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The buoyancy- and capillary-driven counter-current flow of CO2 and brine through
and around a semi-permeable layer is studied both numerically and theoretically. The
continuities of the capillary pressure and the total flux at the interface between the
permeable matrix and layer control the CO2 saturation discontinuity at the interface
and the balance between the buoyant and capillary diffusion fluxes on each side
of the interface. This interface process is first studied in a one-dimensional (1-D)
vertical column geometry using the concept of extended capillary pressure and a
graphical representation of the continuity conditions in the (SL, SU) plane, where
SL and SU are the lower and upper saturation traces at the interface, respectively.
In two dimensions, we heuristically extend the two-phase gravity current model to
the case where the current is bounded by a semi-permeable layer. Consequently, the
current is not saturated with CO2, and its saturation and shape are derived from
the flux and capillary pressure continuity conditions at the interface. This simplified
model, which depends on CO2 saturation only, is compared to fine grid simulations
in the capillary-free and gravity-dominant cases. A good agreement is obtained in the
second case; the current geometrical characteristics are accurately described. In the
capillary-free case, we demonstrate that the local total velocity, which is, on average,
zero because the flow is counter-current, must be considered in the total flux at the
interface to obtain the same level of agreement.

Key words: gravity currents, multiphase flow, porous media

1. Introduction
Geological storage of carbon dioxide (CO2) is considered to be a pragmatic

solution for the mitigation of global warming by reducing CO2 emissions from large
and concentrated sources. The sequestration of CO2 is expected to be guaranteed
during an extremely long time period by four basic trapping mechanisms: structural
or stratigraphic, residual, solubility and mineral trapping (Benson et al. 2005; Celia
et al. 2015). In a deep saline heterogeneous aquifer the structural and residual
trappings should be the dominant mechanisms during the injection and the short- to
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medium-term post-injection periods. Injected at the bottom of this reservoir, and far
from the injection well, the supercritical CO2 rises buoyantly due to its difference in
density with the reservoir brine. When the plume reaches a low-permeability layer, it
spreads beneath as a gravity current and continues its buoyant rise at the layer ends
until it reaches another layer or the cap-rock at the top of the reservoir (Huppert
& Neufeld 2014). Consequently, the layers act as flow barriers and disperse the
CO2 plume, which increases the plume volume and the CO2 residual trapping. This
stratification process is currently observed at the pilot site in Sleipner where CO2 has
been injected into the Utsira aquifer since 1996 (Bickle et al. 2007).

The gravity current model used by several authors to describe the CO2 currents
relies on two assumptions (Huppert & Woods 1995): (i) the CO2 and the brine are
completely segregated and separated by a sharp interface; and (ii) the pressure in the
CO2 current is hydrostatic and its flow is principally parallel to the layer horizontal
boundary and driven by the gradient of the current thickness. These assumptions are
valid as long as the capillarity is neglected and the current thickness is considerably
smaller than its lateral extent. This vertical equilibrium approximation, similar to the
Dupuit–Forchheimer assumption in hydrology (Bear 1988), has proven to be fruitful
to model different sequestration situations and scenarios. This result is partly due
to the self-similar properties of the equation governing the gravity current thickness,
which allows for analytical solutions to be determined when boundary conditions
are appropriate (Huppert & Woods 1995). Gravity current models have been applied
to CO2 injection in homogeneous horizontal confined aquifers, in two dimensions
(Huppert & Woods 1995; Nordbotten & Celia 2006; Hesse et al. 2007), in 3-D
axisymmetric geometries (Lyle et al. 2005) and in 2-D sloping confined aquifers
(Vella & Huppert 2006). They have also been used, for instance, to assess the CO2
footprint in an aquifer by considering the residual trapping mechanism (Hesse, Orr
& Tchelepi 2008; Juanes, MacMinn & Szulczewski 2010), the dispersion of a CO2
plume in a 2-D periodic array of low-permeability layers (Hesse & Woods 2010) or
the CO2 stratification beneath shale layers at the Sleipner site (Bickle et al. 2007).
For more applications, one can refer to the reviews of Huppert & Neufeld (2014) and
Celia et al. (2015). When the capillarity is considered, the classical gravity current
assumptions are not valid. Because of capillary diffusion, there is no longer a sharp
interface, however a transition zone exists between the two fluids. Golding et al.
(2011) extended the vertical equilibrium approach to the capillary case and proposed
a two-phase gravity current model. These authors performed a sensitivity analysis
of the current characteristics with respect to the Bond number, which provides a
measure of the importance of capillarity compared to buoyancy. Later, the model
was extended to the axisymmetric geometry (Golding, Huppert & Neufeld 2013).
Different authors applied the single-phase current approach to the case in which the
low-permeability layers, or the cap-rock, allowed the CO2 to leak (Pritchard, Woods
& Hogg 2001; Neufeld & Huppert 2009; Woods & Farcas 2009). Thus, they used the
drainage approximation, in which the current remains in single phase and is governed
by vertical equilibrium. In its simplest form, this leads to a gravity current equation
with a source term proportional to the current height. Here, there is a strong analogy
with certain hydrological problems, such as modelling an unconfined leaky aquifer
(Bear 1988).

The single-phase approximation is no longer justified for a two-phase flow problem
in a domain with a permeable matrix and a semi-permeable layer. This type of layer
generally has a permeability of approximately one-tenth of the matrix permeability
whereas a low-permeability layer has a permeability of approximately one hundredth
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or less. In a deep heterogeneous saline aquifer, the type of heterogeneity depends
on the geological formation, studied facies and scale of investigation. In an aquifer
such as Utsira at the Sleipner site, the kilometric mudstone layers are low-permeability
units (Bickle et al. 2007) whereas in other potential aquifers, the permeability contrast
between the matrix and the heterogeneities may be less pronounced. This issue, which
is site specific and scale dependent, is beyond the scope of this study and discussions
may be found in Ambrose et al. (2008) or Lengler, De Lucia & Kühn (2010). When
the permeability of the layer becomes non-zero, the phase segregation is incomplete,
the CO2 and the brine can pass through the layer and the CO2 saturation in the current
decreases while the permeability of the layer increases. The presence of the brine
in the current and the two-phase flow at the interface between the matrix and the
layer must be considered in the model. This is particularly true when the flow is
counter-current: the CO2 ascending flow rate across a horizontal section of the domain
is balanced by the descending brine flow rate. The counter-current flow corresponds
to the inject-low-and-let-rise strategy, which aims to increase the residual trapping
(Bryant, Lakshminarasimhan & Pope 2008).

When the layers of a reservoir have a low permeability, such as at the Sleipner
site, the CO2 can sweep only a very limited volume of the reservoir: the gravity
currents domain beneath the layers and the cap-rock, and the CO2 chimneys at the
layer extremities. When the layers are semi-permeable the CO2 can sweep a much
larger region as the CO2 can pass through the layers. This may have an important
impact on the sequestration properties of the reservoir, and principally on its trapping
efficiency. Two short-term or mid-term trapping mechanisms are distinguished in the
literature: capillary trapping and CO2 dissolution in the brine (Benson et al. 2005).
Capillary trapping is a post injection mechanism and takes place principally at the
trailing edge of the plume where blobs of CO2 are trapped in the reservoir pores
(Doughty 2007; Hesse et al. 2008). The amount of trapped CO2 increases with the
saturation in the plume. Therefore, this amount should be locally high in the high
saturation regions described previously and low in the rest of the reservoir, as the
saturation of CO2 flowing out the layers is expected to be low. Nevertheless, at
the scale of the reservoir the global amount of trapped CO2 should be much more
important than if layers were impermeable. The second trapping mechanism, CO2
dissolution, should be also enhanced as it depends on the contact volume between
CO2 and brine (Huppert & Neufeld 2014). Dissolution is expected to give rise to
mineral trapping which is considered as a long-term trapping mechanism (Benson
et al. 2005).

In this paper, we study this problem by considering the 2-D flow around and
through a single semi-permeable layer of finite extent embedded in a permeable matrix.
We consider three forces: buoyancy, capillarity and viscosity. There is no injection
and the flow is counter-current at the scale of the reservoir, i.e. not at the local scale.
The flow dynamics is essentially ruled by the interface conditions: capillary pressure
continuity and total flux continuity at the layer matrix interface. In § 2, we recall the
equations of the incompressible immiscible two-phase flow model, and we investigate
this interface problem for a 1-D geometry (§ 3): a vertical column consisting of a
piecewise homogeneous porous medium. Based on the studies performed by Cancès
(2010a,b) and Andreianov & Cancès (2013), we demonstrate how to graphically
determine the saturation discontinuity at the interface and the steady state saturation
distributions in each domain of the column from the capillary and buoyant flux
curves. In § 4, the 2-D problem is considered. Hence, we heuristically extend the
model proposed by Golding et al. (2011) to the case of a semi-permeable layer.
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We separately consider the capillary-free and the gravity-dominant cases. The proposed
model is compared to fine grid numerical simulations performed using DuMux,
which is an open-source simulator for flow and transport processes in porous media
developed by the University of Stuttgart (Flemisch et al. 2011). The comparison
indicates that the model adequately describes the flow dynamics; however, in the
capillary-free case, it also demonstrates that the total velocity fluctuations, which,
on spatial averaging are zero, should be considered in the total flux function at the
interface to improve the accuracy of the gravity current prediction.

2. Two-phase incompressible, immiscible flow model
The governing equations of two-phase incompressible, immiscible flow in a porous

medium are given by Darcy’s law and the mass conservation equation (Helmig 1997)

qα =−
kkrα

µα
(∇pα + ραg), α = nw,w, (2.1)

φ
∂Sα
∂t
+∇ · qα = Sα, α = nw,w, (2.2)

where the subscripts w and nw denote the wetting (brine) and the non-wetting (CO2)
phases, respectively; Sα (−), qα(L/T) and Sα(L/T) are the saturation, the Darcian
velocity and the sink/source terms of the phase α, respectively; g(L/T2) is the gravity
acceleration vector; φ (−) is the porosity; k (L2) is the absolute permeability of
the porous medium; and pα(M/(LT2)), ρα(M/L3), µα(M/(LT)) and krα (−) are the
pressure, the density, the viscosity and the relative permeability of the phase α,
respectively. The relative permeabilities are considered as functions of the phase
saturations only and can be given by the simplified Brooks and Corey’s formulas as
follows

krw = (1− Snwe)
2, (2.3)

krnw = S2
nwe
, (2.4)

where Snwe is the normalized non-wetting saturation, defined by

Snwe =
Snw − Snwr

1− Swr − Snwr

, (2.5)

with Sαr is the residual saturation of phase α. The normalized saturations of the
wetting and non-wetting phases sum up to one: Swe + Snwe = 1. In what follows, the
normalized saturation of the non-wetting phase Snwe is written as S for simplicity.
Thus, (2.3) and (2.4) become

krw(S)= (1− S)2, (2.6)
krnw(S)= S2. (2.7)

The difference in the phase pressures is the capillary pressure

pc(S)= pnw − pw. (2.8)

The capillary pressure is typically viewed as a function of the wetting saturation and
can be given by either a Van Genuchten (Van Genuchten 1980) or a Brooks and Corey
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(BC) (Brooks & Corey 1964) function. In this paper, only a BC capillary pressure
expression is considered

pc(S)= σ
√
φ

k
J(S), (2.9)

where J(S)= (1− S)−1/λ is the Leverett’s function, which is based on the saturation of
the non-wetting phase and the pore size distribution parameter λ; and σ (M/(LT2))
is the interfacial tension between the phases. Here, we assume λ = 2, which is
a standard choice in porous media studies. The entry pressure corresponds to the
capillary pressure value when S= 0

pe = pc(S= 0)= σ
√
φ

k
. (2.10)

The hysteresis in the capillary pressures and the relative permeabilities curves are
neglected, and the same capillary pressure function is used for both the imbibition
and drainage processes.

By combining (2.1) and (2.8), the Darcian velocity of the non-wetting phase can be
written as

qnw = qt f (S)+ k
µw
Λ(S)(1ρg−∇pc), (2.11)

where qt is the total velocity, which can be expressed as

qt = qw + qnw, (2.12)

f (S)= krnw(S)
krnw(S)+Mkrw(S)

, (2.13)

and

Λ(S)= krnw(S)krw(S)
krnw(S)+Mkrw(S)

, (2.14)

with M = µnw/µw, i.e. the viscosity ratio, and 1ρ = ρw − ρnw. The fractional flux
function f (S) (2.13) is a monotonic increasing S-shaped function (Helmig 1997)
whereas the gravitational flux function Λ(S) (2.14) has a bell-shaped form (Hayek,
Mouche & Mügler 2009). By substituting (2.11) into (2.2), we obtain the non-wetting
phase saturation transport equation

φ
∂S
∂t
+∇ ·Φ = 0, (2.15)

where the total flux of the non-wetting phase Φ is

Φ = qt f (S)+ k
µw
Λ(S)1ρg− k

µw
Λ(S)∇pc. (2.16)

The first term of the total flux is a convective flux, called viscous flux when produced
by injection or pumping. The second term is the gravitational flux, which is also
known as the buoyant flux and induced by the difference in the phase densities. The
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last term is the capillary flux, which is provoked by the difference in pressure across
the phases interface at the pore scale. In the sequel, we denote G the gravitational
flux

G(S)= k
µw
Λ(S)1ρg. (2.17)

We intentionally simplified the model to keep the discussion general and simple.
The relative permeability functions could be more complex than Brooks and Corey’s
laws with an exponent equal to two. However, Brooks–Corey model is often used
in petroleum engineering and the exponent depends generally on the geology of the
reservoir (Honarpour, Koederitz & Herbert 1986). Adopting such quadratic relative
permeabilities as (2.6) and (2.7) with a viscosity ratio M = 1 results in a symmetric
buoyant flux function Λ(S) with respect to the saturation S. Using a given viscosity
ratio M 6= 1 or another relative permeability law would lead to an asymmetry of
Λ(S) and change the value of the different key saturations subsequently introduced
in the paper, but not the dynamics. The important property conserved whatever the
relative permeabilities is the bell shape of the buoyant flux function G(S) and its scale
dependency with the permeability. Furthermore, it is worth noting that hysteresis is
an important process in carbon sequestration studies but its inclusion into a model
makes both the physics and numerics more complex (Doughty 2007). We discuss in
the conclusion (§ 6) the effect of this process on the trapping efficiency of a reservoir.

3. CO2 buoyant migration in a vertical column filled with a piecewise homo-
geneous porous medium
To study the flow of CO2 through the interface between two porous media, we first

consider a 1-D vertical H (m) height column filled with a piecewise homogeneous
porous medium consisting of two materials, permeable and semi-permeable. The
interface Γ is located at z = 0 m (figure 1). For simplicity, only the absolute
permeability is heterogeneous: k+ for the permeable material and k− for semi-
permeable material, with a permeability ratio k−/k+ = 1/2. The other material
parameters are constant in the column. Moreover, we henceforth assume that the
CO2 and brine viscosities are identical. This assumption is introduced to make the
discussion simple but does not alter the results or the following discussions. The
impact of the viscosity ratio on the flow dynamics is discussed further in § 3.4. We
consider a counter-current flow, qt= 0, which indicates that there is no phase injection
or pumping in the column. The non-wetting phase rises buoyantly upwards whereas
the wetting phase flows downwards, and the volume in the first phase is replaced by
the same volume of the second phase. The entire column is initially saturated with
brine, and a constant non-wetting phase saturation is imposed at the bottom of the
column which corresponds to an imposed buoyant flux value. A zero non-wetting
saturation is imposed at the top to allow the CO2 phase to migrate freely upwards
(figure 1). We denote ki, Gi and Φi as the absolute permeability, gravitational flux
and total flux function in the material i, (i ∈ [l, u]), respectively, where the subscripts
l and u denote the lower and upper materials, respectively.

The 1-D hydrodynamics of a two-phase mixture at the interface of such a
discontinuous medium under the simultaneous effects of the capillary and gravity
forces has rarely been studied in the literature. A few authors considered either
buoyancy (Langtangen, Tveito & Winther 1992; Kaasschieter 1999; Adimurthi, Jaffré
& Veerappa Gowda 2004) or capillarity alone (Van Duijn & De Neef 1998). Others
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H

Z

FIGURE 1. Sketch of the piecewise homogeneous porous medium column.

studied the effects of capillarity in the viscous case but disregarded buoyancy,
i.e. when one phase is injected at the inlet of a horizontal column (Van Duijn,
Molenaar & De Neef 1995; Mikelic, van Duijn & Pop 2002; Buzzi, Lenzinger &
Schweizer 2009). Cancès (2010a,b) considered both capillarity and buoyancy. He
proved the existence of a weak solution that satisfies the total flux continuity and
the capillary pressure matching condition at the interface between the two media.
However, this author did not study the effects of the materials permeabilities and the
inflow rate of the buoyant phase on the saturation distribution in the column.

3.1. One-dimensional vertical migration model and continuity conditions at the
interface

Using (2.15) and (2.16), the CO2 saturation transport equation in the vertical column
is written as

φ
∂S
∂t
+ ∂

∂z

{
k(z)
µw

Λ(S)
(
1ρg− ∂pc

∂z

)}
= 0. (3.1)

To express this equation in a dimensionless form, we set the column height H as the
characteristic length scale and the time T = (φHµw)/(k0g1ρ) for the CO2 to migrate
buoyantly in a column filled only with the permeable material as the characteristic
time. The intrinsic permeability k+ is set as the permeability scale k0 of the medium.

z≡ z
H
, k(z)≡ k(z)

k0
, t≡ t

T
. (3.2a−c)

These scalings lead to the capillary number Nc

Nc = σ

g1ρH

√
φ

k0
= pe

g1ρH
. (3.3)

Then, the dimensionless transport equation can be written as

∂S
∂t
+ ∂

∂z

{
k(z)Λ(S)

(
1− Nc√

k(z)
J′s
∂S
∂z

)}
= 0, (3.4)

where J′s= dJ/ds. When the capillarity is neglected (Nc= 0), the flux contains only the
gravitational part and the (3.4) reduces to the well-known Buckley–Leverett equation
with gravity (Kaasschieter 1999)

∂S
∂t
+ ∂G(S)

∂ ẑ
= 0, (3.5)
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where

G(S)= k(z)Λ(S) (3.6)

is the scaled gravitational flux.
The dynamics of the two-phase flow depends on the value of Nc. The dynamics

may be classified into four different flow regimes: capillarity dominant (Nc � 1),
balance case (Nc ≈ 1), gravity dominant (Nc� 1) and capillarity free (Nc = 0). When
Nc > 1, the capillarity leads to pseudo-linear CO2 saturation distributions in each
material of the column. This case is not considered here and will be discussed
in a forthcoming paper. The capillary-free case has been studied by Hayek et al.
(2009) in the framework of the theory of shocks and rarefaction waves. The authors
demonstrated that the continuity of the buoyant flux G(S) at the interface leads to
a saturation discontinuity and, in certain conditions, a CO2 stratification beneath
the interface. This stratification can be qualified as a 1-D gravity current, and the
phase segregation resulting in 2-D or 3-D gravity currents may be interpreted as
a shock travelling in the direction of the gravity balanced by a lateral spreading
of the saturation. Furthermore, the purely capillary case (no buoyancy) results in a
saturation discontinuity (Van Duijn & De Neef 1998). Here, the case of interest is
the gravity-dominant flow with a low positive capillary number Nc� 1. As presented
in the next section, based on the arrangement of the materials in the column (kl, ku)
≡ (k−, k+) or (kl, ku) ≡ (k+, k−), the buoyancy and capillarity may generate a CO2
stratification beneath the interface. Regardless of this arrangement, the difference in
the entry capillary pressures between the two materials results in a CO2 saturation
discontinuity at the interface. The one-sided traces of saturation at the interface, known
as SL and SU with subscripts L and U denoting the lower and upper sub-domains,
respectively, must fulfil two conditions: the continuity of the capillary pressure and
the continuity of the total flux, which latter are expressed as follows

kl ·Λ(SL) ·
(

1− Nc√
kl
· J′s ·

∂SL

∂z

)
= ku ·Λ(SU) ·

(
1− Nc√

ku
· J′s ·

∂SU

∂z

)
. (3.7)

When the capillarity disappears, the condition of the total flux continuity is reduced
to only that of the gravitational flux

kl ·Λ(SL)= ku ·Λ(SU). (3.8)

This limit, known as the vanishing capillarity limit, has been studied from a
mathematical point of view by Andreianov & Cancès (2013). For (kl, ku)≡ (k+, k−),
the matching condition of capillary pressure results in the threshold saturation S∗

p+c (S
∗)= p−c (0)⇔

J(S∗)√
k+
= J(0)√

k−
. (3.9)

A natural way to connect the capillary pressures at the interface between layers
is to define the multi-valued capillary pressure function. This definition has been
introduced by Cancès, Gallouët & Porretta (2009) and Buzzi et al. (2009) to study
of discontinuous-flux problems. Using the notations defined by these authors, the
extended capillary pressure function can be written as

pc(S) :=


σ

√
φ

k(z)
J(S) if 0< S< 1,

(−∞, pc,min] if S= 0,
[pc,max,+∞) if S= 1,

(3.10)
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FIGURE 2. Capillary pressure curves of the materials k+, p+c and k−, p−c , and paths of
(SL, SU) for the cases k−→ k+ (a,b) and k+→ k− (c,d). The thick curves represent the
connected parts of the capillary pressure curves.

where pc,min = limS↘0 pc and pc,max = limS↗1 pc. Thus, the continuity of capillary
pressure is expressed as

pc,l(SL)∩ pc,u(SU) 6=∅. (3.11)

Figure 2 illustrates the path of (SL, SU) on the capillary curves for the cases (kl,
ku) ≡ (k−, k+) and (kl, ku) ≡ (k+, k−), which is henceforth denoted by k−→ k+ and
k+→ k−, respectively. In the first case, k−→ k+, when SL = 0, SU < S∗ (figure 2a),
and when SU > S∗, SL increases (figure 2b). In the second case, k+→ k−, the paths
of SL and SU are interchanged: when SL < S∗, SU = 0 (figure 2c), and when SL > S∗,
SU increases (figure 2d). Furthermore, these paths are constrained by the total flux
continuity condition. To graphically observe the effects of this constraint on the couple
(SL, SU), the couple is represented on the gravitational flux curves for different values
of (SL, SU) (figure 3). For simplicity, we assume that in figure 3, and henceforth,
the CO2 and brine viscosities are identical. This assumption is introduced to make
the discussion simple but does not alter the results or the following discussions.
The impact of the viscosity ratio on the flow dynamics is discussed further in § 3.4.
Figure 3 shows that, for a given couple (SL, SU), there is generally no continuity of
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FIGURE 3. Gravitational fluxes G− in the material k− (dashed line) and G+ in the material
k+ (continuous line). Each pair of markers plotted on these curves represents a couple
(SL, SU) satisfying the capillary pressure continuity condition at the interface. G−M and G+M
are the maximal gravitational fluxes in the layer and in the matrix respectively. SM is the
saturation in the layer such that G−(SM)=G−M; S1 and S2 are the saturations in the matrix
such that G+(S1)=G+(S2)=G−M .

the gravity flux. The difference is balanced by the capillary flux beneath the interface.
The overall equilibrium at the interface depends on the value of the initial gravity flux.
We examine now in detail the two cases k−→ k+ and k+→ k− for a permeability
ratio of k−/k+= 1/2, which results in a threshold saturation of S∗= 1/2. We simulate
the transport of a CO2 plume generated by an imposed saturation Si at the bottom
of the column (figure 1). These simulations are performed with a home-made code
based on the algorithm of Cancès (2008) using the Godunov discretisation scheme.

3.2. Case k−→ k+

Because the entry capillary pressure ratio is p−e /p
+
e =

√
2, there is no capillary

barrier. Therefore, when the CO2 plume reaches the interface between the two
media, the plume immediately crosses the interface. The saturation traces SL and
SU are determined from the total flux continuity condition and the value of the
imposed saturation Si at the bottom of the column. The total flux continuity,
G−(Si) = Φ+(SU) = G+(SU), determines SU. In the case of SU 6 S∗, SL remains
unchanged at zero, and the buoyant flux on the lower side of the interface is
also equal to zero. Therefore, the total flux on this side is reduced to its capillary
diffusion component. Figure 4(b) depicts the temporal evolution of the CO2 saturation
distribution for Si = 0.3. The buoyant flux curves displayed in figure 4(a) indicate
that the upper saturation trace is SU ≈ 0.2. The apparent non-zero SL value at t= 6.8
is due to the finite difference discretisation scheme, where variables are assigned at
the cell centres instead of the cell edges. The case SU > S∗ does not exist with our
selection of parameters and relative permeability laws for which S∗ = 1/2. This case
is improbable if not impossible because (i) in most of the reservoirs, S∗ is greater
than the saturation SM for which the buoyant flux is maximum, here SM = 0.5, and
(ii) the capillary pressure continuity implies that SU > SL, which indicates that SU is
greater than SM and therefore describes a shock travelling downwards (Hayek et al.
2009).
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FIGURE 4. CO2 migration in a vertical column filled with a piecewise homogeneous
porous medium. (a) Gravitational fluxes G− in the material k− (dashed line) and G+ in the
material k+ (continuous line). The couple (Si, SU) satisfies the gravitational flux continuity,
where Si is the imposed saturation at the bottom of the column. (b) Saturation distributions
along the vertical axis of the column at four times. At t= 6.8, the saturation is at steady
state.

3.3. Case k+→ k−

The continuity of the capillary pressure is no longer automatically satisfied as in the
previous case, k−→ k+. Therefore, the CO2 accumulation occurs beneath the interface
until SL is equal to S∗. Beyond this value, CO2 can flow through the interface, and
the couple of saturation (SL, SU) satisfies the capillary pressure continuity (3.11)
(figure 2c). Andreianov & Cancès (2013) indicated how to graphically determine this
couple in the (SL, SU) plane using the solution curves SU(SL) of the capillary pressure
continuity condition and the buoyant flux continuity relationship. Let us define P as
the curve SU(SL) solution of the capillary pressure continuity condition

P := {(SL, SU) ∈ [0, 1]2 | p+c (SL)∩ p−c (SU) 6=∅
}
. (3.12)

Furthermore, G is defined as the solution curve SU(SL) of the buoyant flux continuity
relationship

G := {(SL, SU) ∈ [0, 1]2 |G+(SL)∩G−(SU)
}
. (3.13)

Curves P and G are plotted in figure 5. Due to the bell shape of the buoyant flux,
curve G consists of three branches: G1 and G2, which correspond to (SL< S1, SU < SM)
and (SL > S2, SU < SM), respectively, and G3, which corresponds to (S1 < SL < S2, SU =
SM), where SM=0.5 is the saturation for which the gravitational flux is maximum, and
S1=0.265 and S2=0.735 are the saturations such that G+(S1)=G+(S2)=G−(SM) with
S1< S2 (figure 3). The couple SLU = (S2, SU) represented in figure 5 is the intersection
point between the curves P and G in the (SL, SU) plane. This couple defines the
maximum CO2 flux that can cross the interface and respects the continuity conditions
at the interface. The two saturations S1, S2 in figure 5 are fortuitously close to S1, S2.
This should not be the case with a different set of relative permeabilities and capillary
pressure laws.

The saturation discontinuity and distribution in the column depends strongly on the
imposed saturation Si at the bottom of the column. Two cases must be distinguished:
Si 6 S1, i.e. the buoyant inflow flux is lower than the maximum flux, which can flow
into the material k−, and the inverse case.
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FIGURE 5. Curves SU(SL), solutions of the capillary pressure continuity condition, curve
P (continuous line), and the gravitational flux continuity relationship, curve G (dashed
line). Curve P is composed of two segments: P1 for SL 6 S∗ and P2 for SL > S∗. Curve
G has three branches: G1 and G2 correspond to (SL < S1, SU < SM) and (SL > S2, SU < SM),
respectively, and G3 to (S1 < SL < S2, SU = SM). The intersection point SLU = (S2, SU) of P
and G is the steady state solution of the interface problem for Si > S1, where G+(S1)=
G+(S2)=G−(SU) and S1 < S2.

To illustrate the first case, Si 6 S1, we consider Si = 0.15 (S1 = 0.26). The pathway
showing the evolution of (SL, SU) towards their steady state values is depicted in
figure 6(a), and the temporal evolution of the CO2 saturation distribution in the
column is depicted in figure 7(b). When the CO2 plume reaches the interface,
the capillary barrier results in an accumulation beneath the interface. The trace of
saturation SU is derived from the flux continuity condition. For any imposed saturation
Si 6 S1, there always exist a saturation SU that satisfies the buoyant flux continuity
relationship G+(SU) = G−(Si) (figure 6a). The imposed saturation value Si = 0.15
results in SU = 0.22 (figures 6a and 7a). The trace of saturation SL is determined
from the continuity of the capillary pressure at the interface: SL= 0.61. The difference
between the buoyant fluxes G−(SU) and G+(SL) is balanced by a capillary diffusion
flux (figure 7b). It is important to note that the saturation traces (SL, SU), and the
gravitational flux difference G+(SL)-G−(SU) is thus not affected by a variation of
the capillary number Nc (3.3). For the limit Nc→ 0, the saturation gradient beneath
the interface increases, and the CO2 peak shrinks and disappears when the capillary
pressure tends to zero; hence, the capillary-free case is recovered.

In the second case, Si > S1, SL increases until S2 = 0.74 for which SU = SU = 0.46
(figure 6b). The difference between the initial buoyant flux G+(Si) and this maximum
flux corresponds to a backward shock travelling at a velocity [G(Si)−G(SL)]/(Si− SL)

(Hayek et al. 2009), as illustrated in figure 8(b).

3.4. Impact of the model parameters on the flow regime
For simplicity we assume in this work a viscosity ratio equal to one. For a viscosity
ratio lying between 10−1 and 10−2, which is the usual range for carbon sequestration
studies (Huppert & Neufeld 2014), the position of the maximum flux is shifted
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FIGURE 6. Curves SU(SL), solutions of the capillary pressure continuity condition, curve
P (continuous line), and the gravitational flux continuity relationship, curve G (dashed
line) (see figure 5). The pathway to determine the steady state solution of the interface
problem for Si< S1 (a) and for Si > S1 (b). The arrows indicate the direction of increasing
SL and SU .
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FIGURE 7. CO2 migration in a vertical column filled with a piecewise homogeneous
porous medium. (a) Gravitational fluxes G− in the material k− (dashed line) and G+ in the
material k+ (continuous line). The couple (Si, SU) satisfies the capillary pressure continuity,
where Si is the imposed saturation at the bottom of the column. (b) Saturation distributions
along the vertical axis of the column at four times. At t= 13.7, the saturation is at steady
state.

towards S = 0. Using the notations of § 3.3 we have SM = 0.25 and GM = 0.28 for
M = 0.1, whereas SM = 0.5 and GM = 0.13 for M = 1. Figures 9(a) and 9(b) display
the buoyant flux curves with different values of the couple (SL, SU) for M = 0.1 and
M = 0.2 respectively. In the case k+→ k− and for Si = 0.15 we see that Si > S1 for
M = 0.1 (S1 = 0.13) and Si < S1 for M = 0.2 (S1 = 0.16). According to the previous
discussion (§ 3.3) the CO2 accumulation beneath the interface tends to a steady state
for M = 0.2 and becomes unsteady for M = 0.1. We report on figures 9(a) and 9(b)
the couples (SL, SU) for these two cases where (SL = S2, SU = SU) for M = 0.1.
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FIGURE 8. CO2 migration in a vertical column filled with a piecewise homogeneous
porous medium. (a) Gravitational fluxes G− in the material k− (dashed line) and G+ in
the material k+ (continuous line). The couple SLU = (SL, SU) satisfies the capillary pressure
and the gravitational continuity conditions and Si is the imposed saturation at the bottom
of the column. (b) Saturation distributions along the vertical axis of the column at five
times. At t= 13.7, the saturation is at steady state.
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FIGURE 9. CO2 migration in a vertical column filled with a piecewise homogeneous
porous medium. Gravitational fluxes G− in the material k− (dashed line) and G+ in
the material k+ (continuous line) for two values of the viscosity ratio M: (a) M = 0.1,
(b) M= 0.2. The couple SLU = (SL, SU) satisfies the capillary pressure and the gravitational
continuity conditions and Si is the imposed saturation at the bottom of the column.

Figure 10 summarizes the three different flow regimes in the space described by the
axis kl/ku and Si for a given viscosity ratio. The saturation range is limited to (0, SM)
because any saturation greater than SM cannot migrate upwards. The key parameter
is S1, and it is easy to show that it depends on the ratio k−/k+ and M.

4. Gravity current model for a semi-permeable layer of finite extent
We now consider a 2-D reservoir consisting of a single horizontal semi-permeable

layer of finite length 2L embedded in a permeable matrix. The permeabilities of the
matrix and the inclusion are k+ and k−, respectively, with k−/k+� 1. The reservoir,
initially filled with brine, is fed by a uniform CO2 buoyant flux generated by an
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FIGURE 10. Flow regime diagram showing the three regimes of CO2 accumulation
beneath the interface as a function of the permeability ratio kl/ku and the imposed
saturation Si at the bottom of the column.

0.25

0.50

0.75

1.00

0

(a) (b) (c)

FIGURE 11. (Colour online) Simulation of the gravity currents (pc = 0) underlying an
impervious (a) or a semi-permeable layer (b,c). The black lines delineate the interface
between the matrix and the layer. Simulations are performed using the DuMux code
(Flemisch et al. 2011).

imposed CO2 saturation at the bottom of the reservoir. The bottom is supposed to be
far from the layer. Similar to the 1-D vertical column case studied previously in § 3,
the flow is counter-current: the CO2 ascending flow rate across a horizontal section
of the reservoir is balanced by the descending brine flow rate. As there is no CO2
injection the flow rate of the total velocity qt across the section (2.12) is zero but
the velocity may be locally non-zero. This system could schematically represent the
post-injection migration of a CO2 plume in a single layer reservoir.

We study the buoyancy-dominant flow of CO2 beneath and through the semi-
permeable layer. The numerical simulations neglecting the capillary pressure indicate
that this predominantly horizontal flow can be assimilated to a so-called gravity
current driven by the density contrast between the CO2 and the surrounding brine
(figure 11). For permeability ratios k−/k+ > 0.1, figure 11 clearly indicates that
there is a phase segregation and a neat interface between the gravity current and the
remaining fluid. Furthermore, we can observe that when k−/k+ increases, the CO2
saturation in the gravity current Sgc decreases: Sgc≈ 0.9 for k−/k+= 0.1 and Sgc≈ 0.8
for k−/k+ = 0.25. The imposed saturation at the bottom of the reservoir is Si = 0.25.

The extension of gravity current models to semi-permeable layers is a complex
theoretical issue which is beyond the scope of the paper. Indeed, this extension must
be able to describe the flows of brine and CO2 in the gravity current, in the layer
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and in the layer’s surrounding, while respecting the phase segregation condition. The
objective of our modelling approach is to simplify the problem by decoupling the
flows of the two phases and to describe the flow of CO2 by means of a single
transport saturation equation with flux continuity conditions at the interfaces. For this
purpose one must be able to circumvent the pressure equation, and therefore disregard
the total velocity. Although this is not feasible in our 2-D problem one may hope
that when flow is counter-current at the scale of the domain it is approximatively
counter-current at the interfaces with the layer. Under this approximation the CO2
vertical flow is one-dimensional and counter-current and the horizontal flow in the
gravity current is governed by the horizontal gradient of the gravity current height.
Adopting these assumptions we here propose to extend the gravity current models
developed for impermeable layers to semi-permeable layers. These assumptions are
discussed and heuristically justified in the appendix A.

Most of the studies on gravity currents in porous media use a sharp-interface
approximation assuming that the regions within and without the current are fully
saturated, and a macroscopic sharp interface exists between the two fluids (Huppert
& Neufeld 2014). These single-phase gravity current models can only be applied when
the capillary pressure is negligible compared to gravity and viscous forces. When
capillarity is considered, the simulation indicates that both phases are present, and
due to capillary diffusion, the vertical extent of the gravity current and its non-wetting
phase saturation are greater and smaller, respectively, than that in the capillary-free
case. Golding et al. (2011) developed a model that considers the capillary effect
on the saturation distribution within the current. The authors proposed a vertically
integrated model for a two-phase gravity current along a horizontal impermeable
barrier, in which the local capillary effect is encapsulated directly into the total flux
function. Thereafter, we extend their model to study the two-phase gravity current
along a semi-permeable barrier of finite extent (appendix A).

The two-phase gravity current model beneath an impermeable boundary is based
on the assumption of a vertical gravity–capillary equilibrium which expresses the
balance between the gravitational and the capillary force within the current (Golding
et al. 2011). We assume that this assumption is still valid when the boundary is
semi-permeable (appendix A)

∂pc

∂z
=−1ρg, (4.1)

where the vertical axis z is oriented downwards, and its origin is located at the centre
of the low matrix inclusion interface. The relationship between the capillary pressure
and the current height is determined by integrating equation (4.1) from z to the gravity
current height h as follows

pc[h(x, t), z] = p+e (1− Sh)
−1/λ −1g(z− h), (4.2)

where Sh denotes the non-wetting phase saturation at z = h, which is commonly
equal to zero, except in our case where the gravity current is fed by a source
distributed uniformly at the bottom of the reservoir, and p+e is the entry pressure
of the permeable matrix. The expression of CO2 saturation within the current as a
function of the current height h and z is written as follows

S[h(x, t), z] = 1−
(
(1− Sh)

−1/λ + h− z
h+e

)−λ
, (4.3)
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where h+e = p+e /1ρg. The non-wetting phase saturation S+0 at z= 0 on the matrix side
of the interface is

S+0 ≡ S+0 (h/h
+
e )≡ S[h(x, t), z= 0] = 1−

(
(1− Sh)

−1/λ + h
h+e

)−λ
. (4.4)

A vertical integration of the mass conservation equation (2.2) for the non-wetting
phase over the gravity current yields

φ[S+0 − Sh]∂h
∂t
− k+1ρg

µnw

∂

∂x

[
h
∂h
∂x

F(h/h+e )
]
=Φin −Φout, (4.5)

where Φin, Φout are the vertical feeding flux at z= h and the vertical leakage term at
the interface, respectively, with the semi-permeable layer at z= 0. The capillary effect
on the gravity current is considered via the flux function F(h/h+e )

F(h/h+e )≡
µnw

h

∫ h

0

krnw(S(z))
µnw

dz= h+e
λh

∫ S+0

Sh

S2(1− S)−(λ+1)/λ dS. (4.6)

The current height at the layer ends is set to zero: h(x = ±L) = 0. An analytical
expression of F is given by Golding et al. (2011) for Sh=0. Based on this expression,
we derive

F(h/h+e )=
h+e
h
[ f (λ, S+0 )− f (λ, Sh)], (4.7)

where

f (λ, S)= (1− S)−1/λ

1− 2λ

[
S2 + 2λ(S− λ)

λ− 1

]
+ 2λ2

(λ− 1)(1− 2λ)
. (4.8)

The flux Φin is assumed to be equal to the buoyant flux G+(Sh). At steady state,
we have Sh = Si, where Si is the imposed saturation at the bottom of the reservoir.
The saturation S+0 on the matrix side of the interface between the low-permeability
layer and the matrix and the flux Φout are given by the buoyant flux and the capillary
pressure continuity conditions at the interface. Based on the previous analysis of the
CO2 plume dynamics at the interface of a piecewise homogeneous porous medium
(§ 3) the CO2 can penetrate locally, i.e. for a given x, into the semi-permeable layer
when the local capillary pressure in the gravity current at z = 0 exceeds the entry
capillary pressure of the layer p−e . In terms of saturation, the vertical flow occurs
locally if the local saturation S+0 exceeds the threshold saturation S∗0 defined by (3.9).
The relationship between S+0 and the current height h expressed in (4.4) results in the
notion of the threshold height h∗

h∗ = h+e [(1− S∗0)
−1/λ − (1− Sh)

−1/λ], (4.9)

where S∗0 is a function of the permeability contrast k−/k+.
Woods & Farcas (2009) investigated the influence of the entry capillary pressure on

the leakage of single-phase gravity currents through a low-permeability layer. However,
in their study, the threshold height of the single-phase gravity current h∗ is equal to
he, and the impact of the permeability contrast between the matrix and the layer is not
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studied. At steady state, Golding et al. (2011) introduced the dimensionless variables
x = x/L and h = h/hgc, where hgc is the gravity current height scale corresponding
to a steady state gravity current of the horizontal extent 2L, which was originally
introduced by Huppert & Woods (1995). In our system, this height scale is given as

hgc =
√
ΦinµnL2

1ρgk+
. (4.10)

Hence, the governing equation of the current height reads

∂

∂x

[
h
∂h
∂x

F(hB)
]
= Φout

Φin
− 1 for h > h∗, (4.11)

and

∂

∂x

[
h
∂h
∂x

F(hB)
]
=−1 for h< h∗, (4.12)

where B is the Bond number

B= 1ρghgc

h+e
. (4.13)

The solution of (4.11) and (4.12) depends strongly on the Bond number B and the
capillary number Nc. Lastly, the dynamics of the system is essentially controlled by
four variables or parameters: layer length 2L, entry pressure in the matrix h+e , imposed
saturation at the bottom of the reservoir Si and ratio of the permeabilities k−/k+.

The outflux Φout in (4.11) can be approximated by the buoyant flux on the inclusion
side of the interface as follows

Φout =G−(S−0 ), (4.14)

where the saturation S−0 is the saturation on the inclusion side of the interface, which
is determined via the matching condition of capillary pressure at this interface

p−c (S
−
0 )= p+c (S

+
0 ), (4.15)

where S+0 is related to the height of the gravity current h via (4.4). In other words,
the outflux Φout is also a function of h. To determine h, equations (4.11) and (4.12)
can be solved numerically using a predictor–corrector algorithm (Ames 2014).

When the capillarity is neglected, Nc = 0, unlike the single-phase gravity current
beneath impermeable boundaries, the zone occupied by the current is not saturated
with CO2 because of the leakage term Φout through the layer. We can assume that at
steady state, the saturation Sgc within the current is constant and determined from the
continuity condition of the buoyant flux at the interface. We emphasize that in most of
the works the flux Φout is considered as a drainage term evaluated from the hydrostatic
pressure assumption (Acton, Huppert & Worster 2001; Spannuth et al. 2009; Neufeld
& Huppert 2009). This drainage assumption is not justified for a counter-current flow
in a semi-permeable layer where the two-phase flow nature of the problem must be
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respected. Finally, we recover the equation describing the propagation of current given
by Huppert & Woods (1995) but with slight differences (appendix A)

φSgc
∂h
∂t
− k+1ρg

µnw

∂

∂x

[
krnw(Sgc)h

∂h
∂x

]
=Φin −Φout. (4.16)

For the capillary case, we introduce the dimensionless variables x = x/L and h =
h/hgc, where the gravity current height scale hgc is given by (4.10), in which k+ is
replaced by k+krnw(Sgc) and Φin is replaced by Φin − Φout. The profile of the single-
phase gravity current at steady state is given by

∂

∂x

[
h
∂h
∂x

]
=−1, (4.17)

where Φin =G+(Si) and Φout =G+(Sgc)=G−(Sla), with Sla denoting the saturation in
the layer. Because the layer is thin, this saturation is assumed to be homogeneous.
The solution of (4.17) is

h=
√

1− x2. (4.18)

5. Numerical validation and discussion of the model

The reservoir introduced in the previous section is modelled as a rectangular
domain with a width of 2L0 = 80 m and a height of H = 100 m with a length layer
of 2L = 72 m localized at the centre and leaving two gaps of l = L0 − L = 4 m
width on each side (figure 12). A CO2 saturation Si is imposed throughout the lower
boundary of the domain which is initially saturated with brine. All of the other
boundaries are impermeable and the brine is allowed to flow downwards through
the lower boundary. The flow is counter-current: the brine initially located in the
reservoir can flow downwards through the layer and the two gaps. This domain may
be observed as the unit cell of a larger reservoir, which consists of a periodic array of
identical horizontal layers with a length 2L and a periodicity 2L0. The petrophysical
parameters of the reservoir for the two studied cases, i.e. capillary free and gravity
dominant, and the parameters of the fluids are summarized in table 1. For reasons
explained in § 3.1, the brine and the CO2 viscosities are assumed to be equal. The
numerical validation of the model developed in the previous section is performed
using DuMux, which is an open-source simulator for the flow and transport processes
in porous media developed by the University of Stuttgart (Flemisch et al. 2011). We
successively discuss the cases without and with the capillarity. In this last case, we
consider only the gravity-dominant flow, Nc� 1.

5.1. Capillary-free case
We consider a permeability ratio k−/k+=1/10 for the capillary-free case. The buoyant
flux functions are depicted in figure 13. First, we emphasize that in the finite width
domain considered here the buoyant flux imposed at the bottom is limited by a critical
value beyond which a steady state gravity current cannot be obtained. This critical flux
can be defined by the equality

Φc = 2l ·G+M + 2L ·G−M, (5.1)
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2Ll l

H
Z

FIGURE 12. Reservoir with a single embedded layer of permeability k− in a permeable
matrix of permeability k+.

Capillary-free case Gravity-dominant case
Nc = 0, 0.01, 0.1

Permeability of matrix (m2) 3× 10−12 3× 10−12

Permeability of layer (m2) 3× 10−13 3× 10−13 (7.5× 10−13)

Entry capillary pressure of matrix p+e (Pa) 0 51 012
Entry capillary pressure of layer p−e (Pa) 0 0, 16 131, 161 314

(0, 10 202, 102 024)
Porosity φ (—) 0.35 0.35
Density of brine ρw (kg m−3) 1000 1000
Density of CO2 ρnw (kg m−3) 480 480
Viscosity of brine µw (Pa s) 8× 10−4 8× 10−4

Viscosity of CO2 µnw (Pa s) 8× 10−4 8× 10−4

Pore size distribution parameter λ (—) 2.0 2.0

TABLE 1. Parameters for the simulations of the capillary-free and gravity-dominant cases.

where G+M and G−M are the maxima of the buoyant flux in the matrix and the layer
respectively (figure 13). This equality defines a critical saturation Sc given by the
relationship

G+(Sc)= Φc

2l+ 2L
. (5.2)

It is easy to find that the saturation S1 defined by G+(S1) = G−M and shown in
figure 13 is always lower than the critical saturation Sc. The saturation S1 is the
maximum saturation below which there is no gravity current, i.e. all of the imposed
buoyant flux can pass through the layer. When k−→ k+ we have S1→ Sc→ SM. For
k−/k+ = 1/10 we have Sc = 0.156 and S1 = 0.112, and for k−/k+ = 1/4, Sc = 0.205
and S1= 0.180. Therefore, based on the continuity condition of the buoyant flux, three
cases C(1,2,3) must be identified:
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FIGURE 13. Gravitational flux curves of the layer and the matrix for k−/k+ = 1/10.

(i) C.1 : Si 6 S1. There is no gravity current and Φout =Φin =G(Si). The saturation
in the layer is given by the buoyant flux continuity and equal to Si on the matrix
side of the upper interface of the layer.

(ii) C.2 : S1 6 Si 6 Sc. There is a gravity current and Φout = G−M. After a relaxation
period, which depends on k− the gravity current reaches a steady state. The
saturation is SM = 0.5 in the layer and S1 on the matrix side of the upper
interface of the layer.

(iii) C.3 : Sc 6 Si. There is a gravity current but CO2 flows back downwards beneath
the layer and there is no steady state.

It must be remarked that the range of saturations inside which a steady state gravity
current can take place, [S1, Sc], becomes narrow when k−→ k+.

Figure 14 illustrates these three cases at three different times: case C.1 with Si =
0.10 (figures 14a–14c), case C.2 with Si = 0.15 (figures 14d–14f ) and case C.3 with
Si = 0.20 (figures 14g–14i).

The 2-D steady state CO2 saturation distributions given by the model and computed
using DuMux for Si = 0.15 are depicted in figure 15, and the 1-D distributions along
the vertical axis passing through the middle of the layer (x = 0) are plotted in
figure 16(a). Only the lower part of the domain is illustrated in these figures. The
model and numerical results match fairly well. Particularly, we can see that the model
overestimates the current height. When the layer is impermeable, the current heights
are nearly identical; therefore, the observed discrepancy for the semi-permeable case
is not due to the Boussinesq approximation in the gravity current model. We attribute
this discrepancy to the role of the total velocity qt (2.12), which is disregarded in
our model. Because the flow is counter-current, the flow rate of the total velocity
across a horizontal section is zero but the velocity is locally non-zero. The velocity
increases the flux at the interface and therefore lowers the current height (figure 16b).
The flux continuity at the centre (x= 0) of the lower matrix–layer interface indicates

qtnf (S′2)+G+(S′2)= qtnf (S′M)+G−(S′M), (5.3)
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FIGURE 14. (Colour online) Capillary-free case. CO2 distributions after an early time t1
(a,d,g) when the CO2 plume has just reached the semi-permeable layer, at an intermediate
time t2 (b,e,h) and a relatively long time t3 after the CO2 plume has reached the no-flow
top of the reservoir (c, f,i).

where the saturations S′2, S′m are depicted in figure 16(b) and qtn is the component
normal to the interface of qt. When qt = 0, we have S′2= S2 and S′M = SM. The effects
of the velocity qt on the total flux continuity and the saturation discontinuity at an
interface between two different porous media have been discussed by Hayek et al.
(2009). We can graphically see that an increase in qtn increases the saturations on each
side of the interface. Here, we estimate qtn from the pressure gradient ∂p/∂z across
the layer obtained numerically using DuMux

qtn =− ki

µnw

{
[krn(SM)ρn + krw(SM)ρw]g+ [krn(SM)+ krw(SM)]∂p

∂z

}
. (5.4)

Furthermore, one obtains S′M by solving the following nonlinear system

dΦ+

dS

∣∣∣∣
S′M

= 0, (5.5)
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FIGURE 15. (Colour online) Capillary-free case: CO2 distributions from Z= 0 (m) to the
observation surface Z= 60 (m) modelled with the gravity current model (a) and simulated
with DuMux (b). A moderate influx (Si= 0.15) is imposed at the bottom of the reservoir.
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FIGURE 16. Capillary-free case: (a) CO2 saturation profile along the central vertical axis
of the layer. Comparison between the numerical simulation results obtained using DuMux

and the analytical gravity current models, with (qt 6= 0) and without (qt = 0) the total
velocity correction, for the case Si= 0.15. (b) Vertical total flux function Φ(S) (solid line)
and gravitational flux function G(S) (dotted line) at the interface between the matrix and
the layer.

where Φ = qtnf (S) + G+(S). Once S′M is known, S′2 can be deduced from the flux
continuity relationship (5.3). Here, we assume that Φ(S′M)<G+(Si) so that the flux in
the layer is at its maximum value. Additionally, we assume also that the total velocity
in the layer is essentially vertical, and the saturation on the matrix side of the upper
layer matrix interface is S′1 (figure 16b).

Both the saturation profiles computed with and without the total velocity correction
are plotted in figure 16(a). We can see that this correction significantly improves
the agreement with the simulation results. This is true regardless of the imposed
saturation Si at the bottom of the domain. Figure 17 illustrates the time evolutions of
the maximum current height at x= 0, with (figure 17a) and without (figure 17b) the
total velocity correction and for three values of Si, Si = 0.13, 0.14 and 0.15. We can
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FIGURE 17. Capillary-free case: maximal gravity current height at the origin x = 0.
Comparison between the numerical simulation results obtained using DuMux (continuous
lines) and the analytical gravity current models, without (a) and with (b) the total velocity.

see that ignoring the velocity results in a difference of the order of magnitude of the
current height, i.e. a metre, but taking this velocity into account divides by ten the
differences. These differences, showing a systematic underestimation of the model,
should be improved with a refined spatial resolution.

Considering the total velocity field should improve the model; however, it is not
theoretically possible. Here, the proposed correction is only applicable in the central
area of the layer, where the velocity is expected to be vertical. It should be noted
that we could also use an approximation of the pressure gradient, as given by flow
models around thin plates. Nevertheless, at the layer extremities, the velocity in the
layer is not vertical, and its impact on the total flux continuity becomes more complex
to model and analyse. Thus, we disregard the velocity in the model with the capillarity
discussed below.

5.2. Gravity-dominant case
We consider the gravity-dominant case characterized by a capillary number consider-
ably lower than one, Nc� 1. The permeability ratio is set to k−/k+= 0.10. This ratio
results in a threshold saturation S∗0 = 0.90 if the interfacial tensions of the matrix
and the layer are identical. The imposed saturation at the bottom of the domain is
Si= 0.10, and only the capillarity can provoke a CO2 gravity current beneath the layer.
Three increasing values of the capillary number are considered: Nc= 0, Nc= 0.01 and
Nc = 0.1. They correspond to increasing values of the entry pressure caused by the
increase of the interfacial tension in the layer (table 1). The corresponding threshold
heights of the gravity current as given by (4.9) are h∗ = 0 m (Nc = 0), h∗ = 1.054 m
(Nc = 0.01) and h∗ = 10.54 m (Nc = 0.1). Figure 18 depicts the CO2 distributions
obtained using DuMux after a long time. In the capillary-free case, h∗ = 0, there
is no CO2 accumulation beneath the barrier. The saturation within the inclusion is
obtained from the continuity condition of the gravitational flux (figure 18a). When
the capillary number is extremely small, i.e. Nc = 0.01, the CO2 accumulation occurs
because of the capillary barrier. The CO2 can pass into the layer only in the zone of
the interface where the gravity current height exceeds the threshold height h∗: over
the zone −x∗ 6 x 6 x∗ with x∗ being the point at which h = h∗ (figure 18b). For
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FIGURE 18. (Colour online) Gravity-dominant case with k−/k+= 0.10 and Si= 0.10. The
CO2 saturation distributions after a long time when CO2 has reached the top of the domain.
The simulation results are obtained for different values of the capillary number: Nc = 0
(a), Nc = 0.01 (b), and Nc = 0.1 (c) for which the corresponding threshold heights of the
gravity current are h∗ = 0, 1.054 and 10.54, respectively.
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FIGURE 19. (Colour online) Gravity-dominant case with k−/k+ = 0.25, Nc = 0.1 and
Si = 0.10. The CO2 distributions reconstructed from the semi-analytical solution (a) and
simulated using DuMux (b).

a fairly high capillary number, Nc = 0.1, the threshold height h∗ is also fairly high,
h∗ = 10.54 m. Even at steady state the maximal height of the gravity current is not
sufficient enough to overcome the capillary barrier (figure 18c). Therefore, the layer
is impermeable to CO2.

Figure 19 depicts a comparison between the 2-D saturations in the domain
computed using DuMux and reconstructed from our semi-analytical solution for
k+/k− = 0.25, Si = 0.10 and Nc = 0.1 (h∗ = 4.73 m) (table 1). The two distributions
agree qualitatively, and we can observe that the model accounts for the penetration
of the CO2 plume in a limited extent of the layer, i.e. where h< h∗.

Figure 20 illustrates the 1-D saturation distributions along the vertical axis passing
through the middle of the layer and along the interface Γ between the matrix and
the layer for two values of the imposed saturation, Si = 0.10 and Si = 0.15. The
two distributions, numerical and semi-analytical, are in good agreement for both Si
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FIGURE 20. Gravity-dominant case with k−/k+= 0.25 and Nc= 0.1. The CO2 saturations
reconstructed from the semi-analytical solution (solid line) and simulated with DuMux

(dotted line) along the horizontal interface Γ (Γ − for the matrix side and Γ + for the
inclusion side) (a,c), and along the vertical central axis x= 0 (b,d) for the cases Si= 0.10
(a,b) and Si = 0.15 (c,d).

values. Nevertheless, a better agreement is obtained for the lowest Si value (see the
appendix A for a discussion on the impact of Si). The extension of the area where the
CO2 can penetrate is also well described by the model (limited by the vertical dotted
lines in figure 20a,c).

6. Summary and conclusions
We have studied by means of theoretical developments and numerical simulations

the buoyancy- and capillary-driven counter-current flow of CO2 and brine through
and around a semi-permeable layer of finite extent embedded in a permeable
matrix. This system schematically describes the local flow of CO2 in a deep saline
heterogeneous aquifer after injection has stopped or is far from the injection well.
The three forces of a two-phase immiscible flow are considered: buoyancy, capillarity
and viscosity.

Initially, we considered a 1-D vertical column filled with a piecewise homogeneous
porous medium consisting of two materials: permeable and semi-permeable. We
investigated the effects of the buoyant CO2 inflow rate on the saturation distribution in
the column and for the two arrangements of the materials, that is, permeable material
at the top and semi-permeable at the bottom, and the reverse. For each configuration,
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we demonstrated how to graphically determine the saturation discontinuity at the
interface and how the buoyant and capillary diffusion fluxes are balanced to respect
the capillary pressure and total flux continuity conditions.

Then, we considered the 2-D problem. Thus, we heuristically extended the
two-phase gravity current model developed by Golding et al. (2011) to the case
of a current beneath a semi-permeable layer. The saturation in the current is imposed
by the capillary pressure and the buoyant flux continuity conditions at the current
layer interface. The CO2 migration is therefore described by a single transport
equation and the brine movement is disregarded. The numerical simulations of the
system have been performed using DuMux, an open-source simulator for the flow
and transport processes in porous media developed by the University of Stuttgart
(Flemisch et al. 2011). First, we demonstrated that for a given ratio of the layer
width to the domain width, there is a threshold value of the imposed CO2 saturation
at the bottom of the domain, beyond which there is no steady state gravity current.
An analytical estimation of this critical saturation value is proposed. Then, we
compared our model to simulations in the capillary-free and gravity-dominant cases.
In the gravity-dominant case, the agreement is good; the model correctly predicts the
geometrical characteristics of the current and the extension of the interface region
where CO2 can flow into the layer, i.e. where the current height exceeds the entry
pressure of the layer. In the capillary-free case, we showed that considering the
total velocity in the flux at the interface significantly improves the estimation of
the current characteristics. This is surprising for a counter-current flow, where the
total velocity is zero in average. Nevertheless, our simulations of CO2 migration in
heterogeneous formations clearly indicate that in a counter-current flow or far from an
injection well, the convective component of the total flux at the local interfaces of the
formation plays a non-negligible role in the CO2 migration. However, in both cases
the model becomes less accurate when the imposed CO2 saturation at the bottom of
the domain, or equivalently the incoming CO2 buoyant flux, increases. This saturation
must be low enough, i.e. such that the associated buoyant flux is much smaller than
its maximum value, to approximatively respect the hydrostatic equilibrium condition
in the gravity current. In the gravity-dominant case the model applies whatever the
ratio of the layer permeability to the matrix permeability. In the capillary-free case
this ratio must be low, less than 0.1, in order to respect the low value condition on
the imposed CO2 saturation. As a matter of fact, this constraint on the ratio sets to
low values the range of imposed saturation inside which a steady state gravity current
can take place.

The most important implication of our model for the geological storage of CO2
concerns the trapping efficiency of the geological reservoir. As we discussed in
the introduction, the capillary trapping is the outcome of a hysteretic process. It
takes place at the trailing edge of the CO2 plume during the imbibition phase,
i.e. after injection has stopped (Doughty 2007; Hesse et al. 2008). If the reservoir
is initially free of CO2, i.e. before injection, the trapped mass gives the CO2 initial
residual saturation, and also new characteristic curves, if another injection takes
place. This mass depends on the total volume of reservoir swept by the plume.
When capillarity is neglected and layers are semi-permeable the plume should invade
a large volume of the reservoir, much larger than if the layers are impermeable.
According to Land’s model, used for instance by Juanes et al. (2006) for applications
to CO2 sequestration reservoirs, residual saturations slightly smaller than the imposed
saturations considered here (0.10–0.15) are expected in the 2-D layer matrix reservoir.
When capillarity is taken into account and layers are perfect capillary barriers
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Golding et al. (2011) showed that, compared to the capillary-free case, capillary
diffusion can decrease by a factor of 2 the fraction of CO2 trapped in the gravity
current. If the layers are imperfect capillary barriers, i.e. CO2 can overcome locally
the barrier, the use of a numerical code becomes a necessity to assess this efficiency.
The other trapping mechanism, dissolution, should also be enhanced by the presence
of semi-permeable layers as its importance depends on the contact volume between
CO2 and brine.

Lastly, we would like to emphasize that our results may be easily applied to
the problem of groundwater contamination by DNAPL (Dense Non Aqueous Phase
Liquid) or LNAPL (Light Non aqueous Phase Liquid). The physical problems are
identical to that of CO2: (i) the DNAPL migrates downwards, whereas the LNAPL
upwards, both of which driven by the difference in the density with the aquifer
interstitial water; and (ii) the heterogeneities of a subsurface aquifer are frequently of
the semi-permeable type (Helmig 1997).
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Appendix A

In this appendix we provide several theoretical elements that support the extension
to semi-permeable layers of the two-phase gravity current model of Golding et al.
(2011) exposed in § 4.

First, let us neglect capillarity and consider a 1-D vertical column filled with
two homogeneous porous media: a permeable matrix and a semi-permeable layer
of height δ located at the centre of the column. The absolute permeabilities of the
matrix and the layer are respectively k+ and k−. A constant saturation Si is imposed
at the bottom of the column initially filled with brine (same configuration as in § 3)
and flow is counter-current. Following the discussion of § 3, and more generally the
results exposed in (Hayek et al. 2009), we see that if Si < SM, where SM is the
saturation at which the buoyant flux is maximum (figure 13), the plume can cross
the layer and the steady state saturation in the layer Sl is given by the buoyant flux
continuity, G−(Sl)= G+(Si) where G+ and G− are the buoyant flux functions of the
matrix and the layer respectively (2.17). Flux continuity shows also that the saturation
at steady state above the layer is Si. We assume here that Si is lower than the Welge
saturation, SW ≈ 0.4 here, so that the saturations in the lower and upper parts part
of the column are described as shock waves (Hayek et al. 2009). If Si > SM all the
incoming flux cannot penetrate into the layer and an unsteady accumulation takes
place beneath the lower interface of the layer. Again, flux continuity shows that the
saturation is S2 in the accumulation zone, SM in the layer and S1 above the layer
where G+(S1)=G+(S2)=G−(SM) (S1< S2) (figure 13). The width of the accumulation
zone increases with time and the front of this zone is described as a shock travelling
downwards. One must note that when k−→ 0, S2→ 1, S1→ 0 and Sl = SM. From
the counter-current flow condition, qt = 0, it is easy to obtain the pressure gradient
in the column

∂p
∂z
=−ϕ(S)g, ϕ(S)= ρnwλnw(S)+ ρwλw(S)

λnw(S)+ λw(S)
, (A 1a,b)
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where λα(S)= krα(S)/µα is the mobility of fluid α (α= nw,w). After integration, the
pressure in the accumulation zone is

p(z, t)= p0(z)+ [ϕ(Si)− ϕ(S2)]gh(t), (A 2)

where p0(z) is a pressure depending on z only and h(t) is the thickness of the
accumulation zone at time t. This thickness linearly increases with time with a
velocity G+(S2)/S2.

If we now introduce a second dimension to the problem, i.e. the vertical 1-D
column becomes the 2-D system described in § 4, the accumulation can spread
laterally, the velocity of the shock travelling downwards in one dimension tends to
zero and the excess of influx is balanced by a spreading flux beneath the layer. We
assume that the physics of this 2-D problem can be approximated as a vertical 1-D
problem where saturations are governed by buoyant flux continuity conditions at the
two interfaces between the matrix and layer and a 1-D spreading problem along
the horizontal axis governed by the horizontal pressure gradient in the accumulation
zone, i.e. the gravity current. As the saturation is constant along the vertical of the
accumulation zone the spreading flow rate may be written

Qx =−k+λnw(S2)h
∂p
∂x
. (A 3)

When k−→ 0, p→ [ϕ(Si)− ρnw] gh/µnw. This expression is different of the classical
gravity current pressure because the brine and the CO2 are in movement; the two
fluids cannot be in the hydrostatic equilibrium. When Si ≈ 0 one can approximate
p ' 1ρgh/µnw which is the classical expression of the gravity current pressure. In
our 2-D gravity current model for a semi-permeable layer, Si is small, Si ≈ 0.1, and
k−/k+� 1 which leads to a value of S2 close to one. Therefore, we assume, as a first
approximation, that the previous expression of the gravity current pressure can be used.
It is worth to remark that the values of the gravity current saturation simulated with
DuMux for semi permeable layers of permeability k−/k+ = 0.1 and 0.25 (§ 4) are in
good agreement with their respective S2 values.

When capillarity is taken into account and the physical parameters of the 2-D
problem are such that the layer is a capillary barrier (§ 5.2) the model of Golding
et al. (2011) applies if Si is small, ' 0.1. This constraint, which is the same as in the
capillary-free case treated previously, must be introduced to approximatively respect
the hydrostatic equilibrium condition in each phase. For this same reason Si must
also be small when the layer is not a capillary barrier. According to the notations of
(§ 3.1) the flux continuity condition at the lower matrix–layer interface is

G+(Si)=G+(SL)−D+(SL)
∂S
∂z

∣∣∣∣
SL

, (A 4)

where D(S)= Nc

√
k+Λ(S)J′s is the capillary diffusion coefficient (3.4). When Si→ 0

the case of an impermeable layer described by Golding et al. (2011) is recovered.
Figure 21 shows a comparison between the 1-D steady state saturations computed
using a home-made code and the model. The system is the 1-D column filled with
the piecewise homogeneous porous medium studied in § 3. We see that the model
converges to the numerical solution when Si → 0 and the error is low when Si is
close to, or smaller than 0.1. This figure also illustrates the equality given in (A 4): the
diffusive flux at the interface given by the model underestimates the numerical one.
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FIGURE 21. Piecewise homogeneous porous medium column. Saturation distributions
predicted by the model and computed with a home-made code for four values of the
imposed saturation Si.
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