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Abstract

We prove that the radiation damping force and the rate of change of the damping energy, in the Landau-Lifshitz forms, in
interactions between very intense laser beams and relativistic electron beams, are periodic functions of only one variable,
that is the phase of the electromagnetic field. The property is proved without using any approximation, in the most general
case, when the degree of polarization of the electromagnetic field, the initial phase of the incident field and the initial
energy of the electron have arbitrary values. This property leads to a strong simplification of the calculation of the
radiation reaction parameters and of their dependence on the initial electron energy and angular frequency of the laser
beam. Our analysis is performed in the proper inertial system of the electron. The radiation reaction is significant for
laser beam intensities of the order 1022 W/cm2, and for electron energy greater than 1 GeV. The calculations reveal
limitations of the method of generating hard radiations by interactions between laser beams and relativistic electron beams.
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1. INTRODUCTION

The generation of radiation by motion of the electrons in
electromagnetic field and the existence of a damping force,
due to the emission of energy, are two complementary ef-
fects, which have studied since the beginning of the previous
century (Thomson, 1881; Lorentz, 1916; Abraham, 1932;
Dirac, 1938). The number of the papers treating these effects
increased exponentially, starting in the 1970s, after the devel-
opment of high-power lasers (Sarachik, 1970; Esarey, 1993;
Harteman, 1995). More recently, the emergence of the ultra-
intense laser pulses, generated by the technique of chirped
pulse amplification, has made it possible to obtain beam in-
tensities greater than 1018 W/cm2. At such intensities, the
study of the effect of radiation reaction becomes increasingly
important, due to new applications, such as the generation of
very energetic radiations (Eden, 2004), and the acceleration
of particles in very intense electromagnetic fields (Mourou,
2006; Faure, 2006). At the same time, these applications
are limited to ultrahigh laser beam intensities, due to the

effect of radiation damping (Mao, 2010; Hadad, 2010;
Deng, 2012).

In previous papers (Popa, 2011; 2012), we proved that the
electrical field which results from the Liènard-Wiechert
relation, due to the motion of the electron in the laser field,
is a periodic function of only one variable, that is, the
phase of the incident electromagnetic field. This property
simplifies significantly the calculation model for the gener-
ation of hard radiations, in interactions between very intense
laser fields and particles. Indeed all the functions which are
involved in calculations are composite functions of only
one variable, and their mathematical properties can be ana-
lyzed accurately. A synthesis of the applications of this
method is presented by Popa (2013a; 2013b).

We show now that this method can be used also for accu-
rately modeling the radiation reaction in interactions between
very intense laser beams and relativistic electron beams. Our
analysis is made in the inertial system S′ in which the initial
electron velocity is zero. We use the Landau-Lifschitz form
of the radiation reaction force (Landau, 1987), which is a ver-
sion of the Lorentz-Abraham-Dirac damping force (Lorentz,
1916; Abraham, 1932; Dirac, 1938). We prove that the radi-
ation reaction force, as well as the rate of change of the damp-
ing energy, resulted by the action of this force, are periodic
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functions of only one variable, which is the phase of the laser
field. With the aid of this property, the calculations are
strongly simplified, because the average values of the damp-
ing and external forces, on one hand, and the average kinetic
energy, on other hand, can be easily calculated over one
period. At the same time, the damping energy, can be ob-
tained without calculating the electron trajectory. Our ap-
proach is made in the most general case, when the degree
of polarization of the electromagnetic field, the initial
phase of the incident field, and the initial energy of the elec-
tron have arbitrary values.
More specifically, we calculate the maximum intensity of

the laser beam at which the radiation reaction can be neg-
lected, its dependence on the angular frequency of the field
and on the initial electron energy, and the effect of the low-
ering of the maximum intensity value, due to increasing the
initial electron energy. At the same time, the increasing of
laser beam intensity in the ultrarelativistic regime has some
collateral effects, such as the electron acceleration and the de-
crease in the variation of the field phase at the point where the
electron is situated. These effects are used in the calculation
of the radiation reaction parameters. Our results are compared
with a series of data reported in recent papers. The equations
are written in the International System.

2. INITIAL HYPOTHESES

We analyze the radiation damping effect in the case of a
system composed of a very intense laser beam, interacting
with a relativistic electron beam. We consider the following
initial hypotheses:

(h1) In a Cartesian system of coordinates, the intensity of
the electric field and of the magnetic induction vector of the
laser beam, denoted, respectively, by �EL and �BL, are ellipti-
cally polarized in the xy-plane, while the wave vector, denoted
by �kL, is parallel to the oz-axis. The expressions of the electric
field and of the corresponding magnetic induction vector are

EL = EM1 cos ηi+ EM2 sin ηj, (1)

BL = −BM2 sin ηi+ BM1 cos ηj, (2)

where η is the phase of the electromagnetic field, i, j, and k are
versors of the ox, oy, and oz axes, EM1, EM2 are the amplitudes
of the electric field oscillations in the ox and oy directions, and
BM1 and BM2 are the amplitudes of the magnetic field oscil-
lations in the oy and ox directions.
The following relations are also valid:

η = ωLt − kL
∣∣ ∣∣z+ ηi, kL

∣∣ ∣∣c = ωL, (3)

and

EM1 = cBM1, EM2 = cBM2, c BL = k × EL , (4)

where ωL is the angular frequency of the laser electromag-
netic field, c is the speed of light, ηi is an arbitrary initial
phase, and t is the time in the xyz system in which the
motion of the electron is studied.
It follows that the electromagnetic field described by Eqs.

(1) and (2) is obtained by the superposition of two electro-
magnetic fields, linearly polarized along the ox and oy direc-
tions. We denote by IL the average value of the intensity of
the laser beam and by IL1 and IL2, respectively, the average
intensities of the components linearly polarized along the
ox and oy directions. Since IL = ε0c/(2π)

�2π
0 E

2
L dη and so

on, where ε0 is the vacuum permitivity, we obtain the follow-
ing relations:

IL = 1
2
ε0c E2

M1 + E2
M2

( )
, IL1 = 1

2
ε0cE

2
M1,

IL2 = 1
2
ε0cE

2
M2. (5)

(h2) We suppose that EM1> EM2 and the degree of the
polarization of the field is given by Crawford (1999), written
for the average intensities of the two components of the field.
Taking into account (5), this relation can be written

P = IL1 − IL2
IL1 + IL2

= E2
M1 − E2

M2

E2
M1 + E2

M2

. (6)

We see that when P= 1, the field is linearly polarized, and
when P= 0, the field is circularly polarized.
The initial data for our calculations are IL, λL, P, E0, and ηi,

where λL is the wavelength of the electromagnetic field and
E0 is the initial energy of the electron.
With the aid of the Eqs. (5) and (6), we obtain:

EM1 =
������������
IL
ε0c

(1+ P)

√
and EM2 =

������������
IL
ε0c

(1− P)

√
. (7)

(h3) We consider the following initial conditions, when the
components of the electron velocities, denoted by vx, vy,
and vz, have the following values, in the laboratory system,
which is denoted by S:

t = 0, x = y = z = 0, vx = vy = 0, vz = −|V0 |
and η = ηi, (8)

where the value |V0 | results from the following relations:

E0 = γ0mc
2, γ0 =

1��������
1− β

2
0

√ and β0 = − |V0 |
c

k, (9)

where m is the electron mass, while β0 and γ0 are the well-
known symbols used in the relativistic theory.
(h4) We use the conventions of Landau and Lifshitz

(Landau, 1987) to write the four-vectors and the
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electromagnetic field tensor. So, the contravariant and
covariant components of the four-vector of the coordinates
are denoted, respectively, by xi and xi. These components
are, respectively, (ct, x, y, z) and (ct, −x, −y, −z). Similarly,
the contravariant components of the four-velocity vector,
which are given by the relation ui= d xi/ds, and the covariant
components of the same vector, given by ui= d xi/ds, are,
respectively, the (γ, γβx, γβy, γβz) and (γ −γβx, −γβy, −γβz).
In these relations, βx= vx/c, βy= vy/c and βz= vz/c, where
vx, vy, and vz are the components of the electron velocity, while

γ = 1/
�����������
1− v2 /c2

√
and ds= (c/γ)dt are the infinitesimal in-

terval in the four dimensional space.
The contravariant and the covariant electromagnetic field

tensors, where the index i= 0, 1, 2, 3 labels the rows, and
the index k= 0, 1, 2, 3 the columns, are given, respectively,
by the following relations:

Fik =

0 −Ex −Ey −Ez

Ex 0 −cBz cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦;

Fik =

0 Ex Ey Ez

−Ex 0 −cBz cBy

−Ey cBz 0 −cBx

−Ez −cBy cBx 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

where Ex, Ey, Ez, Bx, By, and Bz are the components of the
electromagnetic field in the Cartezian system xyz.
(h5) We use the Landau-Lifschitz (LL) form (Landau,

1987) of the radiation reaction force. The equation of
motion of the electron, in four-dimensional form, written in
the International System (LL use the Gaussian System), is

mc2
dui

ds
= −eFikuk + gi, (10)

where e is the absolute value of the electron charge and gi is
the radiation damping correction term, which is given by the
contravariant vector (Landau, 1987)

gi = e2

6πε0

d2ui

ds2
− uiuk

d2uk
ds2

( )
. (11)

By expressing d2ui/ds2 in terms of the tensor of the external
field, namely

dui

ds
= − e

mc2
Fikuk , (12)

together with

d2ui

ds2
= − e

mc2
∂Fik

∂xl
uku

l + e2

m2c4
FikFklu

l, (13)

and substituting these relations in (11), the following relation
results (Landau, 1987):

gi = − e3

6πε0mc2
∂Fik

∂xl
uku

l − e4

6πε0m2c4
FilFklu

k

+ e4

6πε0m2c4
Fklu

l
( )

Fkmum
( )

ui. (14)

This relation is used for many evaluations of radiation correc-
tions (Zhidkov, 2002; Hadad, 2010; Bulanov, 2011). The first
terms on the right-hand side of Eqs. (11) and (14) stand for the
nonrelativistic expression of the damping force, while the
second and, respectively, the second and the third terms on
the right-hand side of the same equations, correspond to the re-
lativistic component of the damping force (Landau, 1987).

We observe that Eq. (12) is identical to the motion
equation of the electron, written in the tensorial form,
when the damping force is very small, compared to the exter-
nal force. Since (12) has been used to obtain (14), it follows
that this last equation is rigorously valid only for the domain
the intensity values IL of the laser beam for which the damp-
ing force, denoted by Fd, is very small compared to the ex-
ternal electromagnetic force, denoted by F. We will show
that this condition is fulfilled throughout our calculations.

The tensorial relation (10) corresponds to four equations,
written in three dimensional space. The three space com-
ponents, for i= 1, 2, 3, are the equations of motion of the
electron, while the time component, for i= 0, is the equation
of the rate of change of the electron energy. The relation (10)
corresponds to the following motion equations, which are
written in three-dimensional notation.

mc
d

dt
γβx
( ) = −eEx − ecβyBz + ecβzBy

( )
+ 1

γ
g1, (15)

mc
d

dt
γβy

( )
= −eEy + ecβxBz − ecβzBx

( )+ 1
γ
g2, (16)

mc
d

dt
γβz
( ) = −eEz − ecβxBy + ecβyBx

( )
+ 1

γ
g3, (17)

It is easy to see that Fx= (−eEx− ecβyBz+ ecβzBy) and so
on, are the spatial components of the external force, and
Fdx= (1/γ)g1 and so on, are the spatial components of the
damping force.

Similarly, Eq. (10) corresponds to the following time com-
ponent equation. This equation can be written in the follow-
ing form using three-dimensional notation:

d

dt
mc2γ
( ) = −ec βxEx + βyEy + βzEz

( )
+ c

γ
g0, (18)

We see that −ec(βxEx+ βyEy+ βzEz) is the rate of change
of the electron energy, due to the interaction with the electro-
magnetic field, while (c/γ)g0 is the rate of change of the
damping energy, due to the action of the damping force.
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(h6) The integral of the four-force, given by (11), over the
world line of the motion of the electron, leads to the follow-
ing relation of the total momentum ΔPi (Landau, 1987):

ΔPi = − e2

6πε0

∫
duk
ds

duk

ds
dxi, (19)

The temporal term of the contravariant vector ΔPi, namely
ΔP0, is the damping energy, that is the energy radiated by
the particle under the action of the electromagnetic field.
This energy is denoted by Ed.
We assume that the radiative effects are negligible when the

damping energy is much smaller than the kinetic energy of the
electron. Since the damping energy increases continuously,
when the time increases from 0 to τL, the length of the laser
pulse, and the kinetic energy varies periodically in this inter-
val, we assume that the maximum value of the laser beam in-
tensity, denoted by ILM, at which the effect of the damping
reaction can be neglected, corresponds to the relation

Ed

Ekav
= 0.1, (20)

where Ekav is the average value of the kinetic energy.
(h7) The LL approach is based on the assumption that

the damping force is smaller than the external force. This
assumption leads to two requirements, given by the
relations (75.11) and (75.12) from Landau (1987). These
relations, written in the International System, are, respect-
ively, EL

∣∣ ∣∣ ≪ 6πε0m2c4/e3 = 2.722 × 1020 V/m and λL ≫
e2/(3ε0mc

2)= 11.8 × 10−14 m. These conditions are over-
helmingly satisfied in our calculations.
Since the LL relations are classical, another condition has

to be satisfied. This is the requirement that the Compton
relation be satisfied at the classical limit, written in the
proper reference system of the electron (Bamber, 1999;
Boca, 2009). This condition is

Cq = h− ω′
L

mc2
≪ 1, (21)

where Cq is the coefficient of the second term in the denomi-
nator of the Compton relation, ħ is the normalized Planck
constant and ω′

L is the angular frequency of the laser field,
in the proper system S′ of the electron.
We will show that the relation (7) is fulfilled throughout

the paper. From this point on, no approximation is made in
order to calculate the damping force and damping energy,
and their variation with the laser beam parameters.

3. SPACE AND TIME COMPONENTS OF THE
DAMPING FORCE AND TOTAL MOMENTUM
FOUR-VECTORS

We calculate now the space and time components of the con-
travariant vectors gi and ΔPi, which will be used in this paper.

We note that the calculations are simplified because the com-
ponents of the electromagnetic field depend only of two
spatio-temporal coordinates, t and z, due to the formula for
η, and the z components of the field are zero. For example,
we have:

∂F1k

∂xl
uku

l =
∑3
l=0

∑3
k=0

∂F1k

∂xl
uk

( )
ul

[ ]

= ∂F10

∂x0
u0 + ∂F13

∂x0
u3

( )
u0 + ∂F10

∂x3
u0 + ∂F13

∂x3
u3

( )
u3

= −EM1 sin η
ωL

c
γ+ cBM1 sin η

ωL

c
γβz

( )
γ

+ EM1 sin η kL
∣∣ ∣∣γ− cBM1 sin η kL

∣∣ ∣∣γβz( )
γβz.

The space components of the contravariant vector gi, given
by Eq. (11), lead to the following components of the radi-
ation damping force

Fdx = e2ω2
Lγ

6πε0c2
a1 sin η 1− βz

( )2
− e2ω2

Lγ
2

6πε0c2
(a21 cos

2η+ a22 sin
2η)βx 1− βz

( )2
, (22)

Fdy = − e2ω2
Lγ

6πε0c2
a2 cos η 1− βz

( )2
− e2ω2

Lγ
2

6πε0c2
a21 cos

2η+ a22 sin
2η

( )
βy 1− βz

( )2
, (23)

Fdz = e2ω2
Lγ

6πε0c2
a1βx sin η− a2βy cos η

( )
1− βz
( )

+ e2ω2
L

6πε0c2
a21 cos

2η+ a22 sin
2η

( )
1− γ2βz 1− βz

( )[ ]
1− βz
( )

,

(24)

where we have separated the term due to the relativistic
effect, in the second term of the second hand member.
The damping energy Ed is equal to the temporal com-

ponent of the total momentum ΔPi, given by (19). It easy
to show that ΔP0, written with the aid of the three-
dimensional notation, is given by the following relation.

Ed = ΔP0

= e2ω2
L

6πε0c

∫t2
t1

γ2 a21 cos
2η+ a22 sin

2η
( )

1− βz
( )2

dt, (25)

where t1 and t2 are the time moments between which the
energy is calculated.
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4. PERIODICITY PROPERTIES IN THE INERTIAL
SYSTEM S′

4.1. Periodicity Property of External Force and Kinetic
Energy

Our analysis is performed in the inertial system S′ in which
the initial velocity of the electron is zero. The Cartesian
axes in the systems S(t, x, y, z) and S′(t′, x′, y′, z′) are parallel,
and the system S′ moves with velocity − �V0

∣∣ ∣∣ along the oz
axis. Since our analysis is performed in the S′ system, we
have to calculate the parameters of the laser field, denoted by

E
′
L, B

′
L, k

′
L and ω′

L, in the S′ system.
The contravariant wave vectors have, respectively, the fol-

lowing components in the S and S′ systems: ( ωL/c, kLx, kLy,
kLz) and (ω′

L/c, k′Lx′, k′Ly′, k′Lz′). Using the Lorentz transform-
ation, given by relations (11.22) in Jackson (1999), we have

ω′
L

c
= ωL

c
γ0 1+ β0

∣∣ ∣∣( )
, (26)

k′Lz′ = k
′
L

∣∣∣ ∣∣∣ = kL
∣∣ ∣∣γ0 1+ β0

∣∣ ∣∣( )
, (27)

k′Lx′ = kLx = k′Ly′ = kLy = 0, (28)

where ω′
L

kL
∣∣ ∣∣ = ωL

kL
∣∣ ∣∣ = c. (29)

Since the scalar product between the four-dimensional wave
vector and the space-time four vector is invariant, it follows
that the phase of the electromagnetic wave is invariant (Jack-
son, 1999), and we have

η = ωLt − �kL
∣∣ ∣∣z+ ηi = ω′

Lt
′ − �k

′
L

∣∣ ∣∣z′ + ηi = η′, (30)

where �r and �r′ are the position vectors of the electron in the
two systems.
We use equations (11.149) from Jackson (1999), which

give the Lorentz transformation of the fields. We write
these relations in the International System, and using (4)
and (29), we obtain the following expressions for the com-
ponents of the electromagnetic field in the S′ system:

�E′
L = γ0 �EL + �β0 × c�BL

( ) = γ0 1+ �β0
∣∣ ∣∣( )

�EL, (31)

�B′
L = γ0 �BL − �β0 × �EL/c

( ) = γ0 1+ �β0
∣∣ ∣∣( )

�BL. (32)

By virtue of the relation (12), the external force can be calcu-
lated from the following system of equations for the electron
motion, written in the S′ system:

m
d

dt′
γ′v′x′
( ) = γ0 1+ �β0

∣∣ ∣∣( )
× −eEM1 cos η+ ev′z′BM1 cos η
( )

, (33)

m
d

dt′
γ′v′y′
( ) = γ0 1+ �β0

∣∣ ∣∣( ) −eEM2 sin η+ ev′z′BM2 sin η
( )

, (34)

m
d

dt′
γ′v′z′
( ) = γ0 1+ �β0

∣∣ ∣∣( )
× −ev′x′BM1 cos η− ev′y′BM2 sin η
( )

, (35)

where vx′′ , vy′′ and vz′′ are the components of the electron vel-
ocity in S′ and

γ′ = (1− β′x′
2 − β′y′

2 − β′z′
2)−

1
2, (36)

with β′x′ = v′x′/c, β′y′ = v′y′/c, and β′z′ = v′z′/c.
The solution of the system of equations (33)–(35), which

leads to the expressions of β′x′, β′y′, γ′, dγ′/dt′ and dη/dt′, is
presented in our previous papers (Popa, 2011; 2012). For
the completeness of the presentation, we will give it briefly
below.

Using (4) and (26), the equations of motion become

d

dt′
γ′β′x′
( ) = −a′1 ω

′
L 1− β′z′
( )

cos η, (37)

d

dt′
γ′β′y′

( )
= −a′2ω

′
L 1− β′z′
( )

sin η, (38)

d

dt′
γ′ β′z′
( ) = −ω′

L a′1 β′x′ cos η+ a′2 β′y′ sin η
( )

, (39)

where a′1 and a′2 are the relativistic parameters

a′1 =
γ0 1+ β0

∣∣ ∣∣( )
eEM1

mcω′
L

and a′2 =
γ0 1+ β0

∣∣ ∣∣( )
eEM2

mcω′
L

. (40)

These parameters are relativistic invariants, because, by
virtue of (1), (26), (31), and (40), we have

a1 = a′1 =
eEM1

mcωL
and a2 = a′2 =

eEM2

mcωL
. (41)

Note. Despite the fact that a relativistic electron beam in-
teracts with the laser beam in the S system, the electron
motion in the S′ system can be non-relativistic, if a1≪1
and a2≪1.

The initial conditions in the system S′ are the following:

t′ = 0, x′ = y′ = z′ = 0, v′x′ = v′y′ = v′z′ = 0 and η = η′ = ηi.

(42)

We multiply (37), (38), and (39), respectively, by β′x′, β′y′ and
β′z′. Taking into account that β′x′

2 + β′y′
2 + β′z′

2 = 1− 1/γ′2,
their sum leads to

dγ′

dt′
= −ω′

L a1β
′
x′ cos η+ a2β

′
y′ sin η

( )
. (43)
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From (39) and (43) we obtain d(γ′βz′ ′)/dt′ = dγ′/dt′. We
integrate this relation with respect to time between 0 and t′,
taking into account the initial conditions (42), and obtain
γ′ − 1= γ′β′z′. In virtue of (3), we have

1− β′z′ =
1
ω′

L

dη

dt′
= 1

γ′
. (44)

We integrate (37) with respect to time between 0 and t′,
taking into account (42) and (44), and obtain γ′βx′ ′ =−a1-
(sin η− sin ηi), or

β′x′ =
f ′1
γ′

where f ′1 = −a1 sin η− sin ηi
( )

. (45)

Similarly, integrating (38) and taking into account (42) and
(44), we obtain

β′y′ =
f ′2
γ′

where f ′2 = −a2 cos ηi − cos η
( )

. (46)

We substitute the expressions of β′x′, β′y′ and β′z′, respectively,
from (45), (46), and (44) into βx′

′2+ βy′
′2+ βz′

′2= 1− 1/γ
′2 and

obtain the expression of γ′:

γ′ = 1
2

2+ f ′1
2 + f ′2

2
( )

. (47)

From (44) we obtain

β′z′ =
f ′3
γ′

where f ′3 = γ′ − 1. (48)

With the aid of the above relations, we obtain the components
of the external force:

F′
x′ = −mca1ω

′
L 1− β′z′
( )

cos η, (49)

F′
y′ = −mca2ω

′
L 1− β′z′
( )

sin η, (50)

F′
z′ = −mcω′

L a1β
′
x′ cos η+ a2β

′
y′ sin η

( )
. (51)

The kinetic energy of the electron is

E′
k = mc2 γ′ − 1

( )
. (52)

We observe that, by virtue of Eqs. (45)–(48), γ′, β′x′, β′y′, and
β′z′ are periodic functions of η. From the relations (49)–(52) it
follows that F′

x′, F′
y′, F′

z′ and E′
k are also periodic functions of

only one variable, namely η.

4.2. Periodicity Property of the Damping Force and of
the Rate of Change of the Damping Energy

The components of the radiation damping force, given by
Eqs. (22)–(24), can be written in the system S′, as follows:

F′
dx′ =

e2ω′
L
2γ′

6πε0c2
a1 sin η 1− β′z′

( )2
− e2ω′

L
2γ′2

6πε0c2
(a21cos

2η+ a22sin
2η)β′x′ 1− β′z′

( )2
, (53)

F′
dy′ = − e2ω′

L
2γ′

6πε0c2
a2 cos η 1− β′z′

( )2
− e2ω′

L
2γ′2

6πε0c2
a21cos

2η+ a22sin
2η

( )
β′y′ 1− β′z′

( )2
, (54)

F′
dz′ = e2ω′

L
2γ′

6πε0c2
a1β

′
x′ sin η− a2β

′
y′ cos η

( )
1− β′z′
( )

+ e2ω′
L
2

6πε0c2
a21cos

2η+ a22 sin
2 η

( )
× 1− γ′2β′z′ 1− β′z′

( )[ ]
1− β′z′
( )

. (55)

The damping energy, given by Eq. (25), has the following
expression in the S′ system:

E′
d =

e2ω′2
L

6πε0c

∫t′2
t′1

γ′2(a21 cos
2 η+ a22sin

2η)(1− β′z′ )
2dt′, (56)

where t′1 and t′2 are the time moments between which the
energy is calculated. By virtue of the initial conditions
(42), we have t′1= 0 and t′2= τ′L. Using the Lorentz relations,
it follows that the length of the laser pulse, in the system S′,
denoted by τ′L, is given by the following relation:

τ′L = τL
γ0

. (57)

The rate of change of the damping energy is

R′
de =

dE′
d

dt′
= e2ω′2

L

6πε0c
γ′2 a21 cos

2 η+ a22 sin
2 η

( )
1− β′z′
( )2

. (58)

We have proved above that γ′, β′x′, β′y′, and β′z′ are periodic func-
tions of η. It follows that the components of the damping force,
namely F′

dx′, F ′
dy′, F ′

dz′, and the rate R′
de, are also periodic func-

tions of only one variable, that is, the phase of the incident field.
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Using (44), we change variables dt′ = 1/[ω′
L(1− β′z′)]dη,

in the integral in Eq. (56), and obtain:

E′
d =

e2ω′
L

6πε0c

∫ηi+Δη

ηi

γ′2 a21 cos
2 η+ a22 sin

2 η
( )

1− β′z′
( )

dη, (59)

where Δη is the variation of the phase of the electromagnetic
field, at the point where the electron is situated, which corre-
sponds to the time variation, equal to the length of the laser
pulse. The relation (44) leads to the following equation,
which can be used to calculate Δη:

τ′L = 1
ω′

L

∫ηi+Δη

ηi

γ′dη = 1
ω′

L

∫ηi+Δη

ηi

1
1− β′z′

dη. (60)

4.3. Connection between the Electron Acceleration and
the Decreasing of Δη, at Ultrarelativistic Values of IL

All the physical quantities involved in our analysis, namely
γ′, β

′
, E′

k, F
′
, F

′
d and R′

de are functions of only one variable,
that is η, the phase of the field at the point in which the elec-
tron is situated. It follows that our analysis can be made in
the domain of η. Using Eqs. (29), (30), (42), and (44), we
can calculate the time t′ and the coordinate z′ which corre-
spond to a certain value of η, with the aid of the following
relations:

t′ = 1
ω′

L

∫η
ηi

γ′dη and z′ = ct′ − η
�k
′
L

∣∣ ∣∣ . (61)

Now we keep constant the values of τL and ωL, and vary IL
starting from values corresponding to the non-relativistic
regime, up to values corresponding to the ultrarelativistic
regime. All the computations are made using a MATHE-
MATICA 7 program.
We consider first the non-relativistic regime, when IL has

medium values, on the order 1016 W/cm2. In this case, in
Figures 1a, 1b, and 1c we show, respectively, typical vari-
ations of β′x′, β′y′, and β′z′, calculated with the aid of the
relations (45), (46), and (48). From these figures we see
that the motion in the plane xy is dominant, namely β′z′
is smaller compared to β′x′ and β′y′, and β′y′≪1. It
follows that, in virtue of (42) and (44), the following
relations are valid

dη

dt′
= ω′

L 1− β′z′
( )

≅ ω′
L, η ≅ ω′

Lt
′ + ηi and Δη = ω′

Lτ
′
L. (62)

Typical variations of β′x′, β′y′, and β′z′, in the relativistic
regime, for high values of IL, on the order 1020 W/cm2,
are shown, respectively, in Figures 2a, 2b and 2c. From
these figures we see that the motion in the direction of propa-
gation of the laser wave is dominant, namely β′x′ and β′y′ are
smaller, compared to β′z′ and β′z′ is very close to 1. In this
case, the ratio 1/(1− β′z′) is very big and it increases more,

for bigger values of IL. From Eq. (60) it follows that Δη de-
creases, when 1/(1− β′z′) increases, in order to keep τ′L
constant.

The limit case is when β′z′ ≅ 1, namely, when the electron
moves almost together with the front of the electromagnetic
wave, and the phase of the wave in the point where the elec-
tron is situated, remains approximately constant.

We denote by n the integer part of Δη/2π, and taking into
account the periodicity property of R′

de, the expression of the
damping energy becomes:

E′
d = n

∫ηi+2π

ηi

R′
de

ω′
L 1− β′z′
( )dη+ ∫ηi+Δη

ηi+2nπ

R′
de

ω′
L 1− β′z′
( )dη. (63)

Fig. 1. Typical variations of β′x′, β′y′, and β′z′ when η varies in the interval [ηi,
ηi+ 4π], in the non-relativistic regime, shown, respectively, in figures (a),
(b), and (c). Calculations are made for IL= 1016 W/cm2, λL= 0.800 ×
10−6 m, τL= 50 × 10−15 s, P= 0.5, E0= 109 eV, and ηi= 300.
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The average value of the kinetic energy is

E′
kav =

1
2π

∫ηi+2π

ηi

mc2 γ′ − 1
( )

dη. (64)

We note that, in the ultrarelativistic case, when Δη<
2π, the relations (63) and (64) become: E′

d =
�ηi+Δη

ηi
R′

de/

ω′
L 1− β′z′
( )[ ]

dη and E′
kav = 1/Δη

( ) �ηi+Δη

ηi
mc2 γ′ − 1

( )
dη.

The ratio between the damping energy and average kinetic
energy is

RE = E′
d

E′
kav

. (65)

Since the average components of the external force are some-
times relatively close to zero, in order to compare the external

and damping forces, it is more suitable to use the root mean
square (Hoehn, 1985 of �F′ and �F′

d. The mean values of these
forces, denoted, respectively, by �F′

rms

∣∣ ∣∣ and �F′
drms

∣∣ ∣∣, are as
follows:

�F′
rms

∣∣ ∣∣ = 1
2π

∫ηi+2π

ηi

F′
x′
2 + F′

y′
2 + F′

z′
2

( )
dη

[ ]1/2

, (66)

�F′
drms

∣∣ ∣∣ = 1
2π

∫ηi+2π

ηi

F′
dx′

2 + F′
dy′

2 + F′
dz′

2
( )

dη

[ ]1/2

, (67)

with the note that, in the ultrarelativistic case, when Δη< 2π,
these relations become:

�F′
rms

∣∣ ∣∣ = 1/Δη
( ) ∫ηi+Δη

ηi

F′
x′
2 + F′

y′
2 + F′

z′
2

( )
dη

[ ]1/2

and

�F′
drms

∣∣ ∣∣ = 1/Δη
( ) ∫ηi+Δη

ηi

F′
dx′

2 + F′
dy′

2 + F′
dz′

2
( )

dη

[ ]1/2

.

The ratio between the mean values of the damping and exter-
nal forces is

RF =
�F′
drms

∣∣ ∣∣
�F′
rms

∣∣ ∣∣ . (68)

5. CALCULATION OF RADIATION DAMPING
PARAMETERS AND COMPARISON WITH
RESULTS FROM LITERATURE

We use an algorithm similar to that presented in the papers
by Popa (2011; 2012) to calculate the ratio between the
damping energy and the average kinetic energy, and the
ratio between the damping force and external force. This
algorithm has the following stages. In the first stage, we
use the initial data, which are IL, λL, τL, P, ηi, and E0, to cal-
culate γ0, β0, EM1, EM2, E′

M1, E′
M2, ωL, ω′

L, τ′L, a1, and a2. In
the second stage, we start with a value for the variable η
and calculate successively f ′1, f ′2, γ′, f ′3, β′x′, β′y′, β′z′, R′

de, E′
k,

F′
x′, F′

y′, F′
z′, F′

dx′, F′
dy′, and F′

dz′. In the third stage, we calculate
with the aid of simple software the integrals which lead to Δη,
E′
d, E′

kav, �F′
rms

∣∣ ∣∣ and �F′
drms

∣∣ ∣∣. Finally, we calculate the ratios
RE and RF.
In Figure 3, we show typical variations of the ratio RE with

respect to the electron energy E0, for different values of λL
and IL. Similar variations are shown in Figures 4 for the
ratio RF. The variations shown in Figures 3 and 4 are
linear. The linearity is explained, in the case of the curves

Fig. 2. Typical variations of β′x′, β′y′, and β′z′ when η varies in the interval [ηi,
ηi+ 4π], in the relativistic regime, shown, respectively, in figures (a), (b),
and (c). Calculations are made for IL= 1020 W/cm2, λL= 0.800 × 10−6 m,
τL= 50 × 10−15 s, P= 0.5, E0= 109 eV, and ηi= 300.
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from Figure 3, by the fact that E′
d is proportional to ω′

L, which
is, in its turn, proportional to γ0 and E0. On the other hand, E′

k

does not depend on E0. In the case of the curves from
Figure 4, the linearity is explained by the fact that F′

d is pro-
portional to ω′2

L, while F′ is proportional to ω′
L, resulting that

their ratio is proportional to ω′
L, which is, in its turn, pro-

portional to E0.
The analysis of the curves from Figure 3 shows that, by

virtue of relation (20), the radiation reaction effect has to
be taken into account for laser beam intensities higher than
1021 W/cm2, and for electron energies higher than 1 GeV,
when RE= E′

d/E′
kav> 0.1.

The data from Figure 4 show that the LL assumption from
hypothesis (h5) is fulfilled for our calculations, namely the
damping force is much smaller than the external force.
The condition for the validity of the classical treatment, re-

sulted from Compton’s relation and shown by Eq. (21), is
also fulfilled by our calculations. In Table 1, we show typical
results of the calculations, for relatively high values of laser
beam intensity and initial electron energy, for which the Cq

term from Compton’s relation, is much smaller than unity.
Our results are in agreement with the data presented in the

literature. As an example, our results are in agreement with

the condition for significant damping, (Thomas, 2012).
This condition is ψ> 1, where ψ = 10

����
2π3

√
ωLγ0τ0a

2
0. In

this relation, τ0 is a specific time, having the value 6.4
×10−24 s and a0 is the relativistic parameter, when initial
field is linear polarized. This relation is verified by our data
from Figure 3. For example, we consider the data from
curve 3 of Figure 3, which correspond to the case when
RE= 0.1216 and the damping reaction has to be taken into
account: λL= 0.8 μm, IL= 1021 W/cm2, a1= 18.7 and
E0= 4 GeV. Making the approximation a1≈ a0, we obtain
ψ= 3.26, which verifies the condition of the existence of
damping reaction, from the paper (Thomas, 2012).

Also, in the paper by Hadad (2010), it is shown that the
radiation reaction dominated regime starts when γ0a0

2≈ 108

(see Eq. (41) from that paper). This value is in agreement
with our results, because in our case the radiation regime is
dominating when E0 is of the order 5 GeV, corresponding
to γ0 of the order 10000 and IL is of the order 1022 W/cm2,
corresponding to a0 on the order of 100 (see Fig. 3).

Compared to the approaches from the literature, which are
very diverse, our treatment is based on the periodicity prop-
erty proved in the paper, which leads to a solution which does
not use any approximation.

Fig. 3. Variation of the ratio between the damping energy and average kin-
etic energy, RE, with initial electron energy, E0, for different values of IL and
λL, for τL= 50 × 10−15 s, P= 0.5 and ηi= 300. Curve 1 is for IL= 1022 W/
cm2 and λL= 1.064 μm, curve 2 is for IL= 1022 W/cm2 and λL= 0.800 μm,
curve 3 is for IL= 1021 W/cm2 and λL= 0.800 μm, curve 4 is for IL=
1021 W/cm2 and λL= 1.064 μm, curve 5 is for IL= 1020 W/cm2 and λL=
0.800 μm and curve 6 is for IL= 1020 W/cm2 and λL= 1.064 μm.

Fig. 4. Variation of the ratio between the mean values of damping force and
external force, RF, with initial electron energy, E0, for different values of IL
and λL, for τL= 50 × 10−15 s, P= 0.5 and ηi+ 300. Curve 1 is for IL=
1022 W/cm2 and λL= 1.064 μm, curve 2 is for IL= 1022′W/cm2 and λL=
0.800 μm, curve 3 is for IL= 1021 W/cm2 and λL= 0.800 μm, curve 4 is
for IL= 1021 W/cm2 and λL= 1.064 μm, curve 5 is for IL= 1020 W/cm2

and λL= 1.064 μm and curve 6 is for IL= 1020 W/cm2 and λL= 0.800 μm.

Table 1. Typical variations of RE, RF and Cq with E0, for IL= 1022 W/cm2, λL= 0.800 μm, τL= 50 × 10−15 s, P= 0.5 and ηi= 300.

E0(GeV) 0.5 1 2 4 6

RE 4.017 × 10−2 8.033 × 10−2 0.1607 0.3213 0.482
RF 4.093 × 10−3 8.185 × 10−3 1.637 × 10−2 3.274 × 10−2 4.911 × 10−2

Cq 5.935 × 10−3 1.187 × 10−2 2.374 × 10−2 4.748 × 10−2 7.122 × 10−2
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6. CONCLUSIONS

We have presented an accurate calculation of the radiation
damping force and damping energy, in interactions between
very intense laser beams and relativistic electron beams, in
the proper inertial system S′ of the electron. We have used
the relations of Landau and Lifschitz, without making any
approximation, to calculate the radiation reaction parameters.
We have found that, for laser beam intensity on the order
1022 W/cm2, and for electron energy greater than 1 GeV,
the damping energy is comparable to the average energy of
the electron, in the S′ system. Our analysis is potentially
important, because it shows that the applications of the inter-
actions between laser beams and relativistic electron beams
for the generation of very energetic radiations have limit-
ations at the values of IL and E0 for which the radiation reac-
tion is significant.
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