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When a less viscous miscible fluid displaces a more-viscous one under a pressure-driven
channel flow, unstable Kelvin–Helmholtz (K–H)-type billows are formed at the miscible
interface. In this paper, we investigate whether such instability can be induced by a
simple (A + B → C)-type chemical reaction. Here a miscible solution of one reactant A
is displacing another isoviscous reactant B and producing a more-viscous product C at
the reactive front. It is found that because of a local increase in viscosity gradient due
to the formation of more-viscous product C, K–H-type billows are formed at the A–C
interface. The changes in dynamical properties of such billows are examined by varying
the governing parameters such as the mobility ratio Rc, Damköhler number Da, Péclet
number Pe and Reynolds number Re. Interestingly, we have found that even at high reaction
rates (sufficiently large Da) for Rc = 1, the interface remains stable and for larger values of
Rc(= 3, 5) the K–H billows are observed. It is also noticed that a laminar horseshoe-type
vortex develops near the wall at the channel inlet where the less-viscous reactant pushes the
more-viscous product. We have computed numerically the onset time (ton) of instability
to understand the early-stage developments of the K–H billows. For different values of
Da, we have shown the unstable and stable time zones in the (ton–Rc) space. The bipartite
(ton–Rc) space also depicts the critical (Da-, Pe- and Re-dependent) Rc value for which
instability can be triggered in a finite desirable time. The delay in the onset of instability is
observed with increasing Pe. Further it is shown that ton can be linearly scaled with Pe to
have a modified onset time (t∗on), which establishes a proportionate dynamics with respect
to Pe in the early stages of the instability. Moreover, a reverse dependency of onset on
lower Rc values for higher Reynolds numbers is observed.

Key words: instability control, shear-flow instability, laminar reacting flows

1. Introduction

A fully developed Poiseuille flow regime with a pure diffusive miscible interface
arises when a more-viscous fluid displaces another miscible fluid with less viscosity
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in a channel. Such a stable pattern is termed as a ‘pure-Poiseuille-diffusive’ finger (Mishra,
De Wit & Sahu 2012). This stable displacement flow has been studied experimentally by
Balasubramaniam et al. (2005), Rashindia, Balasubramanium & Schrder (2004) and Etrati
& Frigaard (2018), in a vertical cylindrical tube. The asymmetric sinuous-shaped unstable
interface separating the fluids is found when the flow is in the downward direction. At the
same time, at a higher displacement speed, an axisymmetric finger with a needle-shaped
spike propagates out from the main fingertip when the flow is against gravity. To the best
of our knowledge, these are the only experiments that have discussed the displacement
flow in a classically stable system. Numerically, Mishra et al. (2012) showed that this
classically stable situation could be destabilized when the fluids have different diffusivity
and more discussions on such effects are presented in a review article by Govindarajan &
Sahu (2014).

In the counterpart, i.e. when a less-viscous fluid pushes a more-viscous fluid, if the flow
rate is high enough, then a needle-shaped spike at the tip of the finger can be observed,
as was done by Lajeunesse et al. (1999), in a vertical Hele–Shaw cell. Similarly, when an
elongated finger of less-viscous fluid penetrates into a more-viscous one in a channel or
pipe, a velocity fluctuation generated by viscosity contrast can develop Kelvin–Helmholtz
(K–H) instability type roll-ups (Sahu et al. 2009a, Govindarajan & Sahu 2014). Etrati &
Frigaard (2018) performed experiments in a vertical and inclined pipe, and compared the
flow features, like averaged concentration profile and front velocities, with the numerical
results.

Hence it is believed that in a non-reactive channel/pipe flow, hydrodynamic instability
of fingering or K–H-type instability alongside the elongated finger occurs when a bulk
of less-viscous fluid displaces a more-viscous fluid (Sahu et al. 2009a; Etrati & Frigaard
2018). In particular, if the viscosity increases in the direction of propagation globally, then
fingering and K–H instability are noticed. Alternatively, even when a bulk of more-viscous
fluid displaces a less-viscous one, a local increase of viscosity in the direction of the flow
by double-diffusive effects can lead to such instabilities (Mishra et al. 2012).

The effect of chemical reaction on interfacial instabilities has become a recent attraction
for many researchers, as it can lead to alteration of density and viscosity of the fluids.
Experimentally, the propagation of the miscible reactive front in the capillary tube
(Nagatsu et al. 2008) and that of the autocatalytic reaction front in laminar flows (Leconte
et al. 2002) have been studied. The difficulty of producing a locally varying viscosity
to induce instability is eased by local changes in the molecular structure via a chemical
reaction with complex structured fluids (Burghelea et al. 2007). Burghelea et al. (2007)
conducted three sets of experiments and arrived at the conclusion that the chemical
reaction can be treated as a new tool for efficient mixing in microfluidic flows even at
low Reynolds number. Also, an experimental investigation was carried out by Burghelea
& Frigaard (2011), which revealed an instability triggered by a fast chemical reaction
in a low-inertia parallel flow in a small channel. They focused on the transverse growth
of mixed regions by controlling the initial interface position and the two fluids’ relative
inflow. Nevertheless, the dispersion analysis of reactive flows (Reshadi & Saidi 2019;
Taghizadeh, Valdés-Parada & Wood 2020) is an active area of research, which provides
building blocks for understanding the complex instabilities in reactive pipe flows.

In the context of viscous fingering (VF) instability, experimentally, it has been shown
(Nagatsu et al. 2007; Riolfo et al. 2012) that viscosity depends on the concentration of the
solutes, and hence a chemical reaction can alter the viscosity gradient generating fingers
at the fluid–fluid interface. They used the pH dependency of the viscous solutions of
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polymers (aqueous polyacrylic acid (PAA)) that undergo a (A + B → C)-type reaction,
which tunes the changes in the gradient of the mobility profile. In the experiments by
Nagatsu et al. (2007) and Riolfo et al. (2012), both the displacing and the displaced
fluid had different viscosity, while Podgorski et al. (2007) used the same viscosity bulk
fluids that underwent a chemical reaction of (A + B → C)-type producing a variety of
fingering instabilities. In their experiments, they considered the aqueous solutions of
the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the organic salt
sodium salicylate (NaSal). It was found that bringing CTAB and NaSal into contact
produced a strongly viscoelastic micellar material, which caused a fingering instability
at the underlying reactive interface. Subsequently, numerical studies on the reactive VF
instability in both rectilinear (Gérard & De Wit 2009) and radial (Sharma et al. 2019)
displacements in porous media have been performed. In these studies, the authors showed
that reaction could induce VF-instability even if the underlying reactive fluids have the
same viscosity. A considerable number of experimental studies of fingering instabilities by
chemical reaction and numerical analysis in Darcy’s regime is presented in a review article
by De Wit (2020). Also, De Wit (2020) explicitly pointed out the lack of numerical analysis
of chemohydrodynamic instabilities to date where Navier–Stokes equations govern the
flow. Thus, a collective viewpoint from reactive experimental studies in the pipe flow and
lack of numerical analysis of the chemohydrodynamic instabilities in the Navier–Stokes
regime motivates the primary objective of this article.

Here, we investigate how the reaction destabilizes the pressure-driven channel flow
even if the displacement is between two isoviscous fluids. Further, we investigate how the
chemical reaction alters the viscosity profile in the channel flow that may cause interfacial
instability. We numerically analyse these investigations and successfully explain the
mechanism and onset dynamics of the instability. In comparison to the Darcy flow in a
Hele–Shaw cell or Stokes flow in a capillary tube, the fundamental difficulty is in solving
the coupled convection–diffusion–reaction (CDR) equations for reactant and product
species with the Navier–Stokes equation in channel geometry. We have successfully
overcome these challenges in numerical modelling by using a finite volume method
that uses a fifth-order weighted essentially non-oscillatory (WENO) approximation for
convection of solute concentrations. We find K–H-type billows at the fluid–fluid interface,
which are formed due to the isothermal chemical reaction between two isoviscous fluids,
and discuss the changes in their dynamical properties with respect to various governing
flow parameters. An interesting scaling behaviour on the onset of instability is obtained,
which shows proportionate dynamics with respect to Pe, and the existence of a critical
mobility ratio Rc for obtaining the interfacial billows is revealed.

2. Mathematical formulation and numerical method

We consider the fluids containing the two reactants A, B and the product C are miscible
and Newtonian. We use a rectangular coordinate system (x, y) to model the flow dynamics
where x and y denote the horizontal and vertical coordinates, respectively. The rigid and
impermeable channel walls are located at y = 0 and y = Ly, while its inlet and outlet
coincide with x = 0 and x = Lx, respectively (figure 1). A solution of reactant A with
viscosity μ = μ1 is injected at the channel inlet, along the x direction, into a solution of
reactant B having the same viscosity μ1 with average velocity Q/Ly, where Q denotes the
total flow rate. Both reactants A and B are initially present in the same initial concentration

Φ0. A second-order chemical reaction A + B
k−→ C takes place as soon as A and B are
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Fluid ‘B’

b = Φ0

c = 0

Ly

x = Lxx = 0

c = 0

b = 0

Fluid ‘A’

a = 0

x

y

a = Φ0

Figure 1. Schematic of the initial configuration.

put in contact to yield a high-viscosity product C with viscosity μ2 (μ2 > μ1). The flow
dynamics is governed by incompressible Navier–Stokes equations:

∇ · u = 0, (2.1a)

ρ

[
∂u
∂t

+ u · ∇u
]

= −∇p + ∇ · [μ(c)(∇u + ∇uT)], (2.1b)

where u = (u, v) is the velocity vector with components u and v in the x and y directions,
respectively, and p denotes pressure, a, b, c denote the concentration of the two reactants
(A, B) and the product C, respectively, and they satisfy the following system of CDR
equations:

∂a
∂t

+ u · ∇a = D∇2a − kab, (2.2a)

∂b
∂t

+ u · ∇b = D∇2b − kab, (2.2b)

∂c
∂t

+ u · ∇c = D∇2c + kab. (2.2c)

We assume the same diffusion coefficient D of all the species A, B and C. Further it is
assumed that the viscosity of the fluid varies exponentially with the product concentration
as μ(c) = μ1 eRcc/Φ0 , where Rc = ln(μ2/μ1).

2.1. Non-dimensionalization
We non-dimensionalize the equations using the characteristic length, time, velocity,
pressure, viscosity and concentration as

(x, y) = Ly(x̃, ỹ), t = L2
y

Q
t̃, (u, v) = Q

Ly
(ũ, ṽ), (2.3a–c)

p = ρQ2

L2
y

p̃, μ = μ̃μ1, (ã, b̃, c̃) = (a, b, c)
Φ0

, (2.4a–c)
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where the tildes designate dimensionless quantities. After dropping tildes, the
dimensionless governing equations become

∇ · u = 0, (2.5a)[
∂u
∂t

+ u · ∇u
]

= −∇p + 1
Re

∇ · [μ(c)(∇u + ∇uT)], (2.5b)

∂a
∂t

+ u · ∇a = 1
Pe

∇2a − Da ab, (2.5c)

∂b
∂t

+ u · ∇b = 1
Pe

∇2a − Da ab, (2.5d)

∂c
∂t

+ u · ∇c = 1
Pe

∇2c + Da ab, (2.5e)

μ = eRcc. (2.5f )

The four dimensionless numbers arising in (2.5b–f ) are

Re = ρQ
μ1

, Pe = Q
D

, Da = L2
ykΦ0

Q
, Rc = ln

(
μ2

μ1

)
. (2.6a–e)

Here, Reynolds number Re indicates the relative strength of convective to viscous force.
As a direct consequence of the scaling, Péclet number Pe appears here in the system, which
measures the relative importance of the advection to the solute diffusion. The Damköhler
number Da represents the ratio between advective time L2

y/Q and the reaction time 1/kΦ0,
which implies that the formation of the product is faster for a higher value of Da. The
log-mobility ratio is demonstrated by Rc. The following initial and boundary conditions
are employed for the non-dimensional model system (2.5a–f ):
Initial conditions,

(a, b, c, u, v)|t=0 =
{
(1, 0, 0, 6y(1 − y), 0) at x = 0, 0 ≤ y ≤ 1
(0, 1, 0, 0, 0) 0 < x ≤ Lx, 0 ≤ y ≤ 1.

Boundary conditions,
Solutes a, b and c satisfy no-flux conditions at the top and bottom walls, i.e.

∂a
∂y

∣∣∣∣
y=0,1

= 0,
∂b
∂y

∣∣∣∣
y=0,1

= 0,
∂c
∂y

∣∣∣∣
y=0,1

= 0.

No-slip and no-penetration conditions are employed at the top and bottom walls, i.e.

u|y=0,1 = 0, v|y=0,1 = 0.

A fully developed velocity profile with a unity flow rate is imposed at the inlet (Sahu et al.
2009a) i.e.

u = 6y(1 − y), v = 0 at x = 0.

The solute concentrations, (a, b, c) = (1, 0, 0) at x = 0 (as a is continuously injected at
the channel inlet). Neumann boundary conditions are used at the outlet, i.e.,

∂a
∂x

∣∣∣∣
x=Lx

= 0,
∂b
∂x

∣∣∣∣
x=Lx

= 0,
∂c
∂x

∣∣∣∣
x=Lx

= 0,
∂u
∂x

∣∣∣∣
x=Lx

= 0,
∂v

∂x

∣∣∣∣
x=Lx

= 0.
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2.2. Numerical method and validations
The numerical method is employed with a collocated discretization strategy such that the
pressure and solute concentrations are stored at cell centres, and the fluxes are evaluated
on the cell faces where the velocity components are defined. A diffuse interface numerical
scheme with such a strategy has initially been reported by Ding, Spelt & Shu (2007)
and used by Sahu et al. (2009a) to simulate pressure-driven neutrally buoyant miscible
non-reactive channel flow with high viscosity contrast. In the reactive counterpart, we
implement numerical approximations for the CDR equations (2.5c–e) in the following
way:

3
2 an+1 − 2an + 1

2 an−1

�t
= 1

Pe
∇2an+1 − 2∇(un · an) + ∇(un−1 · an−1)

− Da(2anbn − an−1bn−1), (2.7a)
3
2 bn+1 − 2bn + 1

2 bn−1

�t
= 1

Pe
∇2bn+1 − 2∇(un · bn) + ∇(un−1 · bn−1)

− Da(2anbn − an−1bn−1), (2.7b)
3
2 cn+1 − 2cn + 1

2 cn−1

�t
= 1

Pe
∇2cn+1 − 2∇(un · cn) + ∇(un−1 · cn−1)

+ Da(2anbn − an−1bn−1), (2.7c)

where �t = tn+1 − tn, and superscript n stands for the discretization at the nth time step.
A fifth-order WENO approximation is performed to handle the nonlinear convective
terms in (2.7a–c), while the usual second-order central difference formula is used for the
diffusive terms.

The equation (2.5b) is approximated using Adams–Bashforth and Crank–Nicolson
methods for the convective and the dissipative term, which is given by

u∗ − un

�t
= −3

2
C (un) + 1

2
C (un−1) + 1

2Re
[D(u∗, μn+1) + D(un, μn)], (2.8)

where u∗ is the intermediate velocity. Here C and D denote the discrete convection and
diffusion operators, respectively. The intermediate velocity is corrected to the (n + 1)th
level by

un+1 − u∗

�t
= −∇pn+1/2. (2.9)

Since velocity field at the (n + 1)th time step is divergence free, the pressure at the
intermediate level is obtained using

∇ · (∇pn+1/2) = ∇u∗

�t
. (2.10)

The following order from the nth to (n + 1)th time step is maintained in the
implementation of the numerical algorithm to solve (2.5a–f ): the solute concentration at
the (n + 1)th time step is first obtained, by using the velocity fields at the nth and (n − 1)th
time step in CDR equations (2.5c–e). Then the velocity fields are updated to the (n + 1)th
time step by solving the equation (2.5b) together with the continuity equation.
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Figure 2. Temporal evolution of the mass of formed C for different grid sizes, when Da = 10, Re = 1000,
Pe = 10 000, Rc = 3.
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Figure 3. Temporal evolution of separating leading front (a) at the A–C interface i.e. (xtip)AC and (b) at the
C–B interface i.e. (xtip)CB, with Da = 10, Re = 1000, Pe = 10 000, Rc = 3.

As schemes in (2.7a–c) are implicit–explicit type, a Gauss–Jacobi iterative solver is used
to solve the fully discretized system Ax = b, and it is iterated until the convergence criteria
of the numerical scheme is reached, i.e. when ‖xn+1 − xn‖/‖xn‖ becomes less than 10−10,
where ‖ · ‖ represents the max norm. The successive over-relaxation iterative method is
implemented to solve the fully discretized version of (2.8) with relaxation parameter ω =
0.2, and the iterations are stopped when the max norm of residuals become less than 10−5.

To check the flow dynamics preserving property of the numerical scheme, in figure 2,
we plot the mass of the dimensionless concentration of the product C against time with
respect to various grid sizes. Here, Mc>0.01 represents the total mass of the product
where the volume integration is applied using the concentrations of product c > 0.01.
The parameter values chosen are Da = 10, Re = 1000, Pe = 1 × 104, Rc = 3, in order to
carry out the reactive simulation. The results are obtained using a channel with a 1 : 40
aspect ratio. It is clear from figure 2 that the amount of product C formed does not differ
much (maximum absolute error less than 0.02 %) when the number of cells ranges from
41 to 101 and 1001 to 1751 in the y and x direction, respectively. Further, we check the
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temporal variation of the two interfaces A–C and C–B at the centre of the channel (with
respect to the transverse direction) with the same parameters as in figure 3, by taking
different mesh sizes. Here (xtip)AC, (xtip)CB represent the spatial location of the leading
front of the two interfaces A–C and C–B in figures 3(a) and 3(b), respectively. The plots
are indistinguishable in figure 3(a,b), which reveals the convergence of the numerical
scheme. The interfacial dynamics can be studied by measuring the speed of the fingertip
at position (xtip)AC, (xtip)CB. As (xtip)AC, (xtip)CB both vary almost linearly with time,
the two leading fronts can be seen to propagate with constant velocity. Similar linear
evolution of the interface tip is found by Mishra et al. (2012), where the underlying solutes
have different diffusivity, and by Sahu et al. (2009a, b), where a less-viscous fluid pushes
a more-viscous fluid. Afterwards, all the numerical results presented in this paper are
obtained using an 81 × 1401 mess for a channel of 1 : 40 aspect ratio.

3. Results and discussion

In the absence of a reaction, when a fluid A pushes an isoviscous fluid B, the flow
results in a pure dispersive interface and that grows as a Poiseuille flow like pattern,
as mentioned in § 1. In a reactive system, when the reactant A meets the reactant B,
the product C is formed and its viscosity can be the same or different from that of
the reactants. For Rc = 0 (figure 4a), i.e. when the viscosity of the product C is equal
to that of the reactants A and B, the interface temporally evolves in a stable form. It
shows that the product is first formed at the miscible interface between the reactants,
and then diffuses with time without distorting the pure dispersive parabolic profile (see
supplementary movie 1 available at https://doi.org/10.1017/jfm.2021.630). It is seen that
when the flow starts inside the channel, the velocity field suddenly changes the product
concentration distribution in the interior of the cell, while the product concentration at
the wall changes due to diffusion only, similar to the observed phenomena between the
two miscible fluid cases studied by Goyal & Meiburg (2006). In figure 4(b), we show
the corresponding time evolution of the concentration field of reactant A. However, if the
reaction generates a more-viscous product than the reactants (i.e for Rc = 5), we observe
the formation of K–H rolling type instability in figure 4(c) (corresponding evolution of
reactant A is shown in figure 4d). So the question arises, how does a chemical reaction
induce such instability in the flow? To understand the mechanism of the instability,
we investigate the spatio-temporal evolution of a transversely averaged viscosity profile

μ̄y(x, t) = ∫ Ly
0 μ(x, y, t) dy in figure 5. The observed non-monotonic viscosity profiles at

different times in figure 5 are mainly responsible for the instability. Such non-monotonic
profiles are seen due to the formation of the higher viscosity product than the reactants
(see the density plots of product concentration c in figure 4c). At the A–C interface, in
the flow direction, a local increase in viscosity occurs (i.e. the viscosity gradient is from
less to high), and for a favourable velocity gradient (at some positions away from both the
wall and the channel centreline), such billows of K–H-type develop due to the coupling
effect of shear and oscillations in the viscosity profile. Whereas at the C–B interface, the
viscosity gradient is from high to less, which opposes the growth of such roll-ups.

The initial increment near to the inlet (at the wall) and the spike near to the tip (at
the channel centreline) in the averaged viscosity profiles of figure 5 do not contribute
to the K–H-instability. This is because they fall either in the zone near the wall where
the axial velocity is very low or in a very high-velocity zone near the centreline. The
unfavourable y-gradient of the axial velocity component u hinders the occurrence of K–H

925 A3-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.630
https://doi.org/10.1017/jfm.2021.630


Reaction induced interfacial instability of miscible fluids

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 5 10 15 20 25 30 35 40

0.5

1.0

0 0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8 1.0

0 0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8 1.0

t = 28

t = 20

t = 10

t = 5

t = 28

t = 20

t = 10

t = 5

t = 28

t = 20

t = 10

t = 5

t = 28

t = 20

t = 10

t = 5

(a) (b)

(c) (d)

Figure 4. Spatio-temporal evolution of concentration of the product C at successive times for (a) Rc = 0,
(b) corresponding concentration evolution of reactant A, (c) Rc = 5, (d) corresponding concentration evolution
of reactant A. The other parameter values are Da = 50, Re = 500, Pe = 10 000.

billows at these positions even though there is a viscosity stratification at the fluid–fluid
interface. Furthermore, before and at time t = 5, there is one local maximum between
the positions of the inlet and tip (see figure 5), and this maximum attains a higher
value at time t = 10. Again at t = 10, two more local maxima with relatively small
amplitude are generated. Oscillations in the neighbourhood of these local maxima further
amplify at subsequent times. These local maxima give the exact locations for where the
corresponding K–H-type billows occur in figure 4(c) at the respective times. Such spatial
positions of K–H-type billows in the corresponding density plot at t = 28 are compared
with the spatial positions of local maxima of μ̄y in figure 5. Hence it is evident that
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Figure 5. Evolution of transversely averaged viscosity profile μ̄y(x) in a space–time domain with Rc = 5,
Da = 50, Re = 500, Pe = 10 000. (Inset: the positions of the K–H billows are shown in the density plots of
product concentration at t = 28 by comparing the corresponding local maximums of μ̄y(x).)

viscosity jumps with intermediate shear gradient produce velocity fluctuation, which leads
to the formation of such roll-ups.

3.1. Reaction rate dynamics on the instability
To provide more insight into the moving reactive zone, we compute the reaction rate
defined by Gérard & De Wit (2009) as

R(x, y, t) = Da a(x, y, t)b(x, y, t).

Figure 6 depicts the comparison of the spatio-temporal evolution of reaction rate R(x, y, t)
with the product concentration c by superimposing a representative concentration contour
of c = 0.05 on the density plot of R(x, y, t) for Rc = 5 with Da = 50, Re = 500,
Pe = 10 000. Interestingly, the reaction rate distribution remains very localized near the
interface, despite the billows of product C (see contours in figure 6) spiralling more
towards the centreline of the channel due to the interplay of convection, diffusion and
reaction. It is apparent from the spatial distribution of the reaction rate that, in the region
where more product is formed, R(x, y, t) is decreased, which reveals the fact that a higher
product concentration c can act as a barrier for the reaction to happen. Moreover, it is
noticed from the contour plots in figure 6, the roll-ups start colliding at the A–C interface
just right of the unstable billow of K–H-type and the product C traps the reactant A (clearly
visible in the supplementary movie 3). Further, diffusion dominates, which results in the
reduction of the trapped area with time, and the reaction rate R becomes negligible in that
zone.

3.2. Effects of the log-mobility ratio Rc

To understand more about the influence of the log-mobility ratio on the instability, we
plot the viscosity fields at a fixed time t = 22 for different Rc values in figure 7(a) with
the rest of the parameters the same as in figure 2. It is observed that even for Rc = 1,
the viscosity of the product is more than 1, no roll-ups occur (see the supplementary

925 A3-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.630


Reaction induced interfacial instability of miscible fluids

5 10 15 20 25 30 350

0.5

1.0

5 10 15 20 25 30 350

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

5 10 15 20 25 30 350

0.5

1.0

t = 20

t = 22

t = 25

Figure 6. Temporal evolution of reaction rate R (density plots) superimposed with a concentration contour
of c = 0.05 for Rc = 5, Da = 50, Re = 500, Pe = 10 000.

movie 2); however in the latter two cases, i.e. for Rc = 3 and 5, two roll-ups are formed,
and the axial gap between them is increased with increasing log-mobility ratio. Such
instability patterns are clearly visible in the density plot of the respective concentration
field a(x, y, t) of the reactant A (see figure 7c). In order to see the effects of such Rc on the
formation of the roll-up, the corresponding transversely averaged viscosity profiles μ̄y(x)
at time t = 22 for different values of Rc are shown in figure 7(b). It shows that for Rc = 1,
the spatially varying viscosity distributions reached a plateau; however for Rc = 3, 5, the
viscosity distributions oscillate with several local optimum values away from the inlet and
the tip, which is the primary reason for the K–H instability in the flow. The increase in
the amplitude of these oscillations with a rising log-mobility ratio (in figure 7b) explains
the growing deformation of the interface. Note that the local optima of μ̄y(x) just right of
the inlet and at the tip (near to channel centreline) attain higher values with increasing Rc.
This is only a consequence of the fact that the presence of C is slightly more across the
y-axis than the neighbouring axial positions, and the average is taken over the y-domain.
Hence, near the inlet and the tip, because of the Arrhenius relation between the viscosity
and concentration c, the local optimum values increase with the increase in Rc. However,
as previously discussed, the unfavourable y-gradient of the axial velocity component u is
responsible for the non-occurrence of K–H billows at these positions.

Unlike the averaged viscosity profiles seen in the case study of double-diffusive effects
(Mishra et al. 2012), here as the viscosity is related to the product C only by an Arrhenius
relation, it takes the constant value of one wherever the fluid C is absent. In figure 6(b,c) of
the paper by Mishra et al. (2012), the averaged viscosity profile varies between two positive
constants (because the flow is between two non-isoviscous bulk fluids), and instability
is generated due to local increase of viscosity in the flow direction. While here, the
local oscillations in the viscosity occur due to the high-viscosity product of the reaction.
A spike/cap-like tip due to double diffusive effects (Mishra et al. 2012) or distortion of a
mushroom-like tip (Sahu et al. 2009a) occurs as the result of displacement between two
non-isoviscous bulk fluids. However, here, since the displacement is between two reactant
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Figure 7. (a) Density plot of viscosity μ(x, y, t), (b) corresponding transversely averaged viscosity profile
μ̄y(x), (c) density plot of concentration a(x, y, t) of the reactant A for different values of Rc at time t = 22 with
Da = 50, Re = 500, Pe = 10 000.

bulk fluids A and B of the same viscosity, and only a thin layer of a more-viscous product
is formed at the interface, a Poiseuille-like tip propagates with time. K–H billows are seen
only at the locations with a favourable velocity gradient where the less-viscous reactant A
is suspended on the more-viscous product C or vice versa.

Since the more-viscous product C is responsible for the interfacial instability, it is
crucial to do a quantitative analysis of the total product formation and its control on the
instability. To do so, we compute

ctot(t) =
∫ Lx

0

∫ Ly

0
c(x, y, t) dy dx,

and plot its temporal evolution for different Rc values in figure 8(a) while the other
parameters are fixed. It is found that for the cases of Rc = 0 and Rc = 1, the ctot grows
temporally in a similar fashion, while for the Rc = 3 and Rc = 5 cases, the curve deviates
from that of the Rc = 0 case after some time. Hence the instability helps in the formation
of more product than the stable case. It is shown in the context of VF (Brau & De Wit
2020) that ctot grows as t1/2 in advection–diffusion–reaction (ADR) system for a rectilinear
geometry and linearly for the radial advection, where speed depends on the injection flow
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Figure 8. (a) Time evolution of ctot and (b) total reaction rate Rtot for different values of Rc, when Re = 500,
Pe = 10 000, Da = 50.

rate and the circle radius. Here since the channel aspect ratio is 1 : 40, the growing contact
area for the reaction increases with time, as the reactive interface is axially spread over
the whole domain as time evolves. Hence the total product c grows proportional to t1.5

(see the log–log plot in the inset of figure 8a for the stable case (Rc = 0) which is an even
faster rate as compared with the reactive VF results Brau & De Wit 2020). Moreover in the
unstable situation (Rc = 5), the product formation follows a t1.55-type growth after time
t = 10.

To further explore the influence of instability on reaction rate with different Rc, we
compute Rtot(t) which is defined as (Gérard & De Wit 2009)

Rtot(t) =
∫ Lx

0

∫ Ly

0
R(x, y, t) dy dx.

The temporal evolution of Rtot(t) is shown in figure 8(b). It is observed that initially
the Rtot value increases from zero to a maximum value and then starts decreasing. This is
because the initial reaction area is largest when reactants A and B come into contact for
the first time, and it subsequently decreases as the product C is formed, which acts as an
obstacle between the reactants to react. For the Rc = 0 case (see figure 7b of Gérard & De
Wit 2009) in Hele–Shaw flow, i.e. for a pure reaction–diffusion (RD) systems, the total
reaction rate initially attains a higher value and decreases further when the system enters
diffusion-limited dynamics. However, when Rc = 0 in the present channel flow case, Rtot
starts increasing after attaining a local minimum, unlike the Hele–Shaw flow case. The
parabolic interface created from a non-uniform velocity distribution is responsible for the
increasing Rtot for all values of Rc helping the fresh reactants to come more and more
into contact at successive times. Also, in contrast to the results in Hele–Shaw flow (Gérard
& De Wit 2009) when Rc > 0, here we see that instability does not produce oscillations
in the later evolution of Rtot after achieving the local minima. It implies that even if the
interface changes its shape due to the occurrence of K–H-type billows, enough area of
accessibility between the reactants A and B is neither frequently created nor annihilated
to generate oscillations in Rtot(t).
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Figure 9. Density plot of vorticity for different values of Rc at time t = 22 with Da = 50, Re = 500,
Pe = 10 000. Inset: the directional field of velocity at the inlet near the wall, where the reactant A pushes the
product C.

3.2.1. Vorticity and enstrophy dynamics
An explanation for the mechanism of the development of roll-ups can be provided through
the vorticity ∇ × V , where V = (u, v). To do so, we plot the vorticity field’s density for
different values of Rc in figure 9. In the inset of figure 9, we show the vorticity’s directional
field at the inlet by zooming-in on the portion where the interaction of the reactant and
product occurs near the wall. It is evident that when the product’s viscosity increases, it
acts as an obstruction to the reacting fluid that changes the direction of the flow, which can
be seen from the increased bending of the directional field’s arrows for a larger Rc value
(see figure 9). It can be seen that a horseshoe-type vortex is developing near the wall, but
it cannot complete the full rotation as in the case study by Launay et al. (2017) where
the vortex is created by the interaction of a free-surface flow and an emerging obstacle.
The reason is only a thin layer of high-viscosity product is acting as an obstruction to the
low-viscosity reactant that affects the velocity field. The strength of the vorticity is known
as the enstrophy (Miura 1997), and can be used to understand the impact of the roll-ups on
the flow globally in the whole of the channel. The enstrophy is defined as

E =
∫ Lx

0

∫ Ly

0
(∇ × V)2 dy dx.

Indeed, Matsumoto & Hoshino (2004) used its temporal evolution to find the onset of the
secondary roll-ups occurring in the magnetohydrodynamic K–H instability. Hence we plot
the normalized enstrophy E/E∗ for the Rc = 3 and Rc = 5 cases in figure 10, where E∗
represents the enstrophy for the stable Rc = 0 case. It is found that enstrophy increases
monotonically with time, which reveals that roll-ups become stronger as time progresses.
Also, it attains a higher value for a larger Rc at each instance of time, which results in a
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Figure 10. Time evolution of normalized enstrophy E/E∗ for different values of Rc, when Re = 500,
Pe = 10 000, Da = 50.

stronger change in the directional field with increasing mobility ratio due to the presence
of roll-ups with relatively higher amplitude.

3.2.2. Mixing dynamics due to the reaction
Since the product from the reaction induces instability, we use the product concentration c
to define the degree of product mixing with respect to the stable case without any loss of
generality. We define the degree of product mixing as

χc(t) = σ 2(t)/σ 2
∗ (t) − 1,

where σ 2∗ (t) = σ 2(t)|Rc=0. The global variance is known as σ 2 = 〈c2〉 − 〈c〉2, with 〈·〉
denoting spatial averaging over the domain of the channel (Jha, Cueto-Felgueroso &
Juanes 2011). Here the degree of product mixing χc(t) for the stable Rc = 0 case is zero.
It should be noted that here we do not have a direct relationship between σ 2 and the
dissipation rate ε = 〈|∇c|2〉/Pe (see equation (2) of Jha et al. 2011), as we have an entry
flow situation with the reaction acting as a source term. Still, we can talk about relative
mixing through χc(t) as a function of governing flow parameters. Figure 11(a) shows
the temporal evolution of global variance σ 2 for different values of Rc with Da = 50,
Pe = 10 000, Re = 500. The σ 2 increases with respect to time, as the fresh product keeps
forming due to reaction between A and B. As Rc increases, the value of σ 2 also increases
due to the increment of the total mass volume of the product. We plot χc(t) with respect
to time in figure 11(b) for Rc = 3, 5 with the rest of the parameters fixed as in figure 11(a).
The mixing due to the roll-ups can be analysed from the temporal evolution of χc(t)
(figure 11b). For Rc = 3, it shows that till t ≈ 10, χc(t) monotonically increases to attain a
maximum value then starts decreasing. However for Rc = 5, χc(t) monotonically increases
up to t ≈ 22 with a greater value than that of the Rc = 3 case at each instant of time. The
maximum of χc(t) for the Rc = 5 case is close to 0.04, which signifies the fact that an
unstable case can result in 4 % more mixing than that of the stable case when Da = 50,
Pe = 10 000, Re = 500. Both the curves in figure 11(b) depict that the relative mixing
with respect to the Rc = 0 case, i.e. the amount of spreading and mixing occurring in the
stable case is less than that in the Rc = 3, 5 cases. In other words, the mixing occurs more
efficiently due to the presence of roll-ups in the flow.
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Figure 11. (a) Time evolution of σ 2(t), (b) time evolution of χc(t) for different values of Rc, when Re = 500,
Pe = 10 000, Da = 50.

3.3. Effects of Da
In this reactive flow system, the governing parameters, other than the mobility ratio Rc,
are Damköhler number Da, Péclet number Pe and Reynolds number Re. To understand
how these parameters influence the reactive interface’s instability, we sequentially depict
the effects of each of these parameters subsection-wise. In this sub-section, we discuss
the effects of the Damköhler number on the flow, keeping the rest of the parameter values
fixed as Rc = 5, Re = 500, Pe = 10 000. In figure 12(a) the density fields of the reactant A
at a fixed time t = 25 are shown for different Da values. An increase in Da produces more
product C due to more consumption of reactants A and B in the process of the reaction.
Since the product is more viscous, more formation of C produces more gradient in the
viscosity, which leads to high-velocity fluctuations and hence the greater deformation in
the interface (see figure 12a). The reason for the formation of one billow of K–H-type, in
the case of Da = 1, is clear from the corresponding averaged μ̄y(x) shown in figure 12(b),
as only one cycle of oscillation is present between the tip and the inlet. Similarly, for the
later cases (Da = 10, Da = 50), more than one local optimum is seen (see figure 12b),
which is depicted by the higher number of roll-ups in the density plots of figure 12(a).

In figure 13(a), we plot ctot against time for different values of Da. At each time with
increasing Da, ctot attains a higher value since more consumption of reactants A and B
is enhancing the product C formation. Moreover, for a smaller value of Da, although the
value of ctot remains smaller as compared with the cases where Da are large, it grows with
a faster rate at a later time (t > 8) than that in the case of a larger Da. This can be seen
from the inset of the figure 13(a), where the log–log plot shows that, as Da increases, ctot
follows tβ -type growth, where the exponent β decreases from 1.93 (Da = 1) to 1.55 (Da =
50). However, with increasing Da, the proportionally constant (not shown) in the obtained
power-law increases, so ctot attains a higher value for a higher Da (figure 13a). As Da is
directly proportional to the reaction rate R(x, y, t), Rtot(t) attains a higher value for higher
Da at each instant of time (figure 13b). As mentioned earlier in § 3.2, initially Rtot(t)
attains a higher value due to the reactive area being highest when A and B meet for the
first time. The value of this local maximum decreases as the reaction rate slows with lower
Da. When Da = 1, Rtot(t) follows a monotonic profile since the rate of reaction is not fast
enough, although the reactants A and B have the highest accessibility to each other at the
initial stage. When the Da value is high enough, it is evident that (see figure 13b) even
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Figure 12. (a) Spatial distribution of reactant A concentration, (b) corresponding averaged viscosity μ̄y(x)
for Rc = 5 at time t = 25 for different values of Da, when Re = 500, Pe = 10 000.
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Figure 13. (a) Time evolution of ctot and (b) total reaction rate Rtot for different values of Da, when Rc = 5,
Re = 500, Pe = 10 000.

though both the parabolic interface and instability accelerate the process of the reaction
later, the initial reaction rate can be more than that at intermediate times.

The strengthening of the roll-ups for higher values of Da is depicted from the plots of
E/E∗ versus t in figure 14(a). In the case of Da = 1, since there is one visible roll-up
(see figure 12a) with a small amplitude, the E/E∗ value monotonically increases from 1 as
time advances. This increment of E/E∗ from 1 indicates the change in the directional field
from the stable situation. Other than the Da = 1 case, for other three values of Da, E/E∗
evolves by closely following a monotonic profile with the attainment of a higher value for a
greater Da at each time t > 0. From figures 12 and 14(a), it is intuitive that in the regime of
Da = 5 to Da = 50, the formation of only two more prominent roll-ups occurs. Moreover,
adjacent smaller roll-ups to these prominent ones contribute only to a slight increment in
the magnitude of the directional field compared with their corresponding stable cases. In
figure 14(b) the time evolution of χc(t) shows when Da is increased, more mixing occurs
as compared with the stable (Rc = 0) case. The Da = 1 case is mixed less than the rest

925 A3-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.630


S.N. Maharana and M. Mishra

0 5 10 15 20 25
1.00

1.05

1.10

1.15

1.20

5 10 15 20 250

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

t t

E/
E∗

χ
c(

t)

Da = 50
Da = 10
Da = 5

Da = 1

(a) (b)

Figure 14. (a) Time evolution of scaled enstrophy E/E∗ and (b) χc(t) for different values of Da, when
Rc = 5, Re = 500, Pe = 10 000.

of the Da values (Da = 5, 10, 50). In the Da = 5 case, the χc(t) profile shows monotonic
increment as time advances, with a point of inflection followed by a local maximum which
signifies the more nonlinear effects of K–H billows on mixing dynamics in the flow as
compared with the Da = 1 case. When the Da value is further increased, the degree of
mixing attains higher values than the Da = 5 case at each instant of time, which indicates
that more efficient mixing occurs due to stronger K–H roll-ups.

3.4. Effects of Pe
It should be noted here that the Péclet number Pe can be represented as the product of the
Schmidt number Sc and Reynolds number Re, i.e. Pe = Re · Sc, which represents the ratio
of viscous force and diffusive force. Since in the dimensional representation, Pe = Q/D,
Re = ρQ/μ1, Sc = μ1/ρD, so if we change only Pe keeping Re and Rc fixed, then the
change only corresponds to the change in solute diffusivity D. So a change in Pe changes
the diffusivity of the solutes, which implies the change in concentration profiles of both
the reactants (A and B) and the product C at the wall (Goyal & Meiburg 2006). Thus
near the impermeable rigid upper and lower walls, the reactive interface moves further
right of the inlet for a lower Pe due to more solute diffusion as compared with that of a
higher Pe, which is clearly reflected in figure 15(a). When Pe increases, the effectiveness
of interfacial roll-ups on the interface deformation reduces (see figure 15a). The diffusion
zone decreases in reactants with an increase of Pe, which reduces the area where the
product concentration is non-zero. Hence the viscosity at each axial station attains a higher
value with a decrease in Pe (see figure 15b), which implicitly helps to produce more
favourable conditions to have oscillations in the viscosity profile. The interface deforms
more when Pe = 5000 than the case where Pe = 50 000. It is essential to note that, in
experiments, the change in Pe is often done by tuning the dimensional flow rate Q, so
we briefly explained how the change in the flow rate Q affects the presented system in
Appendix A.

It can be observed from figure 16(a), ctot increases monotonically with respect to time
for different values of Pe, when the rest of the governing parameters are fixed. However,
since Pe is inversely proportional to the diffusivity of solutes, a lower Pe results in
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Figure 15. (a) Spatial distribution of reactant A concentration and (b) corresponding averaged viscosity
μ̄y(x), for Rc = 5 at time t = 25 for different values of Pe, when Re = 500, Da = 50.
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Figure 16. (a) Time evolution of ctot and (b) total reaction rate Rtot for different values of Pe, when Rc = 5,
Re = 500, Da = 50.

more product C formation and hence a greater value of ctot. When Pe increases, the
concentration layer of the product C between A and B gets thinner due to less diffusivity,
which favours more access of A to B (Gérard & De Wit 2009) and vice versa. Hence
Rtot(t) attains a higher value for each time for a greater Pe (figure 16b). This phenomenon
can be easily verified from the colour bars of the density plot of the reaction rate for
different values of Pe in figure 17, which reveals the higher values of the reaction rate
for a greater Pe. Again, the initially attained maximum value of Rtot(t) also becomes
lower with a lower Pe value because the domination of convection over diffusion helps A
and B to react more (figure 16b). Hence from figures 16 and 17, it is clear that a lower
value of Pe helps to produce more C (value of ctot is larger), which makes A and B
less accessible to each other as the product C is formed between them, thus Rtot(t) is
smaller.

As discussed previously, since the Pe is inversely proportional to the diffusivity of
solute concentrations, a lower Pe results in more production of fluid C, which implicitly
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Figure 17. Spatial distribution of reaction rate at t = 25 for different values of Pe, when Rc = 5, Re = 500,
Da = 50.
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Figure 18. (a) Time evolution of scaled enstrophy E/E∗ and (b) χc(t) for different values of Pe, when
Rc = 5, Re = 500, Da = 50.

causes the formation of the roll-ups with a relatively high amplitude compared with that
for a higher Pe value. Therefore, the integral of the square vorticity over the channel
attains a higher value with a lower Pe. This can be observed from the scaled temporal
evolution of enstrophy for different Pe values shown in figure 18(a). It is found that
the degree of product mixing, χc(t), is less in the case of a lower Pe than that with
a higher Pe value at each instant of time (figure 18b). This result is counter-intuitive,
because the interface is more deformed for a lower value of Pe (see figure 15). However,
here we are measuring the degree of product mixing with respect to the corresponding
stable Rc = 0 case. Moreover, for a lower Pe value, the interface of the stable
situation is relatively more diffusive. So even if there are K–H billows for the unstable
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Figure 19. (a) Spatial distribution of reactant A concentration and (b) corresponding averaged viscosity
μ̄y(x), for Rc = 5 at time t = 25 for different values of Re, when Pe = 10 000, Da = 50.

Rc = 5 case, a lower Pe case produces less effective mixing than its corresponding stable
case.

3.5. Effects of Re
When only the Reynolds number Re is increased and the rest of the parameters are kept
fixed, we observed that the biggest K–H billow is stronger and develops rapidly at the
reactive A–C front (see figure 19a). Again for different Re, the solute diffusion that
occurs near the wall remains constant (since the Pe is kept constant), so the interface
pattern near the channel entrance remains the same. It is also observed that reduction of
velocity at the tip front and transverse-widening of the reactive front occurs at the tip with
increasing Re. Hence, for a lower inertia flow i.e Re = 250, enough velocity fluctuations
leading to roll-ups are not achieved as compared with Re = 500, 1000. The transverse
widening phenomenon decreases the angle of inclination of the interface from the wall
to the front-tip, which reduces invasion of the product C into A. So the first noticeable
roll-up (right of the inlet) is smaller in the case of Re = 1000 than Re = 500. However,
the deformation near the biggest roll-up left of the tip increases with increasing Re, as the
inclination is more favourable for the instability at those axial positions. These effects can
be clearly seen through the amplitude of oscillations in the transversely averaged viscosity
profile μ̄y(x) (see figure 19b).

As observed from figure 19, the reduction of the velocity at the front-tip occurs with
increasing Re, so with a greater Re value, the product spreads less in the axial direction
of the flow in the channel. Again, for the Re = 500 case (figure 19) the number of larger
roll-ups is more as compared with the Re = 2000 case, even though the Re = 2000 case
has more roll-ups of small amplitude in the axial positions between x = 10 and x = 15.
Thus due to the following two facts, (1) the axial spreading of the product C is more and
(2) more invasion of product C due to favourable angle of inclination results in a higher
number of bigger roll-ups, ctot becomes smaller with the increase of Re (figure 20a).
Moreover, the later time evolution of ctot reveals that the two cases of Re = 500, 1000
grow closely as do the cases of Re = 2000, 2500. In figure 20(b), we show the temporal
evolution of Rtot(t) while keeping rest of the parameters fixed as Rc = 5, Pe = 10 000,
Da = 50. Since the solute diffusion is the same (constant Pe) the thickness of the
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Figure 20. (a) Time evolution of ctot and (b) total reaction rate Rtot for different values of Re, when Rc = 5,
Pe = 10 000, Da = 50.
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Figure 21. (a) Time evolution of scaled enstrophy E/E∗ and (b) χc(t) for different values of Re, when
Rc = 5, Pe = 10 000, Da = 50.

reactive interface is the same, so it is only due to the coupling effect of convection and
viscous dissipation that a higher number of bigger K–H-billows produce more favourable
conditions for the accessibility of A and B to react. So the value of Rtot(t) becomes lower
when Re is increased from 500 to 2500.

The number of comparably bigger roll-ups decreases with the increase of Re from 500
to 2000 (figure 19), hence the strength of vorticity. This is reflected from the plots of
E/E∗ in figure 21(a). Moreover it is observed (not shown) that after time t ≥ 15, E/E∗
follows a linear-type growth for each value of Re. Again, as previously noticed in figure 20,
a similar closeness of two pairs (Re = 500, 1000 and Re = 2000, 2500) of Reynolds
numbers occurs in the evolution of E/E∗. The degree of product mixing also attains a
higher value for a lower Re (figure 21b). Moreover, χc(t) is positive and monotonically
increases with increasing time up to t � 22 for Re = 500, and when t > 22 it starts to
decrease to a local minimum (at t ≈ 27) and then again increases. These nonlinear-type
evolutions of χc(t) can be thought as a consequence of the coupling effects of CDR at
later times (see supplementary movie 3). For Re = 1000, χc(t) increases up to t ≈ 8 then
slightly decreases to attain a local minimum at t ≈ 14 and then again increases but with a
lower value at each time t for (0, 26.5) than that of the Re = 500 case. At t ≈ 26.5, χc(t)
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becomes equal for both Re = 500 and Re = 1000, and then for Re = 1000 it becomes
larger revealing that after a certain time mixing can be more efficient than that in the case
of Re = 500. When Re is further increased to Re = 2000, it is seen that χc(t) increases
initially up to a time t ≈ 6.5, then it starts decreasing to attain a negative local minimum
at t ≈ 15 and monotonically increases at later times (see figure 21b). Again for Re = 2500
it is noticed that the degree of mixing is positive initially for a smaller interval than the
case when Re = 2000, and χc(t) becomes negative after t � 9, which implies that when
the number of roll-ups decreases significantly, the stable case can become more efficient
in mixing than an unstable case.

To understand why χc(t) increases to reach a maximum value (in the case of Re = 2000)
then starts decreasing to a local minimum, then again increases, we compare the time
evolution of the rate of change in variance dσ 2(t)/dt (Jha et al. 2011) for Rc = 0 and five
cases with fixed Re = 2000 in figure 22(a,b). It is clear that dσ 2(t)/dt for the stable case
(Rc = 0) becomes larger and exceeds that of the corresponding unstable case (Rc = 5) at
a time t ≈ 6.5. Further the rate of change in variance dσ 2(t)/dt for Rc = 0 gets lower than
that of the Rc = 5 case at a later time t ≈ 15. The local maximum and minimum observed
in the curve of χc(t) in figure 21(b) (for Re = 2000), correspond to these cross-over
times (i.e. at t ≈ 6.5 and 15, respectively) for the rate of change of variance between
the Rc = 0 and Rc = 5 cases. This happens because the Rc = 0 case is an ADR system
and there is a time zone for which the diffusive interface of the stable Rc = 0 helps to
provide a faster monotonic increment of σ 2(t) giving rise to such oscillatory phenomena
in χc(t).

Interestingly, it is observed that if the number of roll-ups is significantly less (which
happens for Re = 2000, 2500), the degree of mixing can become even negative (see
figure 21b); this signifies the variance of the Rc = 0 case is more than that of the Rc = 5
case, for large Re = 2000 and 2500, within a certain time interval. It is noteworthy that
the degree of mixing reported by Jha et al. (2011) only takes positive values because it is
relatively defined with respect to the initial segregated state for which there is no advection
and diffusion. However, here, χc(t) is relatively defined with respect to the stable Rc = 0
case, which itself is an ADR system, so the negativity of χc(t) is justified. Moreover, in
the ADR system of the Rc = 0 case, the thickness of the reactive interface (the mixing
zone) depends on solute diffusivity, and again from subsection 3.4, it is seen that when
Pe increases, the degree of product mixing increases (see figure 18b). So it would be
beneficial to check the effects of solute diffusion for the Re = 2000 case, which may
answer why at a certain time interval the stable Rc = 0 case produces more efficient
mixing than the unstable Rc = 5 case. Thus in figure 22(c) we show the evolution of
χc(t) for Re = 2000 by comparison with the cases where solute diffusion is relatively
more dominated by convection (for larger Péclet values). The plots from figure 22(c)
reveal that χc(t) is positive for both Pe = 25 000, 25 000, implying, even though there
are roll-ups in the unstable Rc = 5 case, Rc = 0 can produce efficient mixing at certain
times only when the thickness of the mixing layer is greater due to more solute diffusion.
Also it can be implicated that, for each Pe value in figure 22(c), χc(t) decreases in
the diffusion-dominated time regime of the corresponding Rc = 0 case. Moreover, after
attaining the local minimum, χc(t) again increases since the contribution of K–H roll-ups
to the mixing amplifies as several roll-ups break-up and diffusive plume creation occurs
due to the effects of the nonlinear phenomenon. In this time regime, since the interface is
more distorted for a lower Pe (for example check figure 15a), χc(t) can take a higher value
for lower Pe (see figure 22c).
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Figure 22. (a) The rate of change in variance dσ 2/dt becomes greater after t � 6.51 for the Rc = 0 case than
that for the Rc = 5 case, (b) dσ 2/dt again becomes smaller at a later time t � 14.9 for the Rc = 0 case than that
for the Rc = 5 case when Re = 2000, Pe = 10 000, Da = 50. (c) Time evolution of χc(t) for different values
of Pe, when Re = 2000, Rc = 5, Da = 50.

3.6. Onset of instability
In order to understand the early stages of complex interfacial patterns formed due to the
coupling of CDR dynamics in this flow system, we evaluate the onset of instability from
the present nonlinear simulations. The onset time is defined as

ton = min
t≥0

(|I(t) − I∗(t)| > τ),

where I(t) is the interfacial length computed as (Sharma et al. 2019)

I(t) =
∫ Lx

0

∫ Ly

0

√(
∂a
∂x

)2

+
(

∂a
∂y

)2

dy dx,

and I∗(t) = I(t)|Rc=0. The threshold value τ = max(|I(t) − I∗(t)| : t ≥ 0)) for Rc = 1 as
it represents a stable situation (figure 4a,b).

It is noticed (not shown) that I(t) increases slightly for Rc = 1 than that for Rc = 0, but
in this case, enough viscosity contrast (figure 7a,b) is not generated for the K–H instability.
Hence a small value of threshold τ is required in the definition of ton to capture the correct
onset time, and it can be thought of as a minimum value that can be ignored to distinguish
an unstable system from a stable one. The exact value of τ considered here is given below.
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Figure 23. Onset of the instability ton versus Rc for different Da when Re = 500, Pe = 10 000. Inset: product
concentration field in the lower half of the channel indicating the patterns at the stable and unstable zones.

In figure 23 we plot the calculated onset time ton against Rc for different values of Da
fixing Re = 500, Pe = 10 000. It is observed that for a fixed Rc value with increasing
Da, instability triggers early, this is because of the fast rising viscosity gradient near the
interface as product formation process is enhanced by higher Da values. The process of
rising viscosity gradient is also fastened with increasing Rc, hence for a fixed Da, ton
decreases with increasing Rc (figure 23). The (ton–Rc) space partitions into stable and
unstable time zones for each value of Da, which is clearly indicated through corresponding
interfacial patterns of the product concentration field in the respective zones (in the insets
of figure 23). For example, the patterns at the onset time ton ≈ 13.8 for Da = 50, Rc = 2
indicate the appearance of the instability. Here, the value of the threshold τ is considered
to be 0.3, which is found to be ≈0.9 % of I∗(ton).

The onset of instability as a function of both Rc and Pe is depicted in figure 24, which
shows the ton decreases when Rc increases and if Pe increases then ton increases. So when
Rc tends to zero the onset time tends to infinity and for a higher Péclet value the unstable
zone becomes smaller. The graphs from figure 24 show that when Pe is increased, i.e. the
solute diffusion is decreasing, its effect on the flow not only results in the suppression of
K–H-instability but also delays the instability to occur. By observing the trends in these
curves for different Pe, interestingly we could normalize the ton by a factor (α · Pe + β),
with α = 0.1 and β = 10, so that the rescaled onset time t∗on versus Rc clearly depicts the
independence of Pe i.e. the solute diffusion effects can be rescaled to divide the (t∗on, Rc)
space into stable and unstable time zones with a single partitioning curve.

The plots of onset of the instability ton as a function of different Rc and Re (with fixed
Da and Pe) are shown in figure 25(a). Interestingly it is found that if Rc ≥ 2.5, then the
onset of instability is earlier when the Re value is increased from 500 to 2500. This
is very counter-intuitive as the number of bigger roll-ups decreases with increasing Re
from 500 to 2000 (figure 19) when Rc = 5. Also ctot and Rtot decrease with increasing
Re (figure 20a,b), which reveals that instability neither enhances the production process
of C nor creates favourable conditions for the accessibility of reactants A and B for a
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Figure 24. Onset of the instability ton versus Rc for different Pe when Da = 50, Re = 500. Inset:
re-scaled t∗on(= ton/(α · Pe + β)) versus Rc shows the proportionate dynamics of Pe, where α = 0.1 and
β = 10.

larger Re. Thus it can be implicated from figure 19, the biggest K–H billow just before
the tip of the reactive front starts forming early when Re is increased, and this not only
happens for Rc = 5, but also for all the values of Rc in the interval [2.5, 7]. To verify the
claim that the development of the biggest roll-up near the tip contributes to early onset
for a larger Re, when Rc ≥ 2.5, we show the zoomed-in density plots of the product C
in the upper half of the channel (since the flow feature is symmetric around the middle
of the channel) for different Re values at time t = 8 in figure 25(b). Note that t = 8 is
the onset time for Rc = 3, Re = 1000 and at this time the growth of the biggest roll-up
near to the tip is indicated by a white arrow. It can be easily checked at this time that the
roll-up corresponding to the Re = 500 case has not developed much as compared with the
Re = 1000 case. Hence the onset must be delayed for the case when Rc = 3, Re = 500,
which is clearly depicted in figure 25(a). Again when Re = 2000, 2500, onset is very close
to each other and earlier than in the Re = 1000 case, which is justified from the density
plots, i.e. the roll-up has grown more as compared with Re = 1000 at time t = 8 in these
two cases. We checked that the monotonic dependence of the onset on Re, i.e. when Re
decreased from a high to low value the onset becomes earlier, holds not only for Rc = 3
but also for all Rc ∈ [2.5, 7]. It is also noticed that the amplitude of the oscillation in the
averaged viscosity profile (figure 19b) corresponding to the largest roll-up for the case of
Re = 2000 and Rc = 5 is decreased slightly compared with that of the Re = 500, Rc = 5
case. As shown in figure 7(b), the amplitude of oscillations decreases with the decrease in
Rc when the rest of the parameters are fixed. So, when Rc < 2.5, for the Re = 2000 and
Re = 2500 cases, the amplitude of the largest K–H billow is reduced by such an amount
that it does not form early as compared with the Re = 500 and Re = 1000 cases. This can
be seen from the trends of ton shown in figure 25(a). Also ton attains a greater value for the
case of Re = 2500 than that of Re = 2000 if Rc ≤ 2. To verify the above claim we show
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Figure 25. (a) Onset of the instability ton versus Rc for different Re when Da = 50, Pe = 10 000.
(b) Zoomed-in density plots of concentration of the product C at time t = 8 for different Re when Rc = 3,
Da = 50, Pe = 10 000. (c) Zoomed-in density plots of concentration of the product C at time t = 14 for
different Re when Rc = 2, Da = 50, Pe = 10 000.

the zoomed-in density plots of the product C for different Re at time t = 14 in figure 25(c).
It is to be noted that t = 14 is very close to the onset time for the Rc = 2, Re = 500 case.
The white arrow points out the biggest roll-up near to the tip and it can be seen that this
roll-up has grown more in the Re = 1000 case compared with that of the Re = 500 case at
the same time t = 14. So the onset is earlier for Re = 1000 than Re = 500 as depicted by
figure 25(a). Again, when Re increases to a value of 2000, this roll-up has not formed yet
at the time t = 14, and even for Re = 2500 the development of the roll-up is comparably
less than the Re = 2000 case. So for Re = 2000 the onset is more delayed than the cases
when Re = 500, 1000 and it attains an even greater value for Re = 2500 (ton ≈ 18). Hence
from figure 25, it is clear that the onset dynamics can reversely depend on lower Rc values
for higher values of Re.
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4. Conclusion

The intent of this paper has been to investigate numerically how a chemical reaction can
induce interfacial instabilities in a pressure-driven channel flow where the displacement
is between two isoviscous reactants. Such instability in the form of billows of K–H-type
arises from the formation of the high-viscosity product at the interface of both chemical
reactants. Interestingly, a laminar horseshoe-type instability near the wall is also observed,
which results from the obstruction of the less-viscous reactant by the more-viscous product
at the inlet. We demonstrated the effects of the dimensionless parameters, such as the
log-mobility ratio Rc, Damköhler number Da, Péclet number Pe and Reynolds number
Re, on the instability patterns of the ‘interface’ separating the fluids. The impact of the
instability on the total production of the product C (ctot) and total reaction rate (Rtot)
are discussed. The development of K–H roll-ups through the strength of the vorticity is
analysed. The influence of the instability on the mixing is explored through χc(t) as a
function of non-dimensional numbers that govern the flow.

It is found that the onset of the instability is early for larger Da, Rc but delayed when
Pe is increased. However the onset is early for an increasing value of Re only if Rc ≥ 2.5
and when Rc < 2.5 the onset for a higher Re may be delayed. It is also noteworthy that Pe
effects on the onset time can be linearly scaled to justify a proportionate dynamics, which
defines an approximate boundary between stable and unstable time zones. Moreover, since
ton (as a function of Da, Re and Pe) is asymptotically tending to infinity when Rc tends to
zero, and for some positive Rc values it is unattainable before the reactant A reaches the
outlet of the channel, the existence of a critical Rc is implied with a fixed Da, Re and
Pe for the instability to occur. The increase in Re favours more instability at certain axial
positions, where it can suppress the amplitude of the unstable billows at some other axial
locations. It should be noted that the present numerical study is only an initiation towards
a qualitative description of the experimental shear-flow instability induced by a chemical
reaction in channel geometry reported by Burghelea et al. (2007) and motivates further
possible experimental work in this area of reaction modulated pattern formations.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.630.
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Appendix A

Since the Péclet number Pe = Q/D, it can be varied through the flow rate Q only while
keeping the solute diffusivity (D) constant. The previous discussions (in § 3) are presented
by treating the effects of the solutes diffusion (3.4) and momentum diffusion (§ 3.5)
separately. So we did not vary ‘only’ the dimensional flow rate Q anywhere, as the change
in flow rate corresponds to a change in Re. So if solute diffusivity D is fixed, then we
need to write Pe in the form of Re · Sc (Sahu et al. 2009a; Mishra et al. 2012). Thus the
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Figure 26. (a) Density plots of reactant A at time t = 25 for different values of Re, when Rc = 5, Sc = 20,
Da = 50. (b) Corresponding transversely averaged viscosity profiles.

non-dimensional system reduces to the following:

∇ · u = 0, (A1a)[
∂u
∂t

+ u · ∇u
]

= −∇p + 1
Re

∇ · [μ(c)(∇u + ∇uT)], (A1b)

∂a
∂t

+ u · ∇a = 1
Re.Sc

∇2a − Da ab, (A1c)

∂b
∂t

+ u · ∇b = 1
Re.Sc

∇2a − Da ab, (A1d)

∂c
∂t

+ u · ∇c = 1
Re.Sc

∇2c + Da ab, (A1e)

μ = eRcc. (A1f )

Now a change in Re affects both the coefficient of viscous dissipation in (A1b) and the
coefficient of solute diffusion terms in (A1c–e). This, in turn, changes both the wall effects
at the inlet due to solute diffusion and transverse widening of the front tip due to a change
in momentum simultaneously. This can be easily noticed from figure 26(a,b). However, in
§ 3.5, effects of Re are explained by keeping Pe fixed, i.e. the ratio Q/D is fixed, which
has the advantage that wall effects at the inlet remain the same since the impact of solute
diffusion is the same (see figure 18).
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