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We investigate a new separable nonparametric model for time series, which includes
many autoregressive conditional heteroskedastic~ARCH! models and autoregres-
sive ~AR! models already discussed in the literature+We also propose a new esti-
mation procedure called LIVE, or local instrumental variable estimation, that is
based on a localization of the classical instrumental variable method+ Our method
has considerable computational advantages over the competing marginal integra-
tion or projection method+We also consider a more efficient two-step likelihood-
based procedure and show that this yields both asymptotic and finite-sample
performance gains+

1. INTRODUCTION

Volatility models are of considerable interest in empirical finance+ There are
many types of parametric volatility models, following the seminal work of Engle
~1982!+ These models are typically nonlinear, which poses difficulties both in
computation and in deriving useful tools for statistical inference+ Parametric
models are prone to misspecification, especially when there is no theoretical
reason to prefer one specification over another+ Nonparametric models can pro-
vide greater flexibility+ However, the greater generality of these models comes
at a cost—including a large number of lags requires estimation of a high-
dimensional smooth, which is known to behave very badly~Silverman, 1986!+
The “curse of dimensionality” puts severe limits on the dynamic flexibility of
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nonparametric models+ Separable models offer an intermediate position between
the complete generality of nonparametric models and the restrictiveness of para-
metric models+ These models have been investigated in cross-sectional settings
and also in time series settings+

In this paper, we investigate a generalized additive nonlinear autoregressive
conditional heteroskedastic model~GANARCH!:

yt 5 m~ yt21, yt22, + + + , yt2d ! 1 ut ,

ut 5 v102~ yt21, yt22, + + + , yt2d !«t , (1.1)

m~ yt21, yt22, + + + , yt2d ! 5 FmScm 1 (
a51

d

ma~ yt2a!D, (1.2)

v~ yt21, yt22, + + + , yt2d ! 5 FvScv1 (
a51

d

va~ yt2a!D, (1.3)

wherema~{! andva~{! are smooth but unknown functions andFm~{! andFv~{!
are known monotone transformations~whose inverses areGm~{! and Gv~{!,
respectively!+1 The error process, $«t % , is assumed to be a martingale difference
with unit scale, that is, E~«t 6Ft21! 5 0 andE~«t

26Ft21! 5 1, whereFt is the
s-algebra of events generated by$ yk%k52`

t + Under some weak assumptions, the
time series of nonlinear autoregressive models can be shown to be stationary
and strongly mixing with mixing coefficients decaying exponentially fast+ Aue-
stadt and Tjøstheim~1990! usea-mixing or geometric ergodicity to identify
their nonlinear time series model+ Similar results are obtained for the additive
nonlinear autoregressive conditional heteroskedastic~ARCH! process by Masry
and Tjøstheim~1997!; see also Cai and Masry~2000! and Carrasco and Chen
~2002!+We follow the same argument as Masry and Tjøstheim~1997! and will
assume all the necessary conditions for stationarity and mixing property of the
process$ yt %t51

n in ~1+1!+ The standard identification for the components of the
mean and variance is made by

E @ma~ yt2a!# 5 0 and E @va~ yt2a!# 5 0 (1.4)

for all a 5 1, + + + ,d+ The notable aspect of the model is additivity via known
links for conditional mean and volatility functions+As will be shown later, ~1+1!–
~1+3! include a wide variety of time series models in the literature+ See Horo-
witz ~2001! for a discussion of generalized additive models in a cross-section
context+

In a much simpler univariate setup, Robinson~1983!, Auestadt and Tjøs-
theim ~1990!, and Härdle and Vieu~1992! study the kernel estimation of the
conditional mean functionm~{! in ~1+1!+ The so-called CHARN~conditionally
heteroskedastic autoregressive nonlinear! model is the same as~1+1! except
thatm~{! andv~{! are univariate functions ofyt21+ Masry and Tjøstheim~1995!
and Härdle and Tsybakov~1997! apply the Nadaraya–Watson and local linear
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smoothing methods, respectively, to jointly estimatev~{! together withm~{!+
Alternatively, Fan and Yao~1996! and Ziegelmann~2002! propose local linear
least square estimation for the volatility function, with the extension given by
Avramidis ~2002! based on local linear maximum likelihood estimation+ Also,
in a nonlinear vector autoregressive~VAR! context, Härdle, Tsybakov, and Yang
~1998! deal with the estimation of conditional mean in a multilagged exten-
sion similar to~1+1!+ Unfortunately, however, introducing more lags in non-
parametric time series models has unpleasant consequences, more so than in
the parametric approach+ As is well known, smoothing methods in high dimen-
sions suffer from a slower convergence rate—the “curse of dimensionality+”
Under twice differentiability ofm~{!, the optimal rate isn220~41d! , which gets
rapidly worse with dimension+ In high dimensions it is also difficult to describe
graphically the functionm+

The additive structure has been proposed as a useful way to circumvent
these problems in multivariate smoothing+ By assuming the target function
to be a sum of functions of covariates, say, m~ yt21, yt22, + + + , yt2d! 5 cm 1
(a51

d ma~ yt2a!, we can effectively reduce the dimensionality of a regression
problem and improve the implementability of multivariate smoothing up to that
of the one-dimensional case+ Stone~1985, 1986! shows that it is possible to
estimatema~{! andm~{! with the one-dimensional optimal rate of convergence—
for example, n205 for twice differentiable functions—regardless ofd+ The esti-
mates are easily illustrated and interpreted+ For these reasons, since the 1980s,
additive models have been fundamental to nonparametric regression among both
econometricians and statisticians+ Regarding the estimation method for achiev-
ing the one-dimensional optimal rate, the literature suggests two different
approaches: backfitting and marginal integration+ The former, originally sug-
gested by Breiman and Friedman~1985!, Buja, Hastie, and Tibshirani~1989!,
and Hastie and Tibshirani~1987, 1990!, is to execute iterative calculations of
one-dimensional smoothing until some convergence criterion is satisfied+ Though
appealing to our intuition, the statistical properties of backfitting algorithm were
not clearly understood until the very recent works by Opsomer and Ruppert
~1997! and Mammen, Linton, and Nielsen~1999!+ They develop specific~lin-
ear! backfitting procedures and establish the geometric convergence of their
algorithms and the pointwise asymptotic distributions under some conditions+
However, one disadvantage of these procedures is the time-consuming itera-
tions required for implementation+ Also, the proofs for the linear case cannot
be easily generalized to nonlinear cases such as generalized additive models+

A more recent approach, called marginal integration~MI !, is theoretically
more manipulable—its statistical properties are easy to derive, because it sim-
ply uses averaging of multivariate kernel estimates+ Developed independently
by Newey ~1994!, Tjøstheim and Auestadt~1994!, and Linton and Nielsen
~1995!, its simplicity inspired subsequent applications such as Linton, Wang,
Chen, and Härdle~1995! for transformation models and Linton, Nielsen, and
van de Geer~2003! for hazard models with censoring+ In the time series mod-
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els that are special cases of~1+1! and~1+2! with Fm being the identity, Chen and
Tsay ~1993a, 1993b! and Masry and Tjøstheim~1997! apply backfitting and
MI , respectively, to estimate the conditional mean function+ Mammen et al+
~1999! provide useful results for the same type of models by improving the
previous backfitting method with some modification and successfully deriving
the asymptotic properties under weak conditions+ The separability assumption
is also used in volatility estimation by Yang, Härdle, and Nielsen~1999!, where
the nonlinear ARCH model is of additive mean and multiplicative volatility in
the form of

yt 5 cm 1 (
a51

d

ma~ yt2a! 1Scv )
a51

d

va~ yt2a!D102

«t + (1.5)

To estimate~1+5!, they rely on marginal integration with local linear fits as a
pilot estimate and derive asymptotic properties+

This paper features two contributions to the additive literature+ The first con-
cerns theoretical development of a new estimation tool called the local instru-
mental variable estimator for the components of additive models~LIVE for
CAM !, which was outlined for simple additive cross-sectional regression in
Kim, Linton, and Hengartner~1999!+ The novelty of the procedure lies in the
simple definition of the estimator based on univariate smoothing combined
with new kernel weights+ That is, adjusting kernel weights via conditional den-
sity of the covariate enables a univariate kernel smoother to estimate consis-
tently the corresponding additive component function+ In many respects, the
new estimator preserves the good properties of univariate smoothers+ The instru-
mental variable method is analytically tractable for asymptotic theory: it is
shown to attain the optimal one-dimensional rate+ Furthermore, it is computa-
tionally more efficient than the two existing methods~backfitting and MI! in
the sense that it reduces the computations by a factor ofn smoothings+ The
other contribution relates to the general coverage of the model we work with+
The model in~1+1!–~1+3! extends ARCH models to a generalized additive frame-
work where both the mean and variance functions are additive after some known
transformation~see Hastie and Tibshirani, 1990!+ All the time series models in
our previous discussion are regarded as a subclass of the data generating pro-
cess for$ yt % in ~1+1!–~1+3!+ For example, settingGm to be an identity andGv
a logarithmic function reduces our model to~1+5!+ Similar efforts to apply trans-
formation have been made in parametric ARCH models+ Nelson ~1991! con-
siders a model for the log of the conditional variance—the exponential
~G!ARCH class—to embody the multiplicative effects of volatility+ It has also
been argued to use the Box–Cox transformation for volatility, which is inter-
mediate between linear and logarithm and which allows nonseparable news
impact curves+ Because it is hard to tell a priori which structure of volatility is
more realistic and it should be determined by real data, our generalized addi-
tive model provides useful flexible specifications for empirical work+ Addi-
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tionally, from the perspective of potential misspecification problems, the
transformation used here alleviates the restriction imposed by the additivity
assumption, which increases the approximating power of our model+ Note that
when the lagged variables in~1+1!–~1+3! are replaced by different covariates
and the observations are independent and identically distributed~i+i+d+!, the
model becomes the cross-sectional additive model studied by Linton and Här-
dle ~1996!+ Finally, we also consider more efficient estimation along the lines
of Linton ~1996, 2000!+

The rest of the paper is organized as follows+ Section 2 describes the main
estimation idea in a simple setting+ In Section 3, we define the estimator for the
full model+ In Section 4 we give our main results, including the asymptotic
normality of our estimators+ Section 5 discusses more efficient estimation+ Sec-
tion 6 reports a small Monte Carlo study+ The proofs are contained in the
Appendix+

2. NONPARAMETRIC INSTRUMENTAL VARIABLES: THE MAIN IDEA

This section explains the basic idea behind the instrumental variable method
and defines the estimation procedure+ For ease of exposition, this will be car-
ried out using an example of simple additive models with i+i+d+ data+ We then
extend the definition to the generalized additive ARCH case in~1+1!–~1+3!+

Consider a bivariate additive regression model for i+i+d+ data~ y,X1,X2!,

y 5 m1~X1! 1 m2~X2! 1 «,

whereE~« 6X ! 5 0 with X 5 ~X1,X2! and the components satisfy the identifi-
cation conditionsE @ma~Xa!# 5 0, for a 5 1,2 ~the constant term is assumed to
be zero, for simplicity!+ Letting h 5 m2~X2! 1 «, we rewrite the model as

y 5 m1~X1! 1 h, (2.6)

which is a classical example of “omitted variable” regression+ That is, although
~2+6! appears to take the form of a univariate nonparametric regression model,
smoothingy on X1 will incur a bias due to the omitted variableh, becauseh
containsX2, which in general depends onX1+ One solution to this is suggested
by the classical econometric notion of instrumental variable+ That is, we look
for an instrumentW such that

E~W6X1! Þ 0; E~Wh6X1! 5 0 (2.7)

with probability one+2 If such a random variable exists, we can write

m1~x1! 5
E~Wy6X1 5 x1!

E~W6X1 5 x1!
+ (2.8)

This suggests that we estimate the functionm1~{! by nonparametric smoothing
of Wy on X1 and W on X1+ In parametric models the choice of instrument is
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usually not obvious and requires some caution+ However, our additive model
has a natural class of instruments—p2~X2!0p~X ! times any measurable func-
tion of X1 will do, wherep~{!, p1~{!, andp2~{! are the density functions of the
covariatesX, X1, andX2, respectively+ It follows that

E~Wy6X1!

E~W6X1!
5

EW~X !m~X !
p~X !

p1~X1!
dX2

EW~X !
p~X !

p1~X1!
dX2

5

EW~X !m~X !p~X ! dX2

EW~X !p~X ! dX2

5

Em~X !p2~X2! dX2

Ep2~X2! dX2

5Em~X !p2~X2! dX2

as required+ This formula shows what the instrumental variable estimator is esti-
mating whenm is not additive—an average of the regression function over the
X2 direction, exactly the same as the target of the marginal integration estima-
tor+ For simplicity we will take

W~X ! 5
p2~X2!

p~X !
(2.9)

throughout+3

Up to now, it was implicitly assumed that the distributions of the covariates
are known a priori+ In practice, this is rarely true, and we have to rely on esti-
mates of these quantities+ Let [p~{!, [p1~{!, and [p2~{! be kernel estimates of the
densitiesp~{!, p1~{!, andp2~{!, respectively+ Then the feasible procedure is defined
with a replacement of the instrumental variableW by ZW 5 [p2~X2!0 [p~X ! and
taking sample averages instead of population expectations+ Section 3 provides
a rigorous statistical treatment for feasible instrumental variable estimators based
on local linear estimation+ See Kim et al+ ~1999! for a slightly different approach+

Next, we come to the main advantage that the local instrumental variable
method has+ This is in terms of the computational cost+ The marginal integra-
tion method actually needsn2 regression smoothings evaluated at the pairs
~X1i , X2j !, for i , j 5 1, + + + , n, whereas the backfitting method requiresnr
operations—wherer is the number of iterations to achieve convergence+ The
instrumental variable procedure, in contrast, takes at most 2n operations of ker-
nel smoothings in a preliminary step for estimating the instrumental variable
and anothern operations for the regressions+ Thus, it can be easily combined
with the bootstrap method whose computational costs often become prohibitive
in the case of marginal integration~see Kim et al+, 1999!+
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Finally, we show how the instrumental variable approach can be applied to
generalized additive models+ Let F~{! be the inverse of a known link function
G~{! and letm~X ! 5 E~ y6X !+ The model is defined as

y 5 F~m1~X1! 1 m2~X2!! 1 «, (2.10)

or equivalentlyG~m~X !! 5 m1~X1! 1 m2~X2!+ We maintain the same identifi-
cation condition, E @ma~Xa!# 5 0+ Unlike in the simple additive model, there is
no direct way to relateWy to m1~X1! here, so ~2+8! cannot be implemented+
However, under additivity

m1~X1! 5
E @WG~m~X !!6X1#

E @W6X1#
(2.11)

for the W defined in~2+9!+ Becausem~{! is unknown, we need consistent esti-
mates ofm~X ! in a preliminary step, and then the calculation in~2+11! is fea-
sible+ In the next section we show how these ideas are translated into estimators
for the general time series setting+

3. INSTRUMENTAL VARIABLE PROCEDURE FOR GANARCH

We start with some simplifying notations that will be used repeatedly in the
discussion that follows+ Let xt be the vector ofd lagged variables untilt 2 1,
that is, xt 5 ~ yt21, + + + , yt2d!, or concisely, xt 5 ~ yt2a, ryt2a!, where ryt2a 5
~ yt21, + + + , yt2a21, yt2a11, + + + , yt2d!+ Defining m ta~ ryt2a! 5 (b51,Þa

d mb~ yt2b!
andv ta~ ryt2a! 5 (b51,Þa

d vb~ yt2b!, we can reformulate~1+1!–~1+3! with a focus
on theath components of the mean and variance as

yt 5 m~xt ! 1 v102~xt !«t ,

m~xt ! 5 Fm~cm 1 ma~ yt2a! 1 m ta~ ryt2a!!,

v~xt ! 5 Fv~cv1 va~ yt2a! 1 v ta~ ryt2a!!+

To save space we will use the following abbreviations for the functions to be
estimated:

Ha~ yt2a! [ @ma~ yt2a!, va~ yt2a!# Á, H ta~ ryt2a! [ @m ta~ ryt2a!, v ta~ ryt2a!# Á,

c [ @cm,cv # Á, rt [ H~xt ! 5 @Gm~m~xt !!,Gv~v~xt !!#
Á ,

wa~ ya! 5 c 1 Ha~ ya!+

Note that the components@ma~{!, va~{!# Á are identified, up to constantc, by
wa~{!, which will be our major interest in estimation+ Subsequently, we exam-
ine in some detail each relevant step for computing the feasible nonparametric
instrumental variable estimator ofwa~{!+ The set of observations is given by
Y 5 $ yt %t51

n' , wheren' 5 n 1 d+
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3.1. Step I. Preliminary Estimation of rt = H (xt )

Becausert is unknown, we start with computing the pilot estimates of the regres-
sion surface by a local linear smoother+ Let Km~x! be the first component of
~ Ia, DbÁ!Á that solves

min
a,b

(
t5d11

n'

Kh~xt 2 x!$ yt 2 a 2 bÁ~xt 2 x!%2, (3.12)

whereKh~x! 5 P i51
d K~xi 0h!0hd, K is a one-dimensional kernel function, and

h 5 h~n! is a bandwidth sequence+ In a similar way, we get the estimate of the
volatility surface, Iv~{!, from ~3+12! by replacingyt with the squared residuals,
I«t
2 5 ~ yt 2 Km~xt !!

2+ Then, transforming Km and Iv by the known links will lead
to consistent estimates ofIrt ,

Irt 5 EH~xt ! 5 @Gm~ Km~xt !!,Gv~ Iv~xt !!#
Á+

3.2. Step II: Instrumental Variable Estimation
of Additive Components

This step involves the estimation ofwa~{!, which is equivalent to@ma~{!, va~{!# Á,
up to the constantc+ Let p~{! andp ta~{! denote the density functions of the ran-
dom variables~ yt2a, ryt2a! and ryt2a, respectively+ Define the feasible instru-
ment as

ZWt 5
[p ta~ ryt2a!

[p~ yt2a , ryt2a!
,

where [p ta~{! and [p~{! are computed using the kernel functionL~{!, for example,
[p~x! 5 (t51

n ) i51
d Lg~xit 2 xi !0n with Lg~{! [ L~{0g!0g andg 5 g~n! is a band-

width sequence+ The instrumental variable local linear estimates[wa~ya! are given
as~a1,a2!Á through minimizing the localized squared errors elementwise:

min
aj ,bj

(
t5d11

n'

Kh~ yt2a 2 ya! ZWt $ Irjt 2 aj 2 bj ~ yt2a 2 ya!%2, (3.13)

where Irjt is the j th element of Irt +4 The closed form of the solution is

[wa~ ya!Á 5 e1
Á~Y2

Á KY2 !21Y2
Á K ER, (3.14)

where e1 5 ~1,0!Á, Y2 5 @i,Y2# , K 5 diag@Kh~ yd112a 2 ya! ZWd11, + + + ,
Kh~ yn'2a 2 ya! ZWn' # , and ER 5 ~ Ird11, + + + , Irn' !

Á , with i 5 ~1, + + + ,1!Á andY2 5
~ yd112a 2 ya , + + + , yn'2a 2 ya!Á+
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4. MAIN RESULTS

Let Fb
a be thes-algebra of events generated by$ yt %a

b anda~k! the strong mix-
ing coefficient of$ yt % that is defined by

a~k! [ sup
A[F2`

0 , B [ Fk
`
6P~A ù B! 2 P~A!P~B!6+

Throughout the paper, we make the following assumptions+

Assumption A+

A1+ $ yt %t51
` is a stationary and strongly mixing process generated by~1+1!–

~1+3!, with a mixing coefficient such that(k50
` ka$a~k!%1220n , `, for some

n . 2 and 0, a , ~1 2 20n!+

As pointed out by Masry and Tjøstheim~1997!, the condition on the mixing
coefficient in A1 is milder than assumed on the standard mixing process where
the coefficient decreases at a geometric rate, that is, a~k! 5 r2bk ~for some
b . 0!+ Some technical conditions for regularity are stated here+ For simplicity,
we assume that the process$ yt %t51

` has a compact support+

A2+ The additive component functions, ma~{! andva~{!, for a 5 1, + + + ,d, are
continuous and twice differentiable on the compact support+

A3+ The link functions, Gm andGv, have bounded continuous second-order
derivatives over any compact interval+

A4+ The joint and marginal density functions, p~{!, p ta~{!, andpa~{!, for a 5
1, + + + ,d, are continuous, twice differentiable with bounded~partial! derivatives,
and bounded away from zero on the compact support+

A5+ The kernel functions, K~{! andL~{!, are a real bounded nonnegative sym-
metric ~around zero! function on a compact support satisfying*K~u! du 5
*L~u! du 5 1, *uK~u! du 5 *uL~u! du 5 0+ Also, assume that the kernel func-
tions are Lipschitz-continuous, 6K~u! 2 K~v!6 # C6u 2 v6+

A6+ ~i! g r 0, ngd r `, ~ log n!2Mh0Mngd r 0+ ~ii ! h r 0, ~ log n!2Y
Mnh2d21 r 0+ ~iii ! The bandwidth satisfiesMn0h a~t~n!! r 0, where$t~n!%
is a sequence of positive integers, t~n! r `, such thatt~n! 5 o~Mnh!+

Conditions A2–A5 are standard in kernel estimation+ The continuity assump-
tion in A2 and A4, together with the compact support, implies that the func-
tions are bounded+ The bandwidth conditions in A6~i! and A6~ii ! are necessary
for showing negligibility of the stochastic error terms arising from the prelim-
inary estimation ofm, v, andpa~{!+ Under twice-differentiability of these func-
tions as in A2–A4, the given side conditions are satisfied whend # 4+ Our
asymptotic results that follow can be extended into a more general case of
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d . 4, although we do not prove it in the paper+ One way of extension to
higher dimensions is to strengthen the differentiability conditions in A2–A4 and
use higher order polynomials~see Kim et al+, 1999!+ The additional bandwidth
condition in A6~iii ! is necessary to control the effects from the dependence
of the mixing processes in showing the asymptotic normality of instrumen-
tal variable estimates+ The proof of consistency, however, does not require
this condition+ Define D2f ~x1, + + + , xd! 5 ( l51

d ]2f ~xl !0]2x and @¹Gm~t !,
¹Gv~t !# 5 @dGm~t !0dt,dGv~t !0dt# + Let ~K * K !i ~u! 5 *K ~w!K ~w 1 u! 3
wi dw, a convolution of kernel functions, mK*K

2 5 *~K * K !0~u!u2 du, and7K722

denote*K 2~u! du+ The asymptotic properties of the feasible instrumental vari-
able estimates in~3+14! are summarized in the following theorem, whose proof
is in the Appendix+ Let k3~ ya, z ta! 5 E @«t

36xt 5 ~ ya, z ta!# and k4~ ya, z ta! 5
E @~«t

2 2 1!26xt 5 ~ ya, z ta!# + A ( B denotes the matrix Hadamard product+

THEOREM 1+ Assume that conditions A1–A6 hold. Then,

Mnh@ [wa~ ya! 2 wa~ ya! 2 Ba# d
&& N @0,Sa

* ~ ya!# , where

Ba~ ya! 5
h2

2
mK

2 D2wa~ ya!

1
h2

2
E@mK*K

2 D2wa~ ya! 1 mK
2 D2w ta~z ta!#

( @¹Gm~m~ ya , z ta!!,¹Gv~v~ ya , z ta!!# Áp ta~z ta! dz ta

1
g2

2
mK

2EFD2p ta~z ta! 2
p ta~z ta!

p~ ya , z ta!
D2p~ ya , z ta!GH ta~z ta! dz ta ,

Sa
* ~ ya! 5 7K722E p ta

2~z ta!

p~ ya , z ta! F m ta
2~z ta!

m ta~z ta!v ta~z ta!

m ta~z ta!v ta~z ta!

v ta2~z ta! G dz ta

1 7~K * K !0722E p ta
2~z ta!

p~ ya , z ta!

3 F ¹Gm~m!2v

~¹Gm¹Gv !~k3v302!

~¹Gm¹Gv !~k3v302!

¹Gv~v!2k4v2 G~ ya , z ta! dz ta +

Remarks+

1+ To estimate@ma~ ya!, va~ ya!# Á we can use the following recentered
estimates: [wa~ ya! 2 [c, where [c 5 @ [cm, [cv# 5 ~10n!@(t yt ,(t I«t

2# Á and
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I«t 5 yt 2 Km~xt !+ Because [c 5 c 1 Op~10Mn!, the bias and variance of
@ [ma~ ya!, [va~ ya!# Á are the same as those of[wa~ ya!+ For y 5 ~ y1, + + + , yd!,
the estimates for the conditional mean and volatility are defined by

@ [m~ y!, [v~ y!# [ FFmF2~d 2 1! [cm 1 (
a51

d

[wa1~ ya!G ,
FvF2~d 2 1! [cv1 (

a51

d

[wa2~ ya!GG +
Let ¹F~ y! [ @¹Fm~m~ y!!,¹Fv~v~ y!!# Á+ Then, by Theorem 1 and the delta
method, their asymptotic distribution satisfies

Mnh@ [m~ y! 2 m~ y! 2 bm~ y!, [v~ y! 2 v~ y! 2 bv~ y!# Á d
&& N @0,S*~ y!# ,

where@bm~ y!,bv~ y!# Á 5 ¹F~ y! ( (a51
d Ba~ ya! andS*~ y! 5 @¹F~ y! 3

¹F~ y!Á# ( @S1
*~ y1! 1 + + + 1 Sd

*~ yd !# + It is easy to see that[wa~ ya! and
[wb~yb! are asymptotically uncorrelated for anya andb and that the asymp-

totic variance of their sum is also the sum of the variances of[wa~ ya! and
[wb~ yb!+

2+ The first term of the bias is of standard form, depending only on the sec-
ond derivatives as in other local linear smoothing+ The last term reflects
the biases from using estimates for density functions to construct the fea-
sible instrumental variable, [p ta~ ryt2a!0 [p~xt !+When the instrument consist-
ing of known density functions, p ta~ ryt2a!0p~xt !, is used in~3+13!, the
asymptotic properties of instrumental variable estimates are the same as
those from Theorem 1 except that the new asymptotic bias now includes
only the first two terms ofBa~ ya!+

3+ The convolution kernel~K * K !~{! is the legacy of double smoothing
in the instrumental variable estimation of “generalized” additive
models because we smooth@Gm~ Km~{!!,Gv~ Iv ~{!!# with Km~{! and Iv ~{!
given by ~multivariate! local linear fits+ When Gm~{! is the identity,
we can directly smoothy instead ofGm~ Km~xt !! to estimate the com-
ponents of the conditional mean function+ Then, as the following
theorem shows, the second term of the bias ofBa does not arise, and
the convolution kernel in the variance is replaced by a usual kernel
function+

Suppose thatFm~t ! 5 Fv~t ! 5 t in ~1+2! and~1+3!+ In this case, the instrumen-
tal variable estimates ofwa~ ya! can be defined in a simpler way+ For wa~ ya! 5
@Ma~ ya!,Va~ ya!# 5 @cm 1 ma~ ya!, cv 1 va~ ya!# , we define@ ZMa~ ya!, ZVa~ ya!#
by the solution to the adjusted-kernel least squares in~3+13! with the modifica-
tion that the~2 3 1! vector Izt is replaced by@ yt , I«t

2# Á , where I«t is given in
step I in Section 3+1+ Theorem 2 shows the asymptotic normality of these esti-
mates+ The proof is almost the same as that of Theorem 1 and thus is omitted+
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THEOREM 2+ Under the same conditions as Theorem 1,

(i) Mnh@ ZMa~ ya! 2 Ma~ ya! 2 ba
m# d

&& N @0,sa
m~ ya!# , where

ba
m~ ya! 5

h2

2
mK

2 D2ma~ ya! 1
g2

2
mK

2

3 EFD2p ta~z ta! 2
p ta~z ta!

p~ ya , z ta!
D2p~ ya , z ta!Gm ta~z ta! dz ta ,

sa
m~ ya! 5 7K722E p ta

2~z ta!

p~ ya , z ta!
@m ta

2~z ta! 1 v~ ya , z ta!# dz ta

and

(ii) Mnh@ ZVa~ ya! 2 Va~ ya! 2 ba
v # d

&& N @0,sa
v~ ya!# , where

ba
v ~ ya! 5

h2

2
mK

2 D2va~ ya! 1
g2

2
mK

2

3 EFD2p ta~z ta! 2
p ta~z ta!

p~ ya , z ta!
D2p~ ya , z ta!Gv ta~z ta! dz ta ,

Sa
v ~ ya! 5 7K722E p ta

2~z ta!

p~ ya , z ta!
@v ta2~z ta! 1 k4~ ya , z ta!v2~ ya , z ta!# dz ta +

Although the instrumental variable estimators achieve the one-dimensional
optimal convergence rate, there is room for improvement in terms of variance+
For example, compared with the marginal integration estimators of Linton and
Härdle ~1996! or Linton and Nielsen~1995!, the asymptotic variances of the
instrumental variable estimates form1~{! in Theorems 1 and 2 include an addi-
tional factor ofm2

2~{!+ This is because the instrumental variable approach treats
h 5 m2~X2! 1 « in ~2+6! as if it were the error term of the regression equation
for m1~{!+ Note that the second term of the asymptotic covariance in Theorem 2
is the same as that in Yang et al+ ~1999!, where the authors only considered the
case with additive mean and multiplicative volatility functions+ The issue of
efficiency in estimating an additive component was first addressed by Linton
~1996! based on “oracle efficiency” bounds of infeasible estimators under the
knowledge of other components+ According to this, both instrumental variable
and marginal integration estimators are inefficient, but they can attain the effi-
ciency bounds through one simple additional step, following Linton ~1996, 2000!
and Kim et al+ ~1999!+

5. MORE EFFICIENT ESTIMATION

5.1. Oracle Standard

In this section we define a standard of efficiency that could be achieved in the
presence of certain information, and then we show how to achieve this in prac-
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tice+ There are several routes to efficiency here, depending on the assumptions
one is willing to make about«t +We shall take an approach based on likelihood,
that is, we shall assume that«t is i+i+d+ with known density functionf like the
normal ort with given degrees of freedom+ It is easy to generalize this to the
case wheref contains unknown parameters, but we shall not do so here+ It is
also possible to build an efficiency standard based on the moment conditions in
~1+1!–~1+3!+ We choose the likelihood approach because it leads to easy calcu-
lations and links with existing work and is the most common method for esti-
mating parametric ARCH0GARCH models in applied work+

There are several standards that we could apply here+ First, suppose that we
know ~cm, $mb~{! : b Þ a%! and~cv, $va~{! : a%!; then what is the best estimator
we can obtain for the functionma within the local polynomial paradigm? Sim-
ilarly, suppose that we know~cm, $ma~{! :a%! and~cv, $vb~{! :b Þ a%!; then what
is the best estimator we can obtain for the functionva? It turns out that this
standard is very high and cannot be achieved in practice+ Instead we ask: sup-
pose that we know~cm, $mb~{! : b Þ a%! and ~cv, $vb~{! : b Þ a%!; then what is
the best estimator we can obtain for the functions~ma, va!? It turns out that this
standard can be achieved in practice+ Let p denote2log f ~{!, wheref ~{! is the
density function of«t +We usezt to denote~xt , yt !, wherext 5 ~ yt21, + + + , yt2d! 5
~ yt2a, ryt2a!+ For u 5 ~ua,ub! 5 ~am,av,bm,bv!, we define

l t
*~u,ga! 5 l *~zt ;u,ga! 5 pS yt 2 Fm~g1a~ ryt2a! 1 am 1 bm~ yt2a 2 ya!!

Fv
102~g2a~ ryt2a! 1 av1 bv~ yt2a 2 ya!! D

1
1

2
log Fv~g2a~ ryt2a! 1 av1 bv~ yt2a 2 ya!!,

l t ~u,ga! 5 l ~zt ;u,ga! 5 Kh~ yt2a 2 ya! l *~zt ;u,ga!, (5.15)

wherega~ ryt2a! 5 ~g1a~ ryt2a!,g2a~ ryt2a!! 5 ~cm 1 m ta~ ryt2a!,cv 1 v ta~ ryt2a!! 5
~cm 1 (bÞa

d mb~ yt2b!, cv 1 (bÞa
d vb~ yt2b!!+ With l t~u,ga! being the~nega-

tive! conditional local log likelihood, the infeasible local likelihood estimator
Zu 5 ~ [am, [av, Zbm, Zbv! is defined by the minimizer of

Qn~u! 5 (
t5d11

n'

l t ~u,ga
0!,

wherega
0~{! 5 ~g1a

0 ~{!,g2a
0 ~{!! 5 ~cm

0 1 m ta
0~{!,cv0 1 v ta0~{!!+ From the definition

for the score function

st
*~u,ga! 5 s*~zt ;u,ga! 5

]l *~zt ;u,ga!

]u
,

st ~u,ga! 5 s~zt ;u,ga! 5
]l ~zt ;u,ga!

]u
,
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the first-order condition for Zu is given by

0 5 Ssn~ Zu,ga
0! 5

1

n (
t5d11

n'

st ~ Zu,ga
0!+

The asymptotic distribution of the local maximum likelihood estimator has been
studied by Avramidis~2002!+ For y 5 ~ y1, + + + , yd! 5 ~ ya, rya!, define

Va 5 Va~ ya! 5EV~ y;u0,ga
0!p~ y! d rya ;

Da 5 D~ ya! 5ED~ y;u0,ga
0!p~ y! d rya ,

where

V~ y;u,ga! 5 E @s*~zt ;u,ga!s*~zt ;u,ga!Á 6xt 5 y#;

D~ y;u,ga! 5 E~¹u st
*~zt ;u,ga!6xt 5 y!+

With a minor generalization of the results by Avramidis~2002, Theorem 2!,
we obtain the following asymptotic properties for the infeasible estimators:
[wa
inf~ ya! 5 @ [ma

inf~ ya!, [vainf~ ya!# Á 5 @ [am, [av# Á + Let wa
c~ ya! [ @ma~ ya!, va~ ya!# Á ,

that is, wa
c~ ya! 5 wa~ ya! 2 c, wherec 5 ~cm,cv!+

THEOREM 3+ Under Assumption C in the Appendix, it holds that

Mnh@ [wa
inf~ ya! 2 wa

c~ ya! 2 Ba# d
&& N @0,Va

* ~ ya!# ,

where Ba 5 1
2
_h2mK

2 @ma
''~ ya!, va''~ ya!# Á and Va

* ~ ya! 5 7K722Da
21Va Da

21.

A more specific form for the asymptotic variance can be calculated+ For exam-
ple, suppose that the error density function, f ~{!, is symmetric+ Then, the asymp-
totic variance of the volatility function is given by

v22~ ya! 5

EHEg2~ y! f ~ y! dyJ~¹Fv 0Fv !2~Gv~v~ y!!!p~ y! d rya

FEHEq~ y! f ~ y! dyJ~¹Fv 0Fv !2~Gv~v~ y!!!p~ y! d ryaG2 ,

whereg~ y! 5 f '~ y! f 21~ y!y 1 1 andq~ y! 5 @ y2f ''~ y! f ~ y! 1 yf '~ y! f ~ y! 2
y2f '~ y!2# f 22~ y!+

When the error distribution is Gaussian, we can further simplify the asymp-
totic variance; that is,

v11~ ya! 5 FEv21~ y!¹Fm
2~Gm~m~ y!!!p~ y! d ryaG21

; v12 5 v21 5 0;

v22~ ya! 5 2FEv22~ y!¹Fv
2~Gv~v~ y!!!p~ y! d ryaG21

+
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In this case, one can easily find the infeasible estimator to have lower asy-
mptotic variance than the instrumental variable estimator+ To see this, we note
that ¹Gm 5 10¹Fm and 7K722 # 7~K * K !0722 and apply the Cauchy–Schwarz
inequality to get

7~K * K !0722E p ta
2~ rya!

p~ ya , rya!
¹Gm~m!2v~ ya , rya! d rya

$ 7K722FEv21~ ya , rya!¹Fm
2~Gm~m!!p~ ya , rya! d ryaG21

+

In a similar way, from k4 5 3 due to the Gaussianity assumption on«, it fol-
lows that

7~K * K !0722k4E p ta
2~z ta!

p~ ya , z ta!
¹Gv~v!2v2~ ya , y ta! dy ta

$ 2FEv22~ y!¹Fv
2~Gv~v~ y!!!p~ y! d ryaG21

+

These, together withk3 5 0, imply that the second term ofSa
* ~ ya! in Theo-

rem 1 is greater thanVa
* ~ ya! in the sense of positive definiteness, and hence

Sa
* ~ ya! $ Va

* ~ ya!, because the first term ofSa
* ~ ya! is a nonnegative matrix+

The infeasible estimator is more efficient than the instrumental variable estima-
tor because the former uses more information concerning the mean-variance
structure+ We finally remark that the infeasible estimator is also more efficient
that the marginal integration estimator in Yang et al+ ~1999! whose asymptotic
variance corresponds to the second term ofSa

* ~ ya!; see the discussion follow-
ing Theorem 2+

5.2. Feasible Estimation

Let ~ Icm, $ Kmb~{! : b Þ a%! and~ Icv, $ Ivb~{! : b Þ a%! be the estimators from~3+12!
and ~3+13! in Section 3, with the common bandwidth parameterh0 chosen for
the kernel functionK~{!+We define the feasible local likelihood estimatorZu* 5
~ [am
* , [av*, Zbm

* , Zbv*! as the minimizers of

EQn~u! 5 (
t5d11

n'

l t ~u, Jga!,

where Jga~{! 5 ~ Jg1a~{!, Jg2a~{!! 5 ~ Icm 1 Km ta~{!, Icv 1 Iv ta~{!! and l t~{! is given by
~5+15!, with the additional bandwidth parameterh, possibly different fromh0+
Then, the first-order condition for Zu* is given by

0 5 Ssn~ Zu*, Jga! 5
1

n (
t5d11

n'

st ~ Zu*, Jga!+ (5.16)

Let [wa
*~ ya! 5 ~ [ma

* ~ ya!, [va*~ ya!!Á 5 ~ [am
* , [av*!Á + We have the following result+
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THEOREM 4+ Under Assumptions B and C in the Appendix, it holds that

Mnh@ [wa
*~ ya! 2 [wa

inf~ ya!#
p
&& 0+

This result shows that the oracle efficiency bound is achieved by the two-
step estimator+

6. NUMERICAL EXAMPLES

A small-scale simulation is carried out to investigate the finite-sample proper-
ties of both the instrumental variable and two-step estimators+ The design in
our experiment is additive nonlinear ARCH~2!:

yt 5 @0+2 1 v1~ yt21! 1 v2~ yt22!#«t ,

v1~ y! 5 0+4FN ~62y6!@2 2 FN ~ y!#y2,

v2~ y! 5 0+4$1YM11 0+1y2 1 ln~11 4y2! 2 1%,

whereFN~{! is the~cumulative! standard normal distribution function and«t is
i+i+d+ with N~0,1!+ Figure 1~solid lines! depicts the shapes of the volatility func-
tions defined byv1~{! and v2~{!+ Based on the preceding model, we simulate
500 samples of ARCH processes with sample sizen 5 500+ For each realiza-
tion of the ARCH process, we apply the instrumental variable estimation pro-
cedure in~3+13! with Irt 5 yt

2 to get preliminary estimates ofv1~{! and v2~{!+
Those estimates then are used to compute the two-step estimates of volatility
functions based on the feasible local maximum likelihood estimator in Section
5+2, under the normality assumption for the errors+ The infeasible oracle esti-
mates are also provided for comparisons+ The Gaussian kernel is used for all
the nonparametric estimates, and bandwidths are chosen according to the rule
of thumb~Härdle, 1990!, h 5 chstd~ yt !n

210~41d! , wherestd~ yt ! is the standard
deviation ofyt +We fix ch 5 1 for both the density estimates~for computing the
instruments, W! and instrumental variable estimates in~3+13! andch 5 1+5 for
the ~feasible and infeasible! local maximum likelihood estimator+ To evaluate
the performance of the estimators, we calculate the mean squared error, together
with the mean absolute deviation error, for each simulated datum; for a 5 1,2,

ea,MSE 5 H 1

50 (
i51

50

@va~ yi ! 2 [va~ yi !#
2J102

,

ea,MAE 5
1

50 (
i51

50

6va~ yi ! 2 [va~ yi !6,

where$ y1, + + , y50% are grid points on@21,1!+ The grid range covers about 70%
of the observations on average+ Table 1 gives averages ofea,MSE’s andea,MAE’s
from 500 repetitions+
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Figure 1. Averages of volatility estimates~demeaned!: ~a! first lag; ~b! second lag+
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Figure 2. Volatility estimates~demeaned!+
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Table 1 shows that the infeasible oracle estimator is the best out of the three,
as would be expected+ The performance of the instrumental variable estimator
seems to be reasonably good, compared to the local maximum likelihood esti-
mators, at least in estimating the volatility function of the first lagged variable+
However, the overall accuracy of the instrumental variable estimates is improved
by the two-step procedure, which behaves almost as well as the infeasible one,
confirming our theoretical results in Theorem 4+ For more comparisons, Fig-
ure 1 shows the averaged estimates of volatility functions, where the averages
are made, at each grid, over 500 simulations+ In Figure 2, we also illustrate the
estimates for three typical~consecutive! realizations of ARCH processes+

NOTES

1+ The extension to allow theF transformations to be of unknown functional form is consider-
ably more complicated; see Horowitz~2001!+

2+ Note the contrast with the marginal integration or projection method+ In this approach one
definesm1 by some unconditional expectation

m1~x1! 5 E @m~x1,X2!W~X2!#

for some weighting functionW that depends only onX2 and that satisfies

E @W~X2!# 5 1; E @W~X2!m2~X2!# 5 0+

3+ If instead we take

W~X ! 5
p1~X1!p2~X2!

p~X !
,

this satisfiesE~W6X1! 5 1 andE~Wh6X1! 5 0+ However, the termp1~X1! cancels out of the expres-
sion and is redundant+

4+ For simplicity, we choose the common bandwidth parameter for the kernel functionK~{! in
~3+12! and ~3+13!, which amounts to undersmoothing~for our choice ofh! for the purposes of
estimatingm+ Undersmoothing in the preliminary estimation of step I allows us control over the
biases from estimatingm and v+ In addition, the convolution kernel function in the asymptotic
variance of Theorem 1 relies on the condition of the same bandwidth forK~{!+

Table 1. Averages MSE and MAE for three volatility
estimators

e1,MSE e2,MSE e1,MAE e2,MAE

Oracle est+ 0+07636 0+08310 0+06049 0+06816
IV est+ 0+08017 0+11704 0+06660 0+09725
Two-step 0+08028 0+08524 0+06372 0+07026
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APPENDIX

A.1. Proofs for Section 4. The proof of Theorem 1 consists of three steps+ With-
out loss of generality we deal with the casea 5 1; here we will use the subscript 2, for
expositional convenience, to denote the nuisance direction+ That is, p2~ ryk21! 5 p v1~ ryk21!
in the case of density function+ For component functions, m2~ ryk21!, v2~ ryk21!, and
H2~ ryk21! will be used instead ofm v1~ ryk21!, v v1~ ryk21!, and H v1~ ryk21!, respectively+ We
start by decomposing the estimation errors, [w1~ y1! 2 w1~ y1!, into the main stochastic
term and bias+ UseXn . Yn to denoteXn 5 Yn$1 1 op~1!% in the following+ Let vec~X !
denote the vectorization of the elements of the matrixX along with columns+
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Proof of Theorem 1.

Step I. Decompositions and Approximations.Because [w1~ y1! is a column vector,
the vectorization of equation~3+14! gives

[w1~ y1! 5 @I2 J e1
Á~Y2

Á KY2 !21# ~I2 J Y2
Á K !vec~ ER!+

A similar form is obtained for the true function, w1~ y1!,

@I2 J e1
Á~Y2

Á KY2 !21# ~I2 J Y2
Á K !vec~iw1

Á~ y1! 1 Y2¹w1
Á~ y1!!,

by the identity

w1~ y1! 5 vec$e1
Á~Y2

Á KY2 !21Y2
Á K @iw1

Á~ y1! 1 Y2¹w1
Á~ y1!#%,

because

e1
Á~Y2

Á KY2 !21Y2
Á K i 5 1, e1

Á~Y2
Á KY2 !21Y2

Á KY2 5 0+

By defining Dh 5 diag~1, h! andQn 5 Dh
21Y2

Á KY2 Dh
21, the estimation errors are

[w1~ y1! 2 w1~ y1! 5 @I2 J e1
Á Qn

21#tn,

where

tn 5 ~I2 J Dh
21Y2

Á K !vec@ ER 2 iw1
Á~ y1! 2 Y2¹w1

Á~ y1!# +

Observing

tn 5
1

n (
k5d11

n'

Kh
ZWk~ yk21 2 y1!@ Irk 2 w1~ y1! 2 ~ yk21 2 y1!¹w1~ y1!# J S1,

yk21 2 y1

h
DÁ

,

where Kh
ZWk~ y! 5 Kh~ y! ZWk, it follows by adding and subtractingrk 5 w1~ yk21! 1

H2~ ryk21! that

tn 5
1

n (
k5d11

n'

Kh
ZWk~ yk21 2 y1!@ Irk 2 rk 1 H2~ ryk21!# J S1,

yk21 2 y1

h
DÁ

1
1

n (
k5d11

n'

Kh
ZWk~ yk21 2 y1!@w1~ yk21! 2 w1~ y1! 2 ~ yk21 2 y1!¹w1~ y1!#

J S1,
yk21 2 y1

h
DÁ

+

LIVE METHOD FOR VOLATILITY 1115

https://doi.org/10.1017/S026646660420603X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660420603X


As a result of the boundedness condition in Assumption A2, the Taylor expansion applied
to @Gm~ Km~xk!!, Gv~ Iv~xk!!# at @m~xk!, v~xk!# yields the first term oftn as

Itn [
1

n (
k5d11

n'

Kh
ZWk~ yk21 2 y1!F Iuk J S1,

yk21 2 y1

h
DÁG ,

where Iuk [ Irk
1 1 Irk

2 1 H2~ ryk21!,

Irk
1 [ $¹Gm~m~xk!!@ Km~xk! 2 m~xk!# ,¹Gv~v~xk!!@ Iv~xk! 2 v~xk!#%Á,

Irk
2 [

1

2
$D2Gm~m*~xk!!@ Km~xk! 2 m~xk!# 2,D2Gv~v*~xk!!@ Iv~xk! 2 v~xk!# 2%Á,

andm*~xk!@v*~xk!# is between Km~xk!@ Iv~xk!# andm~xk!@v~xk!, respectively# + In a sim-
ilar way, the Taylor expansion ofw1~ yk21! at y1 gives the second term oftn as

s0n 5
h2

2

1

n (
k5d11

n'

Kh
ZWk~ yk21 2 y1!S yk21 2 y1

h
D2FD2w1~ y1! J S1,

yk21 2 y1

h
DÁG

3 ~11 op~1!!+

The term Itn continues to be simplified by some further approximations+ Define the
marginal expectation of estimated density functions[p2~{! and [p~{! as follows:

Tp~ yk21, ryk22! [ ELg~z1 2 yk21!Lg~z2 2 ryk22!p~z1, z2! dz1 dz2,

Tp2~ ryk22! [ ELg~z2 2 ryk22!p2~z2! dz2+

In the first approximation, we replace the estimated instrument, ZW, by the ratio of the
expectations of the kernel density estimates, Tp2~ ryk21!0 Tp~xk! and deal with the linear
terms in the Taylor expansions+ That is, Itn is approximated with an error ofop~1YMnh!
by t1n 1 t2n:

t1n [
1

n (
k5d11

n'

Kh~ yk21 2 y1!
Tp2~ ryk21!

Tp~xk!
F Irk

1 J S1,
yk21 2 y1

h
DÁG ,

t2n [
1

n (
k5d11

n'

Kh~ yk21 2 y1!
Tp2~ ryk21!

Tp~xk!
FH2~ ryk21! J S1,

yk21 2 y1

h
DÁG ,

based on the following results:

~i! ~10n!(k5d11
n' Kh~ yk21 2 y1!@ [p2~ ryk21!0 [p~xk!# @ Irk

2 J ~1, ~ yk21 2 y1!0h!Á# 5
op~1YMnh!,

~ii ! ~10n!(k5d11
n' Kh~ yk21 2 y1!@ [p2~ ryk21!0 [p~xk! 2 Tp2~ ryk21!0 Tp~xk!# @H2~ ryk21! J

~1, ~ yk21 2 y1! 0h!Á# 5 op~1YMnh!,
~iii ! ~10n!(k5d11

n' Kh~ yk21 2 y1!@ [p2~ ryk21!0 [p~xk! 2 Tp2~ ryk21!0 Tp~xk!# @ Irk
1 J ~1,

~ yk21 2 y1! 0h!Á# 5 op~1YMnh!+
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To show ~i!, consider the first two elements of the term, for example, which are
bounded elementwise by

max
k
6 Km~xk! 2 m~xk!62

1

2

1

n (
k

Kh~ yk21 2 y1!
[p2~ ryk21!

[p~xk!
D2Gm~m~xk!!S1,

yk21 2 y1

h
DÁ

5 op~1YMnh!+

The last equality is direct from the uniform convergence theorems in Masry~1996! that

max
t
6 Km~xt ! 2 m~xt !6 5 Op~ log nYMnhd! (A.1)

and~10n!(k Kh~ yk21 2 y1!@ [p2~ ryk21!0 [p~xk!#D2Gm~m~xk!!~1, ~ yk21 2 y1! 0h!Á 5 Op~1!+
The proof for~ii ! is shown by applying Lemma A+1, which follows+ The negligibility of
~iii ! follows in a similar way from~ii !, considering~A+1!+ Although the asymptotic prop-
erties ofs0n and t2n are relatively easy to derive, additional approximation is necessary
to maket1n more tractable+ Note that the estimation errors of the local linear fits, Km~xk! 2
m~xk!, are decomposed into

1

n (
l

Kh~xl 2 xk!

p~xl !
v102~xl !«l 1 the remaining bias

from the approximation results for the local linear smoother in Jones, Davies, and Park
~1994!+ A similar expression holds for volatility estimates, Iv~xk! 2 v~xk!, with a sto-
chastic term of~10n!(l @Kh~xl 2 xk!0p~xl !#v~xl !~«l

2 2 1!+ Define

Jk,n~xl ! [
1

nhd (
k

K~ yk21 2 y10h!K~xl 2 xk0h!

p~xl !

p2~ ryk21!

p~xk!

3 Fdiag~¹Gm,¹Gv ! J S1,
yk21 2 y1

h
DÁG

and let NJ~xl ! denote the marginal expectation ofJk, n with respect toxk+ Then, the sto-
chastic term oft1n, after rearranging its the double sums, is approximated by

It1n 5
1

nh (
l

NJ~xl !@~v102~xl !«l , v~xl !~«l
2 2 1!!Á J I2#

because the approximation error fromNJ~Xl ! negligible, that is,

1

nh (
l

~Jk,n 2 NJ!@~v102~Xl !«l , v~Xl !~«l
2 2 1!!Á J I2# Á 5 op~1YMnh!,
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applying the same method as in Lemma A+1+ A straightforward calculation gives

NJ~xl ! .
1

h
EK~u1 2 y10h!K~u1 2 yl210h!E 1

hd21 K~ ryl21 2 u20h!
p2~u2!

p~xl !

3 Fdiag~¹Gm~u!,¹Gv~u!! J S1,
u1 2 y1

h
DÁG du2 du1

.
1

h
EK~u1 2 y10h!K~u1 2 yl210h!

p2~ ryl21!

p~xl !

3 Fdiag~¹Gm~u1, ryl21!,¹Gv~u1, ryl21!! J S1,
u1 2 y1

h
DÁG du1

.
p2~ ryl21!

p~xl !
Fdiag~¹Gm~ y1, ryl21!,¹Gv~ y1, ryl21!!

J S~K * K !0S yl21 2 y1

h
D, ~K * K !1S yl21 2 y1

h
DDÁG ,

where

~K * K !i S yl21 2 y1

h
D 5Ew1

i K~w1!KSw1 1
yl21 2 y1

h
D dw+

Observe that~K * K !i ~~yl21 2 y1!0h! in NJ~Xl ! is actually a convolution kernel and behaves
just like a one-dimensional kernel function ofyl21+ This means that the standard method
~central limit theorem or law of least numbers! for univariate kernel estimates can be
applied to show the asymptotics of

It1n 5
1

nh (
l

p2~ ryl21!

p~xl ! 5F ¹Gm~ y1, ryl21!v102~Xl !«l

¹Gv~ y1, ryl21!v~Xl !~«l
2 2 1!G J 3 ~K * K !0S yl21 2 y1

h
D

~K * K !1S yl21 2 y1

h
D46 +

If we define s1n as the remaining bias term oft1n, the estimation errors of[w1~ y1! 2
w1~ y1! consist of two stochastic terms, @I2 J e1

Á Qn
21# ~ It1n 1 It2n!, and three bias terms,

@I2 J e1
Á Qn

21# ~s0n 1 s1n 1 s2n!, where

It2n 5
1

n (
k5d11

n'

Kh~ yk21 2 y1!
p2~ ryk21!

p~Xk!
FH2~ ryk21! J S1,

Yk21 2 y1

h
DÁG ,

s2n 5 t2n 2 It2n+
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Step II. Computation of Variance and Bias.We start with showing the order of
the main stochastic term,

Itn* 5 It1n 1 It2n 5
1

n (
k

jk,

wherejk 5 j1k 1 j2k,

j1k 5
p2~ ryk21!

p~ yk21, ryk21! HF ¹Gm~ y1, ryk21!v102~Xk!«k

¹Gv~ y1, ryk21!v~Xk!~«k
2 2 1!G J F 1

h
~K * K !0S yk21 2 y1

h
D

0
GJ ,

j2k 5
p2~ ryk21!

p~ yk21, ryk21! 5Fm2~ ryk21!

v2~ ryk21! G J 3
1

h
KS yk21 2 y1

h
D

1

h
KS yk21 2 y1

h
DS yl21 2 y1

h
D46 ,

by calculating its asymptotic variance+ Dividing a normalized variance ofItn* into the
sums of variances and covariances gives

var~Mnh Itn*! 5 varSMh

Mn (
k

jkD5
h

n (
k

var~jk! 1
h

n ((
kÞl

cov~jk,jl !

5 h var~ Djk! 1 (
k
F n 2 k

n
Gh@cov~jd ,jd1k!# ,

where the last equality comes from the stationarity assumption+
We claim that

~a! h var~jk! r S1~ y1!,
~b! (k@1 2 ~k0n!#h cov~jd,jd1k! 5 o~1!, and
~c! nhvar~ Itn*! r S1~ y1!,

where

S1~ y1! 5 HE p2
2~z2!

p~ y1, z2! F ¹Gm~ y1, z2!2v~ y1, z2!

~¹Gm{¹Gv !~k3{v302!~ y1, z2!

~¹Gm{¹Gv !~k3{v302!~ y1, z2!

¹Gv~ y1, z2!2k4~ y1, z2!v2~ y1, z2!
G dz2

J F7~K * K !0722 0

0 0GJ
1 E p2

2~z2!

p~ y1, z2!
H2~z2!H2

Á~z2! dz2 J 3
7K722 0

0 EK 2~u!u2 du4 +
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Proof of (a). Noting E~j1k! 5 E~j2k! 5 0431 andE~j1kj2k
Á ! 5 0434,

h var~jk! 5 hE~j1kj1k
Á! 1 hE~j2kj2k

Á !

by the stationarity assumption+ Applying the integration with substitution of variable
and Taylor expansion, the expectation term is

hE~j1kj1k
Á! 5 HE p2

2~z2!

p~ y1, z2! F ¹Gm~ y1, z2!2v~ y1, z2!

~¹Gm{¹Gv !~k3{v302!~ y1, z2!

~¹Gm{¹Gv !~k3{v302!~ y1, z2!

¹Gv~ y1, z2!2k4~ y1, z2!v2~ y1, z2!G dz2

J F7~K * K !0722 0

0 0GJ
and

hE~j2kj2k
Á ! 5E p2

2~z2!

p~ y1, z! F m2
2~z2!

m2~z2!v2~z2!

m2~z2!v2~z2!

v22~z2! G dz2

J 3
7K722 0

0 EK 2~u!u2 du4 1 o~1!,

wherek3~ y1, z2! 5 E @«t
36xt 5 ~ y1, z2!# and k4~ y1, z2! 5 E @~«t

2 2 1!26xt 5 ~ y1, z2!# +
n

Proof of (b). BecauseE~j1kj1j
Á!6jÞk 5 E~j1kj2j

Á!6jÞk 5 0, cov~jd11,jd111k! 5
cov~j2d11,j2d111k!+ By settingc~n!h r 0, asn r `, we separate the covariance terms
into two parts:

(
k51

c~n!F12
k

n
Gh cov~j2d11,j2d111k! 1 (

k5c~n!11

n' F12
k

n
Gh cov~j2d11,j2d111k!+

To show the negligibility of the first part of the covariances, consider that the domi-
nated convergence theorem used after Taylor expansion and the integration with substi-
tution of variables gives

6cov~j2d11,j2d111k!6

. *EH2~ ryd !H2
Á~ ryd1k!

p~ y1, ryd , y1, ryd1k!

p162~ y16 ryd !p162~ y16 ryd1k!
d~ ryd , ryd1k!* J F1 0

0 0G +
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Therefore, it follows from the assumption on the boundedness condition in Assump-
tion A2 that

6cov~j2d11,j2d111k!6 # E6H2~ ryd !6E6H2
Á~ ryd1k!6

3 E p~ y1, ryd , y1, ryd1k!

p162~ y16 ryd !p162~ y16 ryd1k!
d~ ryd , ryd1k! J F1 0

0 0G ,
[ A* ,

whereA # B meansaij # bij , for all element of matricesA andB+ By the construction
of c~n!,

(
k51

c~n!F12
k

n
Gh cov~j2d11,j2d111k!

# 2c~n!6h cov~j2d11,j2d111k!6# 2c~n!hA* r 0, asn r `+

Next, we turn to the negligibility of the second part of the covariances:

(
k5c~n!11

n' F12
k

n
Gh cov~j2d11,j2d111k!+

Let j2k
i be thei th element ofj2k, for i 5 1, + + + ,4+ Using Davydov’s lemma~in Hall and

Heyde, 1980, Theorem A+5!, we obtain

6h cov~j2d11
i ,j2d111k

j !6 5 6cov~Mhj2d11
i ,Mhj2d111k

j !6

# 8@a~k!1220v #F max
i51, + + + ,4

E~Mh6j2k
i 6v !G20v

for somev . 2+ The boundedness ofE~Mh6j2k
1 6v !, for example, is evident from the

direct calculation that

j2k 5
p2~ ryk!

p~xk! 5Fm2~ ryd !

v2~ ryd ! G J 3
1

h
KS yk21 2 y1

h
D

1

h
KS yk21 2 y1

h
DS yk21 2 y1

h
D46 ,

E~6Mhj2k
1 6v ! .

hv02

hv21 E p2
v~z2!

pv21~ y1, z2!
6m2
v~z2!6 dz2

5 OS hv02

hv21D5 OS 1

hv0221D +
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Thus, the covariance is bounded by

6h cov~j2d11,j2d111k!6 # CF 1

hv0221G 20v

@a~k!1220v # +

This implies

(
k5c~n!11

n' F12
k

n
Gh cov~j2d11,j2d111k!

# 2 (
k5c~n!11

`

6h cov~j2d11,j2d111k!6# C 'F 1

h1220v G (
k5c~n!11

`

@a~k!1220v #

5 C ' (
k5c~n!11

` F 1

h1220v G@a~k!1220v # # C ' (
k5c~n!11

`

ka @a~k!1220v # ,

if a is such that

ka $ ~c~n! 1 1!a $ c~n!a 5
1

h1220v ,

for example, c~n!ah1220v 5 1, which impliesc~n! r `+ If we further restricta such
that

0 , a , 12
2

v
,

then

c~n!ah1220v 5 1 impliesc~n!ah1220v 5 @c~n!h#1220vc~n!2d 5 1, for d . 0+

Thus, c~n!h r 0 as required+ Therefore,

(
k5c~n!11

n' F12
k

n
Gh cov~j2d11,j2d111k! # C ' (

k5c~n!11

`

ka @a~k!1220v # r 0,

asn goes to`+ n

The proof of~c! is immediate from~a! and~b!+
Next, we consider the asymptotic bias+ Using the standard result on the kernel weighted

sum of the stationary series, we first get

s0n
p
&&

h2

2
@D2w1~ y1! J ~mK

2 ,0!Á # ,
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because

1

n (
k5d11

n'

Kh
ZW~ yk21 2 y1!S yk21 2 y1

h
D2FD2w1~ y1! J S1,

yk21 2 y1

h
DÁG

p
&& EKh

ZW~z1 2 y1!S z1 2 y1

h
D2FD2w1~ y1! J S1,

z1 2 y1

h
DÁGp~z! dz

. EKh~z1 2 y1!p2~z2!S z1 2 y1

h
D2FD2w1~ y1! J S1,

z1 2 y1

h
DÁG dz

5EKh~z1 2 y1!S z1 2 y1

h
D2FD2w1~ y1! J S1,

z1 2 y1

h
DÁG dz1

5 FD2w1~ y1! J EKh~z1 2 y1!S z1 2 y1

h D2S1,
z1 2 y1

h DÁ

dz1G
5 @D2w1~ y1! J ~mK

2 ,0!Á # +

For the asymptotic bias ofs1n, we again use the approximation results in Jones et al+
~1994!+ Then, the first component ofs1n, for example, is

1

n (
k

Kh~ yk21 2 y1!
p2~ ryk21!

p~xk!
¹Gm~m~xk!!

3 H 1

2

1

n (
l

Kh~xl 2 xk!

p~xl !
(
a51

d

~ yl2a 2 yk2a!2
]2m~xk!

]yk2a
2 J

and converges to

h2

2
Ep2~z2!¹Gm~m~ y1, z2!!@mK*K

2 D2m1~ y1! 1 mK
2 D2m2~z2!# dz2,

based on the argument for the convolution kernel given previously+ A convolution of
symmetric kernels is symmetric, so that*~K * K !0~u!udu5 0 and*~K * K !1~u!u2 du5
**wK~w!K~w 1 u!u2 dwdu5 0+ This implies that

Is1n
p
&&

h2

2
Ep2~z2!$@¹Gm~m~ y1, z2!!,¹Gv~v~ y1, z2!!# Á

( @mK*K
2 D2w1~ y1! 1 mK

2 D2w2~z2!#% J ~1,0!Á dz2+

To calculates2n, we use the Taylor series expansion ofTp2~ ryk21!0 Tp~Xk!:

F Tp2~ ryk21! 2
p2~ ryk21! Tp~Xk!

p~Xk! G 1

Tp~Xk!

5 F Tp2~ ryk21! 2
p2~ ryk21! Tp~Xk!

p~Xk! G 1

p~Xk!
3F12

Tp~Xk! 2 p~Xk!

p2~Xk!
1{{{G

5
Tp2~ ryk21!

p~Xk!
2

p2~ ryk21! Tp~Xk!

p2~Xk!
1 op~1!+

LIVE METHOD FOR VOLATILITY 1123

https://doi.org/10.1017/S026646660420603X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660420603X


Thus,

s2n 5
1

n (
k5d11

n'

Kh~ yk21 2 y1!F Tp2~ ryk21!

Tp~Xk!
2

p2~ ryk21!

p~Xk! G
3 FH2~ ryk21! J S1,

yk21 2 y1

h
DÁG

p
&& EKh~z1 2 y1!F Tp2~z2!

Tp~z!
2

p2~z2!

p~z!
GFH2~z2! J S1,

z1 2 y1

h
DÁGp~z! dz

. EKh~z1 2 y1!F Tp2~z2!

p~z!
2

p2~z2! Tp~z!

p2~z!
GFH2~z2! J S1,

z1 2 y1

h
DÁGp~z! dz

5EKh~z1 2 y1!F Tp2~z2!

p~z!
2

p2~z2!

p~z!
GFH2~z2! J S1,

z1 2 y1

h
DÁGp~z! dz

1 EKh~z1 2 y1!F p2~z2!p~z!

p2~z!
2

p2~z2! Tp~z!

p2~z!
G

3 FH2~z2! J S1,
z1 2 y1

h
DÁGp~z! dz

.
g2

2 FED2p2~z2!H2~z2! dz2 J ~mK
2 ,0!ÁG

2
g2

2 FE p2~z2!

p~ y1, z2!
D2p~ y1, z2!H2~z2! dz2 J ~mK

2 ,0!ÁG +
Finally, for the probability limit of@I2 J e1

Á Qn
21# , we note that

Qn 5 Dh
21Y2

Á KY2 Dh
21 5 @ [qni1j22~ y1;h!# ~i, j !51,2

with [qni 5 ~10n!(k5d
n Kh

ZW~Yk21 2 y1!~~ yk21 2 y1!0h! i, for i 5 0,1,2, and

[qni
p
&& EKh~z1 2 y1!S z1 2 y1

h
Di

p2~z2! dz5EK~u1!u1
i du1Ep2~z2! dz2

5EK~u1!u1
i du1 [ qi ,

whereq0 5 1, q1 5 0, andq2 5 mK
2 +
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Thus, Qn r F1
0

0

mK
2G , Qn

21 r ~10mK
2 !FmK

2

0

0
1G, ande1

Á Qn
21 r e1

Á+ Therefore,

B1n~ y1! 5 @I2 J e1
Á Qn

21# ~s0n 1 s1n 1 s2n!

5
h2

2
mK

2 D2w1~ y1!

3
h2

2
E@mK*K

2 D2w1~ y1! 1 mK
2 D2w2~z2!#

( @¹Gm~m~ y1, z2!!,¹Gv~v~ y1, z2!!# Áp2~z2! dz2

1
g2

2
mK

2EDp2~z2!H2~z2! dz2 2
g2

2
mK

2

3 E p2~z2!

p~ y1, z2!
D2p~ y1, z2!H2~z2! dz2

1 op~h2! 1 op~g2!+

Step III. Asymptotic Normality ofItn*+ Applying the Cramer–Wold device, it is suf-
ficient to show

Dn [
1

Mn (
k

Mh Djk
D

&& N~0,bÁ S1b!,

for all b [ R4, where Djk 5 bÁjk+ We use the small block–large block argument~see
Masry and Tjøstheim, 1997!+ Partition the set$d,d 1 1, + + + , n% into 2k 1 1 subsets with
large blocks of sizer 5 rn and small blocks of sizes 5 sn where

k 5 F n1

rn 1 sn
G

and@x# denotes the integer part ofx+ Define

hj 5 (
t5j ~r1s!

j ~r1s!1r21

Mh Djt , vj 5 (
t5j ~r1s!1r

~ j11!~r1s!21

Mh Djt , 0 # j # k 2 1,

§k 5 (
t5k~r1s!

n

Mh Djt +

Then,

Dn 5
1

Mn S(
j50

k21

hj 1 (
j50

k21

vj 1 §kD[
1

Mn
~Sn
'1 Sn

''1 Sn
'''!+

Because of Assumption A6, there exists a sequencean r ` such that

ansn 5 o~Mnh! and anMn0ha~sn! r 0, asn r `, (A.2)
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defining the large block size as

rn 5 FMnh

an
G + (A.3)

It is easy to show by~A+2! and~A+3! that asn r `

rn

n
r 0,

sn

rn

r 0,
rn

Mnh
r 0, (A.4)

and

n

rn

a~sn! r 0+

We first show thatSn
'' andSn

''' are asymptotically negligible+ The same argument used in
step II yields

var~vj ! 5 s3 var~Mh Djt ! 1 2s (
k51

s21S12
k

s
Dcov~Mh Djd11,Mh Djd111k! (A.5)

5 sbÁ S1b~11 o~1!!,

which implies

(
j50

k21

var~vj ! 5 O~ks! ;
nsn

rn 1 sn

;
nsn

rn

5 o~n!,

from the condition~A+4!+ Next, consider

(
i, j50,

iÞj

k21

cov~vi ,vj ! 5 (
i, j50,

iÞj

k21

(
k151

s

(
k251

s

cov~Mh DjNi1k1
,Mh DjNj1k2

!,

whereNj 5 j ~r 1 s! 1 r+ Because6Ni 2 Nj 1 k1 2 k26$ r, for i Þ j, the covariance term
is bounded by

2 (
k151

n2r

(
k25k11r

n

6cov~Mh Djk1
,Mh Djk2

!6

# 2n (
j5r11

n

6cov~Mh Djd11,Mh Djd111j !65 o~n!+

The last equality also follows from step II+ Hence, ~10n!E$~Sn
''!2% r 0, as n r `+

Repeating a similar argument forSn
''' , we get
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1

n
E$~Sn

'''!2% #
1

n
@n 2 k~r 1 s!# var~Mh Djd11!

1 2
n 2 k~r 1 s!

n (
j51

n2k~r1s!

cov~Mh Djd11,Mh Djd111j !

#
rn 1 sn

n
bÁ S1b 1 o~1!

r 0, asn r `+

Now, it remains to show~10Mn!Sn
' 5 ~10Mn!(j50

k21 hj
D

&& N~0,bÁS1b!+
Becausehj is a function of$ Djt %t5j ~r1s!11

j ~r1s!1r21 that isFj ~r1s!112d
j ~r1s!1r21-measurable, the Vol-

konskii and Rozanov’s lemma~1959! in the appendix of Masry and Tjøstheim~1997!
implies that, with Isn 5 sn 2 d 1 1,

*EFexpSit
1

Mn (
j50

k21

hjDG2 )
j50

k21

E~exp~ithj !!*
# 16ka~ Isn 2 d 1 1! .

n

rn 1 sn

a~ Isn! .
n

rn

a~ Isn! . o~1!,

where the last two equalities follow from~A+4!+ Thus, the summands$hj % in Sn
' are

asymptotically independent, because an operation similar to~A+5! yields

var~hj ! 5 rn bÁ S1b~11 o~1!!

and hence

varS 1

Mn
Sn
'D 5

1

n (
j50

k21

E~hj
2! 5

kn rn

n
bÁ S1b~11 o~1!! r bÁ S*b+

Finally, because of the boundedness of density and kernel functions, the Lindeberg–
Feller condition for the asymptotic normality ofSn

' holds:

1

n (
j50

k21

E @hj
2 I $6hj 6 . MndMbÁ S1b%# r 0

for everyd . 0+ This completes the proof of step III+
From e1

Á Qn
21 p

&& e1
Á , the Slutzky theorem impliesMnh@I2 J e1

Á Qn
21# Itn*

d
&&

N~0,S1
* !, whereS1

* 5 @I2 J e1
Á#S1 @I2 J e1# + In sum, Mnh~ [w1~ y1! 2 w1~ y1! 2 Bn! d

&&

N~0,S1
* !, with S1

*~ y1! given by

E p2
2~z2!

p~ y1, z2!
7~K * K !0722

3 F ¹Gm~ y1, z2!2v~ y1, z2!

~¹Gm{¹Gv !~k3{v302!~ y1, z2!

~¹Gm{¹Gv !~k3{v302!~ y1, z2!

¹Gv~ y1, z2!2k4~ y1, z2!v2~ y1, z2!G dz2

1 E p2
2~z2!

p~ y1, z2!
7K722H2~z2!H2

Á~z2! dz2+ n
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LEMMA A +1+ Assume the conditions in Assumptions A1 and A4–A6. For a bounded
function, F~{!, it holds that

(a) r1n 5 ~Mh0Mn!(k5d
n Kh~ yk21 2 y1!~ [p2~ ryk22! 2 Tp2~ ryk22!!F~xk! 5 op~1!,

(b) r2n 5 ~Mh0Mn!(k5d
n Kh~ yk21 2 y1!~ [p~xk! 2 p~xk!!F~xk! 5 op~1!+

Proof. The proof of~b! is almost the same as~a!+ Therefore we only show~a!+ By
adding and subtractingOLl 6k~ yl226yk22!, the conditional expectation ofLg~ ryl22 2 ryk22!
given ryk22 in r1n, we getr1n 5 j1n 1 j2n, where

j1n 5
1

n2 (
k5d

n

(
l5d

n

Kh~ yk21 2 y1!F~xk!@Lg~ ryl22 2 ryk22! 2 OLl 6k~ yl226yk22!# ,

j2n 5
1

n2 (
k

(
l

Kh~ yk21 2 y1!F~xk!@ OLl 6k~ yl226yk22! 2 Tp2~ ryk22!# +

Rewritej2n as

1

n2 (
k

(
s,k*~n!

Kh~ yk21 2 y1!F~xk!@ OLk1s6k~ yk1s226yk22! 2 Tp2~ ryk22!# ,

1
1

n2 (
k

(
s$k*~n!

Kh~ yk21 2 y1!F~xk!@ OLk1s6k~ yk1s226yk22! 2 Tp2~ ryk22!# ,

wherek*~n! is increasing to infinity asn r `+ Let

B 5 E$Kh~ yk21 2 y1!F~xk!@ OLk1s6k~ yk1s226yk22! 2 Tp2~ ryk22!#%,

which exists as a result of the boundedness ofF~xk!+ Then, for a largen, the first part of
j2n is asymptotically equivalent to~10n!k*~n!B+ The second part ofj2n is bounded by

sup
s$k*~n!

6pk1s6k~ yk1s226yk22! 2 p~ yk22!6
1

n (
k

n

Kh~ yk21 2 y1!6F~xk!6

# rk~n!Op~1!+

Therefore, Mnhj2n # Op~~MhYMn!k*~n!! 1 Op~r2k*~n!Mnh! 5 op~1!, for k~n! 5
log n, for example+

It remains to showj1n 5 op~1YMnh!+ BecauseE~j1n! 5 0 from the law of iteration,
we just compute

E~j1n
2 ! 5

1

n4 (
kÞl

n

(
n

(
iÞj

n

(
n

E$Kh~ yk21 2 y!Kh~ yi21 2 y!F~xk!

3 F~Xl !@Lg~ ryl22 2 ryk22! 2 OLl 6k~ ryk22!#

3 @Lh~ ryj22 2 ryi22! 2 OLj 6 i ~ ryi22!#%+
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~1! Consider the casek 5 i and l Þ j+

1

n4 (
k

n

(
lÞj

n

(
n

E$Kh
2~ yk21 2 y!F 2~xk!

3 @Lg~ ryl22 2 ryk22! 2 OLl 6k~ ryk22!# @Lg~ ryj22 2 ryk22! 2 OLj 6k~ ryk22!#%

5 0,

because, by the law of iteration and the definition ofOLj 6k~ ryk22!,

E6k, l @Lg~ ryj22 2 ryk22! 2 OLj 6k~ ryk22!#

5 E6k @Lg~ ryj22 2 ryk22! 2 OLj 6k~ ryk22!# 5 E6k @Lg~ ryj22 2 ryk22!# 2 OLj 6k~ ryk22!

5 0+

~2! Consider the casel 5 j andk Þ i+

1

n4 (
kÞi

n

(
n

(
l

n

E$Kh~ yk21 2 y!Kh~ yi21 2 y!F~xk!F~xi !

3 @Lg~ ryl22 2 ryk22! 2 OLl 6k~ ryk22!# @Lg~ ryl22 2 ryi22! 2 OLl 6 i ~ ryi22!#%+

We only calculate

1

n4 (
kÞi

n

(
n

(
l

n

E$Kh~ yk21 2 y!Kh~ yi21 2 y!Lg~ ryl22 2 ryk22!

3 Lg~ ryl22 2 ryi22!F~xk!F~xi !% (A.6)

because the rest of the triple sum consists of expectations of standard kernel esti-
mates and isO~10n!+ Note that

E6~i, k! Lg~ ryl22 2 ryk22!Lg~ ryl22 2 ryi22!

. ~L * L!g~ ryk22 2 ryi22!pl 6~k, i !~ ryk226 ryk22, ryi22!,

where~L * L!g~{! 5 ~10g!*L~u!L~u 1 {0g! is a convolution kernel+ Thus, ~A+6!
is

1

n4 (
kÞi

n

(
n

(
l

n

E @Kh~ yk21 2 y!Kh~ yi21 2 y!~L * L!g~ ryk22 2 ryi22!

3 F~xk!F~xi !pl 6~k, i !~ ryk226 ryk22, ryi22!# 5 OS1

n
D+

~3! Consider the case withi 5 k, j 5 m:

1

n4 (
kÞl

n

(
n

E$Kh
2~ yk21 2 y!F 2~xk!@Lg~ yl22 2 yk22! 2 OLl 6k~ ryk22!# 2%

5 OS 1

n2hg
D5 oS 1

nh
D +
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~4! Consider the casek Þ i, l Þ j :

1

n4 (
kÞl

n

(
n

(
iÞj

n

(
n

E$Kh~ yk21 2 y!Kh~ yi21 2 y!F~xk!F~xi !

3 @Lg~ ryl22 2 ryk22! 2 OLl 6k~ ryk22!# @Lg~ ryj22 2 ryi22! 2 OLj 6 i ~ ryi22!#%

5 0,

for the same reason as in~1!+ n

A.2. Proofs for Section 5. Recall thatxt 5 ~ yt21, + + + , yt2d! 5 ~ yt2a, ryt2a! andzt 5

~xt , yt !+ In a similar context, let x 5 ~ y1, + + , yd! 5 ~ ya, rya! andz5 ~x, y0!+ For the score
function s*~z,u,ga! 5 s*~z,u,ga~ rya!!, we define its first derivative with respect to the
parameteru by

¹u s*~z,u,ga! 5
]s*~z,u,ga!

]u

and uses*~u,ga! and ¹u s*~u,ga! to denoteE @s*~zt ,u,ga!# and E @¹us*~zt ,u,ga!# ,
respectively+ Also, the score functions*~z, u,{! is said to be Frechet differentiable
~with respect to the sup norm7{7`! if there is S*~z,u,ga! such that for allga with
7ga 2 ga

07` small enough,

7s*~z,u,ga! 2 s*~z,u,ga
0! 2 S*~z,u,ga

0~ rya!!~ga 2 ga
0!7 # b~z!7ga 2 ga

072, (A.7)

for some bounded functionb~{!+ The termS*~z,u,ga
0! is called the functional derivative

of s*~z,u,ga! with respect toga+ In a similar way, we define¹gS*~z,u,ga! to be the
functional derivative ofS*~z,u,ga! with respect toga+

Assumption B. Suppose that~i! ¹u s*~u0! is nonsingular; ~ii ! S*~z,u,ga~ rya!!
and ¹gS*~z,u,ga~ rya!! exist and have square integrable envelopesNS*~{! and O¹g S*~{!,
satisfying

7S*~z,u,ga~ rya!!7 # NS*~z!, 7¹g S*~z,u,ga~ rya!!7# O¹g S*~z!;

and~iii ! boths*~z,u,ga! andS*~z,u,ga! are continuously differentiable inu, with deriv-
atives bounded by square integrable envelopes+

Note that the first condition is related to the identification condition of component
functions, whereas the second concerns Frechet differentiability~up to the second order!
of the score function and uniform boundedness of the functional derivatives+ For the
main results in Section 5, we need the following conditions+ Some of the assumptions
are stronger than their counterparts in Assumption A in Section 4+ Let h0 andh denote
the bandwidth parameter used for the preliminary instrumental variable and the two-
step estimates, respectively, andg denote the bandwidth parameter for the kernel density+

Assumption C.

1+ $ yt %t51
` is stationary and strongly mixing with a mixing coefficienta~k! 5 r2bk,

for someb . 0, andE~«t
4xt ! , `, where«t 5 yt 2 E~ yt 6xt !+

2+ The joint density function, p~{!, is bounded away from zero andq-times con-
tinuously differentiable on the compact supportsX 5 Xa 3 X Ta, with Lipschitz
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continuous remainders, that is, there existsC , ` such that for allx, x ' [ X,
6Dx

m p~x! 2 Dx
m p~x ' !6 # C7x 2 x ' 7, for all vectors m 5 ~m1, + + + ,md! with

(i51
d m i # q+

3+ The component functions, ma~{! andva~{!, for a 5 1, + + + ,d, areq-times continu-
ously differentiable onXa with Lipschitz continuousqth derivative+

4+ The link functions, Gm and Gv, are q-times continuously differentiable over any
compact interval of the real line+

5+ The kernel functions, K~{! andL~{!, are of bounded support, symmetric about zero,
satisfying *K ~u! du 5 *L~u! du 5 1, and of orderq, that is, *uiK ~u! du 5
*uiL~u! du 5 0, for i 5 1, + + + ,q 2 1+ Also, the kernel functions areq-times differ-
entiable with Lipschitz continuousqth derivative+

6+ The true parametersu0 5 ~ma~ ya!, va~ ya!,ma
' ~ ya!, va' ~ ya!! lie in the interior of

the compact parameter spaceQ+
7+ ~i! g r 0, ngd r ` and~ii ! h0 r 0, nh0 r `+
8+ ~i! nh0

20~ log n!2h r ` andMnhh0
q
r 0; and for some integerv . d02,

~ii ! n~h0h!2v110 log n r `; h0
q2v h2v2102 r 0;

~iii ! nh0
d1~4v11!0 log n r `; q $ 2v 1 1+

Some facts about empirical processes will be useful in the discussion that follows+
Define theL2-Sobolev norm~of orderq! on the class of real-valued function with domain
W0:

7t7q,2,W0
5 S(

m#q
E
W0

~Dx
m t~x!!2 dxD102

,

where, for x [ W0 , Rk and ak-vectorm 5 ~m1, + + + ,mk! of nonnegative integers,

D mt~x! 5
]Si51

k m i t~x!

] m1x1{{{] mkxk

andq $ 1 is some positive integer+ Let Xa be an open set inR1 with minimally smooth
boundary as defined by, for example, Stein ~1970!, and X 5 3b51

d Xb , with X Ta 5
3b51~Þa!

d Xb + Define T1 as a class of smooth functions onX Ta 5 3b51~Þa!
d Xb whose

L2-Sobolev norm is bounded by some constantT1 5 $t : 7t7q,2,X Ta # C% + In a similar
way, T2 5 $t : 7t7q,2,X # C% +

Define ~i! an empirical process, v1n~{!, indexed byt [ T1:

v1n~t1! 5
1

Mn (
t51

n

@ f1~xt ;t1! 2 Ef1~xt ;t1!# , (A.8)

with pseudometricr1~{,{! on T1:

r1~t,t ' ! 5 FE
X

~ f1~w;t~ twa!! 2 f1~w;t '~ twa!!!2p~w! dwG102

,

wheref1~w;t! 5 h2102K~~wa 2 ya!0h! sS*~w,ga
0!t1~ twa!; and ~ii ! an empirical process,

v2n~{,{!, indexed by~ ya,t2! [ Xa 3 T2:
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v2n~ ya ,t2! 5
1

Mn (
t51

n

@ f2~xt ; ya ,t2! 2 Ef2~xt ; ya ,t2!# , (A.9)

with pseudometricr2~{,{! on T2:

r2~~ ya ,t2!,~ ya
' ,t2
' !! 5 FE

X
~ f2~w; ya ,t2! 2 f2~w; ya

' ,t2
' !!2p~w! dwG102

,

wheref2~w; ya,t2! 5 h0
2102K @~wa 2 ya!0h0# @ p Ta~ twa!0p~w!#Gm

' ~m~w!!t2~w!+
We say that the processes$n1n~{!% and $n2n~{,{!% are stochastically equicontinuous

at t1
0 and ~ ya

0,t2
0!, respectively~with respect to the pseudometricr1~{,{! and r2~{,{!,

respectively!, if

∀ «,h . 0, ∃ d . 0 s+t+

lim
Tr`

P*F sup
r1~t,t0!,d

6n1n~t1! 2 n1n~t1
0!6 . hG , «, (A.10)

and

lim
Tr`

P*F sup
r2~~ ya ,t2!, ~ ya

0,t2
0!!,d

6n2n~ ya ,t2! 2 n2n~ ya
0,t2

0!6 . hG , «, (A.11)

respectively, where P* denotes the outer measure of the corresponding probability
measure+

Let F1 be the class of functions such asf1~{! defined previously+ Note that~A+10!
follows, if Pollard’s entropy condition is satisfied byF1 with some square integrable
envelope OF1; see Pollard~1990! for more details+ Becausef1~w;t1! 5 c1~w!t1~ twa! is
the product of smooth functionst1 from an infinite-dimensional class~with uniformly
bounded partial derivatives up to orderq! and a single unbounded functionc~w! 5
@h2102K~~wa 2 ya!0h! sS*~w,ga

0!# , the entropy condition is verified by Theorem 2 in
Andrews ~1994! on a class of functions of type III+ Square integrability of the enve-
lope OF1 comes from Assumption B~ii !+ In a similar way, we can show~A+11! by apply-
ing the “mix and match” argument of Theorem 3 in Andrews~1994! to f2~w; ya,t2! 5
c2~w!h2102K~~wa 2 ya!0h0!t2~w!, whereK~{! is Lipschitz continuous inya, that is, a
function of type II+

Proof of Theorem 4. We only give a sketch, because the whole proof is lengthy and
relies on arguments similar to Andrews~1994! or Gozalo and Linton~2000! for the i+i+d+
case+ Expanding the first-order condition in~5+16! and solving for~ Zu* 2 u0! yields

Zu* 2 u0 5 2F 1

n (
t5d11

n'

¹u s~zt , Nu, Jga!G21 1

n (
t5d11

n'

s~zt , Jga!,

where Nu is the mean value betweenZu andu0 ands~zt , Jga! 5 s~zt ,u0, Jga!+ By the uni-
form law of large numbers in Gozalo and Linton~1995!, we have supu[Q 6Qn~u! 2
E~Qn~u!!6

p
&& 0, which, together with~i! uniform convergence ofJga by Lemma A+3 and

~ii ! uniform continuity of the localized likelihood function, Qn~u,ga! overQ 3 Ga, yields
supu[Q 6 EQn~u! 2 E~Qn~u!!6

p
&& 0 and thus consistency ofZu*+ Based on the ergodic theo-
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rem on the stationary time series and a similar argument to Theorem 1 in Andrews~1994!,
consistency of Zu* and uniform convergence ofJga imply

1

n (
t5d11

n'

¹u s~zt , Nu, Jga!
p
&& E @¹u s~zt ,u0,ga

0!# [ Da~ ya!+ (A.12)

For the numerator, we first linearize the score function+ Under Assumption B~ii !,
s*~z,u,ga! is Frechet differentiable and~A+7! holds, which, because ofMnh7 Jga 2
ga

07`2
p
&& 0 ~by Lemma A+3 and Assumption C+8~i!!, yields a proper linearization of the

score term:

1

n (
t5d11

n'

s~zt , Jga! 5
1

n (
t5d11

n'

Kh~ yt2a 2 ya
0!s*~zt ,ga

0!

1
1

n (
t5d11

n'

Kh~ yt2a 2 ya
0!S*~zt ,ga

0~ ryt2a!!@ Jga~ ryt2a! 2 ga
0~ ryt2a!#

1 op~1YMnh!,

whereS*~zt ,ga
0~ ryt2a!! 5 S*~zt ,u0,ga

0~ ryt2a!!+ Or equivalently, by letting

sS*~ y,ga
0~ rya!! 5 E @S*~zt ,ga

0~ ryt2a!!xt 5 y#

andut 5 sS*~xt ,ga
0~ ryt2a!! 2 E @ sS*~xt ,ga

0~ ryt2a!!6xt 5 y# , we have

Mnh

n (
t5d11

n'

s~zt , Jga!

5
Mh

Mn (
t5d11

n'

Kh~ yt2a 2 ya
0!s*~zt ,ga

0!

1
Mh

Mn (
t5d11

n'

Kh~ yt2a 2 ya
0! sS*~xt ,ga

0~ ryt2a!!@ Jga~ ryt2a! 2 ga
0~ ryt2a!#

1
Mh

Mn (
t5d11

n'

Kh~ yt2a 2 ya
0!ut @ Jga~ ryt2a! 2 ga

0~ ryt2a!# 1 op~1!

[ T1n 1 T2n 1 T3n 1 op~1!+

Note that the asymptotic expansion of the infeasible estimator is equivalent to the first
term of the linearized score function premultiplied by the inverse Hessian matrix in~A+12!+
Because of the asymptotic boundedness of~A+12!, it suffices to show the negligibility
of the second and third terms+

To calculate the asymptotic order ofT2n, we make use of the preceding stochastic
equicontinuity results+ For a real-valued functiond~{! on X Ta andT 5 $d : 7d7v,2,X Ta #
C% , we define an empirical process

vn~ ya ,d! 5
1

Mn (
t5d11

n'

@ f ~xt ; ya ,d! 2 E~ f ~xt ; ya ,d!!# ,
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where f ~xt ; ya,d! 5 K~~ yt2a 2 ya!0h!hv sS*~xt ,ga
0~ ryt2a!!d~ ryt2a!, for some integer

v . d02+ Let Dd 5 h2v2102@ Jga~ ryt2a! 2 ga
0~ ryt2a!# + From the uniform convergence rate

in Lemma A+3 and the bandwidth condition C+8~ii !, it follows that

7 Dd7v,2,X Ta 5 OpSh2v2102F! log n

nh0
~2v11! 1 h0

q2vGD5 op~1!+

Because Zd is bounded uniformly overX Ta, with probability approaching one, it holds
that Pr~ Zd [ T ! r 1+ Also, because, for some positive constantC , `,

r2~~ ya , Zd!, ~ ya ,0!! # Ch2~2v11! 7 Jga 2 ga
07v,2,X Ta

2 5 op~1!,

we haver~~ ya , Zd!, ~ ya ,0!!
p
&& 0+ Hence, following Andrews ~1994, p+ 2257!, the

stochastic equicontinuity condition ofvn~ ya,{! at d0 5 0 implies that6vn~ ya, Zd! 2
nn~ ya,d0!6 5 6vn~ ya, Zd!6 5 op~1!; that is, T2n is approximated~with an op~1! error! by

T2n
* 5 MnhEKh~ ya 2 ya

0! sS*~x,ga
0!@ Jga~ rya! 2 ga

0~ rya!# p~x! dx+

We proceed to show negligibility ofTn2
* + From the integrability condition on

S*~z,ga
0~ rya!!, it follows, by change of variables and the dominated convergence

theorem, that *Kh~ ya 2 ya
0!S*~z,ga

0~ rya!! dF0~z! 5 *S* @~ y, ya
0, rya!,ga

0~ rya!# 3
p~ y, ya

0, rya! d~ y, rya! , `, which, together withMn-consistency of [c 5 ~ [cm, [cv!Á ,
means that~ [c 2 c!Mnh*Kh~ ya 2 ya

0!S*~z,ga
0~ rya!! dF0~z! 5 op~1!+ Because

Jga~ rya! 2 ga
0~ rya! 5 (

b51,Þa

d

~ [wb~ yb! 2 wb
0~ yb!! 2 ~d 2 2!~ [c 2 c!,

this yields

T2n
* 5 (

b51,Þa

d

MnhEKh~ ya 2 ya
0! sS*~x,ga

0!~ [wb~ yb! 2 wb
0~ yb!!p~x! d~x! 1 op~1!+

From Lemma A+3,

[wb~ yb! 2 wb~ yb! 5 h0
q Nbb~ yb! 1

1

n (
t

~K * K !h0
~ yt2b 2 yb!

p2~ ryt2b!

p~xt !

3 ~¹G~xb , ryt2b! ( jt !

1
1

n (
t

Kh0
~ yt2b 2 yb!

p2~ ryt2b!

p~xt !
ga
*0~ ryt2b! 1 Op~rn

2! 1 op~n2102!,

wherejt 5 ~«t , ~«t
2 2 1!!Á, ¹G~xt ! 5 @¹Gm~ yb, ryt2b!v~xt !

102, ¹Gv~ yb, ryt2b!v~xt !#
Á ,

and ga
*0~ ryt2b! 5 ga

0~ ryt2b! 2 c0+ Under the condition C+8~i!, Mnhh0
q 5 o~1!, integra-

bility of the bias function Nbb~ yb! andS*~z,u0,ga
0~ rya!! imply

T2n
* 5 S1n 1 S2n 1 op~1!,
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where

S1n 5 (
b51,Þa

d

MnhEKh~ ya 2 ya
0! sS*~x,ga

0!
1

n

3 (
t

~K * K !h0
~ yt2b 2 yb!

p2~ ryt2b!

p~xt !
~¹G~xb , ryt2b! ( jt !p~x! dx,

and

S2n 5 (
b51,Þa

d

MnhEKh~ ya 2 ya
0! sS*~x,ga

0!
1

n

3 (
t

Kh0
~ yt2b 2 yb!

p2~ ryt2b!

p~xt !
ga
*0~ ryt2b!p~x! dx+

Let S1n
i andS2n

i be thei th elements ofS1n andS2n, respectively, with sS*ij ~{! being the
~i, j ! element of sS*~{!+ By the dominated convergence theorem and the integrability con-
dition, we have

S1n
i 5
Mh

Mn (
t

p2~ ryt2b!

p~xt !
v~xt !

102«t

3 FEKh~ ya 2 ya
0! sSi1*~x,ga

0! (
b51,Þa

d

~K * K !h0
~ yb 2 yt2b!¹Gm~ yb , ryt2b!p~x! dxG

1
Mh

Mn (
t

p2~ ryt2b!

p~xt !
v~xt !~«t

2 2 1!

3 FEKh~ ya 2 ya
0! sSi 2*~x,ga

0! (
b51,Þa

d

~K * K !h0
~ yb 2 yt2b!¹Gv~ yb , ryt2b!p~x! dxG

5
Mh

Mn (
t

p2~ ryt2b!

p~xt !
@v~xt !

102Ãi1
1 ~xt !«t 1 v~xt !Ãi 2

1 ~xt !~«t
2 2 1!# 1 op~1!,

where

Ãij
1~xt ! 5 ¹G j ~ ya

0, ryt2a! (
b51,Þa

d E sSij* @~ ya
0, yt2b , ry~a,b! !,ga

0# p~ ya
0, yt2b , ry~a,b! ! d ry~a,b!

and ¹G j ~{! 5 ¹Gm~{!, for j 5 1; ¹Gv~{!, for j 5 2+ Becausep2~{!0p~{! and Ãij ~{! are
bounded under the condition of compact support, applying the law of large numbers for
i+i+d+ errorsjt 5 ~«t , ~«t

2 2 1!!Á leads toS1n
i 5 op~1! and consequentlyS1n 5 op~1!+

Likewise,
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S2n
i 5
Mh

Mn (
t

p2~ ryt2b!

p~xt !
g1a
*0~ ryt2b!

3 FEKh~ ya 2 ya
0! sSi1*~x,ga

0! (
b51,Þa

d

Kh~ yt2b 2 yb!p~x! dxG
1
Mh

Mn (
t

p2~ ryt2b!

p~xt !
g2a
*0~ ryt2b!

3 FEKh~ ya 2 ya
0! sSi 2*~x,ga

0! (
b51,Þa

d

Kh~ yt2b 2 yb!p~x! dxG
5
Mh

Mn (
t

p2~ ryt2b!

p~xt !
@Ãi1

2 ~xt !m ta~ ryt2a! 1 Ãi1
2 ~xt !v ta~ ryt2a!# 1 op~1!,

where

Ãij
2~xt ! 5 (

b51,Þa

d E sSij* @~ ya
0, yt2b , ry~a,b! !,ga

0# p~ ya
0, yt2b , ry~a,b! ! d ry~a,b! ,

and, for the same reason as before, we get S2n
i 5 op~1! and S2n 5 op~1!, because

E~m ta~ ryt2a!! 5 E~v ta~ ryt2a!! 5 0+
We finally show negligibility of the last term:

T3n 5
Mh

Mn (
t5d11

n'

Kh~ yt2a 2 ya
0!ut @ Jga~ ryt2a! 2 ga

0~ ryt2a!# +

Substituting the error decomposition forJga~ ryt2a! 2 ga
0~ ryt2a! and interchanging the

summations gives

T3n 5 (
b51,Þa

d Mh

nMn (
t

(
s~Þt !

Kh~ yt2a 2 ya
0!Kh0

~ ys2b 2 yb!

3
p2~ rys2b!

p~xs!
ga
*0~ rys2b!ut ga

*0~ rys2b!

1 (
b51,Þa

d Mh

nMn (
t

(
s~Þt !

Kh~ yt2a 2 ya
0!~K * K !h0

~ ys2b 2 yb!

3
p2~ rys2b!

p~xs!
~¹G~xb , rys2b! ( ut js!

1 op~1!,

where theop~1! errors for the remaining bias terms hold under the assumption that
Mnhh0

2 5 o~1!+ For

pn
i,b~zt , zs! 5 Kh~ yt2at 2 ya

0!Kh0
~ ys2b 2 yb!

p2~ rys2b!

p~xs!
ut ga

*0~ rys2b!Mh0~nMn!,
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we can easily check thatE~p1n
i,b~zt , zs!6zt ! 5 E~p1n

i,b~zt , zs!6zs! 5 0, for t Þ s, implying
that ((tÞs pn

i,b~zt , zs! is a degenerate second-orderU-statistic+ The same conclusion
also holds for the second term+ Hence, the two double sums are mean zero and have
variance of the same order as

n2 3 $Epn
i,b~zt , zs!

2 1 Epn
i,b~zt , zs!Epn

i,b~zs, zt !%,

which is of ordern21h21+ Therefore, T3n 5 op~1!+ n

LEMMA A +2+ ~Masry, 1996!+ Suppose that Assumption C holds. Then, for any vec-
tor m 5 ~m1, + + + ,md!Á with 6m6 5 Sj m j # v,

(a) supx[X 6Dx
m [p~x! 2 Dx

m p~x!6 5 Op~M log n0ng~26m61d ! ! 1 Op~gq2m!,

(b) supx[X 6Dx
m Km~x! 2 Dx

m m~x!6 5 Op~M log n0nh0
~26m61d !! 1 Op~h0

q2m! [ rn~m!,
(c) supx[X 6 Km~x! 2 m~x! 2 EL~x!6 5 Op~rn

2!, where,

EL~x! 5
1

n (
sÞt

Kh0
~xs 2 x!

p~xs!
v102~xs!«s 1 h0

qbn~x!+

LEMMA A +3+ Suppose that Assumption C holds. Then, for any vectorm 5
~m1, + + ,md!Á with 6m6 5 Sj m j # v,

(a) supxa[Xa
6D m [wa~ ya! 2 D mwa~ ya!6 5 Op~M log n0nh~26m611! ! 1 Op~hq2m! 1

Op~rn
2~m!!,

(b) supxa[Xa
6 [wa~ ya! 2 wa~ ya! 2 ZLw~ ya!6 5 Op~rn

2! 1 op~n2102!,

where

ZLw~ ya! 5
1

n (
t

~K * K !h~ yt2a 2 ya!
p Ta~ ryt2a!

p~xt !
FGm

' ~m~ ya , ryt2a!!v~xt !
102

Gv
' ~v~ ya , ryt2a!v~xt !!

GF «t ,

«t
2 2 1G

1
1

n (
t

Kh~ yt2a 2 ya!
p2~ ryt2a!

p~xt !
@m ta~ ryt2a!, v ta~ ryt2a!# Á 1 hq Nba~ ya!+

Proof. We first show~b!+ For notational simplicity, the bandwidth parameterh ~only
in this proof! abbreviatesh0+ From the decomposition results for the instrumental vari-
able estimates,

[wa~ ya! 2 wa~ ya! 5 @I2 J e1
Á Qn

21#tn,

where Qn 5 @ [qni1j22~ ya!#~i, j !51,2, with [qni 5 ~10n!(t5d
n

Kh~ yt2a 2 ya!@ [p Ta~ ryt2a!0
[p~xt !# @~ yt2a 2 ya!0h# i, for i 5 0,1,2, and tn 5 ~10n!(t Kh~ yt2a 2 ya! @ [p Ta~ ryt2a!0
[p~xt !# @ Irt 2 wa~ ya! 2 ~ yt2a 2 ya!¹wa~ ya!# J ~1, ~ yt2a 2 ya!0h!Á + By the Cauchy–

Schwarz inequality and Lemma A+2 applied with Taylor expansion, it holds that
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sup
xa[Xa

1

n (
t5d

n

Kh~ yt2a 2 ya!F [p Ta~ ryt2a!

[p~xt !
2

p Ta~ ryt2a!

p~xt !
GS yt2a 2 ya

h Di

# sup
x[X*

[p Ta~ rya!

[p~x!
2

p Ta~ rya!

p~x! * sup
xa[Xa

1

n (
t5d

n

Kh~ yt2a 2 ya!* yt2a 2 ya

h *
i

5 OpSsup
x[X
6 [p~x! 2 p~x!6D[ Op~rn!,

where the boundedness condition of C+2 is used for the last line+ Hence, the standard
argument of Masry~1996! implies that supxa[Xa

6 [qni 2 qi 6 5 op~1!, where qi 5
*K~u1!u1

i du1+ From q0 5 1, q1 5 0, andq2 5 mK
2 , we get the following uniform con-

vergence result for the denominator term; that is, e1
Á Qn

21 p
&& e1

Á , uniformly in ya [
Xa+ For the numerator, we show the uniform convergence rate of the first element of
tn because the other terms can be treated in the same way+ Let tn

1 denote the first
element oftn, that is,

tn
1 5

1

n (
t

Kh~ yt2a 2 ya!
[p Ta~ ryt2a!

[p~xt !
@Gm~ Km~xt !! 2 Ma~ ya! 2 ~ yt2a 2 ya!ma

' ~ ya!# ,

or alternatively,

tn
1 5

1

n (
t

Kh~ yt2a 2 ya!r ~xt ; [g!,

where

r ~xt ;g! 5
g2~ ryt2a!

g3~xt !
@Gm~g1~xt !! 2 Ma~ ya! 2 ~ yt2a 2 ya!ma

' ~ ya!# ,

g~xt ! 5 @g1~xt !, g2~ ryt2a!, g3~xt !# 5 @m~xt !, p Ta~ ryt2a!, p~xt !# ,

[g 5 [g~xt ! 5 @ Km~xt !, [p Ta~ ryt2a!, [p~xt !# +

Becausep Ta~{!0p~{! is bounded away from zero andGm has a bounded second-order deriv-
ative, the functionalr ~xt ;g! is Frechet differentiable ing, with respect to the sup norm
7{7`, with the ~bounded! functional derivativeR~xt ;g! 5 @]r ~xt ;g!0]g#fg5g~xt ! + This
implies that for allg with 7g 2 g07` small enough, there exists some bounded function
b~{! such that

7r ~xt ;g! 2 r ~xt ;g0! 2 R~xt ;g0!~g 2 g0!7` # b~xt !7g 2 g07`2 +

By Lemma A+2, 7 [g 2 g07`2 5 Op~rn
2!, and consequently, we can properly linearizetn

1 as

tn
1 5

1

n (
t

Kh~ yt2a 2 ya!r ~xt ;g0! 1
1

n (
t

Kh~ yt2a 2 ya!R~xt ;g0!~ [g 2 g0! 1 Op~rn
2!,
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where theOp~rn
2! error term is uniformly inxa+ After plugging Gm~m~xt !! 5 cm 1

S1#b#d mb~ yt2b! into r ~xt ;g0!, a straightforward calculation shows that

tn
1 5

1

n (
t

Kh~ yt2a 2 ya!§t @11 Op~rn!#

1
1

n (
t

Kh~ yt2a 2 ya!
p Ta~ ryt2a!

p~xt !
Gm
' ~m~xt !!@ Km~xt ! 2 m~xt !#

1
hq

q!
mq~k!b1a~ ya! 1 op~hq!, (A.13)

where§t 5 @ p2~ ryt2a!0p~xt !#M Ta~ ryt2a! andM Ta~ ryt2a! 5 S1#b#d, ~Þa!mb~ ryt2a!+ Note that
as a result of the identification conditionE @§t 6yt2a# 5 0 and consequently the first term
is a standard stochastic term appearing in kernel estimates+ For a further asymptotic
expansion of the second term oftn

1, we use the stochastic equicontinuity argument to
the empirical process$vn~{,{!% , indexed by~ ya,d! [ Xa 3 T, with T 5 $d : 7d7v,2,Xa

#
C% , such that

vn~ ya ,d! 5
1

Mn (
t5d11

n'

@ f ~xt ; ya ,d! 2 E~ f ~xt ; ya ,d!!# ,

wheref ~xt ; ya,d! 5 K@~ yt2a 2 ya!0h# hv @ p Ta~ ryt2a!0p~xt !#Gm
' ~m~xt !!d~ yt2a!, for some

positive integerv . d02+ Let Dd 5 h2v2102@ Km~xt ! 2 m~xt !# + From the uniform conver-
gence rate in Lemma A+2 and the bandwidth condition in C+8~iii !, it follows that7 Dd7v,2,X 5
Op~h2v2102 @M log n0nh~2v1d ! 1 hq2v# ! 5 op~1!, leading to~i! Pr~ Zd [ T ! r 1 and~ii !
r~~ ya, Zd!, ~ ya,d0!!

p
&& 0, whered0 5 0+ These conditions and stochastic equicontinuity

of vn~{,{! at ~ ya,d0! yield supya[Xa
6vn~ ya , Zd! 2 nn~ ya,d0!6 5 supxa[Xa

6vn~ ya , Zd!6 5
op~1!+ Thus, the second term oftn

1 is approximated with anop~10Mn! error ~uniform in
ya! by

EKh~ yt2a 2 ya!
p Ta~ ryt2a!

p~xt !
Gm
' ~m~xt !!@ Km~xt ! 2 m~xt !# p~xt ! dxt ,

which, by substituting EL~xt ! for Km~xt ! 2 m~xt !, is given by

1

n (
s

~K * K !hS ys2a 2 ya

h
Dp Ta~ rys2a!Gm

' ~m~ ya , rys2a!!
v102~xs!«s

p~xs!

1
hq

q!
mq~k!b2a~ ya!, (A.14)

where~K * K !~{! is actually a convolution kernel as defined before+ Hence, by letting
Nba~ ya! summarize two bias terms appearing in~A+13! and ~A+14!, Lemma A+3~b! is

shown+ The uniform convergence results in part~a! then follow by the standard argu-
ments of Masry~1996!, because two stochastic terms in the asymptotic expansion of
[wa~ ya! 2 wa~ ya! consist only of univariate kernels+ n
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