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We investigate a new separable nonparametric model for time setieh includes

many autoregressive conditional heteroskedd#tRCH) models and autoregres-

sive (AR) models already discussed in the literatuhée also propose a new esti-
mation procedure called LIVFor local instrumental variable estimatiotiat is

based on a localization of the classical instrumental variable me@wdmethod

has considerable computational advantages over the competing marginal integra-
tion or projection methadwWe also consider a more efficient two-step likelihood-
based procedure and show that this yields both asymptotic and finite-sample
performance gains

1. INTRODUCTION

Volatility models are of considerable interest in empirical finantleere are
many types of parametric volatility modefsllowing the seminal work of Engle
(1982. These models are typically nonlineavhich poses difficulties both in
computation and in deriving useful tools for statistical infereriearametric
models are prone to misspecificatjogspecially when there is no theoretical
reason to prefer one specification over anathemparametric models can pro-
vide greater flexibility However the greater generality of these models comes
at a cost—including a large number of lags requires estimation of a high-
dimensional smoothwhich is known to behave very bad({gilverman 1986.

The “curse of dimensionality” puts severe limits on the dynamic flexibility of
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nonparametric modelSeparable models offer an intermediate position between
the complete generality of nonparametric models and the restrictiveness of para-
metric modelsThese models have been investigated in cross-sectional settings
and also in time series settings

In this paperwe investigate a generalized additive nonlinear autoregressive
conditional heteroskedastic mod€ANARCH):

Yo = M(Yio1, Yeo2see0 Vi) + U,

ut :Ul/z(ytfla yt72’--~ayt7d)8ta (11)
d
m(yt—l’ yt—2’ L] yt—d) = I:m <Cm + 2_:1 ma(yt—a)>’ (12)
d
U(thl’ Yt—z,m, ytfd) = Fv <Cv + 2—:10a(yta)>’ (13)

wherem,(-) anduv,(-) are smooth but unknown functions akg(-) andF,(-)

are known monotone transformatiofwhose inverses ar&,(-) and G,(-),
respectively.! The error procesgs,}, is assumed to be a martingale difference
with unit scale that is E(g|/_,) = 0 andE(e2|F_,) = 1, where % is the
o-algebra of events generated by }1__... Under some weak assumptigtise

time series of nonlinear autoregressive models can be shown to be stationary
and strongly mixing with mixing coefficients decaying exponentially fAste-

stadt and Tjgsthein1990 use a-mixing or geometric ergodicity to identify
their nonlinear time series mode&imilar results are obtained for the additive
nonlinear autoregressive conditional heterosked@8fCH) process by Masry

and Tjgstheim(1997); see also Cai and Masi(2000 and Carrasco and Chen
(2002. We follow the same argument as Masry and Tjgstheif7) and will
assume all the necessary conditions for stationarity and mixing property of the
process{y; }i-; in (1.1). The standard identification for the components of the
mean and variance is made by

E[m,(Yi—)]=0 and E[v,(y—,)]=0 (1.4)

for all « = 1,...,d. The notable aspect of the model is additivity via known
links for conditional mean and volatility function&s will be shown later(1.1)—
(1.3) include a wide variety of time series models in the literat@ee Horo-
witz (2001 for a discussion of generalized additive models in a cross-section
context

In a much simpler univariate setuRobinson(1983, Auestadt and Tjgs-
theim (1990, and Hardle and Vie1992 study the kernel estimation of the
conditional mean functiom(-) in (1.1). The so-called CHARNconditionally
heteroskedastic autoregressive nonlingandel is the same afl.1) except
thatm(-) andv(-) are univariate functions of_,. Masry and Tjgstheinf1995
and Hardle and Tsybakaoi997) apply the Nadaraya—Watson and local linear
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smoothing methodsespectivelyto jointly estimatev(-) together withm(-).
Alternatively Fan and Yaq1996 and Ziegelmanri2002 propose local linear
least square estimation for the volatility functjomith the extension given by
Avramidis (2002 based on local linear maximum likelihood estimatidiso,
in a nonlinear vector autoregressitAR) context Hardlg Tsybakoy and Yang
(1998 deal with the estimation of conditional mean in a multilagged exten-
sion similar to(1.1). Unfortunately howevey introducing more lags in non-
parametric time series models has unpleasant consequences so than in
the parametric approachs is well known smoothing methods in high dimen-
sions suffer from a slower convergence rate—the “curse of dimensiahality
Under twice differentiability ofm(-), the optimal rate is1~%“*9 which gets
rapidly worse with dimensiarin high dimensions it is also difficult to describe
graphically the functiorm.

The additive structure has been proposed as a useful way to circumvent
these problems in multivariate smoothingy assuming the target function
to be a sum of functions of covariatesay m(y; 1, Vi—2,..+,¥t-d) = Cm +
2;21 m,(Yi—.), we can effectively reduce the dimensionality of a regression
problem and improve the implementability of multivariate smoothing up to that
of the one-dimensional cas8tone (1985 1986 shows that it is possible to
estimatem, (-) andm(-) with the one-dimensional optimal rate of convergence—
for example n?/® for twice differentiable functions—regardless afThe esti-
mates are easily illustrated and interpretédr these reasonsince the 198Qs
additive models have been fundamental to nonparametric regression among both
econometricians and statisticiaf®egarding the estimation method for achiev-
ing the one-dimensional optimal ratéhe literature suggests two different
approachesbackfitting and marginal integratiorhe formey originally sug-
gested by Breiman and Friedmé&tO85, Buja, Hastie and Tibshirani(1989),
and Hastie and Tibshirariil987 1990, is to execute iterative calculations of
one-dimensional smoothing until some convergence criterion is satisfiedigh
appealing to our intuitionthe statistical properties of backfitting algorithm were
not clearly understood until the very recent works by Opsomer and Ruppert
(1997 and MammenLinton, and Nielsen(1999. They develop specifi¢lin-
eal backfitting procedures and establish the geometric convergence of their
algorithms and the pointwise asymptotic distributions under some conditions
However one disadvantage of these procedures is the time-consuming itera-
tions required for implementatioilso, the proofs for the linear case cannot
be easily generalized to nonlinear cases such as generalized additive.models

A more recent approacitalled marginal integratiofiMl), is theoretically
more manipulable—its statistical properties are easy to debeeause it sim-
ply uses averaging of multivariate kernel estimat@sveloped independently
by Newey (1994, Tjgstheim and Auestadil994), and Linton and Nielsen
(1995, its simplicity inspired subsequent applications such as Lintang
Chen and Hardle(1995 for transformation models and LintpiNielsen and
van de Geef2003 for hazard models with censorintp the time series mod-
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els that are special cases(&fl) and(1.2) with F,, being the identityChen and
Tsay (19933 19930 and Masry and Tjgstheinil997) apply backfitting and
MI, respectivelyto estimate the conditional mean functiddammen et al
(1999 provide useful results for the same type of models by improving the
previous backfitting method with some modification and successfully deriving
the asymptotic properties under weak conditiofise separability assumption

is also used in volatility estimation by Yangardle and Nielsen1999, where

the nonlinear ARCH model is of additive mean and multiplicative volatility in
the form of

d d 1/2
Yi = Cn T 2 M, (Yi—a) T <Cv H Ua(yta)> &t. (1.5)
a=1 a=1

To estimate(1.5), they rely on marginal integration with local linear fits as a
pilot estimate and derive asymptotic properties

This paper features two contributions to the additive literatlibe first con-
cerns theoretical development of a new estimation tool called the local instru-
mental variable estimator for the components of additive modelgE for
CAM), which was outlined for simple additive cross-sectional regression in
Kim, Linton, and Hengartne(1999. The novelty of the procedure lies in the
simple definition of the estimator based on univariate smoothing combined
with new kernel weightsThat is adjusting kernel weights via conditional den-
sity of the covariate enables a univariate kernel smoother to estimate consis-
tently the corresponding additive component functibn many respecisthe
new estimator preserves the good properties of univariate smooftierinstru-
mental variable method is analytically tractable for asymptotic theibris
shown to attain the optimal one-dimensional rdtarthermoreit is computa-
tionally more efficient than the two existing metho@dsackfitting and M) in
the sense that it reduces the computations by a facter gthoothings The
other contribution relates to the general coverage of the model we work with
The model in(1.1)—(1.3) extends ARCH models to a generalized additive frame-
work where both the mean and variance functions are additive after some known
transformationsee Hastie and Tibshirari990. All the time series models in
our previous discussion are regarded as a subclass of the data generating pro-
cess for{y,} in (1.1)—(1.3). For examplesettingG,, to be an identity ands,
a logarithmic function reduces our model(tb5). Similar efforts to apply trans-
formation have been made in parametric ARCH maodilksison (1991) con-
siders a model for the log of the conditional variance—the exponential
(G)ARCH class—to embody the multiplicative effects of volatilityhas also
been argued to use the Box—Cox transformation for volatiitigich is inter-
mediate between linear and logarithm and which allows nonseparable news
impact curvesBecause it is hard to tell a priori which structure of volatility is
more realistic and it should be determined by real data generalized addi-
tive model provides useful flexible specifications for empirical wokkidi-
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tionally, from the perspective of potential misspecification problene
transformation used here alleviates the restriction imposed by the additivity
assumptionwhich increases the approximating power of our motliete that
when the lagged variables i1.1)—(1.3) are replaced by different covariates
and the observations are independent and identically distribted), the
model becomes the cross-sectional additive model studied by Linton and Har-
dle (1996. Finally, we also consider more efficient estimation along the lines
of Linton (1996 2000.

The rest of the paper is organized as follo@gction 2 describes the main
estimation idea in a simple settingn Section 3we define the estimator for the
full model. In Section 4 we give our main resultscluding the asymptotic
normality of our estimatorsSection 5 discusses more efficient estimati®ac-
tion 6 reports a small Monte Carlo studjhe proofs are contained in the
Appendix

2. NONPARAMETRIC INSTRUMENTAL VARIABLES: THE MAIN IDEA

This section explains the basic idea behind the instrumental variable method

and defines the estimation procedufF®r ease of expositigrthis will be car-

ried out using an example of simple additive models witld.i data We then

extend the definition to the generalized additive ARCH casglih)—(1.3).
Consider a bivariate additive regression model fod.idata(y, X;, X,),

y = my(Xy) + my(X;) + &,

whereE(e|X) = 0 with X = (Xy, X,) and the components satisfy the identifi-
cation condition&€[m,(X,)] = O, for @ = 1,2 (the constant term is assumed to
be zerg for simplicity). Lettingn = m,(X,) + &, we rewrite the model as

y =m(Xy) + 7, (2.6)

which is a classical example of “omitted variable” regressidmat is although

(2.6) appears to take the form of a univariate nonparametric regression model
smoothingy on X; will incur a bias due to the omitted variablg becausey
containsX,, which in general depends ofy. One solution to this is suggested
by the classical econometric notion of instrumental variableat is we look

for an instrumentV such that

E(W[X) #0;  E(Wn[Xy) =0 (2.7)
with probability oné? If such a random variable existee can write

E(Wy|X; = X;)

E(W[X;=X,) (2.8)

my(x,) =

This suggests that we estimate the functios{-) by nonparametric smoothing
of Wy on X; andW on X;. In parametric models the choice of instrument is
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usually not obvious and requires some cautidowever our additive model
has a natural class of instrumentg>£X,)/p(X) times any measurable func-
tion of X; will do, wherep(-), p.(-), andp,(-) are the density functions of the
covariatesX, X;, andX,, respectivelylt follows that

(X)
E(WyiX,) fW(X)m(X) p?(xl) dX, JW(X)m(X)p(X)dXZ
EW[X,) X =
fm(x)pz(xz) dX,
- f = | m(X)po(X,) dX,
pZ(XZ) dX2

as requiredThis formula shows what the instrumental variable estimator is esti-
mating whernm is not additive—an average of the regression function over the
X, direction exactly the same as the target of the marginal integration estima-
tor. For simplicity we will take

_paAX3)
W(X) = =5 (2.9)
throughouf

Up to now it was implicitly assumed that the distributions of the covariates
are known a priotiln practice this is rarely trueand we have to rely on esti-
mates of these quantitieket p(-), P(-), and p,(-) be kernel estimates of the
densities(-), p:(+), andp,(-), respectivelyThen the feasible procedure is defined
with a replacement of the instrumental variableby W = p,(X,)/p(X) and
taking sample averages instead of population expectati®ection 3 provides
a rigorous statistical treatment for feasible instrumental variable estimators based
on local linear estimatiarSee Kim et al(1999 for a slightly different approach

Next, we come to the main advantage that the local instrumental variable
method hasThis is in terms of the computational co$the marginal integra-
tion method actually needs? regression smoothings evaluated at the pairs
(X4, Xy)), for i,j = 1,...,n, whereas the backfitting method requires
operations—where is the number of iterations to achieve convergerides
instrumental variable procedyrie contrasttakes at most 2 operations of ker-
nel smoothings in a preliminary step for estimating the instrumental variable
and anothen operations for the regressianbhus it can be easily combined
with the bootstrap method whose computational costs often become prohibitive
in the case of marginal integratigeee Kim et al 1999.
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Finally, we show how the instrumental variable approach can be applied to
generalized additive modelket F(-) be the inverse of a known link function
G(-) and letm(X) = E(y|X). The model is defined as

y = F(my(Xy) + my(X3)) + &, (2.10)

or equivalentlyG(m(X)) = my(X;) + my(X,). We maintain the same identifi-
cation conditionE[m,(X,)] = 0. Unlike in the simple additive modgthere is
no direct way to relatéVy to my(X;) here so (2.8) cannot be implemented
However under additivity

E[WG(m(X))|X,]
E[WIX,]

my(Xy) = (2.11)

for the W defined in(2.9). Becausam(-) is unknown we need consistent esti-
mates ofm(X) in a preliminary stepand then the calculation i(2.11) is fea-

sible In the next section we show how these ideas are translated into estimators
for the general time series setting

3. INSTRUMENTAL VARIABLE PROCEDURE FOR GANARCH

We start with some simplifying notations that will be used repeatedly in the
discussion that followslLet x; be the vector ofl lagged variables until — 1,
that is X = (Yi-1,-.-, Yi—a), OF concisely X; = (Yi—a Yi-o), Wherey,, =

(Y1505 Yioa-1 Yi-at1s-+-5 Yia). Defining m,(y;—o) = Egzl,qta mB_(thﬁ)
andv,(Yi—o) = Zg:wa vg(Yi—p), we can reformulat¢l.1)—(1.3) with a focus
on theath components of the mean and variance as

Yo = m(x) +vV2(x) e,
m(xt) = Fm(Cm + ma(ytfa) + mz_x(ytfa))’
U(Xt) = FU(CU + Ua(ytfa) + Ug(ytfa))'

To save space we will use the following abbreviations for the functions to be
estimated

He(Vieo) =My (Ve e (Vee)] s Ho (Vi) =My (Veeo)s 00 (Yoo s
c=[cnc ], r=H(x)=[Gu(m(x)),G,(v(x)]",
©a(Yo) = C+ Hy(Y,).

Note that the componentsn,(-),v,(-)] " are identified up to constant, by

¢.(+), which will be our major interest in estimatioSubsequentlywe exam-

ine in some detail each relevant step for computing the feasible nonparametric
instrumental variable estimator @f,(-). The set of observations is given by

Y ={y}_1, wheren’ = n + d.
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3.1. Step l. Preliminary Estimation of r, = H(x;)

Because, is unknown we start with computing the pilot estimates of the regres-
sion surface by a local linear smoothéet m(x) be the first component of
(&,bT) T that solves

min i Kn(X = ){y; —a—=DbT(x = x)}? (3.12)

ab t=d+1

whereKy(x) = 1% ; K(x; /h)/h% K is a one-dimensional kernel functioand
h = h(n) is a bandwidth sequenchkn a similar way we get the estimate of the
volatility surface o(-), from (3.12) by replacingy; with the squared residuals

82 = (y; — m(x,))2. Then transformingm and# by the known links will lead
to consistent estimates 6y,

Fo = H(x) = [Gn(M(x,)), G, (B(x))] -

3.2. Step II: Instrumental Variable Estimation
of Additive Components

This step involves the estimation @f,(-), which is equivalent tdm,(-),v,.(-)] 7,

up to the constart. Let p(-) andp,(-) denote the density functions of the ran-
dom variables(y, ., i) andy, ., respectively Define the feasible instru-
ment as ) )

N pg(yt—a)
' FA)(thm yt*a)’

wherep,(-) andp(-) are computed using the kernel functibft), for example
p(x) = Sty T, Ly(xq — xi)/nwith Lg(+) = L(-/g)/g andg = g(n) is a band-
width sequenceThe instrumental variable local linear estimagesy, ) are given
as(ag,a,) " through minimizing the localized squared errors elementwise

n,
mlp E Kh(yt—a - ya)vvt{rjt - aj - bj(yt—a - ya)}z’ (313)
;0 t=d+1

wherefj; is thejth element off;.* The closed form of the solution is

G (V)T = e (YTKY ) YTKR, (3.14)

where € = (1,AO)T9 Y_ = [l"Y—]’ K = diag[Kh(yd+l—a - ya)wd+l’---’
Kh(yn’*a - ya)Wn':L andﬁ = (rd+17~"7rn')T9 Wlth L= (17"',1)T ande =
(derlfa T Yareoos Yo T ya)T-
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4. MAIN RESULTS

Let /2 be theo-algebra of events generated py 12 anda (k) the strong mix-
ing coefficient of{y;} that is defined by

a(k) = sup m\P(A N B) — P(A)P(B)|.

AceFC BE K
Throughout the papgwe make the following assumptions
Assumption A

Al. {y,}{Z, is a stationary and strongly mixing process generate¢liy—
(1.3), with a mixing coefficient such that ., k®{a(k)}* %" < o, for some
v>2and0<a< (1-2/w).

As pointed out by Masry and Tjgstheifh997), the condition on the mixing
coefficient in Al is milder than assumed on the standard mixing process where
the coefficient decreases at a geometric,rétiat is a(k) = p 7 (for some
B > 0). Some technical conditions for regularity are stated hieoe simplicity,
we assume that the procelsg}~, has a compact support

A2. The additive component functions, () andv,(-), fora@ =1,...,d, are
continuous and twice differentiable on the compact support

A3. The link functions G,, andG,, have bounded continuous second-order
derivatives over any compact interval

A4. The joint and marginal density functions(-), p.(-), andp,(-), for a« =
1,...,d, are continuoustwice differentiable with boundetpartial) derivatives
and bounded away from zero on the compact support

A5. The kernel functionsK(-) andL(-), are a real bounded nonnegative sym-
metric (around zerp function on a compact support satisfyifd<(u) du =
fL(u)du=1, fuK(u)du= fuL(u)du= 0. Also, assume that the kernel func-
tions are Lipschitz-continuousK (u) — K(v)| = Clu — v|.

A6. (i) g = 0, ng® - oo, (logn)?vh/yng® — 0. (i) h — 0, (log n)2/
\Vnh24-1 — 0. (iii) The bandwidth satisfies§'n/ha(t(n)) — 0, where{t(n)!
is a sequence of positive integetén) — oo, such that(n) = o(vnh).

Conditions A2—-A5 are standard in kernel estimati®he continuity assump-
tion in A2 and A4 together with the compact supppitnplies that the func-
tions are boundedrhe bandwidth conditions in A®) and A&(ii) are necessary
for showing negligibility of the stochastic error terms arising from the prelim-
inary estimation ofn, v, andp,(-). Under twice-differentiability of these func-
tions as in A2—A4 the given side conditions are satisfied wheénr= 4. Our
asymptotic results that follow can be extended into a more general case of
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d > 4, although we do not prove it in the pap&ne way of extension to
higher dimensions is to strengthen the differentiability conditions in A2—A4 and
use higher order polynomialsee Kim et al 1999. The additional bandwidth
condition in Aiii) is necessary to control the effects from the dependence
of the mixing processes in showing the asymptotic normality of instrumen-
tal variable estimatesThe proof of consistengyhowevey does not require
this condition Define D2f(Xy,...,Xq) = Di q02f(x)/92x and [VGy(t),
VG,(1)] = [dGy(1)/dt, dG,(t)/dt]. Let (K * K);(u) = [K(W)K(w + u) X

w' dw, a convolution of kernel functiongZ.« = [(K % K)o(u)u?du, and||K |3
denotef[K?(u) du. The asymptotic properties of the feasible instrumental vari-
able estimates if3.14) are summarized in the following theoremhose proof

is in the Appendix Let x3(Ya,2Z,) = E[ed[X = (Ya, Z,)] and ka(Ya, 2,) =
El(e? — 1)%|% = (Ya» Z4)]. A © B denotes the matrix Hadamard product

THEOREM 1 Assume that conditions A1-A6 hold. Then,

VRRLG, (Vo) = @a(Ya) — B,1 -5 N[0, 35(y,)], where

2

B — h_ 2D2
a(Ya) 2 MK @a(ya)

h?2
+ 2 [ ntacD%e, () + uiDo, (2,

O [VG(M(Y,, 2,)),VG, (v (Ya, 2,))] P, (2,) dZ,

g° P.(Z,)
+ > Mﬁf {szg(zg) - m sz(ya,zg)] H,(z,)dz,,

dz,

; i a mQ(ZQé)UQz(Zg)
SIS pa(z_a)[ e ]

P(Yas Zo) | M, (Z4)0,(2,) vi(z,)

Pi(z,)

+ (K % K)|2
IC Jol3 0(o,2,)

VG, (m)%v (VG,VG,)(k3v%?)
(VGmVGU)(KSUS/Z) VGU(U)2K4U2

1(ya,zg)dzg.

Remarks

1. To estimate[m,(Y,),v.(Y.,)]T we can use the following recentered
estimates ¢,(y,) — ¢, where¢ = [, 6,] = (1/N)[Z, Y, 2t 2] " and
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& =Yy, — M(x,). Becauset = ¢ + Op(l/\/ﬁ), the bias and variance of

[M.(Ya),0a(Ya)] " are the same as those @f(y,). Fory = (yi,..., Ya),
the estimates for the conditional mean and volatility are defined by

a=1

d
[m(y),o(y)] = [Fm{—(d — Dt X %(n)},

d
Fu{—(d—l)éﬁ ) saaz(ya)”.

Let VF(y) =[VF,(m(y)),VF,(v(y))] . Then by Theorem 1 and the delta
method their asymptotic distribution satisfies

Vnh[m(y) — m(y) — by (y),5(y) — v(y) — b,(y)] T % N[0,3*(y)],

where[by(y),b,(y)]T = VF(y) © 39_1 Ba(Y.) and3*(y) = [VF(y) X
VE(y) "] © [Z5(yy) + ... + 24(yy)]. It is easy to see that,(y,) and
¢s(Yyp) are asymptotically uncorrelated for anyandg and that the asymp-
totic variance of their sum is also the sum of the varianceg, ¢¥,) and
®5(Yp)-

2. The first term of the bias is of standard faradepending only on the sec-
ond derivatives as in other local linear smoothige last term reflects
the biases from using estimates for density functions to construct the fea-
sible instrumental variabl@, (y;—.)/P(X;). When the instrument consist-
ing of known density functi6nspg(yt,a)/p(xt), is used in(3.13), the
asymptotic properties of instrumental variable estimates are the same as
those from Theorem 1 except that the new asymptotic bias now includes
only the first two terms oB,(y,).

3. The convolution kernelK * K)(-) is the legacy of double smoothing
in the instrumental variable estimation of “generalized” additive
models because we smoofls,,(M(-)),G,(7(-))] with m(-) and &(-)
given by (multivariate local linear fits When G, (-) is the identity
we can directly smootly instead ofG,,(M(x;)) to estimate the com-
ponents of the conditional mean functiomhen as the following
theorem showsthe second term of the bias &, does not ariseand
the convolution kernel in the variance is replaced by a usual kernel
function

Suppose thag,(t) = F,(t) = tin (1.2) and(1.3). In this casethe instrumen-
tal variable estimates af,(y,) can be defined in a simpler vaalyorgoaA(ya) =
[Ma(Ya),Va(Ya)] = [Cm + Ma(Ya), C + va(Ya)], we define[M,(Ya), Va(Ya)]
by the solution to the adjusted-kernel least squard8.itB) with the modifica-
tion that the(2 X 1) vector 2, is replaced by y,,82] ", where§g, is given in
step | in Section A. Theorem 2 shows the asymptotic normality of these esti-
mates The proof is almost the same as that of Theorem 1 and thus is omitted
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THEOREM 2 Under the same conditions as Theorem 1,
(i) Vnh[M,(Y,) = Ma(Y.) — bT'] % N[0,07(y,)], where

h2 gz
b (Y,) = > w&D?m,(y,) + B &
>< f sza(za)_ MDZp(ycwza) ma(za)dza’
T P(Yar Ze) R
p2(z,)

o (Ya) = [KI3 [M2(z,) + v(Ya, 2,)]d2,

P (Vs Zy)
and
(i) VRV, (y,) = Va(ya) — b2] -3 N[0,02(y,)], where

2 2

h g
by (y,) = ,U«KDZU (Ya) + ?Mﬁ

X Hsza(za)— %sz(ywza) v,(2,) dz,,

Cl’ CY

20(Ya) = HK”zf oy v2(2g) + k4(Ya 2,)0% (Y 2,)] d2,.

Although the instrumental variable estimators achieve the one-dimensional
optimal convergence ratéhere is room for improvement in terms of variance
For examplecompared with the marginal integration estimators of Linton and
Hardle (1996 or Linton and Nielsen(1995, the asymptotic variances of the
instrumental variable estimates fox(-) in Theorems 1 and 2 include an addi-
tional factor ofm3(-). This is because the instrumental variable approach treats
n = my(X,) + ¢ in (2.6) as if it were the error term of the regression equation
for my(-). Note that the second term of the asymptotic covariance in Theorem 2
is the same as that in Yang et 61999, where the authors only considered the
case with additive mean and multiplicative volatility functio$he issue of
efficiency in estimating an additive component was first addressed by Linton
(1996 based on “oracle efficiency” bounds of infeasible estimators under the
knowledge of other component&ccording to this both instrumental variable
and marginal integration estimators are inefficjénit they can attain the effi-
ciency bounds through one simple additional sfeflowing Linton (1996 2000
and Kim et al (1999.

5. MORE EFFICIENT ESTIMATION
5.1. Oracle Standard

In this section we define a standard of efficiency that could be achieved in the
presence of certain informatipand then we show how to achieve this in prac-
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tice. There are several routes to efficiency hetepending on the assumptions
one is willing to make abouw;. We shall take an approach based on likelihood
that is we shall assume that is i.i.d. with known density functiorf like the
normal ort with given degrees of freedanit is easy to generalize this to the
case wherd contains unknown parametetsut we shall not do so herdt is
also possible to build an efficiency standard based on the moment conditions in
(1.1)—(1.3). We choose the likelihood approach because it leads to easy calcu-
lations and links with existing work and is the most common method for esti-
mating parametric ARCHGARCH models in applied work

There are several standards that we could apply. kérst suppose that we
know (Cm, {mg(+) : B # a}) and(c,,{v,.(:) : @}); then what is the best estimator
we can obtain for the functiom, within the local polynomial paradigm? Sim-
ilarly, suppose that we knoe, {m,(-) : a}) and(c,,{vg(-) : B # a}); then what
is the best estimator we can obtain for the functig®? It turns out that this
standard is very high and cannot be achieved in praciistead we asksup-
pose that we knowcy, {mg(-) : B # a}) and(c,,{vg(-) : B # a}); then what is
the best estimator we can obtain for the functioms,v,)? It turns out that this
standard can be achieved in practicet 77 denote—logf(-), wheref(-) is the
density function ok;. We usez; to denote(x;, y;), wherex; = (Yi_1,..., Vi_q) =
(Yt—a» Yi—a)- FOr 60 = (64,6p) = (am, a,, bm, b,), we define

1#(0,v.) = 1*(2:0,7.) Ye — Fm(')/la(yt—a) +am+ bn(View — Ya))
Y la = ; s o =TT
10,y 0,y Fvl/z(’)’Za(yt*a) +a,+b,(Vi—y — Ya))

1
+ E Iog FU(YZa(ytfa) + av + bv(ytfa - ya))’

It(g’ya) = |(Zt;0’7a) = Kh(ytfa - ya)l*(zt;e’YQ)v (515)

wherey,(Yi-a) = (Y1a(Yi-a)s Y2a(Yi-a)) = (Cm + My(Yi-a), G + 04(Yi-a)) =
(e + Egm Mg(Yi—p), C + Zngﬁ(yt,ﬁ)). With 1,(6,v,) being the(nega-
tive) conditional local log likelihoodthe infeasible local likelihood estimator
6 = (Am, 4,,bm, b,) is defined by the minimizer of

Q) = X 16,7,
t=d+1

wherey2(-) = (y2,(-), ¥2.(-)) = (¢ + m2(-),c2 + v2(-)). From the definition
for the score function

N*(z;0,v,)
Y 0’ (23 = s* Z ;0’ o = b
S(0,7,) (z;0,74) 20

l(z;6,va)
$(0,7) = S(230,7,) = — =,
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the first-order condition fo# is given by

. 1 .
OZS“(H’%?):H > s(6,72).

t=d+1

The asymptotic distribution of the local maximum likelihood estimator has been
studied by Avramidig2002. Fory = (yi,..., Ya) = (Ya» Ya), define

V, =V, (Y,) = fv(y;eo,véf)p(y) dy,;

D,=D(y,) =fD(y;00,72)p(y) dY,

where
V(y;0,v,) = E[%(2;0,7,)S" (230, 74) " |X =Y];
D(Y;0,7.) = E(VoS (230, 7,) [ X = Y).

With a minor generalization of the results by AvramidZ002 Theorem 2,
we obtain the following asymptotic properties for the infeasible estimators

ea(y,) = [MI(y,), 00" (Y )] " = [m 8,1 . Let oS(Y,) = [Ma(Va),va(Ya)] T,
that is ¢5(Y,) = @a(Y.) — C, Wherec = (Cy, C,).

THEOREM 3 Under Assumption C in the Appendix, it holds that
VNR[EM(y,) = 02(Y,) — B, 1 -5 N[O, Q4(y,)],

where B, = 3h2u&[m;(y,),v)(y,)]" and Q. (y,) = |K|3D,*V, D,

A more specific form for the asymptotic variance can be calculd&edexam-
ple, suppose that the error density functiéf), is symmetric Then the asymp-
totic variance of the volatility function is given by

J{fgz()')f(y) dY}(VFU/FU)Z(GU(v(y)))p(y) dy,

w22(ya) = 29
U {fq(y)f(y) dy}(VF,,/FU)Z(G,,(v(y)))p(y) dya}
whereg(y) = f'(y)f ~*(y)y + 1 andq(y) = [y*f"(y)f(y) + yf'(y)f(y) —
y2f'(y)?1f2(y).

When the error distribution is Gaussjame can further simplify the asymp-
totic variancethat is

-1
w11(Y,) = le(y)VFé(Gm(m(y)))p(y) dya] ;o @p= 0, =0;

-1
0o Y,) = ZUU2(y)VF3(GU(v(y)))p(y) dya] .
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In this caseone can easily find the infeasible estimator to have lower asy-
mptotic variance than the instrumental variable estimdtorsee thiswe note
that VG,,, = 1/VF,, and |[K|3 = |(K % K),|2 and apply the Cauchy—Schwarz
inequality to get

2,
<o kel [ v iy, )y,

a’a

-1
= Kl|%[fvl(Ya’Ya)VFn%\(Gm(m))p(ya’Ya) dYa:| *

In a similar way from k, = 3 due to the Gaussianity assumption grit fol-
lows that

p2(z,)
P(Ya»Z,)

-1
_ z[ f v 2(Y)VF2(G, (b (y)p(Y) d_ya] .

I(K # K)olZ k4 VG, (0)202(Y,, Y,) dy,

These together withk; = 0, imply that the second term & (y,) in Theo-

rem 1 is greater thaf?’(y,) in the sense of positive definitenessd hence
3(y,) = QL(y,), because the first term & (y,) is a nonnegative matrix

The infeasible estimator is more efficient than the instrumental variable estima-
tor because the former uses more information concerning the mean-variance
structure We finally remark that the infeasible estimator is also more efficient
that the marginal integration estimator in Yang et(4P99 whose asymptotic
variance corresponds to the second ternx pfy, ); see the discussion follow-

ing Theorem 2

5.2. Feasible Estimation

Let (Cm,{Ms() : B # a}) and(C,,{0s(-) : B # a}) be the estimators fror(8.12)
and(3.13) in Section 3 with the common bandwidth parametey chosen for
the kernel functiorK(-). We define the feasible local likelihood estimatir=
(ar, &, b* bj) as the minimizers of

Qn(e): E It(evya)’
t=d+1

Where’}’a ) (yla( ) 7204( )) (Cm + mg(')acu + 5(}()) andlt(') iS given by
(5.15), with the additional bandwidth parameterpossibly different fromh,.
Then the first-order condition fof* is given by

1

t d+1

Let ¢2(y,) = (Mi(Y,),05(y,) " = (&5,485)". We have the following result
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THEOREM 4 Under Assumptions B and C in the Appendix, it holds that
Vnh[gi(y.) = €' (ya)] 5 0.

This result shows that the oracle efficiency bound is achieved by the two-
step estimator

6. NUMERICAL EXAMPLES

A small-scale simulation is carried out to investigate the finite-sample proper-
ties of both the instrumental variable and two-step estimaine design in
our experiment is additive nonlinear ARCH:

Yo = [0.2 + v3(Yi—1) + v2(Vi2)sy,
vi(y) = 0.4dy(12y])[2 — Dy (Y)]Y?
vo(y) = 0.4{1/A/1+ 0.1y2 + In(1 + 4y?) — 1},

wheredy (-) is the(cumulative standard normal distribution function aadis

i.i.d. with N(0,1). Figure 1(solid lines depicts the shapes of the volatility func-
tions defined byv,(-) anduv,(-). Based on the preceding modele simulate

500 samples of ARCH processes with sample size 500 For each realiza-
tion of the ARCH processwe apply the instrumental variable estimation pro-
cedure in(3.13) with r, = y? to get preliminary estimates of,(-) andv,(-).
Those estimates then are used to compute the two-step estimates of volatility
functions based on the feasible local maximum likelihood estimator in Section
5.2, under the normality assumption for the erroféie infeasible oracle esti-
mates are also provided for comparisombe Gaussian kernel is used for all
the nonparametric estimateand bandwidths are chosen according to the rule
of thumb(Hardlg 1990, h = ¢,std(y,)n~Y“@*9 wherestd(y;) is the standard
deviation ofy,. We fix ¢, = 1 for both the density estimaté®r computing the
instrumentsW) and instrumental variable estimates(8113) andc,, = 1.5 for

the (feasible and infeasibjdocal maximum likelihood estimatoffo evaluate

the performance of the estimatovge calculate the mean squared ertogether

with the mean absolute deviation error each simulated datunfior o = 1,2,

1 50 1/2
ea,MSE: {S_OiE:L[Ua(yi)_i}a(yi)]z} )

2|U (yl Z/}z:y(yi)|’

a MAE — 50| .
where{y;,.., yso} are grid points ori—1,1). The grid range covers about 70%

of the observations on averag@ble 1 gives averages ef yse’s ande, wae’'s
from 500 repetitions
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TaBLE 1. Averages MSE and MAE for three volatility
estimators

€1, Mse €2 MsSE €1 MAE € MAE

Oracle est 0.07636 008310 006049 006816
IV est 0.08017 011704 006660 009725
Two-step 008028 008524 006372 007026

Table 1 shows that the infeasible oracle estimator is the best out of the three
as would be expected’he performance of the instrumental variable estimator
seems to be reasonably go@dmpared to the local maximum likelihood esti-
mators at least in estimating the volatility function of the first lagged variable
However the overall accuracy of the instrumental variable estimates is improved
by the two-step procedurahich behaves almost as well as the infeasible, one
confirming our theoretical results in TheoremHEor more comparisons-ig-
ure 1 shows the averaged estimates of volatility functiovizere the averages
are madeat each gridover 500 simulationdn Figure 2 we also illustrate the
estimates for three typicétonsecutivgrealizations of ARCH processes

NOTES

1. The extension to allow thE transformations to be of unknown functional form is consider-
ably more complicatedsee Horowitz(2001).

2. Note the contrast with the marginal integration or projection mettodhis approach one
definesm; by some unconditional expectation

my(X;) = E[m(Xq, Xp)W(X;)]

for some weighting functioWV that depends only oKX, and that satisfies

E[W(X)] = 1; E[W(X)my(X;)] = 0.

3. If instead we take

~ Pu(Xp)pa(Xs)
W(X) = T o)

this satisfiesE(W|X;) = 1 andE(Wn| X;) = 0. However the termp,(X;) cancels out of the expres-
sion and is redundant

4. For simplicity we choose the common bandwidth parameter for the kernel funktionin
(3.12) and (3.13), which amounts to undersmoothiriépr our choice ofh) for the purposes of
estimatingm. Undersmoothing in the preliminary estimation of step | allows us control over the
biases from estimatingh and v. In addition the convolution kernel function in the asymptotic
variance of Theorem 1 relies on the condition of the same bandwidtk for
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APPENDIX

A.1. Proofs for Section 4. The proof of Theorem 1 consists of three stepth-
out loss of generality we deal with the case= 1; here we will use the subscript for
expositional conveniencéo denote the nuisance directiorhat is p(Yk—1) = Pa(Yk—1)
in the case of density functiorFor component functionsmy(yi_1), v2(yk_1), and
H,(yi_1) will be used instead ofny(Yi_1), v1(Yk_1), and Ha(yi_1), respectively We
start by decomposing the estimation errapg(y:) — ¢1(y1), into the main stochastic
term and biasUse X, = Y, to denoteX,, = Y,{1 + 0y(1)} in the following Let veq X)
denote the vectorization of the elements of the maxrixlong with columns
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Proof of Theorem 1.

Step |. Decompositions and Approximation8ecauses;(y,) is a column vectqr
the vectorization of equatio¢8.14) gives

¢1(y) = [, ® e[ (YTKY )"*](1,® YT K)vedR).

A similar form is obtained for the true functiom(y1),

[o®@ el (YIKY )71, ® YIK)vedie] (1) + Y-Vei (y1)),
by the identity

@1(y;) = vecle] (YTKY )Y IK[wps (y1) + Y-Vei (v},
because

e (YIKY_)1YIKy =1, e (YIKY_)1YIKY_=0.

By defining Dy, = diag(1, h) andQ, = D, 1Y KY _ D%, the estimation errors are
¢1(y1) —ealyr) = [ ® & Qi ]m,

where

7= (I, ® Dp YT K)ved R — (1) = Y-Vei (yy)].

Observing

18 Y1 =¥\’
== > KM%y 1= VD[R @1(¥) — (Vier — YD)V (V)] ® (N—) ,
N k=d+1 h

where Kr‘f"k(y) = Kn(y)W, it follows by adding and subtractinge = ¢1(Yi_1) +
Hz(yk,]_) that

_1 3 Wi Yeer V1"
== 2 KM~y et Ho (Y- I ® (L, ——
N a1 h

10
+ - 2 KV (Yie1 = YD Le1(Yie1) = @1(Y1) = (Yker = Yo) Ver(Yh)]

Nk=d+1

3/k—1_yl>T

® (12
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As a result of the boundedness condition in AssumptiontA2 Taylor expansion applied
to [Gn(M(Xy)), G, (D (xy))] at[m(xy),v(xc)] yields the first term ofr, as

1 = T
et S ki wlae(n i)
k=d+1

Whel’eﬂk = r& + I’kz + Hz(ykfl),

= {VGr(Mm(x)) [M(x,) — M(x)],VG, (v (%)) [5(x) — v (x)]} T,
1
re= 5 {D2G(m* (x ) [M(x) — M(x,)]% D?G, (0 * () ) [0(X) — v (X )]%}T,

andm*(x,)[v*(x)] is betweenm(x,) [ (x)] andm(x,)[v(Xy), respectively. In a sim-
ilar way, the Taylor expansion of;(yx—1) aty; gives the second term of, as

hz 1 2 Y1~ Y Y1~ Y
Son = ? E Z Kh (V-1 y1)< b 1h 1) [D2¢1(y1)®< b 1h 1> ]
k=d+1

X (1+ 0,(2)).

The term7, continues to be simplified by some further approximatidnsfine the
marginal expectation of estimated density functigps) andp(-) as follows

P(Y-1, Yi—2) = ng(Zl = Y- Lg(Zo = Yk—2)P(24, 2,) dz, dz,,

Po(Y-2) = ng(Zz — Yk-2)P2(22) dz.

In the first approximationwe replace the estimated instrume¥it, by the ratio of the
expectations of the kernel density estimates y«—1)/p(x) and deal with the linear
terms in the Taylor expansionghat is 7, is approximated with an error an;(l/\/ nh)

by tln + t2n
1 P2(Yk-1) [ ( Yi—1 Y1> ]
t n =- K ( -1 - = rl ) b
1 n k:§+1 n(Yke1 — Y1) p(x) k® h
10 Po(Yi-1) AN
tn=" 2 Kui(Yko1— Y1) [ 2(Yk-1) ® (L S l) ],
N k=d+1 P(X) h

based on the following results

(i) (1/m) Zk_ge1 Kn(Yier = YOIV /DI @ (L (Yer — y/h) 7] =
0,(1/N/nh),

(i) (1/n)2k a+1 Kn(Yker — YO P2(Yi- /(%) — pz()’k 1)/p(Xk)][H2(Yk ) ®
(L (Y1~ y0) /) 7] = 0,(1/v/nh),

(iii) (1/n)2k a+1 Kn(Yker — Y1)[p2(Yk /P(x) — pz(}’k—1)/p(xk)][r|<1 ® (1
(Vi1 = y2) /) 1= 0,(1/<nh).
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To show (i), consider the first two elements of the terfor example which are
bounded elementwise by

Po(Yi—1)
S Ky =¥ p(—xkk) D2G(M(x)) (1,

Sl

Yk—1— )’1)T
h

NI

ml?x‘ M(x) — mM(x)]?

= 0,(1/+/nh).

The last equality is direct from the uniform convergence theorems in Ma986 that
max|M(x,) — m(x,)| = O,(logn/v/nh?) (A.1)
t

and(1/n) ZKn(Yi-1 = Yo [ P2(Yi- 1)/B(Xi)]1D2Grn(M(x1)) (1, (Vi1 — Y1) /) T = Op(2).
The proof for(ii) is shown by applying Lemma.A, which follows The negligibility of
(iii) follows in a similar way from(ii), considering(A.1). Although the asymptotic prop-
erties ofsy, andt,, are relatively easy to deriyadditional approximation is necessary
to maket;,, more tractableNote that the estimation errors of the local linear, fitg x, ) —
m(xy), are decomposed into

Kn(X; — %
M vY2(x,) &, + the remaining bias

from the approximation results for the local linear smoother in JdDasies and Park
(1994. A similar expression holds for volatility estimates(x,) — v(xy), with a sto-
chastic term of1/n) 2, [Kn(X — X)/P(X)]v(X,)(eZ — 1). Define

_ i K(Yi—1 = Y1 /MK = X /h) P2(Yi—1)
Jk,n(xl) = nhd % p(X|) p()(k)

x [diag(VGm,VGu) ® (1, Yk%_yly]

and letJ(x) denote the marginal expectation &f, with respect tax,. Then the sto-
chastic term oty after rearranging its the double sunsapproximated by

:'l"

.=
in n

2 Jx)[@Y2(x) &, 0(x) (e = 1) T @ I5]
because the approximation error frattX;) negligible that is

1 _
o Zuk,n — DV2(X) e, v(X)(ef = 1) @ 1,17 = 0,(1//nh),
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applying the same method as in Lemma.AA straightforward calculation gives

P2(Uy)

_ 1
J(x) = th(Ul Y1 /MK (up =y 1/h)f ha- 1 K(yi-y — up/h) ——— )

X [diag(VGm(u),VGU(u)) ® (1, t ; y1>T ] du, du,

P2(Yi-1)
p(x)

~EJK h)K h
= (uy — y1/MK(u; —y,_1/h)

X [diag(VGm(ul, Yi-1),VG, (U, Y1) @ (1, u, ; yl>T ] du,

(Yi-1)
_ P2 YI 1 [diag(VGm(YL}'I1)’VGU(yl’y'1))

p(x)
®<(K*K)O<y' 1h >(K K)1<y| 1h Y1>> ],

where

(K*K)i<y' lh yl) :JW‘lK(Wl)K<w1+y'_lT_yl> dw.

Observe thatK * K); ((yi_1 — y1)/h) in J(X,) is actually a convolution kernel and behaves
just like a one-dimensional kernel functionf ;. This means that the standard method
(central limit theorem or law of least numbegi®r univariate kernel estimates can be
applied to show the asymptotics of

Yi-i— Y1
P2(¥i-1) |: VGm(Y1, Yi-1)vY2(X)) g :| (K*K)()( h >

p(x;) VG, (Y1, Yi-)v(X) (e — 1) (K %K) (yl 1 Y1>
U h

. 1
fin=—
ST

If we defines;, as the remaining bias term of,,, the estimation errors of1(y;) —
¢1(y1) consist of two stochastic termd, ® e Q1] (fy, + fon), and three bias terms

[1>® e Qy*1(Son + Sin + S2n), Where

(Y1) Yier = Y1\"
E Kn(Yk-1 )&)ﬁ["'z(}ﬁ(fl)@(]ﬂ%) ],

n K=d+1 p(Xy)
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Step Il. Computation of Variance and Biaswe start with showing the order of
the main stochastic term

whereéy = &y + &ox,

V-1~ Y1>
h ,

K =

Po(Yier) | [ VGm(Ya Y )v ™2 (X e ] % (K * K)o(

P(Yi- 15 Y1) | VG, (y1, Yie ) v (X)) (85 — 1) 0

o =

- K( Yi—1 y1>
pz(}/k—l) My (Y1) h h
P(Yi—15 Yi—1) L vo(Ye-1) 1— K( Yi-1— Y1>< Yi-1— Y1>
h h h

by calculating its asymptotic variancBividing a normalized variance df; into the
sums of variances and covariances gives

var(\/nht*) = var< > §k> E var(é,) + — EE cov(éy, &)

~ n—k
= hvar(§,) + % [ T] h{cov(¢q, a0

where the last equality comes from the stationarity assumption
We claim that

(@ hvar(é) — 21(yw),
(b) 2kl — (k/n)]hcov(&q, Eq+k) = 0(1), and
(¢) nhvar(fy) — 31(y1),

where

(y2) { p2(z,) |: VGin( Y1, 22)v (Y1, Z) (VG VG,) (k3-v¥?)(yy, Z) :|
_ < Z
e P(Y1, Z2) | (VG VG, ) (3-0¥2)(Y1,25) VG, (Y, 20)2ka(V1, 2)02(Y1 25) |

(K K)ol3 0
® 0 0

p%(zz)
P(Y1, 25)

IKI3 0

H) d .
Hy(2,)H7 (2) dz ® 0 sz(u)uz du
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Proof of (a). Noting E(£1) = E(£2k) = Oaxy andE(£3£2,) = Oaxa,
hvar(é,) = hE(¢é ) + hE(ExE2)

by the stationarity assumptioApplying the integration with substitution of variable
and Taylor expansigrthe expectation term is

p2(z,) VG Y1, Z2)?0 (Y1, Z) (VG VG, ) (K3:0¥2) (Y1, Z)
P(Y1,Z2) | (VG VG,) (k3:v¥2) (Y1, 2Z5) VG, (Y1, Z2)Ka( Y1, Z2) 02 (Y1, Z5) :

(K K)l3 0
® 0 0

P3(z,) |: m3(z,) mz(zz)vz(zz):| i
2

hE(£wé1d) = {

and

hE(£x€2) =
(éak€2k) P(Y1, 2) | My(2,)v,(2,) v3(25)

IKIZ 0

® +0(1),

0 fKZ(u)u2 du
where k3(y1,22) = E[ed|% = (Y1, 22)] and ka(y1, o) = E[(e? — 1)?[x = (y1,22)].
| ]

Proof of (b). BecauseE(&yéq))ljx = E(éwés))lj+k = 0, COV(€qr1,Edriin) =
coV(éog+1, E2d+1+1). By settinge(n)h — 0, asn — oo, we separate the covariance terms
into two parts

c(n) k n’ k
E [1_ _]hCOV(§2d+1,§2d+1+k) + 2 [1_ _]hCOV(§2d+1,§2d+1+k)-
k=1 n k=c(n)+1 n

To show the negligibility of the first part of the covariancesnsider that the domi-
nated convergence theorem used after Taylor expansion and the integration with substi-
tution of variables gives

|coV(é244 15 E2a 141 |

P(Y1, Ya» Y1, Ya+k)
Pa2(Val Yd)pl\Z(y1|Yd+k)

fHZ(Yd)HZT(Yd+k) d(}’d,}’mk)
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Therefore it follows from the assumption on the boundedness condition in Assump-
tion A2 that

|COV(€24+15 E2d+1+k) | = EIH2(Ya) [EIHS (Ygui) |

J P(Y1, Yas Y1r Yak)

10
d(yq, ) ,
P2 (YalYa) Para (Yl Yars) - 20 Yo ®{0 0]
EA*,

whereA = B meansa;; = by, for all element of matrice# andB. By the construction
of c(n),
c(n)

k
2 [1 - H] hcov(é2q+1, E2d41+k)

k=1
= 2c(n)|hcov(éog 1, 2av146)| = 2¢(N)hA" — 0, asn — co.

Next, we turn to the negligibility of the second part of the covariances
ol k
2 [1_ a]hcov(§2d+l5 Eodi14k)-

k=c(n)+1

Let &), be theith element of¢,, for i = 1,...,4. Using Davydov’s lemmadin Hall and
Heyde 198Q Theorem A5), we obtain

‘ h COV(§i2d+1, f;d+1+k)‘ = ‘COV(%fiZd+1, %fzjd+1+k)|

=8la ][ max E(VRIEL)|™

for somev > 2. The boundedness cE(\/F|§21k|”), for example is evident from the
direct calculation that

EK( yk—l_y1>
£y = P2(Yi) [mz(Yd):| h h
2 p(xy) v2(Ya) 1- K( V-1~ Y1>< Ye—1— Y1> '
h h h

he/ P5(Z,)
1oy ~ v
E(VRER) = iy | e (2| dz,

ho/2 1
=0 ho-1 =0 ho/2—1 )"
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Thus the covariance is bounded by

1 2/v
|hCOV(§2d+1,§:2d+1+k)| = C[W] [a(k)l_z/v]-

This implies

n

k
2 [1 - E] hcov(é,q4 1, é2d414k)

k=c(n)+1

[ee] 1 fee)
=2 Y |hcov(éagi1,é2gr100)| =C [W] > [a(k*?7]
k=c(n)+1 k=c(n)+1

i 1
-c 3 [—hl_z/u]wk)l-%]sc' S ka2,

k=c(n)+1 k=c(n)+1

if ais such that

k®=(c(n) +D*=c()® = =7,

for example c(n)2h=2/# = 1, which impliesc(n) — oo. If we further restricta such

that
2
O<a<1l— -,
v
then

c(n)2h1=2# =1 impliesc(n)2h*~2* =[c(n)h]*"?*c(n)"® =1, fors > 0.

Thus c(n)h — 0 as requiredTherefore

’

n

k
> [1—a]hcov<§2d+l,fzd+l+k>50 2 klar2] -0,

k=c(n)+1 k=c(n)+1

o)

asn goes toco. u

The proof of(c) is immediate from(@) and(b).
Next, we consider the asymptotic biddsing the standard result on the kernel weighted
sum of the stationary serigwe first get

h2
Son > = [DZ0u(y2) ® (4,071,
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because

2 S w220 o @ (1 2220 |

nk d+1

> fKr\wN(zl y1)< h % > [ 401()/1)@( Ty> ]p(z)dz
— 2 — T
= [z = yomea (252 ot @ (1 252) |

h
— 2 — T
- [z (22 oreon ® (1 252) [aa

_ 2 _ T
- [quol(yl) ® th<z1—y1><zl - yl) (L o yl) dzl]

=[D%¢1(y1) @ (1k,0 " 1.

For the asymptotic bias of;,,, we again use the approximation results in Jones.et al
(1994). Then the first component o$;,, for example is

1 pz(Yk 1)
F] % Kn(Yi—1 = Y1) D(x) VGm(m(xy))
11 Kn(X — %) & a2m(x)
X {E EE p(X| Z (y|—a_yk—a)2 aykz_a }

and converges to

h2
? pr(ZZ)VGm(m(yL 7)) [ i D?my(yy) + ng D?my(z,)] dz,,

based on the argument for the convolution kernel given previoAsgonvolution of
symmetric kernels is symmetriso thatf(K * K)o(u)udu= 0 andf(K * K),(u)u?du =
JTwWK(wW)K(w + u)u?dwdu= 0. This implies that

h2
Sin 5 ? fpz(zz){[VGm(m(Y1’ 2,)),VG, (v(y1,22))] T

O [ piakD2@1(y1) + n&D202(2)]} ® (1,0) " dz,.

To calculates;,, we use the Taylor series expansionpafyx-1)/p(X):

By - P2(Yi-1) P(X) 1
2 p%) | PO%
P2 (Y- 1) P(X) 1 p(X) — p(Xy)
= ) - == 1—
[pZ(-yk T }p(xo X[ PP ]
_ P2(Yk—1) B P2(Yi—1) P(X) o)
p(X) P2(Xy) P
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Thus

Po(Yi-1) 7 P2(Yi—1)
= 2 Kn(Yi-1 yl)|: DX D(Xy) }

N=d+1

x[Hz(_ykﬂ)@( Yea )|

p _ P2(z5) pz(zz)][ ( 21_Y1>T]
2 [rz-y| 2 - 22 @ (1252 [paree

F_)z(zz) P2(2,)p(2) Z; =y \"
JKh(Zl [ b(2) 02(2) ] [Hz(zz) ® <L “n > ] p(z)dz

_ pz(zz) pz(zz) Z3—y1\"
_th(Zl )ﬁ)[ 0(2) 0(2) ][Hz(zz)@) <17 h ) ]p(z) dz

Pa(2)p(2)  palz2)P(2)
+f K“(Zl_yl)[ 0’2 P2 ]

X [Hz(zz> ® (L Zl;yl) ]p(z)dz

2
- [ [pa(z otz 02 @ wi,w]

2
_ g_[ % D2p(yy, 2,)Hy(2,) dz, ® (Mﬁ’O)T:|'

Finally, for the probability limit of[1, ® e Q;], we note that
Q,=Dp'YIKY_Dpt= [Qnivj—2(Yis ] )=12

with G = (1/n) Zp_g KW(Ye 1 — y2) (k1 — y1)/h),  for i = 0,1,2, and

4% [z -0 (252 oz 02= [ kv, [ putzo oz
:fK(Ul)Uildulzqia

wherego =1, q; = 0, andd, = ui.
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Thus Q, — [é ;?ﬁ] Qrl— (1/u2) [‘f 2], ande] Q. — e/. Therefore

Bin(y1) = [1>® € Qy*1(Son + Sin + S2n)
2

h
7 i D%i(y,)

h2
X ? f[l’«%*KDzﬁpl(h) + ugD?p,(2,)]
O [VG(M(Y1, 22)),VG, (v( Y1, 22))] T P2(22) dz,

9 9°
+ ? M%poz(Zz)Hz(Zz) dz, — 7 i

X f%sz(yl,Zz)Hz(zz)dzz

+ 0,(h?) + 0,(g?).

Step Ill. Asymptotic Normality df. Applying the Cramer-Wold devigé is suf-
ficient to show

i g D T
D, \/ﬁ%\/ﬁfk%N(QB 318),

for all 8 € R* whereé, = BT &, We use the small block—large block argumésee

Masry and Tjgstheiml997). Partition the sefd,d + 1,...,n} into 2k + 1 subsets with
large blocks of size = r,, and small blocks of size = s, where

qe
r+s,

and[x] denotes the integer part &f Define

jr+s)+r—1 B (j+D(r+s)—1 B
= E \lﬁgt’ w; = 2 \/ﬁ‘ft’ OSJSk_l’
t=j(r+s) t=j(r+s)+r
n ~
Sk = 2 \/ﬁft
t=k(r+s)
Then

1 /K1 k—1 1
D, = ﬁ(]gonj+j20wj+gk)_ﬁ(sn+sn +8).

Because of Assumption Ashere exists a sequeneg — oo such that

a,s,=o(vnh) and a,Vn/ha(s,) -0, asn— co, (A.2)
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defining the large block size as

nh
o) »
an
It is easy to show byA.2) and(A.3) that asn — oo
rn Sn rn
= = = A4
n%O, rn%O, m—>0, (A.4)
and
n
I’_ a(s,) — 0.

n

We first show thaS) andS;” are asymptotically negligibl&’he same argument used in

step Il yields
3 s1 k 3 3
var(o;) = sx var(Vhé,) + 2s >, <1 - g) cov(Vhég, 1,Vhéq. 141) (A.5)
k=1
=$8"3,8(1+0(1)),

which implies

k—1 ns, ns,
ZO var(w;) = O(ks) ~ s, - = o(n),

n n

from the condition(A.4). Next, consider

k—1

k—1 s s
> cov(w;, ;) = > 22> COV(\/ﬁgNi+kls\/ﬁ£Ni+kz),
i,j=0, i,j=0, kj=1lk,=1
i#] i#j

whereN,; = j(r +s) +r. BecausgN, — N, + k; — k| =, fori # j, the covariance term
is bounded by

ZKE > [cov(Vhé Vhé))|

1=1 ko=Kkg+r

=2n Y |COV(Vﬁgd+1’\/ﬁgd+l+j)| =o(n).

j=r+1

The last equality also follows from step. IHence (1/n)E{(S/)2} — 0, asn — co.
Repeating a similar argument f&;’, we get
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1 1 i
SElS* =S [n—k(r + s)lvar(Vhég, )

n—k(r +s) "k

t2— X COV(Vﬁgd+1a\/ﬁgd+l+j)

n =1

= "TS”BTEIB +0(1)
— 0, asn-— oo.

Now, it remains to show1/v/n)S, = (1/4/n) ] 0771 25 N(O, BTELB)
Because; is a function of{gt}t“ffl;{ﬂl that is 7\ 55,5 d-measurablethe Vol-
konskii and Rozanov’s lemmel959 in the appendix of Masry and Tjgstheith997)

implies that with §, = s, —d + 1,

‘ [exp<lt T 2 E 77,)} - :(]:[:E(exp(itnj ))‘

= 16ka(3,—d+1) = :sn a(s,) = rﬂa(f%) =o0(1),

n

where the last two equalities follow froifA.4). Thus the summandgy;} in S, are
asymptotically independeribecause an operation similar (4.5) yields

var(n;) = r,8 "3, 8(1+ 0(1))

and hence

1 = nrn T TN *
Var(vﬁ >_ 2 (771 n — B73:8(1+0(1) > BT3B.

Finally, because of the boundedness of density and kernel functibesLindeberg—
Feller condition for the asymptotic normality &, holds

1 k—1
EEO E[n?1{|n| > VnéyB 21811 -0

for everyé > 0. This completes the proof of step .l

From e/ Q;1 % e/, the Slutzky theorem impliesVnh[l, ® e Q;]t: %
N(0,%7), wheres§ = [1, ® e/ 1341, ® ei]. In sum Vnh(¢,(y1) — e1(y1) — By)
N(0,21), with 23(y,;) given by

X[ VGm( Y1, 22)?v (Y1, Z) (VG VG, ) (k3-0¥?)(y1,25) .
(VG VG,) (k3-v¥?)(y1,25) VG, (Y1, 25)*k4(Y1, 22) 0% (Y1, 25)
pE(z: IK[ZH2(22)H7 (25) dz,. u
p(Y1, 2)
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LEMMA A .1. Assume the conditions in Assumptions Al and A4-A6. For a bounded

function, K-), it holds that

(@) rin = (Vh/NN) SR g Kn( Vi1 = Y1) (P2(Yk-2) — P2(Yk-2))F (X)) = 0p(1),
(b) 120 = (Vh/VM) ZL_aKn(Vies — Y (P(X) = P(xi)) F (%) = 0p(1).

Proof. The proof of(b) is almost the same &sg). Therefore we only showa). By
adding and subtracting k(yi—2| Yk—2), the conditional expectation afg(yi—2 — Yk-2)
givenyy—» in ry,, we getry, = £1n + €20, Where

1
2

1n

g gd Kn(Yke1 = YO F () [Lg(Yi—2 = Yk—2) — El\k(Y|—2|Yk—2)],

1 _
2n = 5 % 2 Kn(Yk—1 = YOF X [L (V-2 Vi 2) = Pa(Yi—2)]-

5

Rewriteé,, as

_2 > Kn(Wie1 = YOF X[V s—2| Yee2) = Pa(Yi-2)],

K s<k*(n)
1 - ~
+ = g > Kn(Wie1 = YD) F (X[ Ckr s Vier s—2l Vi 2) = Pa(Yie—2)],
s=k*(n)
wherek*(n) is increasing to infinity a: — oco. Let
B = E{Kn(Yk-1— yl)F(Xk)[Ek+s\k(yk+s—2|yk—z) = Pa(Y—2)1}

which exists as a result of the boundednesE ;). Then for a largen, the first part of
&on is asymptotically equivalent t@l/n)k*(n)B. The second part of,, is bounded by

1 n
SUP | Prssk( Yirs—21 Yie2) = P(Yi—2)| n % Kn (V-1 = YDIF (x|

s=k*(n)

= p ™0, (1),

Therefore Vnhé,, = O,(VR/vn)k*(n)) + O,(p ¥ ™nh) = 0,(1), for k(n) =
logn, for example

It remains to showq, = op(l/\/ﬂ). BecauseE(£,,) = 0 from the law of iteration
we just compute

1 n n n n
2 2 2 E Z E{Kh(Vk-1 = Y Kn(Yi—1 — Y)F(X)

nN" i iz

E(¢f) =

FOXO[Lg(Yi—2 = Yie2) = Ly Ye—2)]

X [Ln(Yj—2 = ¥i—2) — I:j|i (yi—2)1}
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(1) Consider the cask=i andl # j.

1

4

EEE{Kh (Yke1 = Y)F2(x)

1#]

XM:

=)

X [Lg(%—2 = Yie2) = Lind Y 2)I[Lg(Yi—2 = Yi2) = L Yie2)1}
=0,
becausgby the law of iteration and the definition df k(Yk—2),
Eii[Lo(¥j—2 = Ye2) = Ljj(Yi2)]
= EnlLo(¥—2 = Yk2) = Lj(Yie2)] = EilLg(Yi—2 = Yie2)] = L i Yi—2)
=0.
(2) Consider the caske= j andk # i.

v 2 2 2 E{Kn(Yk-1 = Y)Kn(Yi—1 = YF(X)F(x;)

k?&l
X [Lg(Yim2 = Yk2) — EI\k(Yk—Z)][Lg(YI—Z —VYi2) — El\i(}’i—z)]}-
We only calculate
1

4%

N7 i

> 2 E{Kn(Yie1 = YIKn(Yics = YLg(Yi2 = Yi2)

X Lg(Yi—2 = Yi-2) F(X)F (X))} (A.6)

because the rest of the triple sum consists of expectations of standard kernel esti-
mates and i©(1/n). Note that

EioLlg(Yi—2 = Ye2)Lg(Yi2 — ¥i—2)
= (L#L)g(Ye2 = Yi—2) Pk i) Yi—2| Ye—25 ¥i—2)s

where(L * L)g(-) = (1/9) fL(u)L(u + -/g) is a convolution kernelThus (A.6)
is

1 n n n
v DIDY 2 E[Kh (V-1 = YKn(Yiog =YL L)g(Yiz — ¥i2)

4
N" k=i

1
X F(Xk)F(Xi)pll(k,i)(}/k72|}/k—27Yi—z)] = O<H>
(3) Consider the case with=k, j = m

i4 g > E{KA(Yie1 — Y)FZ(Xk)[Lg(M—z —Yk-2) — EIlk(Yk—z)]z}

-{i7rg) i)
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(4) Consider the cask# i, | # j:

1 n n n
_22 2E{Kh(Yk—l_y)Kh(Yi—l_Y)F(Xk)F(Xi)

n
4
N" ki

X [Lg(}ﬁ—z —Yk2) — E||k(}/k—2)][|-g(}/j—2 —Yi2) — Ej|i(¥i—2)]}
= 07
for the same reason as (). n

A.2. Proofs for Section 5. Recall thatx; = (Vi—1,..., Yt-d) = (Yt-as Y1-o) @Ndz; =
(X, Y¢). In a similar contextlet X = (ys,.., Yd) = (Va, Vo) @ndz = (X, yo). For the score
functions*(z, 6, v.) = 5*(z,0, v.(Y.)), we define its first derivative with respect to the
parametep by )

ds*(z,0,vy,)

VGS*(Zye’ya) = 90

and uses*(6,v,) and V,s*(6,y,) to denoteE[s*(z,6,y.)] and E[V,s*(z,0, V)],
respectively Also, the score functiors*(z,6,-) is said to be Frechet differentiable
(with respect to the sup norih|..) if there is S*(z,6,y,) such that for ally, with
Ve — ¥2|.. small enough

I8*(2,0,7,) — 5" (2,0,v2) — S*(2.0,72(Y)) (Ve — ¥ = b(D] v, — 2|3 (A7)

for some bounded functidn(-). The termS*(z, 6, y?) is called the functional derivative
of s*(z,0,v,) with respect toy,. In a similar way we definev,S*(z,6,y,) to be the
functional derivative of5*(z, 0, y,) with respect toy,,.

Assumption B. Suppose that(i) V,s*(6,) is nonsingulay (i) S*(z6,v4(Ya))
and Vv, S*(z,0,v.(Y.)) exist and have square integrable envelofes) and ?78*(-),
satisfying

1S°(2,0,7a(y ) = S°(2),  [V,5%(2,0,7.(y) =V, 5 (2);

and(iii) boths*(z,6,v,) andS*(z,6,y,) are continuously differentiable i with deriv-
atives bounded by square integrable envelopes

Note that the first condition is related to the identification condition of component
functions whereas the second concerns Frechet differentialfilipyto the second order
of the score function and uniform boundedness of the functional derivafigsthe
main results in Section,®we need the following conditionsSome of the assumptions
are stronger than their counterparts in Assumption A in Sectidre#thy andh denote
the bandwidth parameter used for the preliminary instrumental variable and the two-
step estimatesespectivelyandg denote the bandwidth parameter for the kernel density

Assumption C.

1. {y,}i2, is stationary and strongly mixing with a mixing coefficiemtk) = p 7K
for someB > 0, andE(&'x,) < oo, wheres, =y, — E(y;|%,).

2. The joint density functionp(-), is bounded away from zero argitimes con-
tinuously differentiable on the compact suppodts= X, X X4, with Lipschitz
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continuous remaindershat is there existsC < oo such that for allx, x’ € X,
IDf#p(x) — Dp(x’)| = C|x — x'|, for all vectorsu = (u1,...,pq) With
Sl =a

3. The component functionsn,(-) andv,(-), for « = 1,...,d, areg-times continu-
ously differentiable on¥, with Lipschitz continuousith derivative

4. The link functions G,, and G,, are g-times continuously differentiable over any
compact interval of the real line

5. The kernel functionsK(-) andL(-), are of bounded suppgrlymmetric about zero
satisfying fK(u)du = fL(u)du = 1, and of orderg, that is fu'K(u)du =
SulL(uydu=0,fori=1,...,q— 1. Also, the kernel functions arg-times differ-
entiable with Lipschitz continuougth derivative

6. The true parameter®y = (M, (Y.),00(Ya), My (Y,),v5(Y,)) lie in the interior of
the compact parameter spa@e

7. (i) g— 0, ng? — oo and (i) hg — 0, nhy = co.

8. (i) nh3/(logn)?h — oo andvnhh! — 0; and for some integep > d/2,
(i) n(hgh)?2*™Ylogn — oo; h “h~“~%¥2 _ (;
(ii) nh§™@*Y/logn — o0; q = 20 + 1.

Some facts about empirical processes will be useful in the discussion that follows
Define theL2-Sobolev norn{of orderq) on the class of real-valued function with domain
W()I

1/2
”7'||q,2,w0 = ( E (D#T(X))z dX> ,

pn=q “Wo
wherg for x € W, C R and ak-vectoru = (uy,..., ux) Oof nonnegative integeys

azhluiT(X)

D#r(X) = —————————
aﬂlxl...aﬂkxk
andq = 1 is some positive integeket X, be an open set iR! with minimally smooth
boundary as defined byor example Stein (1970, and X = xgzl)(ﬁ, with X; =
xgzl(m))(ﬁ. Define 7; as a class of smooth functions ¥, = ngl(;ﬁa)XB whose
L2-Sobolev norm is bounded by some constdnt= {7: 7|, . = C}. In a similar
way, 7o = {7:[7q2x = C}.
Define (i) an empirical proces®1,(-), indexed byr € 7;:

1 n
Uin(1) = — f1(X¢;71) — Efi(Xe;570)], A.8
1 1 \/ﬁgl[ I\Aty 11 1\t l] ( )
with pseudometrig(-,-) on 7:
1/2

pa(r,7') = [L( f (w5 7 (W) — f1(w; 77 (W, ))) 2p(W) dw} ,

wheref (w;7) = h=Y2K((w, — y,,)/h)S*(w,y2)7,(w,); and(ii) an empirical process
UZn(','), Indexed by(yLUTZ) € Xﬂ X 7—2:
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n

1
Uan(Vs T2) = ﬁ DL (X5 Yar T2) = Efa(Xe3 Ve 721, (A.9)

t=1
with pseudometrigs(-,-) on 7o:
1/2

p2((ya’72)’(y¢/u7-é)) = |:f.;\_/( fZ(W; yuuTZ) - fZ(W; yL/wTé))zp(W) dW:| )

wheref,(W; Yo, 72) = hg Y2K[(W, = Y,)/ho][ Pz (W, )/P(W)]GH(m(w)) 7, (w).

We say that the processés,,(-)} and{v,,(-,-)} are stochastically equicontinuous
at 70 and (y2,72), respectively(with respect to the pseudometrig(-,-) and p»(-,-),
respectively, if

Oe,n>0,  [08>0st

im P*| sup [vin(7y) = vin(mD)| > 7 | <&, (A.10)
T—e pa(r,70)<8

and

m P* Sup ‘VZn(youTZ) - 1}2n(y2’7'§)| > 77 < &, (All)
T—ooo p2((Yar72). (¥2,79)) <6

respectively where P* denotes the outer measure of the corresponding probability
measure

Let F;, be the class of functions such &$-) defined previouslyNote that(A.10)
follows, if Pollard’s entropy condition is satisfied h§; with some square integrable
envelopeF;; see Pollard 1990 for more details Becausef;(w;r,) = ¢y (W) 71(W,) iS
the product of smooth functions from an infinite-dimensional classvith uniformly
bounded partial derivatives up to ordgr and a single unbounded functiaiw) =
[h=Y2K((w, — v,)/h)S*(w,v2)], the entropy condition is verified by Theorem 2 in
Andrews (1994 on a class of functions of type llISquare integrability of the enve-
lope F; comes from Assumption @). In a similar way we can showA.11) by apply-
ing the “mix and match” argument of Theorem 3 in Andre(@994) to fo(W;Y,,72) =
C(Wh™Y2K ((w, — Y,)/ho) T2(W), whereK(-) is Lipschitz continuous iry,, that is a
function of type Il

Proof of Theorem 4. We only give a sketchbecause the whole proof is lengthy and
relies on arguments similar to Andrewk994) or Gozalo and Lintor§2000 for the ii.d.
case Expanding the first-order condition i{5.16) and solving for(6* — 6,) yields

R 1 n/ ~ 71 n/
0* - 00 == E VHS(ZUg? 70{) - 2 S(Zb?a)’
t=d+1 Ni=d+1

whered is the mean value betweéhand 6, ands(z, 7..) = S(z, 6o, V). By the uni-
form law of large numbers in Gozalo and Lintgh995, we have sup-e|Qn(0) —
E(Qn(6))] -5 0, which, together with(i) uniform convergence df, by Lemma A3 and
(i) uniform continuity of the localized likelihood functio®,(0, y,) over® X I, yields
SUReo| Bn(6) — E(Qn(6))| -5 0 and thus consistency éf. Based on the ergodic theo-
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rem on the stationary time series and a similar argument to Theorem 1 in Andr@94,
consistency of* and uniform convergence &f, imply

10 _ o
= E VBS(Zt707 ‘)Ia) - E[VHS(ZUeO’ ‘Ya)] = Da(ya)' (Alz)

Ni=d+1

For the numeratgrwe first linearize the score functiodnder Assumption Bi),
s*(z,0,v,) is Frechet differentiable an¢A.7) holds which, because of\ynh|7, —
2|2 0 (by Lemma A3 and Assumption @(i)), yields a proper linearization of the
score term

1 n’ 1 n' '
= E S(Zt”ya): E Kh(yt—a_yg)sx(zh‘yg)

Nit=d+1 Nit=d+1

1
+ n 2 Kh(Yt—a_yg)s*(zt,Yg(Yt—a))[ya(}/t—a)_VS(Yt—a)]

t=d+1
+ 0y(1/\/nh),
whereS*(z, y(Yi-a)) = S* (2,00, 73(¥:—o)). Or equivalently by letting
S* (¥, ¥a(Ya)) = E[S™ (21, v2(Yi-u))X; = Y]
andu; = S* (X, ¥2(Yi-o)) — E[S* (X, ¥&(¥i-o))|X = Y], we have

h X
E 2 S(Zt’ya)

N t=d+1

vh o
= ; Kn(Yieo = ¥2)5*(2,¥2)
t=d+1

h o
+ h > Kn(Yeea = YD S X6 ¥2(Yema D [Fa Vo) = Y2 Vima)]

t=d+1

h
+ £ E Kh(yt—a - yg)ut[ya(_yt—a) - 72(yt—a)] + Op(l)

t=d+1

=T+ Ton + Tap + 0,(D).

Note that the asymptotic expansion of the infeasible estimator is equivalent to the first
term of the linearized score function premultiplied by the inverse Hessian matixig).
Because of the asymptotic boundedness$fotl 2), it suffices to show the negligibility
of the second and third terms

To calculate the asymptotic order @f,, we make use of the preceding stochastic
equicontinuity resultsFor a real-valued functiod(-) on Xz and7 = {8: (6], 2 », =
C}, we define an empirical process

E [f(xt;youa) - E(f(xt;ya76)):|7

N t=d+1

Un(yw 8) =
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where f(X;¥a,8) = K(Via — Ya)/MheS* (X, ¥2(Yi—a))8(Yi_a), for some integer
w>d/2. Letd = h“ Y2[¥,(yi—o) — ¥2(Yi_,)]. From the uniform convergence rate
in Lemma A3 and the bandwidth condition.&ii), it follows that

< logn W
18002, 2, = Op <h“1/2{,/ hEe D +hg D =0,(1).

Becauseéd is bounded uniformly oveft;, with probability approaching onét holds
that Pi(6 € 7) — 1. Also, becausgfor some positive constai@@ < oo,

P2(Yar 8),(Y,,0) = Ch= @5 — 502, .. = 0,(D),

we havep((Ya, d), (Ye,0)) 5 0. Hence following Andrews (1994 p. 2257),Athe
stochastic equicontipuity condition af,(y,,-) at 8° = 0 implies that|v,(y,,d) —
Un(Ya, 8°)] = |vn(Ya, 0)| = 0p(1); that is T, is approximatedwith ano,(1) erron by

T, = nh f Kn(Ya = ¥ S* (%, YD) [FalYa) = ¥2(Y)1p(X) dx.

We proceed to show negligibility ofT5. From the integrability condition on
S*(z,yf,’(ya)), it follows, by change of variables and the dominated convergence
theorem that [Kn(Ya — YDS*(zy2(y.)dFo(2) = [S*[(Y,¥2,Ya) v2(¥a)] X
p(y,y2,y.)d(y,y,) < oo, which, together with \/n-consistency ofé = (¢,,6,)",
means that¢ — ¢)Vnh/Ky(y, — y2)S*(z,¥2(y.)) dFy(2) = 0,(1). Because

d
VoY) = 72(¥a) = 2 (@p(Ys) = 0R(Yp) — (d = 2)(€—©),

B=L+*a

this yields

d
Tn= 2 Nnh f Kn(Ye = YIS (%, 72 (@5(¥p) — #8(¥5))P(¥) d(X) + 05(1).

B=L+#a
From Lemma A3,

P2(Yi—p)
p(x,)

_ 1
0s(Yp) — @p(Yp) = hgbB(yB) + n Et) (K K)p (Yi—pg = ¥g)

X (VG(Xg, Vi) © &)

Po(Yi—p)

0(y,_5) + Op(p2) + 0,(N"Y2),
p(Xt) Y (Yt 3) p(p ) p( )

1
+ 0 > K (Vi = Yp)
t

whereé; = (g, (2 — 1)), VG(x) = [VGm(Yﬁ,Yt—ﬁ)U(Xt)l/z, VGU(yB’_yt—ﬁ)v(X[)]T7
and y°(yi—p) = ¥2(Yi—g) — Co. Under the condition @(i), Vnhhj = o(1), integra-
bility of the bias functionb(ys) andS*(z,6,,v2(y.,,)) imply

Tz*n = Sln + SZn + Op(l),
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where
d 1
Sm= 3 VR [Ky(y, —yIS 60 -
B=1+#a n

P2(Yi—p)
p(Xc)

X (K K)o (Ve — V) (VG(Xg, Vi) © €1)P(x) dx,

and

d
1
Son= X, \/Wwahwa—yS)_s*(x,yS)E

B=1l+a

P2(Yi—p)

X 2 Kno(Ye—p — ¥p) p(x,)

Y22(Yip)P(X) dX.

Let Si, and Sk, be theith elements ofSy,, andS,,, respectivelywith S (.) being the
(i,]) element ofS*(-). By the dominated convergence theorem and the integrability con-
dition, we have

P2(Yi—p)
Sin= —ng T Ve
X UKh(ya y2) S (%, v2) ; (K K)n (Y5 — th)VGm(yB,th)p(X)dX}
B Fa
P2 (Yi— B)
_n; p(Xl) t)(st 1)

X |:JKh(ya ¥ S'%(x,72) Z (K K)o (Vg = Vi) VG, (Vg5 Yi—p) P(X) dX:|

B=L+a«a

P2(Yi—p)
2 p(X)

[v(x) V2@ (X) & + v(x) @ia(x) (62 — D] + 0p(1),
where

d
wi:}-(xt) = VGj(y27yt—a) E _S“*[(y27 yt—Ba _y(a,ﬁ))ayg] p(yga yt—B7y(a,B))dy(a,B)

B=l+*a

andVGi(:) = VG,(-), for j = 1; VG,(-), for j = 2. Becausep,(-)/p(-) and wi () are
bounded under the condition of compact suppapplying the law of large numbers for
iid. errorsé = (g, (e2 — 1))" leads toS}, = 0,(1) and consequentiy;, = 0p(1).
Likewiseg,
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P2(Yi—p)
P(X,)

. ~h
Son = T 2 Yfg(Yt—B)

d
th(ya = y)S™(%,v) ; Kn(Ye—p = Yg)P(X) dX]
B=lL#a
vh P2(Yi—p)
+ n 2 o) Yoo Ye-p)

xUKhwa DS (03D S KnlYep - y,;)p(x)dx]
B=1l+a

P2(Yi—p)

:_2 2ap

Jn 2 p(x) [Wizl(xt)mg()/t—a) + wizl(xt)vg(Yt—a)] + 05(1)

where

d
Wﬁ(xt) = 2 S [(yS, Yi-p> Y(a,/;)), yp(ys, Yi—p> }/(a,ﬁ)) d}’(a,ﬁ),
B=lL#a

and for the same reason as befpree getSh, = 0p(1) and Syn = 0,(1), because
E(mg(yt*a)) = E(Ug(yt*a)) = 0
We finally show negligibility of the last term

vh
Ton= = 2 Ki(Ya = YDUFa(Yima) = Y2 Yioa)]-

N t=d+1
Substituting the error decomposition f@g(yi—o) — yg(yl,a) and interchanging the
summations gives

d

T3n7 2 n\/ﬁE 2 Kh(yt a yg)Khu(ys—B_yB)

B=L+#a t s(#t)

pZ(YSfﬁ)

(Yo p) U Va2 (Ys-
(%) Yo (Y. 5) Uy (y 8)

+ Z n\/ﬁZ > Kn(Yioo = YO (K= K)p (Yo g — Vp)

B=1%#a t s(#t)

P2(Ys )

Tp(x) (VG(Xg,¥s-p) O U &)
+ 0,(1),

where theo,(1) errors for the remaining bias terms hold under the assumption that

\/nhkg = o(1). For

Pa(Ys—p)

(%) t'yao(yS B)\/_/(n\/—)

5P (20, 25) = Kn(Yeear — Y9 Kio(Ys—p = Yp) =~ —
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we can easily check th&(7i£(z,, z.)|z,) = E(7}2(z,, 2)|z5) = 0, for t # s, implying
that > >4 7);#(z,z.) is a degenerate second-ordgsstatistic The same conclusion
also holds for the second terrilence the two double sums are mean zero and have
variance of the same order as

n2 X {Eﬂri{ﬁ(zta Zs)z + E7Tti‘|’B(zt7 ZS)EW:‘;B(Z& Zt)}v
which is of ordem~*h 1. Therefore Tz, = 0,(1). |

LEMMA A .2. (Masry, 1996. Suppose that Assumption C holds. Then, for any vec-
tor u = (p1,..., pa) " With |u| = Zju; = o,

(@) super|DLP(X) — DEP(X)| = Oy(Vlogn/ng@H*9)) 4+ Oy(ga+),

(b) Supe|DEM(x) — DEM(X)| = Op(\logn/nhZ D) + O, (h§ ™) = pa( ).
() supexIM(x) — m(x) — L(x)| = Oy(p3), where

K —_
C(x) = %2 % v2(xg) 8¢ + hdb,(X).

LEMMA A 3. Suppose that Assumption C holds. Then, for any vegtos
(/Lls--yﬂd)T with |,u,| = Eij = w,

(@) sup cx, D¢, (Y.) — DH oY) = Oy(Nlogn/nh@r*D) + Oy(hd—#) +
Op(p3(1), )
(b) SUH,YEX,X|¢a(ya) - @a(yoz) - Lga(yoz)| = op(pr%) + Op(n71/2)1

where

" 1 2 (Yiea) | Gin(M(Ya Yea)) v (X)) Y2 &t
a(3) = 5 S (0 Ko =) T : H \ 1]

p(X;) G (0 (Yas Ye-a) (X)) & —
+}ZK(V _Y)pZ(yHX)[m (Yi-a)sVa(Yi-a)] T + hb(y,)
n K00 7Y T M v T D)

Proof. We first show(b). For notational simplicitythe bandwidth parametér(only
in this proof) abbreviate$,. From the decomposition results for the instrumental vari-
able estimates

¢a(ya) - goa(ya) = [IZ ® e:l—.r Qn_l]Tny

where Qy = [Gnisj—2(Ya)li.jy=1.20 With Gni = (1/n) Zf=dKn(Viee = Ya) PalYe-a)/
p(xl)][(yt—a - ya)/h]l’ fOr I = 0’1’27 and T™h = (1/n)2t Kh(yt—a - ya)[f)&(_yt—a)/
p(xl)][rl - ¢a(ya) - (yt*a - ya)V‘Pa(Ya)] ® (L(yt*a - Ya)/h)T' By the CaUChy_
Schwarz inequality and Lemma2applied with Taylor expansigiit holds that
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U 1. n K, ( —y) p&(}’t—a) _ pa(Yt—a) <yt—a_ya>i
oo & e Y L T T T (k) h
Pa(Ya)  Pa(Ya) 10 Viea = Yo |'
S - = —_ K — P et
20000~ Tpoo SR e T [T

:oqigmm—mmgzqwﬁ

where the boundedness condition a2Gs used for the last lineHence the standard
argument of Masry(1996 implies that supc |G, — Gl = 0p(1), where g =
SK(up)uldu,. Fromge =1, g; = 0, andg, = u2, we get the following uniform con-
vergence result for the denominator terthat is e Q, LN e/, uniformly iny, €

X,. For the numeratgowe show the uniform convergence rate of the first element of
7, because the other terms can be treated in the same leay-} denote the first
element ofr,, that is

p&(ytfa)

11 _y y PalYed)
Tn—nZKh(ym Ya) 50x)

[Crn(M(X)) = Ma(Va) = (Vo = Ya) M (Vo)
or alternatively
1 1 A
7 = - 2 KV YT (%),
t

where

O2(Yi—a)
O3(X,)

r(X;Q) = [Cn(91(%)) = My (Vo) = (Vemo — Yo ) ML (Y, )],

g(xt) = [gl(xt)7 gZ(_yt—a)7 g3(xt)] = [m(xt)7 p&(_yl—a)v p(xt)]7
9 = 9(x) = [M(X), Pa(Yi—a)s POX)]-
Because;(-)/p(-) is bounded away from zero afi&}, has a bounded second-order deriv-
ative the functionalr (x,;g) is Frechet differentiable ig, with respect to the sup norm
| -lle, With the (bounded functional derivativeR(x;Q) = [ar(xt;g)/ag]\l,g:g(xl). This

implies that for allg with |g — g°|., small enoughthere exists some bounded function
b(-) such that

Ir(x;9) = r(%;9%) — R(x;9°) (g — 9°)., = b(x)lg — g°[3..

By Lemma A2, |§ — g°|Z = O,(p?), and consequentlyve can properly linearize; as

1 1
= - 2 Kn(Yema = Yo T (X30°) + - D Kn(Yiea = Ya)R(X39%)(8 — g°) + O,(p2),
t t
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where theOp(p,%) error term is uniformly inx,. After plugging G(m(x;)) = ¢y +
S1<p=aMs(Yi—p) into r(x;;g°), a straightforward calculation shows that

1
7= = S Kn(Yw ~ o)L+ Oplpy)]
t

1 p&(yt*a) ,
- 2 Kn(Yi—a = Ya) o) Gr(m(x))[M(x,) — m(x,)]
q
+ ] tq(K)by, (Y,) + 0,(h9), (A.13)

wheres; = [ Pa(Yi—o)/P(X)IMa(¥i—a) aNAMz(Yi—o) = Z1<p=d,(xa) Ma(Yi-a). NoOte that

as a result of the identification conditi®{ s;| yi—. ] = 0 and consequently the first term
is a standard stochastic term appearing in kernel estimbt@sa further asymptotic
expansion of the second term gf, we use the stochastic equicontinuity argument to
the empirical procesfn(-,-)}, indexed by(y,,8) € X, X T, with T={6:(6],, 2 +, =

C}, such that

1
Un(yavs) = E [f(xt’yona) E(f(xt;ya75))],

t=d+1

wheref (x¢; Yo, 8) = K[(Yi-a = Yo) /D10 [ pa(Yi—o)/P(X)]IGH(M(X)) 8 (Y;—, ), fOr some
positive integew > d/2. Let § = h~“~Y2[m(x,) — m(x,)]. From the uniform conver-
gence rate in Lemma.2 and the bandwidth condition in.&jii ), it follows that|§],, 2.+ =
Op(h™ +2[log n/nh(z‘”+OI +h9=«]) = 0,(1), leading to(i) Pr(6 € 7) — 1 and(ii)
p((ya,é) (Y, 69)) P 0, wheres® = 0. These conditions and stochastic eqwcontlnuny
of un(-,-) at (¥,,8°) yield sup,_, [vn(Ya:d) = vn(Ya,8°) = suB, _, [vn(Ya,d) =

0p(1). Thus the second term of,) is approximated with aop(l/\/—) error(unlform in

Ya) bY

p&(}/t—a) ,
JKh(ytfa —Ya) o) Gh(m(x,)) [M(x,) — m(x)]p(x) dx;,

which, by substitutingC(x;) for m(x;) — m(x;), is given by

v2(Xs) s

1 Ys—a
Eg(K*K)h<—>pa(ysf )Gin(M(Ya» Ys e R

h

ha
+ q mq(K)bae (Va), (A.14)

where(K * K)(-) is actually a convolution kernel as defined befdrence by letting
b.(y,) summarize two bias terms appearing(f.13) and (A.14), Lemma A3(b) is
shown The uniform convergence results in p&aj then follow by the standard argu-
ments of Masry(1996, because two stochastic terms in the asymptotic expansion of
Pa(Ya) — @a(Y.) consist only of univariate kernels u
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