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Abstract
This paper reexamines the Serendipity Theorem of Samuelson (1975) from the stability
viewpoint, and shows that, for the Cobb–Douglas preference and CES technology, the
most-golden golden-rule lifetime state being stable depends on parameter values. In
some situations, the Serendipity Theorem fails to hold despite the fact that steady-state
welfare is maximized at the population growth rate, since the steady state is unstable.
Through numerical simulations, a more general case of CES preference and CES technol-
ogy is also examined, and we discuss the realistic relevance of our results. We present the
policy implication of our result, that is, in some cases, the steady state with the highest
utility is unstable, and thus a policy that aims to achieve the social optima by manipulating
the population growth rate may lead to worse outcomes.
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1. Introduction

Using the framework of Diamond’s (1965) overlapping generations model, Samuelson
(1975) investigated the optimal population growth rate that maximizes steady-state
social welfare. Concretely, he derived the golden-rule allocation by solving the
steady-state social planning problem for a given population growth rate and selecting
the population growth rate that maximizes social welfare from golden-rule allocations.
Furthermore, he found that, when the population growth rate is set at the derived opti-
mal rate, the competitive equilibrium achieves “the most-golden golden-rule (MGG)
lifetime state” without any government intervention. He named this result the
Serendipity Theorem; since then, several researchers have reexamined its generality,
as we will see later in this section. As for policy implications, this theorem is usually
interpreted to mean that to achieve a socially optimal allocation, the only thing that
the government must do is to set the population growth rate at the optimal level.
This paper reexamines the theorem from the stability viewpoint and highlights a poten-
tial pitfall concerning its policy implications.
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There are two important studies on the policy implications of this theorem:
Deardorff (1976) and Michel and Pestieau (1993). Analyzing the case of imperfect cap-
ital depreciation, Deardorff (1976) showed that, if both utility and production functions
are of Cobb–Douglas type, the steady-state equilibrium derived by Samuelson gives the
lowest welfare. Furthermore, Deardorff (1976) pointed out that, when the production
function has no upper bound on the per capita output, we can improve steady-state wel-
fare unboundedly by reducing the population growth rate and, thus, Samuelson’s solu-
tion cannot be the global optimum.1

Assuming perfect capital depreciation, Michel and Pestieau (1993) further analyzed
the case in which both production and utility functions are of CES type. They showed
that (i) when the elasticity of substitution in production is below unity, the Serendipity
Theorem mostly holds, and (ii) when the production function is Cobb–Douglas, in
which the share of capital income is below 1/2 (i.e., f (kt) = Akat with α < 1/2) and the
elasticity of substitution in consumption is below unity, the Serendipity Theorem holds.2

The Serendipity Theorem has been examined in detail by many researchers. de la
Croix et al. (2012) extended the theorem to the case of risky lifetime and Felder
(2016) examined the second-order conditions concerning the extended theorem.
Pestieau and Ponthiere (2014) constructed a four-period overlapping generations
model in which each agent bears children in the second and third periods, and showed
the robustness of the Serendipity Theorem to the introduction of different ages of
motherhood. Moreover, Pestieau and Ponthiere (2017) also proved that the
Serendipity Theorem still holds in a four-period overlapping generations model in
which each agent works in the second and third periods with age-dependent labor
productivity and bears children only in the second period.3,4

However, it is well-recognized in the literature that an issue remains unsolved; a sta-
bility analysis of the Serendipity Theorem is necessary. For example, de la Croix et al.
(2012, p. 901, footnote 3) stated: “(I)mposing the optimum fertility makes the competi-
tive economy converge toward the most golden rule steady state, provided this one is
unique and stable. Otherwise, the convergence would not occur, and the social opti-
mum could not be decentralized by means of the fertility rate.” Based on this acknowl-
edgement, we reexamine the Serendipity Theorem from the stability viewpoint. Since
this is the first study on the Serendipity Theorem from the stability viewpoint, we
employ the most standard framework introduced by Michel and Pestieau (1993). In
doing so, to clarify the basic mechanism of our results, we first examine two special
cases: (i) CES preference and Cobb–Douglas technology, and (ii) Cobb–Douglas pref-
erence and CES technology, and we analytically examine the existence and stability con-
ditions of steady-state competitive equilibria. Then, using numerical simulations, we
examine a more general case of CES preference and CES technology, and evaluate
the empirical relevance of our analysis.

The remainder of this paper is organized as follows. Section 2 derives the laissez-faire
equilibrium and obtains a formula for steady-state welfare evaluation. Section 3 sum-
marizes the Serendipity Theorem by Samuelson (1975) and Michel and Pestieau’s
(1993) results. In Section 4, we show that, for CES preference and Cobb–Douglas tech-
nology, a unique, globally stable laissez-faire steady state with positive capital always exists,
and thus, the Serendipity Theorem actually holds. We also show that, for Cobb–Douglas
preference and CES technology, whether the MGG lifetime state is stable depends on par-
ameter values. As such, in some situations, the Serendipity Theorem fails to hold despite
the fact that the steady-state welfare is maximized for the population growth rate, since
the steady state is unstable. In Section 5, we use numerical simulations to consider a
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more general case of CES preference and CES technology, and discuss the realistic rele-
vance and policy implications of our results. Section 6 concludes the paper.

2. Laissez-faire equilibrium allocation

We employ the standard neoclassical production function, Yt = F(Kt, Lt), where Kt, Lt,
and Yt represent the total capital stock, labor input, and output, respectively. Defining
yt≡ Yt/Lt and kt≡ Kt/Lt, we obtain the following per capita production function:

yt = f (kt), (1)

where f ′(kt) > 0 and f ′′(kt) , 0 hold. Following Michel and Pestieau (1993), we assume
that the capital fully depreciates during the production process.

We consider a two-period overlapping generations model, where agents live for two
periods as young and old. Each young agent has one unit of labor, supplies it inelastic-
ally, and retires on becoming old. We refer to young agents in period t as generation t.
The population size of generation t is denoted by Nt, and its gross growth rate is n
(Nt+1 = nNt). We treat n as an exogenous parameter, set by the government. The utility
function of generation t is represented by

Ut = U(ct, dt+1), (2)

where ct and dt+1 stand for consumption when young and old, respectively. We assume
that U is homothetic and quasi-concave.

In a laissez-faire economy, firms’ optimal conditions are given by

wt = w(kt) ; f (kt)− ktf
′(kt), rt = r(kt) ; f ′(kt), (3)

where wt and rt are the wage and gross interest rates, respectively.
The budget constraints of generation t are given by

ct + st = wt, (4)

dt+1 = rt+1 · st . (5)

The first-order condition of generation t is

Uc(ct, dt+1) = rt+1Ud(ct, dt+1), (6)

where Uc and Ud denote the partial derivatives with respect to ct and dt+1, respectively.
As proved in de la Croix and Michel (2002, Proposition 1.12), when preferences are
homothetic, the saving function is linear with respect to w. Thus, we can express the
saving function as follows.

st = s(wt, rt+1) = 1
u(rt+1)

wt, (7)

where θ(rt+1) is the inverse of the marginal propensity to save.

Journal of Demographic Economics 45

https://doi.org/10.1017/dem.2018.21 Published online by Cambridge University Press

https://doi.org/10.1017/dem.2018.21


There are three markets in this economy: goods, capital, and labor. The equilibrium
conditions of the capital and labor markets are represented by stNt = Kt+1 and Lt =Nt,
respectively. Dividing both sides of the capital market equilibrium condition by Lt+1
gives

st = nkt+1. (8)

Using (3), (7), and (8), we obtain the equilibrium dynamics of the model as follows.5

nkt+1u(r(kt+1)) = w(kt). (9)

As a final remark, we derive a general formula, which is independent of specifica-
tions of preferences and technologies, for the steady-state welfare evaluation of a laissez-
faire equilibrium. Let us evaluate (2) in a steady state. Steady state is defined as the situ-
ation in which kt = kt+1 = k. Therefore, wt, rt, ct, dt, and st are time invariant, and we
denote them by w, r, c, d, and s, respectively. Differentiating (2) with respect to n
and applying the envelope theorem to the result, we obtain

dU
dn

= Uc(c, d)(−kf ′′(k))
1
r
(r − n)

dk
dn

, (10)

which indicates that the welfare effect of a change in the population growth rate in a
laissez-faire economy depends on the signs of r− n and dk/dn. A formal proof of
(10) is presented in Appendix A. This formula is utilized later.

3. Serendipity theorem

Consider a social planning problem in which, given n, the government directly maxi-
mizes steady-state social welfare under a resource constraint. As the resource constraint
in a steady state is represented by

c+ d
n
+ nk = f (k), (11)

the government’s problem is to choose c, d, and k to maximize U(c, d) subject to (11).
Deardorff (1976) terms the solution to this problem the golden age allocation. Formally,
the golden age allocation (cg, dg, kg) is defined as the solution to the following equations:

f ′(kg) = n, (12)

Uc(cg, dg)

Ud(cg, dg)
= n, (13)

cg +
dg
n
+ nkg = f (kg). (14)
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Assuming that (12) has a unique and interior solution,6 we can determine kg as a
function of n. Given kg, (13) and (14) give a unique set of cg and dg. Therefore, we
can express cg, dg and kg as cg = cg(n), dg = dg(n), and kg = kg(n), respectively.

The Samuelson problem is to choose n to maximize steady-state utility, U(cg(n), dg(n)),
among feasible golden age allocations. He called the resulting situation the MGG lifetime
state.

Let us denote the solution by nG, which is given by

nG ; arg max
n

U f (kg)− nkg −
dg
n
, dg

( )
.

If the solution to this problem is interior, using (12) and (13), we obtain the follow-
ing equation:

k = d
n2

.

Now, we define the MGG allocation. The MGG allocation is defined as the golden
age allocation when the population growth rate is set at nG. Formally, the MGG alloca-
tion, (cG, dG, kG, nG), is defined as the solution to the following equations:

f ′(kG) = nG, (15)

Uc(cG, dG)
Ud(cG, dG)

= nG, (16)

cG + dG
nG

+ nGkG = f (kG), (17)

kG = dG
n2G

. (18)

From (15), (16), and (17), it is easily understood that cG, dG, and kG are solved as
functions of nG, as stated earlier.

Using nG, we can state Samuelson’s theorem as follows.

Samuelson’s Serendipity Theorem
Under nG, the competitive equilibrium without any government intervention auto-
matically achieves the MGG allocation.

This theorem states that to attain the MGG allocation, it is sufficient for the govern-
ment to set the population growth rate at the optimal rate. However, to prove the the-
orem, the existence of nG as an interior solution and the stability of a competitive
equilibrium under nG must also be proved.
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Concerning the existence of nG as an interior solution, Michel and Pestieau (1993)
derived the existence conditions for the case

U(ct, dt+1) =
1

1+ b
c1−(1/m)
t + b

1+ b
d1−(1/m)
t+1

( )m/(m−1)
for m . 0, m = 1

c1/(1+b)
t db/(1+b)

t+1 for m = 1

⎧⎪⎨
⎪⎩ ,

(19)

f (kt) = A[(1− a)+ akst ]
1
s for s , 1, s = 0

Akat for s = 0

{
. (20)

In (19), β is the relative weight between c and d, and μ > 0 is the elasticity of substi-
tution in consumption (the degree of intertemporal substitution). Similarly, in (20), A is
the technological level, α a constant satisfying 0 < α < 1, and σ < 1 is a parameter related
to the elasticity of substitution in production; specifically, 1/(1 − σ) represents the elas-
ticity of substitution in production.7

The sufficient conditions for the existence of an interior solution are summarized as
follows.

Michel and Pestieau’s (1993) result
If either of the following conditions is satisfied, there exists an interior solution for nG:

(i) σ is negative (if μ > 1, an additional condition is required in that either μ < 2−
1/(1− σ) or A is large);

(ii) σ is zero, 0 < μ < 1 (the production technology is of the Cobb–Douglas type:
f (kt) = Akat ), and α < 1/2.

The results of their analysis are summarized in Table 1 of Michel and Pestieau
(1993), while our Table 1 reproduces their results in our notation.

4. Existence and stability of a laissez-faire equilibrium

The following analysis focuses on two special cases of Michel and Pestieau’s (1993)
work, that is, the case of σ = 0 (Cobb–Douglas technology) and that of μ = 1 (Cobb–
Douglas preference). We examine the stability of the steady states of competitive equi-
librium and whether the MGG allocation is supported by a stable steady-state competi-
tive equilibrium in subsections 4.1 and 4.2, respectively.

4.1. CES preference and Cobb–Douglas technology

Here, we analyze the case of σ = 0. Since the CES utility function is homothetic, we can
utilize the difference equation (9) describing the equilibrium dynamics of the model:

nkt+1(b
−m · r(kt)1−m + 1) = w(kt), (21)

where we use θ(r(kt))≡ β−μ · r(kt)
1−μ + 1 under the CES utility function.

From (21), regarding steady-state competitive equilibrium, we have the following
proposition:
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Proposition 1

(i) The nontrivial steady-state capital stock, k* >0, exists and is unique.
(ii) The nontrivial steady state is globally stable.

Proof:

(i) Because of the Cobb–Douglas technology, we have

w(kt)
r(kt) · kt =

1− a

a
. (22)

In steady state, (21) and (22) are reduced to nkθ(r(k)) =w(k) and w(k) = (1− α)rk/α,
respectively. Combining these two equations, we have

u(r)
r

= 1
n
1− a

a
, (23)

which determines the steady-state interest rate. Since θ(r)/r = β−μ · r−μ + r−1 is strictly
decreasing with respect to r, lim

r�0
u(r)/r = +1, and lim

r�+1 u(r)/r = 0, (23) always has

a unique solution of r, that is, the steady-state equilibrium interest rate. We denote
this solution by r*. The steady-state capital stock k* is uniquely determined by (3),
r* = f ′(k*) because f ′′ , 0.

(ii) Defining Φ as Φ(kt+1)≡ nkt+1θ(r(kt+1)), we can express equilibrium dynamics as
Φ(kt+1) =w(kt). As Figure 1 shows, the nontrivial steady-state k* is globally stable
if Φ(k) <w(k) for 0 < k < k*, Φ(k) =w(k) for k = k*, and Φ(k) >w(k) for k* < k.
Therefore, we show that Φ(k) and w(k) satisfy these relations. Since k* is the
unique solution of Φ(k)/w(k) = 1 in the region of k > 0, we only have to show
that Φ(k)/w(k) is a strictly increasing function of k. From (22), we have

F(k)
w(k)

= a

1− a
n
u(r)
r

. (24)

Table 1. Michel and Pestieau (1993)

0 < μ < 1 μ = 1 μ > 1

σ < 0 An interior solution exists An interior
solution exists

An interior solution exists
under Condition (B)

σ = 0 An interior solution exists
under Condition (A)

No interior
solution

No interior solution

σ > 0 No interior solution No interior
solution

No interior solution

Condition (A): f(k) = Akα and α < ½.
Condition (B): A is large enough or μ < 2− [1/(1 − σ)].
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Since θ(r)/r is a strictly decreasing function of r and r ′(k) < 0, Φ(k)/w(k) is strictly
increasing with respect to k. This proves the global stability of the nontrivial steady state.

Combining Michel and Pestieau’s (1993) results and Proposition 1, we have

Proposition 2 Assume that σ = 0. Then, if α < 1/2, the unique MGG lifetime state is glo-
bally stable and, thus, the Serendipity Theorem holds.

4.2. Cobb–Douglas preference and CES technology

Subsequently, we analyze the case of Cobb–Douglas preference (μ = 1) and CES
technology.

4.2.1. Saving behavior and capital market equilibrium
We express the Cobb–Douglas-type utility function of generation t as

U(ct, dt+1) = c
1

1+b

t d
b

1+b

t+1.
8 (25)

Under (25), the saving function is derived as

st = b

1+ b
wt.

Therefore, the capital market equilibrium condition, (8), is reduced to

kt+1 = b

1+ b

1
n
wt . (26)

Figure 1. Stable steady-state equilibrium.
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4.2.2. CES technology
From the results of Michel and Pestieau (1993), reproduced in Table 1 above, a necessary
condition for the Serendipity Theorem to hold is σ < 0. Therefore, it suffices to focus on
the case of σ < 0 in analyzing the existence and stability of a steady-state equilibrium.

Under CES technology, the optimal conditions for a representative firm, (3), are

wt = w(kt) = A(1− a)[(1− a)+ akst ]
1/s−1,

and

rt = r(kt) = Aa[(1− a)k−s
t + a](1−s)/s. (27)

As we focus on the case of σ < 0, from (20) and (27) we have:

[1] r(k) = f ′(k) > 0 and r′(k) = f ′′(k) , 0;

[2] f (0) = 0, lim
k�0

f ′(k) = Aa
1
s, and lim

k�+1
f ′(k) = 0.

Similarly, it is easy to show the following properties of w(kt):

[3] w ′(k) > 0;
[4] w(0) = 0, lim

k�0
w′(k) = 0, lim

k�+1
w′(k) = 0;

[5] Define k+ = − as

(1− a)(1− s)

[ ]−1
s

. Then, for k . 0,w′′(k) .
,

0 , k ,
.

k+.

Properties [3], [4], and [5] imply that the w(k) function is S-shaped.

4.2.3. Equilibrium dynamics and steady states
Combining (26) and (27), we obtain the equilibrium dynamics of the laissez-faire econ-
omy in terms of k:

kt+1 = b

1+ b

1
n
w(kt) ; h(kt, n). (28)

Since [β/(1 + β)](1/n) is constant for a given n, h(kt, n) is proportional to w(kt).
Therefore, the shape of h(kt, n) is similar to that of the w(kt) curve. It should be
noted that a rise in n rotates the h(kt, n) curve clockwise around the origin.
Consequently, we define a critical value of the population growth rate, ň, as shown
in Figure 2, where ň is the highest population growth rate under which a steady-state
equilibrium exists. From Figure 2, when n = ň, the h(kt, n) curve is tangent to the
45-degree line from below. We denote the value of k at the tangent point by ǩ.
By definition, we have ∂h(ǩ, ň)/∂kt = 1, and from this condition we can compute ň
and ǩ as9

ň = b

1+ b
A[a(1− s)]1/s

−s

1− s
. 0, ǩ = − 1− a

sa

[ ]1/s
. (29)
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Now, we have the following proposition:

Proposition 3 Assume that μ = 1 and σ < 0. Then, it follows that,

(i) if 0 , n , ň, there exist two nontrivial steady-state capital stocks ku and ks(>ku),
and if n . ň, no nontrivial steady state exists,

(ii) when 0 , n , ň, the lower steady-state equilibrium, ku, is unstable, while the
higher steady-state equilibrium, ks, is stable.

Proof:

(i) In Figure 2, the h(kt, n) curve is tangent to the 45-degree line when n = ň
(Point E). Remember that h(kt, n) rotates counterclockwise around the
origin as n decreases. Additionally, note that the slope of

h(kt, n), lim
kt�0

∂

∂kt
h(kt, n) = 0, and lim

kt�+1
∂

∂kt
h(kt, n) = 0 hold for any n

because lim
k�0

w′(k) = 0, lim
k�+1

w′(k) = 0. Thus, for 0 , n , ň, there are two

intersections of the h(kt, n) curve and the 45-degree line. On the other
hand, h(kt, n) rotates clockwise around the origin as n increases; thus, for
n . ň, there is no intersection.

(ii) At ks and ku in Figure 3, kt+1 = h(kt, n) = kt, and thus, k remains there. Suppose
that 0 < kt < k

u or ks < kt. Then, the h(kt, n) curve is located below the 45-degree
line, that is, kt+1 = h(kt, n) < kt, and thus, the time path of k is decreasing in this
area. For ku < kt <k

s, kt+1 = h(kt, n) > kt, and thus, the time path of k is increas-
ing. From these observations, it follows that ku is unstable and ks is stable.

Changing n in Figure 2, we have the following corollary concerning comparative statics
on the population growth rate.

Corollary Assume that μ = 1 and σ < 0, and further 0 , n , ň. Then, a marginal
increase in n increases ku and decreases ks.

Proof: Since an increase in n rotates the h(kt, n) curve clockwise around the origin, the
result follows directly from Figure 4.

4.2.4. Steady-state welfare
Since there are two steady-state equilibria for 0 , n , ň, we must compare their welfare
levels to derive the socially optimum allocation. The formula for steady-state welfare,
(10), indicates that the welfare effect of a change in n depends on the signs of r− n
and dk/dn. From the Corollary, we know that dks/dn < 0 and dku/dn > 0, and thus, it
follows from (10):

dUs/dn .
,

0 , r/n ,
.

1 and dUu/dn ,
.

0 , r/n ,
.

1, (30)

where Us and Uu represent steady-state utilities in the stable and unstable steady state,
respectively. This result indicates that, to examine how a change in n affects steady-state
utility, we should identify how a change in n affects the steady-state value of r/n.
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The steady-state value of r is obtained as the solution to the following equation:

r
n
= w(r) ;

1+ b

b

a

(r/Aa)s/(1−s) − a
. (31)

The derivation of (31) is given in Appendix C. Concerning w(r), under the assump-
tion σ < 0, we can observe the following properties:

Properties of w(r)

(i) w(r) . 0 ∀r [ (0, Aa1/s);
(ii) w′(r) > 0, lim

r�0
w′(r) = +1, lim

r�0
w(r) = 0, lim

r�Aa
1
s

w(r) = +1;

(iii) w(r)/r is minimized at ř ; Aa[(1− s)a](1−s)/s.

Properties (i) and (ii) except for the second one are straightforwardly confirmed.
Regarding the second property of (ii), differentiating w(r) with respect to r gives

w′(r) = a[(1+ b)/b][−s/(1− s)]
[(r/Aa)1/2(1−s) − a(r/Aa)(1−2s)/2(1−s)]

2 ,

and thus, it follows that lim
r�0

w′(r) = +1. Next, consider (iii). Because

Figure 2. The graph of h(kt, ň).

Figure 3. Two nontrivial steady states if 0 , n , ň.
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w(r)/r = [(1+ b)/b]a 1

(Aa)−s/(1−s)r1/(1−s) − ar
, w(r)/r is minimized at

ř ; Aa[(1− s)a](1−s)/s, at which the denominator is maximized.
Based on properties (i) to (iii), we can depict the w(r) curve as in Figure 5.10 The

steady-state value of r is determined by the abscissa of the intersections of two loci:
the r/n locus (the straight line with 1/n slope) and the w(r) locus. As described in sub-
section 4.2.2, r→ 0 as k→ +∞ under the assumption of σ < 0. Therefore, w(r) is not
defined at r = 0. That is, the two loci do not intersect at the origin.

As shown in Proposition 3(i), there exist two nontrivial steady states for 0 , n , ň,
implying that (31) has two different solutions. The dotted line in Figure 5 depicts the
r/n locus for n [ (0, ň). As is obvious from the figure, there are two intersection points
for n [ (0, ň) and the values on the vertical axis of the intersection points represent the
steady-state values of r/n.

Due to the law of diminishing marginal productivity, r is negatively related to k,
and the lower value of r/n, i.e., Point D in Figure 5, corresponds to a higher value of
k, i.e., Point D in Figure 2, which is the stable steady state. Therefore, we denote the
value of r/n in this stable steady state by rs/n. Similarly, the higher value of r/n,
Point C in Figure 5, corresponds to the lower value of k, i.e., Point C, in Figure 2.
Thus, Point C in Figure 5 represents the unstable steady-state equilibrium and we
denote the value of r/n in the unstable steady state by ru/n.

When n = ň, we have a unique, nontrivial steady state. It should be noted here that
Point E in Figure 5 represents the same state as Point E in Figure 2. From (27) and (29),
which define ř and ǩ, we confirm this fact and obtain ř/ň = −(1/s)[(1+ b)/b].

When n . ň, there is no nontrivial steady state as shown in Proposition 3 (i). Thus,
the r/n locus and w(r) have no intersection points.

Now, through Figure 5 we can prove the following proposition:

Proposition 4 Assume that μ = 1 and σ < 0. Then, it follows that

(i) rs/n is an increasing function of n and, ru/n is a decreasing function of n.

(ii) lim
n�0

rs

n

( )
= 0, and lim

n�0

ru

n

( )
= +1.

(iii) lim
n�ň

rs

n

( )
= lim

n�ň

ru

n

( )
= − 1

s

1+ b

b
.

Figure 4. The effect of an increase in n.
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Proof:

(i) As n decreases, the slope of the r/n locus becomes steeper, and thus, the upper
intersection of the two loci, ru/n, moves upward while the lower intersection,
rs/n, moves downward. In other words, ru/n is a decreasing function of n while
rs/n is an increasing function of n.

(ii) As n approaches zero, the slope of r/n locus diverges to +∞. Noting that
lim
r�0

w′(r) = +1 and lim
r�0

w(r) = 0, it is seen that Point D in Figure 5, (rs, rs/n),
approaches the origin. Thus, lim

n�0
(rs/n) = 0 holds. On the other hand, because

lim
r�Aa

1
s
w(r) = +1, Point C (ru, ru/n) approaches (Aα1/σ, +∞). Thus,

lim
n�0

(ru/n) = +1 holds.

(iii) As n approaches ň, both Points C and D converge to Point E. When n = ň,
there is only one steady state, and the stable and unstable steady states coincide:
rs/n = ru/n = ř/ň (= −(1/s)[(1+ b)/b]).

From Proposition 4, we can depict the relationship between n and r/n as per Figure 6.
Figure 6 is obtained by changing n in Figure 5 and plotting the locus of the intersections
of the w(r) curve and the r/n line in the (n, r/n) plane. The upward-sloping curve
(solid curve) indicates the relationship between n and rs/n (stable solution) while
the downward-sloping curve (dashed curve) represents the relationship between
n and ru/n (unstable solution). Observe that these curves intersect at
(ň, −(1/s)[(1+ b)/b]). The Points C, D, and E in Figure 6 correspond to Points C,
D, and E in Figure 5 (and thus, in Figure 2), respectively.

We next examine whether or not the Serendipity Theorem holds by checking the
stability and welfare of steady states. The critical value of r/n is 1, as (30) shows.
Using Figure 6 and taking into account the location of r/n = 1 (the r/n = 1 line is
drawn as a horizontal line in Figure 6 because the horizontal axis is r/n), we can derive
the following proposition:

Proposition 5 Assume that σ < 0. The Serendipity Theorem holds if and only if − (1/σ)
[(1 + β)/β] >1.

Figure 5. The graphs of the w(r) curve and the r/n line.
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Proof: Let �n denote the population growth rate where the sideways chevron-shaped
graph in Figure 6 and the r/n = 1 line intersect. Assume that −(1/σ)[(1 + β)/β] > 1.
Then, the r/n = 1 line is located below Point E, and we obtain �n as per Figure 7a.
Points �C and �D represent the laissez-faire steady-state equilibria under n = �n, which
are unstable and stable, respectively.

First, let us consider the upward-sloping curve passing Point �D (the solid curve). As
has been stated earlier, this curve corresponds to the “stable” steady state in each n. We
see that, on the upward-sloping curve, r/n <1 holds when 0 , n , �n, and r/n >1 holds
when �n , n , ň. Using (30), we confirm that dUs/dn > 0 when 0 , n , �n, and
dUs/dn < 0 when �n , n , ň. Consequently, the relationship between n and Us is
drawn as per Figure 7b.

Next, we consider the downward-sloping curve passing through Point �C (the dashed
curve). This curve corresponds to the “unstable” steady state in each n. Note that r/n >1
always holds on this curve. From (30), we obtain dUu/dn > 0. Moreover, it is obvious that
Us =Uu when n = ň. Thus, we can depict Uu as per Figure 7b. Thus, Point �D attains the
highest utility among the laissez-faire steady state, and Michel and Pestieau (1993) showed

Figure 6. The relationship between r/n and n.

Figure 7. (a) The relationship between r/n and n in
the case of − (1/σ)[(1 + β)/β] > 1. (b) The relation
between U and n in the case of− (1/σ)[(1 + β)/β] > 1.
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that Point �D corresponds to the MGG allocation (i.e., �n = nG). Note that Point �D is
stable, and as such, the Serendipity Theorem certainly holds in this case.

On the other hand, if − (1/σ)[(1 + β)/β] < 1, the r/n = 1 line is located above Point E
and we obtain �n as per Figure 8a. Applying a similar argument to obtain Figure 7b from
Figure 7a, we obtain Figure 8b from Figure 8a. We observe that Point �C provides the
highest steady-state utility; Michel and Pestieau (1993) showed that Point �C corre-
sponds to the MGG allocation (and again, �n = nG). However, Point �C is in the unstable
region and the utility cannot be attained as a competitive equilibrium. The attainable
maximum steady-state utility is provided by Point E, which is a corner solution, mean-
ing that the Serendipity Theorem fails to hold.

5. Numerical analysis of a more general case: CES preference and CES technology

5.1. Basic setup

In subsection 4.2, to clarify the basic mechanism of our results, we restricted our atten-
tion to the case of CES technology and Cobb–Douglas preference. We showed that, if
the elasticity of substitution in production is low, the MGG steady state is unstable, that
is, the Serendipity Theorem fails to hold. In this section, to evaluate the realistic rele-
vance of our analysis, we perform numerical simulations on a more general case –
the case of CES preference and CES technology – by setting empirically plausible values
of the key parameters.

As explained in Section 3, the MGG allocation is given by (15)–(18). Since we specify
the utility and production functions to be of the CES types [see (19) and (20)], these
four equations are summarized by the following two equations, the derivations of
which are presented in Appendix D.

Aa[(1− a)k−s
G + a](1−s)/s = nG, (32)

Figure 8. (a) The relationship between r/n and n in
the case of − (1/σ)[(1 + β)/β]≤ 1. (b) The relation
between U and n in the case of − (1/σ)[(1 + β)/
β]≤ 1.
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a[b−mn1−m
G + 1] = (1− a)k−s

G . (33)

From (32) and (33) we can solve for kG and nG. Since the elasticity of substitution in
production, 1/(1− σ), is directly estimated in the empirical literature, it is convenient to
introduce a new variable representing the elasticity of substitution in production, τ≡
1/(1− σ). Using τ, we can rewrite (32) and (33) as:

Aa = nG[(1− a)k(1−t)/t
G + a]1/(1−t), (34)

a[b−mn1−m
G + 1] = (1− a)k(1−t)/t

G . (35)

In our numerical simulations, we restrict our attention to the case of 0 < τ < 1 (⇔ σ < 0)
and 0 < μ < 1, under which an MGG allocation exists, as proved by Michel and Pestieau
(1993).11

The marginal propensity to save and the wage and gross interest rate under the
double CES assumption are given by:

u(rt+1) ; b−m · (rt+1)1−m + 1

wt = w(kt) = A(1− a)[(1− a)+ ak−(1−t)/t
t ]−1/(1−t),

rt = r(kt) = Aa[(1− a)k(1−t)/t
t + a]−1/(1−t).

(36)

We can express the equilibrium dynamics when the population growth rate is set at
nG as:

H(kt, kt+1) ; w(kt)− nGkt+1(b
−m · r(kt+1)

1−m + 1) = 0, (37)

which is derived from (9) and (36). When kt = kt+1 = kG, H(kG, kG) = 0, and thus the
MGG allocation constitutes a steady-state laissez-faire equilibrium under the population
growth rate nG. This is a restatement of the result of Samuelson (1975). It should be
noted here that this does not mean that the MGG steady state is the unique steady
state; there may be multiple steady states.

In order to check the local stability of the MGG steady state, kt = kt+1 = kG, we
evaluate the following value:

dkt+1

dkt

∣∣∣∣
kt=kt+1=kG

= − ∂H(kG, kG)
∂kt

/
∂H(kG, kG)

∂kt+1
. (38)

If the absolute value of dkt+1/dkt|kt=kt+1=kG is greater than unity, then the MGG
steady state is locally unstable, and thus, the Serendipity Theorem fails to hold.

Regarding (38), we obtain the following lemma.

Lemma 1 When τ = μ = 0.5, it always holds that dkt+1/dkt|kt=kt+1=kG = 1, regardless of
the values of A, α, and β.
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The proof is given in Appendix E. Lemma 1 indicates that, when τ = μ = 0.5, a
tangent bifurcation occurs at the MGG steady state. That is, the MGG steady state is
represented as Point E in Figure 2, regardless of the values of A, α, and β.

5.2. Numerical simulations

5.2.1. Choice of parameter values
We briefly explain our choice of values of structural parameters, α, β, δ, A, τ, and μ. We
begin with δ, α, and A.

Since our overlapping generations model consists of two periods, the length of one
period could be reasonably considered to be about 30 years; thus, the depreciation rate
would be large. Following de la Croix and Doepke (2003), who performed similar
numerical simulations of a two-period overlapping generations model, we assume
that the capital entirely depreciates after one period, that is, δ = 1. Moreover,we specify
α = 0.4. Under this value, the steady-state labor income is computed as 0.6–0.7, consist-
ent with most empirical estimates of the labor income share.12 Following de la Croix
and Doepke (2003), the benchmark value of the productivity parameter, A, is set at
unity. In subsection 5.2.4, we examine the robustness of our numerical simulation
results by changing the value of A.

We next observe the range of β. Several studies have constructed the value of β by
following the business cycle literature, which often employs 0.99 as the per quarter dis-
count factor. When we apply this discount rate to our economy, we set β = 0.3 because
(0.99)4×30≈ 0.3.13 Moreover, we report the case of β = 1 in order to check how changes
in β affect the stability of the MGG steady state.14

The elasticity of substitution in production, τ, and the degree of intertemporal sub-
stitution, μ, may be controversial because the estimated values of τ and μ have a wide
range. Chirinko (2008) stated that evidence suggests that the elasticity of substitution
in production, τ, ranges from 0.40 to 0.60, while Klump et al. (2008) obtained 0.7 as
the elasticity of substitution in production, τ. Based on these results, this paper specifies
that τ lies within the range [0.4, 0.7].15

Concerning intertemporal substitution μ, Table 1 of Havránek et al. (2015), which
summarizes individual countries’ estimated value of intertemporal substitution for 45
countries, shows a very wide range of estimated values of μ. Given that two-thirds of
the mean elasticities lie in the range [0.1, 0.7], we consider this to be the range of μ.16

5.2.2. Stability of the MGG steady state
First, given β = 0.3, A = 1, and α = 0.3 (we call this the benchmark case), we examine the
relationship between the stability of the MGG steady state and the two key parameters,
τ and μ. Figure 9 depicts the stable region, where 0 , dkt+1/dkt|kt=kt+1=kG , 1, and the
unstable region, where dkt+1/dkt|kt=kt+1=kG . 1, in the τ− μ plane. The solid curve
represents the locus that satisfies dkt+1/dkt|kt=kt+1=kG = 1, that is, the border of the
two regions. The key results are: the border is downward sloping, and the MGG steady
state is unstable when τ and μ take small values.17 Furthermore, the border passes
through (0.5, 0.5), as Lemma 1 shows. Through a numerical examination, under our
parameter settings, we confirm that the graph of the dynamical system, H(kt, kt+1) =
0, is expressed as an S-shaped curve, such as in Figure 3.

Next, let us examine how changes in the value of β affect the result. We change the
value of β from 0.3 to 1 (the other parameters are fixed at the benchmark values), and
consider how the border changes. Figure 10 depicts the result. The dashed and solid
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curves represent the border in the benchmark case (the same as Figure 9), and the high
β case, respectively. Again, the border is downward sloping and passes through (0.5, 0.5).
We observe that the unstable region expands for 0.4 < τ < 0.5, while it shrinks for 0.5 < τ.
This suggests that, in a country where the elasticity of substitution in production is low, a
higher propensity to save tends to make the MGG steady state unstable.

Finally, let us examine how changes in the value of A affect the unstable region.
Here, we change the value of A from 1 to 5 (the other parameters are fixed at the bench-
mark values). The result is depicted in Figure 11.

The dashed and solid curves represent the border in the benchmark case (the same
as Figure 9), and the high A case, respectively. Figure 11 shows that, the MGG steady
state is unstable when τ and μ take small values, in the same way as Figures 9 and 10,
and that, an increase in A makes the unstable region smaller for 0.4 < τ < 0.5, while it
expands the unstable region for 0.5 < τ. This implies that, in an economy where the elas-
ticity of substitution in production is low, an improvement in the TFP tends to stabilize
the MGG steady state.

5.3. Policy implications: a potential pitfall

We confirmed that the MGG steady state is unstable when τ and μ take small values,
and thus, the Serendipity Theorem can fail to hold under empirically plausible param-
eter values. We argue that this has significant policy implications.

Assume that the MGG steady state is unstable. In this case, the MGG steady state
corresponds to Point C in Figure 3, and this scenario follows that in Figure 8b.
Suppose that the population growth rate is n0(>nG), as in Figure 12. If the government
does not take into consideration the stability issue and believes that the Serendipity
Theorem is applicable, it decreases the population growth rate to nG by expecting the
economy to move from Point H to Point F. However, Point H is an unstable steady
state, and thus, it is natural to assume that the economy is initially located at Point
G. Therefore, this policy will move the economy from Point G to Point I (refer to
the dotted arrows in Figure 13). As a result, steady-state welfare deteriorates, contrary

Figure 9. Benchmark case (A = 1, β = 0.3, α = 0.3).
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to the government’s intention (see Figure 12). Moreover, if the economy is at Point H
(the unstable steady state), changing the population growth rate from n0 to nG causes
the economy to move from Point H to Point I (refer to the solid arrows in
Figure 13). In this case, social welfare decreases to a greater degree than in the previous
situation (see Figure 12).

Let us consider another example. Assume that in the situation in Figure 8b the popu-
lation growth rate is given by n0(<nG), as depicted in Figures 14 and 15, and that the

Figure 10. Effect of an increase in β.

Figure 11. Effect of an increase in A.
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economy is in the lower unstable steady state, Point J. If the government believes that it
can apply the Serendipity Theorem, it will increase the population growth rate to nG by
expecting that the economy moves from Point J to K (see Figure 14). However, once n is
increased, the economy moves toward the origin (refer to the solid arrows in Figure 15).

Figure 12. A potential pitfall (case of − (1/σ)
((1 + β)/β)≤ 1 and n0 > nG).

Figure 13. Wrong policy (n0 > nG).

Figure 14. A potential pitfall (case of − (1/σ)
((1 + β)/β)≤ 1 and n0 < nG).

Figure 15. Wrong policy (n0 < nG).
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As a result, the economy shrinks and welfare deteriorates, contrary to the government’s
intention.

These examples indicate the importance of the stability consideration in analyzing
the Serendipity Theorem.

6. Concluding remarks

We reexamined the Serendipity Theorem of Samuelson (1975) from the stability view-
point. Specifically, we investigated whether the MGG allocation can be supported by the
stable steady-state competitive equilibrium. Moreover, we showed that, in the case of
Cobb–Douglas preference and CES technology, the stability of the MGG lifetime
state depends on parameter values and, in some situations, the Serendipity Theorem
fails to hold despite steady-state welfare being maximized at the population growth
rate as the steady state is unstable. Furthermore, using numerical simulations, we inves-
tigated a more general case, specifically that of CES preference and CES technology, and
showed that the MGG lifetime state is unstable when the elasticities of substitution in
consumption and production are small. These form the main contributions of this
paper given that the previous studies on the Serendipity Theorem have not analyzed
the stability issue in detail.

Notes
1 See also Samuelson (1976).
2 Since the Cobb–Douglas production function has no upper bound, the second result by Michel and
Pestieau (1993) seems to contradict Deadorff’s (1976) result. However, this discrepancy comes from the
difference in the imposed assumption on the capital depreciation rate. When complete capital depreciation
is assumed [as in Michel and Pestieau (1993)], Deadorff’s method cannot be applied, and thus the case
must be analyzed separately.
3 The limitations of the Serendipity Theorem were also discussed by several studies. Jaeger (1989) intro-
duced an additional generation dependent on its parents and showed that even if an interior solution of the
optimal population growth rate exists, the Serendipity Theorem does not hold in general. Kuhle (2007) and
Jaeger and Kuhle (2009) showed that the Serendipity Theorem does not hold if there are government
bonds.
4 Other related but slightly different lines of study include Abio (2003), Ponthière (2013), and Stelter
(2016). The standard literature on the Serendipity Theorem assumes that households regard the population
growth rate as exogenous and the government adopts average utility (Millian utilitarianism) as the social
objective. Regarding the former, Abio (2003) adopted a version of the endogenous fertility model along
the lines of Bental (1989) and Eckstein and Wolpin (1985), and investigated the existence of an interior
solution of the socially optimal population growth rate. Concerning the latter, in a model with risky lifetime
employing the ex post egalitarian criterion, which considers the welfare of the worst-off born agent,
Ponthière (2013) derived the optimal population growth rate, while Stelter (2016) used a very pliable social
welfare function covering Millian to Benthamite utilitarianism and examined the first best population
growth rate.
5 Galor and Ryder (1989) and Konishi and Perera-Tallo (1997) analyzed sufficient conditions for the exist-
ence of a competitive, nontrivial steady-state equilibrium in a standard overlapping generations model with
productive capital à la Diamond (1965).
6 The Inada condition ensures this situation. In the case of a CES production function, some parameter
restrictions are required.
7 It should be also noted that our notations differ from Michel and Pestieau (1993) in that their τ corre-
sponds to our 1/(1− σ) and their σ corresponds to our μ.
8 Instead, we can use the log-linear utility function: log ct + β log dt+1. This can be easily transformed into (25).
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9 See Appendix B for the derivation of (29).
10 As easily understood, w(r)/r is the slope of the straight line connecting the origin and a point on the
w(r) curve. Thus, in Figure 5, ř is determined by the point at which w(r)/r is minimized (Point E).
11 We can verify the existence of an MGG allocation as follows. Assuming 0 < τ < 1, the right-hand side of
(34) increases with respect to n and k. As the left-hand side of (34) is constant, we can depict (34) as a
downward sloping curve in the k-n plane. Moreover, it is easy to observe that n→Aα−τ/(1−τ) as k→ 0,
and n→ 0 as k→ +∞. As 0 < τ < 1 and 0 < μ < 1, the left-hand side of (35) increases with respect to n
and the right-hand side of (35) increases with respect to k. Thus, (35) is depicted as an upward sloping
curve in the k-n plane, and n→ 0 as k→ 0 and n→ +∞ as k→ +∞. Thus, (34) and (35) have a unique
intersection point, which determines a unique pair of kG and nG, and 0 < nG <Aα

−τ/(1−τ).
12 The steady-state labor income share in the MGG allocation is computed as (1− a)/(1− a+ aksG).
Small changes in the value of α have only a negligible effect on the steady-state labor income share.
Moreover, α plays an insignificant role in our numerical simulations.
13 See de la Croix and Doepke (2003) and Momota and Horii (2013) for more details.
14 It is well-known that, in overlapping generations models, there are no theoretical restrictions on the size
of β, and the estimated values of β are sometimes larger than unity; some examples include Hansen and
Singleton (1983), Hotz et al. (1988), and Hurd (1989). Furthermore, İmrohoroğlu et al. (1995, 1998)
and Kumru and Thanopoulos (2015) calibrate their model by assuming that the annual discount factors
are greater than unity. Taking this into account, we examine the case of β = 1 for comparison.
15 Based on estimation of comparative statics results, Juselius (2008) concluded that the elasticity is smaller
than 1.
16 Thimme (2017, p. 249) stated, “For models that assume that the representative agent consumes a single
nondurable consumption good, it seems difficult to argue against values that are considerably lower and
clearly below one.”
17 Let us consider the relationship between Figure 9 and Proposition 5. According to Proposition 5, the
MGG steady state is unstable when σ <− 13/3 (or equivalently, τ < 3/16≈ 0.18) when β = 0.3. Remember
that Proposition 5 focuses on the Cobb–Douglas preference case, μ = 1. That is, the point (τ, μ) = (3/16, 1)
will be on the solid curve in Figure 9 if the values of τ and μ are considered empirically reasonable.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/dem.2018.21.
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Appendix A
In this appendix, we derive the welfare evaluation formula (10). Differentiating U(c, d) with respect to n
gives

dU
dn

= Uc(c, d)
dc
dn

+ Ud(c, d)
dd
dn

. (A.1)

Substituting (6) into (A.1), we have

dU
dn

= Uc
dc
dn

+ 1
r
dd
dn

( )
. (A.2)

From (4), (5), and the equilibrium condition of the economy, (9), we have

dc
dn

= d(w− s)
dn

= dw
dn

− k− n
dk
dn

, (A.3)

dd
dn

= d(rnk)
dn

= dr
dn

nk+ rn
dk
dn

+ rk. (A.4)

Thus, substituting (A.3) and (A.4) into (A.2) we obtain

dU
dn

= Uc
dw
dn

+ nk
r
dr
dn

( )
= Uc

dw
dk

+ nk
r
dr
dk

( )
dk
dn

. (A.5)

Finally, substituting the derivatives of w and r in (3) with respect to k into (A.5), we have the following
formula for welfare evaluation:

dU
dn

= Uc(c, d)(−kf ′′(k)) 1
r
(r − n)) dk

dn
.

Appendix B
This appendix derives (29) of the main text. As per Figure 3, when n = ň, the h(kt, n) curve is tangent to the
45-degree line. We denote the value of k at the tangent point by ǩ, that is,

hk(ǩ, ň) = 1, (B.1)

where hk denotes the partial derivative of h with respect to k. As per Figure 3, at the tangent point, the
following relation holds:

h(ǩ, ň)

ǩ
= hk(ǩ, ň).

Since h(kt, ň) = b

1+ b

1
ň
w(kt), this is equivalent to

w(ǩ)

ǩ
= w′(ǩ),
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from which we can solve ǩ as follows:

ǩ = − 1− a

sa

[ ]1/s
.

Substituting this into (B.1), we have

hk(ǩ, ň) = 1
ň

b

1+ b
A[a(1− s)]1/s

−s

1− s
= 1.

From this equation, we obtain

ň = b

1+ b
A[a(1− s)]1/s

−s

1− s
.

Appendix C
In this appendix, we derive (31). First, we prove the following lemma.

Lemma 2

w(k)
k

= A− s
1−sa− 1

1−sr(k)
1

1−s − r(k).

Proof: From (27), we have

w(k)
k

= f (k)
k

− r(k). (C.1)

Since capital income is represented as

r(k)k
f (k)

= a

(1− a)k−s + a
,

we have

f (k)
k

= r(k)
a

[(1− a)k−s + a]. (C.2)

Using the equality between the interest rate and marginal productivity of capital, we can rewrite (C.2) as

f (k)
k

= r(k)
a

r(k)
Aa

( )s/(1−s)
= A−s/(1−s)a−1/(1−s)r(k)1/(1−s). (C.3)

Substituting (C.3) into (C.1), we have

w(k)
k

= A−s/(1−s)a−1/(1−s)r(k)1/(1−s) − r(k).
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Let us next consider the steady state of (26), that is,

nk = b

1+ b
w(k).

If k≠ 0, this can be expressed as

n = b

1+ b

w(k)
k

. (C.4)

Using Lemma 2, we can rewrite (C.4) as follows:

n = b

1+ b
[A−s/(1−s)a−1/(1−s)r(k)1/(1−s) − r(k)]. (C.5)

Since s , 0, lim
k�+1

r(k) = 0, and hence, r≠ 0 holds for all 0 <k < +∞. Dividing both sides of (C.5) by r
and taking their reciprocals, we have

r
n
= 1+ b

b

a

(r/Aa)s/(1−s) − a
.

Therefore, we have derived (31) in the main text.

Appendix D
This appendix derives (32) and (33). Under the double CES assumption, (15) and (16) are given by

Aa[(1− a)+ aksG]
(1−s)/sks−1

G = nG, (D.1)

and

cG = b−mn−m
G dG. (D.2)

(32) directly follows (D.1). From (17), (18), and (D.2), we have

A[(1− a)+ aksG]
1/s = nGkG[b

−m · n1−m
G + 2]. (D.3)

Combining (D.1) and (D.3) gives (33).

Appendix E
Lemma 1 is proved here. We first solve kG and nG for τ = μ = 0.5 (σ =−1). In this case, (34) and (35) are
given by

Aa = nG[(1− a)kG + a]2, and (E.1)

a[b−1/2n1/2G + 1] = (1− a)kG . (E.2)
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Deleting kG from (E.1) and (E.2), we obtain

A
a
= [b−1/2nG + 2n1/2G ]2 . (E.3)

Noting that β−1/2n + 2n1/2 >0 and defining z≡ n1/2, (E.3) is transformed into the following quadratic equa-
tion of z:

b−1/2z2 + 2z = A
a

( )1/2

.

Since z must be positive, the solution to this equation is given by

z = n1/2G =
����������������
1+ (A/ab)1/2

√
− 1

b−1/2 , (E.4)

indicating that

nG = b

���������������
1+ A

ab

( )1/2
√

− 1

⎛
⎝

⎞
⎠

2

. (E.5)

Moreover, from (E.2) and (E.4), kG is obtained as

kG = a

1− a

���������������
1+ A

ab

( )1/2
√

. (E.6)

We next derive the dynamics of the laissez-faire equilibrium for the case of τ = μ = 0.5 and n = nG. From
(36) and (37), we have

H(kt, kt+1) ; A(1− a)[(1− a)+ ak−1
t ]−2 − nGkt+1

Aa
b

( )1/2

[(1− a)kt+1 + a]−1 + 1

{ }
= 0 . (E.7)

Partially differentiating (E.7) with respect to kt, we have

∂H(kG, kG)
∂kt

= 2A(1− a)a

[(1− a)+ ak−1
G ]3 · k2G

= 2A(1− a)a

[(1− a)+ ak−1
G ]2 · k2G

· 1
(1− a)+ ak−1

G

= 2A(1− a)a

[(1− a)kG + a]2
· 1
(1− a)+ ak−1

G
.

Substituting (E.1) into the first term of the right-hand side of the above equation yields

∂H(kG, kG)
∂kt

= 2(1− a)nG · 1
(1− a)+ ak−1

G
= 2(1− a)nG · kG

(1− a)kG + a
(E.8)

As (E.1) and (E.2) can be rewritten as

Aa
nG

( )1/2

= (1− a)kG + a, (E.9)
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and

nG
b

( )1/2

= (1− a)kG − a

a
, (E.10)

respectively, we obtain the following equation by combining (E.9) and (E.10):

Aa
b

( )1/2

= [(1− a)kG + a] · [(1− a)kG − a]
a

. (E.11)

Partially differentiating (E.7) with respect to kt+1, we obtain

∂H(kG, kG)
∂kt+1

=− nG
Aa
b

( )1/2 1
(1− a)kG + a

+ 1− kG
Aa
b

( )1/2

(1− a)
1

((1− a)kG + a)2

{ }

=− nG 1+ Aa
b

( )1/2 a

((1− a)kG + a)2

{ }
.

Substituting (E.11) into the right-hand side of the above equation, we have

∂H(kG, kG)
∂kt+1

= −nG 1+ (1− a)kG − a

(1− a)kG + a

( )
= −nG

2(1− a)kG
(1− a)kG + a

. (E.12)

Finally, substituting (E.8) and (E.12) into (38), we obtain

dkt+1

dkt

∣∣∣∣
kt=kt+1=kG

= − ∂H(kG, kG)
∂kt

/
∂H(kG, kG)

∂kt+1
= 1. (E.13)

Thus, dkt+1/dkt |kt=kt+1=kG = 1, regardless of the values of A, α, and β.
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