singular
values to ensure that we compare the responses for unit forcing across both norms
(2.12). As expected, the magnitude of the pressure field increases under the pressure
norm; the wall pressure increases by roughly 10 %, from 0.27 to 0.30. The magnitude
of the wall-normal velocity increases slightly under the pressure norm (by roughly
3 %), while the magnitude of the streamwise velocity decreases. Beyond these changes
in magnitude, there are no significant changes in the structure of the velocity and
pressure fields.

Note that the pressure norm yields a larger increase in pressure (≈10 %) than
wall-normal velocity (≈3 %). Given the linear relationship between fast pressure and
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wall-normal velocity (2.24), this suggests that the slow pressure may play a larger role
under the pressure norm. This is confirmed by the normalized pressure contributions
shown in figure 6(b). Specifically, the normalized slow pressure contribution increases
from O(10−9) under the energy norm, to approximately 5 % under the pressure norm.
This is comparable to the near-wall Stokes pressure contribution for this mode, but
still much lower than the fast pressure contribution, which accounts for nearly 90 %
of the pressure field. Thus, even with a pure pressure norm, the fast component of
pressure remains dominant in the present analysis. This is generally true for all the
resolvent modes considered in this paper; the slow pressure contribution under a
pressure norm remains lower than 5 % for modes k1, k2, and k3 as well. In other
words, the most amplified velocity and pressure fields appear to be relatively robust
to norms weighting turbulent kinetic energy or pressure.

The above results also highlight an important distinction between the fast and slow
component of pressure. While the fast pressure is directly linked to the turbulent
velocity field via the source term (2.24), the slow pressure arises from the component
of the nonlinear forcing term (2.25) that does not contribute to the velocity field.
Thus, we expect correlations between the turbulent velocity and pressure field to be
dominated by the fast component of pressure.

4. Turbulence kernel

Next, we consider the triadically consistent combination of modes k1= (6,±6, 2/3),
k2= (1,±6, 2/3), and k3= (7,±12, 2/3) listed in table 1. Sharma & McKeon (2013)
show that this limited set of modes can be thought of as a turbulence kernel that (i)
generates realistic structure consisting of modulating hairpin packets and (ii) captures
key features of the interaction between the large- and small-scale streamwise velocity
in the overlap region of the flow. Here, we extend this kernel to include pressure.

To arrive at the results discussed in this section, the complex amplitudes for the
velocity and pressure fields for the three resolvent modes were set to (a1, a2, a3) =
(1, 4.5, −0.83i), and the amplitude of the mean velocity profile was set to 1000,
i.e. the total velocity field for the turbulence kernel is ũ = 1000U + a1uk1 + a2uk2 +
a3uk3 , where uk1 etc., represent the energy-normalized resolvent modes (2.11). The
total pressure field can be obtained via a similar linear summation. Note that the
amplitudes (a1, a2, a3) were chosen to be representative of previous observations.

Figure 7 shows the spatial structure and wall-pressure field associated with this
mode combination. The swirl field (shaded isosurfaces) shows discrete packets of
prograde hairpin-like structures. Sharma & McKeon (2013) provide a detailed
description of this structure in terms of the beating patterns arising from the
interaction of Fourier modes. The extended kernel considered here shows that the
wall-pressure field retains a clear imprint of the hairpin-like structures populating
the flow field. Consistent with the results presented in the previous sections, the
hairpin heads are associated with negative wall pressure, while the regions between
the hairpins are associated with positive wall-pressure (along line A′− A′ in figure 7).

Figure 8 shows the streamwise velocity at the critical layer (y+c ≈ 110), the wall
pressure, and the vortex structure for a slice through the turbulence kernel shown
in figure 7. The streamwise velocity field is dominated by the longer k2 mode
(i.e. with streamwise length scale L+ = 2πR+/1 ≈ 11 000, figure 8a,b), while the
wall-pressure field is dominated by structures corresponding to shorter modes k1
and k3 (L+ ≈ 1600–2000, figure 8c,d). This discrepancy in length scale can be
attributed to the form of the resolvent modes. Sharma & McKeon (2013) show that
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FIGURE 7. Isosurfaces of constant swirling strength (at 50 % of maximum) for the
turbulence kernel comprising modes k1, k2, and k3. The isosurfaces are shaded based on
the local azimuthal vorticity. Red denotes prograde rotation, and blue denotes retrograde
rotation. The contours beneath the isosurfaces represents the normalized wall-pressure field
at intervals ±(0.3, 0.6, 0.9). Bold contours show positive pressure, fine contours show
negative pressure. (a) Isometric view, (b) plan view.

the magnitude of the streamwise velocity is comparable for all three resolvent modes,
uk1 , uk2 , and uk3 . As a result, the longer uk2 mode dominates the flow field due to its
larger amplitude, a2 > (a1, a3). In contrast to the streamwise velocity, the wall-normal
velocity is approximately 4–5 times larger for the more circular resolvent modes, uk1

and uk3 . Coupled with the fact that (k1, k3) > k2, this means that the fast pressure
source term ∝ kvkU′ is much larger for uk1 and uk3 . As a result, the wall-pressure field
is dominated by these smaller, circular structures (figures 7, 8c,d). Note that these
limited observations are broadly consistent with the DNS of Jimenez & Hoyas (2008),
who show that the streamwise length scales associated with the pressure spectrum
tend to be smaller than those associated with the streamwise velocity spectrum. We
consider spectral features of the wall-pressure field in greater detail in the following
section.

The large-eddy simulation of Chung & McKeon (2010) and experimental
observations of Jacobi & McKeon (2013) show that the apparent amplitude modulation
effect observed in recent studies (e.g. Marusic et al. 2010) can also be interpreted in
terms of the phase relationship between the large-scale streamwise velocity and the
envelope of the small-scale activity. Specifically, Chung & McKeon (2010) and Jacobi
& McKeon (2013) show that the envelope of the small-scale velocity is in phase with
the large-scale streamwise velocity close to the wall, and that the phase difference
increases away from the wall, passing through π/2 in the overlap region. Based
on these studies, Sharma & McKeon (2013) chose the complex amplitudes of the
three resolvent modes such that the turbulence kernel is representative of the small-
and large-scale interaction in the overlap region, i.e. the envelope of the small scales
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FIGURE 8. (a) Variation in the streamwise velocity at the critical layer for the turbulence
kernel comprising modes k1, k2, and k3. (b) Streamwise velocity contributions from
the large-scale k2 mode (bold line) and the small-scale k1, k3 modes (dashed-dotted
line) at the critical layer. (c) Variation in the pressure field for the turbulence kernel.
Solid lines represent the wall pressure, pw, while dashed lines represent the pressure
at the critical layer, p(y+c ). Note that pw and p(y+c ) are practically indistinguishable. (d)
Wall-pressure contribution from the large-scale k2 mode (bold line) and the smaller scale
k1, k3 modes (dash-dotted line). (e) Slice through the swirling strength isocontours shown
in figure 7, at location n1θ/2π = 1. The line A′–A′ is consistent across figures 7 and 8.
The background shading shows the normalized large-scale pressure field and the contours
show the normalized large-scale streamwise velocity field at intervals ±(0.4,0.8). The bold
lines denote positive velocity, the fine lines denote negative velocity.

leads the large-scale streamwise velocity by π/2. As illustrated in figure 8(b), this
means that the small-scale streamwise velocity (dashed-dotted line) is most energetic
in regions of decreasing large-scale u at the critical layer (bold line).
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The present study shows that the interaction between the large and small scales
leads to an apparent amplitude modulation effect in the wall pressure as well. Like
the small-scale streamwise velocity, the small-scale wall pressure is most energetic in
the middle of the plotting window, x+ ≈ 4000–8000 in figure 8(d), where the hairpin
vortices are concentrated (figure 8e). This coincides with the peak in large-scale wall
pressure (figure 8d, bold line). Thus, unlike the streamwise velocity at the critical
layer (figure 8b), the envelope of the small-scale activity in wall pressure is in
phase with the large-scale wall pressure (figure 8d). The π/2 difference in the phase
relationships between the large and small scales for streamwise velocity and pressure
can be attributed to the form of the resolvent modes: the streamwise velocity at the
critical layer lags the pressure field by π/2 in x (figure 8, see also figure 4).

Finally, note that the π/2 difference in phase relationships for streamwise velocity
and wall pressure is consistent with the observations of Thomas & Bull (1983). As
discussed earlier, Thomas & Bull (1983) found that the envelope of the high-frequency
wall-pressure fluctuations was approximately π/2 out of phase with the low-frequency
wall-pressure fluctuations. In contrast, the envelope of the high-frequency wall shear
stress was observed to be nearly in phase with the low-frequency wall shear stress.
Closer to the wall, the envelope of the small-scale activity is expected to be in
phase with the local large-scale streamwise velocity (Chung & McKeon 2010;
Jacobi & McKeon 2013). In other words, closer to the wall, we expect increased
small-scale activity in regions with high large-scale streamwise velocity and wall
shear stress (e.g. at x≈2000 in figure 8e). In agreement with the large- and small-scale
interdependence observed by Thomas & Bull (1983), this would lead to the envelope
of the small-scale wall pressure lagging the large-scale pressure by roughly π/2 in x.

5. Spectral predictions

A complete spectral description within the resolvent analysis framework requires
knowledge of the nonlinear forcing f k present in the flow at each wavenumber–
frequency combination. The singular values σk can be interpreted as the filters
that determine how this forcing translates into velocity and pressure responses;
wavenumber–frequency combinations that are highly amplified (high σk) are more
energetic in the flow. Thus, the velocity and pressure spectra reflect both the
magnitude of the nonlinear forcing present in the flow at each k and the
amplification/filtering effect of the singular values. A recent study by Moarref
et al. (2013) demonstrates that this filtering effect plays a key role in shaping
the streamwise velocity spectrum. With the simplest possible broadband forcing
model (i.e. unit forcing in the direction of f k at each k such that the velocity field
for that wavenumber–frequency combination is given by σkuk), Moarref et al. (2013)
qualitatively reproduce many features of the streamwise velocity spectrum, including
the presence of a near-wall peak that scales with inner units, and the appearance of
an additional peak in the logarithmic region of the flow at high Reynolds number
that scales with outer variables.

In this section, we employ the broadband forcing assumption to consider the
differences between velocity and pressure spectra (§ 5.1), and to study the scale
dependence of the wall-pressure propagation speed (§ 5.2). By comparing the spectral
predictions with previous DNS results (Jimenez & Hoyas 2008), we also identify
where the nonlinear forcing is more important in shaping the spectra than the filtering
due to σk.
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Under the broadband forcing assumption, the relative amplitudes of the resolvent
modes at each k are set simply by the singular values, σk (see (2.12)). Thus, the pre-
multiplied spectral densities for the velocity and pressure fields become:Euu(k, n, y)

Evv(k, n, y)
Eww(k, n, y)
Epp(k, n, y)

= k n
∫ ∞
−∞

σ 2
k

|uk(y)|2
|vk(y)|2
|wk(y)|2
|pk(y)|2

 dω. (5.1)

The spectral predictions shown below were obtained by evaluating (5.1) over the
ranges: k = (0.01–316), n = ±(0–316), and c = ω/k = 0.1–1.0 at Reynolds number
Re = 75 000 (R+ = 1800). These ranges correspond to modes with streamwise
wavelength λx ≈ 0.02R–630R, and wave speed ranging from 10 % to 100 % of
the pipe centreline velocity, or λ+x ≈ 36–106 and c+≈ 2.5–25. Wavenumber–frequency
combinations outside of these ranges are not energetically important (low σk), and
therefore do not change the results appreciably.

Keep in mind that the simple model developed here can only predict second-order
statistics such as power spectra, r.m.s. intensities and turbulent kinetic energy, which
do not require knowledge of the interaction across spectral space. Higher-order
statistics such as skewness and kurtosis also require information regarding the relative
amplitude and phase of the different Fourier resolvent modes, which depends on the
amplitude and phase of the nonlinear forcing present in the flow.

Further, note that the analysis pursued here is in many ways complementary to
the structure-based model for wall pressure developed by Ahn et al. (2010) within
the broad attached-eddy framework. Ahn et al. (2010) superpose contributions from
individual eddies of a prescribed hairpin-like shape, with a number density that yields
total circulation consistent with the mean velocity profile, to predict spectra and
spatial correlations for the wall-pressure field. In the present study, contributions are
superposed from the Fourier resolvent modes, which represent distinct flow structures,
identified directly from the NSE. Both models require knowledge of the mean velocity
profile and both assume that the linear, fast component of pressure dominates.
Reconciling the two approaches (e.g. using resolvent modes in the attached-eddy
framework) may be a fruitful avenue for further research.

5.1. Spectral content
Figure 9(a) shows the pre-multiplied spectra for streamwise velocity (solid line),
wall-normal velocity (dashed line) and pressure (grey line) at y/R = 0.1 obtained
under broadband forcing, i.e. the simple singular value-weighted integrals of the
resolvent modes shown in (5.1). Also shown are the pre-multiplied spectra for
streamwise velocity (dark grey shading) and pressure (light grey shading) at a
location in the buffer region of the flow, y+= 15. In general, the spectra suggest that
the streamwise velocity fluctuations originate from structures that are much longer
than they are wide (λx > λθ ), while the structures that contribute to the pressure and
wall-normal velocity are more circular in terms of aspect ratio. Further, figure 9(a)
shows that the length scales associated with the streamwise velocity and pressure
spectra increase with distance from the wall. The peak in wall-pressure spectrum
moves from (λx, λθ) = (0.04, 0.06) at y+ = 15 to (λx, λθ) = (0.4, 0.7) at y/R = 0.1.
The peak in the streamwise velocity spectrum moves from (λx, λθ)= (0.16, 0.03) at
y+ = 15 to (λx, λθ)= (7.2, 0.4) at y/R= 0.1. These trends are broadly similar to the
DNS results obtained by Jimenez & Hoyas (2008) for channel flow at a Reynolds
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FIGURE 9. (a) Pre-multiplied spectra for streamwise velocity (solid black lines),
wall-normal velocity (dashed black lines), and pressure (grey lines) at y/R= 0.1 predicted
under a broadband forcing assumption. Contour lines are plotted at normalized values
(0.125, 0.625). The shaded regions show the normalized spectra (> 0.625) for streamwise
velocity (dark grey) and for pressure (light grey) at y+ = 15. The azimuthal wavenumber
is estimated as λθ/R= 2π/n. (b) Spectral density for pressure as a function of λx/R and
y/R. Contours represent normalized pressure at (0.03 (0.09) 0.30). The dashed horizontal
lines represent y+ = 100 and y/R = 0.2, and the dashed diagonal line is λx = 3y. In
both plots, the point markers denote maxima. For comparison, figure 9 from Jimenez
& Hoyas (2008) showing the spectral densities for pressure in turbulent channel flow at
Reτ = uτh/ν = 2000 (h is the channel half-height) is reproduced in (c) and (d): (c) shows
pressure spectra at y/h= 0.1 (solid lines), 0.15 (dashed lines), 0.20 (dotted line), and 0.30
(dash-dotted lines).

number similar to that considered here (Reτ = 2000), which is encouraging given the
simplicity of the rank-1 and broadband forcing assumptions.

Of course, there are some quantitative differences between the present predictions
and the DNS results. For instance, wall-normal velocity spectrum peaks at (λx, λθ)=
(0.05, 0.06) at y/R = 0.1 under the broadband forcing assumption, while the DNS
predicts larger outer-normalized length scales, ≈ 0.1h–0.2h. Further, it is well known
that the peak in streamwise velocity at y+= 15 falls at the length scales corresponding
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to the energetic near-wall cycle, (λ+x , λ
+
θ ) ≈ (1000, 100). In contrast, the broadband

forcing assumption predicts a peak at (λx, λθ)= (0.16, 0.03), or (λ+x , λ
+
θ )≈ (300, 50).

Consistent with figure 9(a), the predicted spectral density for pressure (figure 9b)
suggests the presence of two distinct peaks: a near-wall peak at y/R< 0.03 (y+< 60)
comprising small-scale structures with λx < 0.1R (λ+x < 180), and an outer peak
at y/R > 0.1 comprising large-scale structures with λx ∼ O(R). Further, there is a
near-linear relationship λx ∼ y in the log region of the flow. These predictions are
again similar to the DNS results of Jimenez & Hoyas (2008) (figure 9c,d). The major
differences between the DNS results and the present predictions are concentrated
in the near-wall region and close to the centreline. The present results suggest a
continuous decrease in λx with y close to the wall. In contrast, the DNS results show
that the peak in spectral density falls at a roughly constant streamwise wavelength
λx≈ 0.1h near the wall. Further, the DNS results exhibit near-vertical spectral density
contours close to the centreline, while the present predictions show sharp gradients
for y/R > 0.5. Some of the differences close to the centreline could be attributed
to differences in geometry (pipe versus channel). However, in general these results
suggest that the rank-1 and broadband forcing assumptions must be evaluated for the
smaller, slower-moving modes localized near the wall and for the larger modes close
to the pipe centreline, which is also consistent with the observations of Moarref et al.
(2013). An alternative (albeit complementary) interpretation is that the gain-based
decomposition and mode ordering pursued in this paper are less well suited for
capturing the dynamics near the wall and close to the centreline. These issues will
be explored further in future work.

5.2. Wall-pressure propagation speed
Despite significant evidence suggesting that the propagation speed for wall pressure
is scale-dependent, most experimental studies are limited to employing a single
propagation speed (i.e. integrated over all length scales) due to practical constraints.
In this section, we employ the resolvent analysis to provide further insight into
the scale-dependence of wall-pressure propagation speeds. For brevity, we limit the
discussion to modes that are circular in aspect ratio (i.e. modes with equal streamwise
and azimuthal wavenumbers, k = n), which are known to dominate the wall-pressure
field (a result also captured by the broadband forcing assumption, figure 9a). Further,
we continue with the rank-1 and broadband forcing assumptions employed in the
previous section.

Figure 10 shows the wall-normal velocity and pressure fields for resolvent modes
with the same streamwise and azimuthal wavenumber as mode kb, k = n = 60, but
with varying propagation speed, c+ = 0–25, at Reynolds number Re = 75 000. Per
McKeon & Sharma (2010) and McKeon et al. (2013), for slower-moving modes with
c+ < 10, the wall-normal velocity is localized at a near-constant elevation y+ ≈ 10
(figure 10a). However, as the speed increases above c+> 10, the wall-normal velocity
begins to localize around the critical layer where the mean velocity matches the mode
speed (solid black line). For c+ > 15, the modes do not have a significant velocity
presence near the wall. McKeon et al. (2013) term the slower moving modes with
c+ < 10 as attached to the wall. The modes with intermediate speed c+ = 10–15 are
considered attached and critical. The faster moving modes with c+ > 15 that do not
have a significant presence at the wall are considered to be detached and critical.

The analysis developed here shows that the pressure fields associated with the
attached modes extend to the wall, while the detached-critical modes with c+ > 15
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FIGURE 10. Wall-normal distribution of pressure and velocity for modes with k= n= 60
at R+ = 1800 (λ+x = λ+θ ≈ 190). (a,b) The distribution of the normalized velocity (vk) and
pressure field (pk) for varying speed c+. (c,d) The amplification-weighted velocity (σkvk)
and pressure distributions (σkpk). In all plots, the solid black line represents the mean
velocity profile. The dashed line in (a) shows the variation in singular values with wave
speed. Horizontal lines in (d) show the propagation speed corresponding to the peak in
wall pressure, c+peak, and a weighted average, c+avg.

do not have a significant wall-pressure signature (figure 10b). Further, the strength
of the pressure field decreases with increasing mode speed. These trends can be
attributed to the structure of the Green’s function (2.22) associated with these modes,
and the form of the fast source terms in the pressure Poisson equation (∝ kvkU′).
Specifically, figure 2(b) shows that the Green’s function for wall pressure does not
have a long range for modes with k= n= 60 (mode kb), decaying by two orders of
magnitude over wall-normal distance y ≈ 0.05 (y+ ≈ 100). Slower-moving attached
modes with wall-normal velocities localized closer to the wall have pressure sources
located within the range of the Green’s function. In addition, the source terms for
the attached modes are stronger because such modes are localized in regions with
high mean shear. Since the wall pressure is given by the integral of the source
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terms weighted by the Green’s function (2.24) and (2.25), such slower-moving modes
have much larger wall pressures. For critical modes with c+ > 15, the wall-normal
velocity (and hence pressure source) is localized above y+ > 100, where the mean
shear is lower and the Green’s function is negligible. As a result, such modes do not
contribute much to the wall pressure.

Keep in mind that the results shown in figure 10(a,b) are normalized. Under the
broadband forcing assumption (5.1), the magnitude of the unweighted velocity and
pressure fields must be weighted by the singular values. The weighted profiles σkvk
and σkpk are shown in figures 10(c) and 10(d), respectively. In general, the singular
values σk increase with increasing speed for c+ < 20 (dashed line, figure 10a). As
a result, the weighted wall-pressure field exhibits a trade-off between increasing
singular value with c+ and decreasing source strength/wall proximity. While the
normalized wall pressure was largest for the slowest modes (figure 10b), the weighted
wall pressure peaks near c+peak = 7.7 (figure 10d). This means that, for wavelength
λ+θ ≈ λ+x = 190, velocity structures moving with speed c+peak = 7.7 have the largest
wall-pressure signature under the broadband forcing assumption employed here.
Figure 10(d) also shows an average propagation speed (del Alamo & Jimenez 2009),
defined as:

c+avg =

∫ U+CL

0
c+σkpk dc+∫ U+CL

0
σkpk dc+

, (5.2)

which is c+avg = 8.5 for this wavenumber–frequency combination. Note that these
propagation speeds coincide with a brief plateau in σk starting at c+ ≈ 8 (figure 10a,
dashed line).

Figure 11 shows velocity and pressure fields for larger modes, k = n = 20 (λ+θ ≈
λ+x = 570). Despite a three-fold increase in streamwise and azimuthal length scale,
these larger modes exhibit similar behaviour to the modes shown in figure 10, i.e. the
strength of the wall-pressure signature is determined by a trade-off between wall
proximity and singular value. For the larger modes shown in figure 11, the pressure
and velocity fields have a greater wall-normal extent. As a result, the transition to
detached-critical behaviour occurs at a slightly higher speed, c+ ≈ 17 (figure 11a,b).
Also, these larger modes have higher singular values compared to the k = n = 60
modes considered in figure 10. For example, the singular value increases from σk= 5
(figure 10a, dashed line) to σk = 20 (figure 11a, dashed line) for c+ = 15. This
increase in amplification results in a peak propagation speed, c+peak = 15 (figure 11d),
that is nearly twice that of the smaller k = n = 60 modes. Thus, for wavelength
λ+θ ≈ λ+x = 570, velocity structures in the log region of the flow have the largest
wall-pressure signature under broadband forcing. Note that the increase in the average
propagation speed is less dramatic, from c+avg= 8.5 for the modes shown in figure 10
to c+avg = 11 for the modes shown in figure 11.

Figure 12 shows the peak and average wall-pressure propagation speed as a
function of wavelength for circular modes (λ+x = λ+θ ) across a range of Reynolds
number Re= 5000–233 000 (R+= 180–5000). As intuitively expected, the propagation
speeds increase with increasing length scale. In other words, wall-pressure structures
with longer streamwise and azimuthal length scales are more likely to originate
from faster-moving velocity structures further away from the wall. At all Reynolds
numbers, the peak propagation speed jumps from c+peak ≈ 8 for λ+x < 400 to c+peak ≈ 15
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FIGURE 11. Wall-normal distribution of pressure and velocity for modes with k= n= 20
at R+ = 1800 (λ+x = λ+θ ≈ 570). (a,b) The distribution of the normalized velocity (vk) and
pressure field (pk) for varying speed c+. (c,d) The amplification-weighted velocity (σkvk)
and pressure distributions (σkpk). In all plots, the solid black line represents the mean
velocity profile. The dashed line in (a) shows the variation in singular values with wave
speed. Horizontal lines in (d) show the propagation speed corresponding to the peak in
wall pressure, c+peak, and a weighted average, c+avg.

for λ+x > 400. For wavelength λ+x =λ+θ / 400, velocity structures in the buffer region of
the flow have the largest wall-pressure signature, while for wavelength λ+x = λ+θ ' 400,
velocity structures in the logarithmic region have the largest wall pressure. This
abrupt transition can be attributed to the change in behaviour seen from figure 10 to
figure 11, i.e. the trade-off between wall proximity and amplification.

Both the peak and average propagation speeds collapse together reasonably well
as a function of inner-normalized wavelength for smaller (λ+x < 400), slower-moving
modes (c+ < 10). The peak wall-pressure propagation speeds exhibit some scatter for
structures of larger wavelength (λ+x = λ+θ ' 1000) at higher Reynolds number (R+ >
2000). However, the average propagation speeds (figure 12b) show smoother trends
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FIGURE 12. Variation in wall-pressure propagation speed for modes with circular aspect
ratios (k = n, or λ+x = λ+θ ) for Reynolds number Re = 5000–233 000 (R+ = 180–5000),
assuming broadband forcing across all wave speeds, c. (a) The propagation speed
corresponding to the peak in wall pressure, and (b) the weighted average. The solid lines
show the prediction based on (4.12) from Panton & Linebarger (1974), repeated in (5.3).

which suggest that the propagation speeds start to taper off and asymptote to a fixed
value at large wavelengths. The inner-normalized wavelengths and propagation speeds
at which this transition occurs show a Reynolds-number dependence, indicating that
outer or mixed scaling might be more appropriate for these large structures. This
scaling will be explored further in future work.

Note that the peak wall-pressure propagation speed for structures with λ+x > 400
agrees reasonably well with the predictions of Panton & Linebarger (1974) (solid line
in figure 12). Specifically, Panton & Linebarger (1974) proposed that the wall-pressure
propagation speed exhibits an overlap region, where:

c+ = −1
κ

ln(kδ)+ 1
κ

ln
(

uτδ
ν

)
+ B

= 1
κ

ln
(
λ+x
2π

)
+ B (5.3)

where κ and B are the usual constants in the mean velocity profile (we assume κ =
0.42 and B= 5.6 based on the measurements of McKeon et al. 2004). As shown by
the expression on the lower line of (5.3), in essence this assumes that the length scale
of the structures that dominate the wall-pressure field scales linearly with y in the
logarithmic region (see figure 9b). The average wall-pressure propagation speeds are
lower than the predictions under (5.3). This is likely to be due to the contributions
from the slower-moving modes in the near-wall region, where the rank-1 model with
broadband forcing is known to be inaccurate. Although we do not expect the rank-
1 broadband forcing model to yield an accurate quantitative relationship for c+ =
f (λ+x = λ+θ ), it is encouraging to see that it reproduces trends observed in previous
studies. Indeed, there is some experimental (Bull 1967) and DNS (Choi & Moin 1990)
support for both the relatively abrupt scale-dependent transition in wall propagation
speed (figure 12a), as well as the asymptote towards a near-constant propagation speed
for large wall-pressure structures (figure 12b) that scales in outer or mixed units.
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SweepEjection

FIGURE 13. Schematic showing the relationship between hairpin-like structures,
streamwise velocity (blue), wall-normal velocity (black), and wall pressure (grey) as
predicted by the resolvent analysis. See also figures 4, 5 and 8.

6. Conclusion
The results presented in § 3 show that individual resolvent modes are able to

reconcile many of the key relationships among the velocity field, spatial structure,
and high-amplitude wall-pressure events observed in previous experiments (Johansson
et al. 1987; Ghaemi & Scarano 2013) and DNS (Kim 1989). These key relationships
are summarized schematically in figure 13. This is despite the fact that the resolvent
analysis primarily yields the fast component of pressure, arising from the linear
interaction between mean shear and wall-normal velocity (as demonstrated by the
Green’s function solutions, § 2.2). However, perhaps the dominance of the fast pressure
component points to a stronger result. Although the slow pressure field is known to
be energetic throughout the flow (Jimenez & Hoyas 2008), the forcing–response
interpretation of the NSE considered here shows that the slow pressure arises from
the non-solenoidal component of the nonlinear forcing term (2.4), (2.16). Under the
Helmholtz decomposition, this non-solenoidal forcing does not directly contribute to
the velocity field. As a result, correlations between the velocity and pressure fields
are expected to be dominated by the fast pressure.

Note that we only consider the velocity and pressure fields associated with rank-1
resolvent modes in this paper. A brief exploration of the pressure fields associated
with higher-rank modes (data not shown) indicates that the fast pressure remains
dominant for resolvent modes up to at least rank-20, contributing >90 % of the
pressure intensity for all the wavenumber–frequency combinations shown in table 1.
Since the gain-based decomposition does not yield the slow pressure, it appears that
the slow pressure must be recovered through closing the loop on the nonlinearity
within the resolvent analysis framework, i.e. through an explicit consideration of the
triadic interactions that serve to sustain wall turbulence (McKeon et al. 2013).

The resolvent modes also suggest the presence of recurring phase relationships
between the velocity and pressure fields across all scales (e.g. figure 3). This has
important implications for the wall-based sensing and control of turbulent flows. In
particular, most previously proposed control strategies are reliant upon sensing the
wall-normal velocity in the bulk of the flow (e.g. opposition control of Choi, Moin &
Kim 1994). Therefore, the fact that the fast wall pressure reflects an integral of the
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wall-normal velocity (2.24) could prove useful in inferring velocity information from
wall-based pressure measurements. In addition, recent work by the present authors
(Luhar et al. 2013, 2014) suggests that the performance of opposition control can
be improved through the inclusion of a phase lag between the sensed wall-normal
velocity and the blowing and suction generated at the wall. In this context, the
consistent π/2 phase difference between the fast pressure and wall-normal velocity
may be useful in determining the phase of the wall-based actuation. In general, the
fast pressure is likely to be more important than the slow pressure for control purposes
due to its direct link to the mean velocity profile and its faster time scale (Sharma
et al. 2011). As a result, the fact that the resolvent analysis does not directly yield
information regarding the slow pressure may not significantly limit its application to
the design and evaluation of effective flow control.

The results pertaining to the three-mode turbulence kernel presented in § 4 show
that, compared to the streamwise velocity field, the wall-pressure field is likely to be
dominated by structures that are shorter in x and that have near-circular aspect ratios.
Further, the turbulence kernel also suggests an apparent amplitude modulation effect
in the wall-pressure field, albeit with a different phase relationship between the large
and small scales compared to that observed for the streamwise velocity field (Chung
& McKeon 2010). In particular, we expect the small-scale activity in wall pressure to
lag the large-scale wall pressure by π/2. In other words, we anticipate intense small-
scale activity in wall pressure to coincide with regions of increasing large-scale wall
pressure (see also Thomas & Bull 1983). This is in contrast to the observations for the
near-wall streamwise velocity, which show that the small-scale activity is most intense
in regions of high large-scale velocity (e.g. Marusic et al. 2010). Whether these phase
relationships hold in real flows remains to be seen.

Finally, § 5 shows that a simple rank-1 model assuming broadband forcing
(i.e. velocity and pressure fields approximated by singular value-weighted rank-1
resolvent modes) qualitatively reproduces trends in the wavenumber spectra for
streamwise and wall-normal velocity, as well as the pressure field. Consistent with
the recent study of Moarref et al. (2013), major differences between the broadband
forcing predictions and DNS results (Jimenez & Hoyas 2008) are concentrated in the
near-wall region and close to the pipe centreline. Further, the rank-1 broadband
forcing model also provides insight into the scale-dependence of wall-pressure
propagation speed (§ 5.2), which is important for translating Eulerian measurements
into spatial structure. Since there are significant challenges associated with obtaining
an accurate characterization of the wall-pressure propagation speeds from experimental
measurements at high Reynolds number, low-order models employing resolvent modes
could present a viable alternative.
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