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Mode limitation and mode completion in
collisionless plasmas
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(Received 24 September 1997)

The relativistically correct solution of the dispersion relation of linear plasma waves
in an isotropic unmagnetized equilibrium electron plasma leads to two new effects
unknown from the nonrelativistic dispersion theory. First, the number of damped
subluminal modes is limited to a few (mode-limitation effect); secondly, for rela-
tivistic plasma temperatures the few individual modes complement each other in
the sense that the dispersion relations ωR = ωR(k) continuously match each other
(mode-completion effect). The second effect does not occur at nonrelativistic tem-
peratures.

1. Introduction
More than 50 years ago, Landau (1946) discovered the collective effect of collision-
less damping of linear plasma waves in kinetic unmagnetized plasmas. Using the
linearized Poisson equation for the electric field fluctuations and the linearized non-
relativistic Vlasov equation for the particle’s phase-space density fluctuation, he
calculated finite damping rates for the principal branch whose real part describes
the usual longitudinal Langmuir waves. A more thorough analysis (Jackson 1960;
Fried and Gould 1961) of this system of plasma equations indicated the coexistence
of an infinite number of heavily damped modes. While the existence of the finite
damping of the principal Langmuir branch has been demonstrated in a series of
beautiful experiments (Malmberg and Wharton 1965), the theoretically predicted
heavily damped higher modes have never been observed experimentally, nor has an
experiment to detect them been proposed. Here we demonstrate that the prediction
of the coexistence of an infinite number of heavily damped modes results from the
use of the nonrelativistic form of the Vlasov equation in earlier work, and that this
result is altered significantly if the relativistically correct Vlasov equation is used.

The relativistic kinetic theory of linear plasma wave modes in isotropic unmagne-
tized plasmas of arbitrary composition and arbitrary energy distribution function
has recently been formulated (Schlickeiser and Kneller 1997). It allows the study
of the time evolution of initially small fluctuations perturbing the assumed initial
equilibrium state. Specializing to the textbook example of longitudinal fluctuations
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in a pure-electron equilibrium plasma with the normalized distribution

F (E) =
µ

4π(mec)3K2(µ)
e−µE , (1)

where µ = mec
2/kBTe characterizes the plasma temperature and K2(z) denotes

the modified Bessel function of second order, the dispersion relation for subluminal
longitudinal waves takes the form (see Appendix A)
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κ = kc/ωp,e denotes the normalized wavenumber, z = 1/N = ω/kc is the inverse
index of refraction and Ec = (1− z2)−1/2.

We show in the following that the relativistic dispersion relation (2) implies two
remarkable new effects: the effects of plasma mode limitation and plasma mode
completion. Neither effect occurs in traditional non-relativistic plasma dispersion
theory.

2. Analysis of the dispersion relation
The dispersion relation (2) is most conveniently solved by introducing the complex
variable

x ≡ q + is = z

[
µ

2(1− z2)

]1/2

(3)

and separating the dispersion relation (2) into real and imaginary parts

RΛ−(x) = 0, (4a)

IΛ−(x) = 0. (4b)

In the nonrelativistic dispersion theory (Roos 1969) Picard’s theorem implies for
given wavenumber values k� 0 the existence of an infinite number of simple sub-
luminal roots of the dispersion relation which are located in the fourth quadrant
in the complex x plane (q > 0, s < 0), and represent damped subluminal modes.
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Figure 1. Locus in the complex x (= q + is) plane of solutions of the subluminal disper-
sion relation in an electron equilibrium plasma. The curves are calculated numerically from
the imaginary part (4b) of the dispersion relation (2) for an electron temperature value
µ = mec

2/kBTe = 2. The line sM (q) separates the complex x plane into regions with sub-
luminal and superluminal solutions as indicated.

In general, the solution of (4b) defines the loci of points in the x plane, shown in
Fig. 1, fixing the relation between ql and sl (l = 0, 1, 2, . . .) for any value of k2. At
any of these loci one can then compute the wavenumber values from (4a):

R[Λ−(ql + isl)] = 0. (5)

Only if k2 > 0 do we have a bona fide solution of the dispersion relation, yielding
with (3) in the form

ω2 =
2x2

µ + 2x2 k
2c2 (6)

the variations of the real, ωR,l = ωR,l(k), and imaginary, Γl = Γl(k), parts for the
different plasma modes after specifying the plasma temperature value µ.

3. Mode limitation
The dispersion relation (2) holds for subluminal waves with

Rz 6 1, (7)

i.e. waves with phase speed less than the speed of light. The condition (7) does not
arise in nonrelativistic kinetic plasma theories which formally correspond to the
limit of an infinitely large speed of light c→∞ (Schlickeiser and Kneller 1997), so
that (7) is automatically fulfilled since all waves are subluminal in this case.

Introducing also z = r + iw, the limiting condition for subluminal waves (r = 1)
according to (3) yields the two relations

w2(3 + w2)
(1 + w2)2 =

µ

2
s2 − q2

(s2 + q2)2 , (8a)

w

(1 + w2)2 =
µqs

2(s2 + q2)2 . (8b)
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Figure 2. Locus in the complex x (= q + is) plane of solutions of the subluminal dispersion
relation in an electron equilibrium plasma for a nonrelativistic electron temperature value
µ = mec

2/kBTe = 200. Only the first three modes are calculated.

Since the left-hand side of (8a) is nonnegative for all values of w, we deduce for any
value of µ that the limiting line (r = 1) is located in regions with

s2 > q2 (9)

in the complex x plane.
Taking the ratio of (8a) and (8b) leads to the cubic equation

w3 + 3w +
q2 − s2

qs
= 0, (10)

which has one real solution in the fourth quadrant:

w = [(1 +Q2)1/2 −Q]1/3 − [(1 +Q2)1/2 +Q]1/3 6 0, (11)

with

Q =
q2 − s2

2sq
> 0 (12)

since q > 0, s < 0 and from (9). Inserting (11) into (8a) or (8b) fixes the limiting
relation for subluminal solutions in terms of the function sM = sM (q) < 0 in the
complex x plane.

Evidently only plasma mode solutions with

sM (q) 6 s 6 0 (13)

are acceptable subluminal roots, limiting the number of modes to a finite value.
This is illustrated in Fig. 1 for a temperature value µ = 2 and in Fig. 2 for a
temperature value µ = 200. While at µ = 2 only parts of the first two modes fulfil
the condition (13), mode limitation at the nonrelativistic temperature µ = 200 sets
in at considerably higher modes.
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Figure 3. Limiting line sM (q) for four electron temperature values µ in the complex x = (q+is)
plane. The analytic approximation (14) is in good agreement with the numerically calculated
curves.

In Appendix B we demonstrate that

sM (q) ≈



− qo√
3

+
3
√

3
2

q2

q0
for 0 6 q 6 q1 = 0.17q0,

−(q0q)1/2 for q1 6 q 6 q0,

−q − q2
0

8q
, for q > q0,

(14)

with

q0 =
(

3
2µ
)1/2

= 1.225µ1/2. (15)

The approximation (14) is in accord with the exact curves of sM (q) shown in Fig. 3
for different values of µ.

4. Mode completion
If we solve (5) for the two modes of Fig. 1 (µ = 2) that are consistent with subluminal
phase speeds, for the wavenumber values, and calculate the dispersion relation ac-
cording to (6), we obtain the variation of the real parts of the frequency ωR = ωR(k)
and the damping rates Γ = Γ(k) shown in Fig. 4. One notices that the frequency–
wavenumber relations continuously complement each other, while the damping
rates exhibit a sharp discontinuity at the joining wavenumber kj ≈ 1.2ωpe/c. At
all wavenumber values the damping rates are much smaller than the real parts of
the dispersion relation, so that the whole branch represents a weakly damped sol-
ution. The disjoint classification in the nonrelativistic theory of the low-frequency
part as the principal weakly damped mode, and the high-frequency part as one of
the heavily damped higher modes, must be an artefact resulting from using the
nonrelativistic Vlasov equation.

The same phenomenon of mode completion occurs at the more relativistic plasma
temperature µ = 0.02 shown in Fig. 5. Again the two dispersion relations join
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Figure 4. Mode completion in a mildly relativistic electron plasma with µ = 2. The upper
curve shows the variation of the real part of the frequency ωR(κ) with wavenumber for the
two acceptable modes (see also Fig. 1), whereas the lower curve shows the corresponding
damping rates. Note the continuity of ωR(κ) at the matching wavenumber.
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Figure 5. Mode completion in the ultrarelativistic electron plasma µ = 0.02. The upper curve
shows the variation of the real part of the frequency ωR(κ) with wavenumber for the two
acceptable modes, whereas the lower curve shows the corresponding damping rates. Note
the continuity of ωR(κ) at the matching wavenumber.

smoothly and complement each other, and are weakly damped over the whole
wavenumber range.

Mode completion is a relativistic effect that does not occur at very nonrelativistic
plasma temperatures (see Figs 2, 5 and 6 in Schlickeiser and Kneller 1997), where
the individual modes do not join together into a single dispersion relation.

5. Summary and conclusions
We have discovered two new effects resulting from the relativistic solution of the
dispersion relation for linear plasma waves in an isotropic unmagnetized equilib-
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rium plasma. The requirement of subluminal phase speeds of the waves leads to the
limitation of the number of damped subluminal modes to a few as compared with
the infinite number of modes found in nonrelativistic dispersion theories. More-
over, at relativistic plasma temperatures the dispersion relations for these modes
continuously complement each other leading basically to a single weakly damped
dispersion relation ωR = ωR(k) over a broader wavenumber range than covered by
the nonrelativistic principal mode. It will be of great interest to verify these new
effects experimentally.

Appendix A. The longitudinal dispersion relation (2)
To determine the dielectric properties of a plasma, we determine the currents and
charges induced by an electric field. In an unmagnetized plasma we start (see e.g.
Bekefi 1966) from the linearized form of the Vlasov equation

∂f1

∂t
+ v · ∂f1

∂x
= −qaE · ∂Fa

∂p
, (A 1)

where f1(x, p, t) is the small perturbation of Fa(p) caused by the RF field E. p =
γmav with γ = [1− (v/c)2]−1/2 relates momentum and velocity of plasma particles
of type a with charge qa. All DC electric and magnetic fields are assumed to be zero.

The simplest way to solve (A 1) is to substitute the Fourier–Laplace transforms

f1(x, p, t) = f̄1(k, p, ω) exp(ik · x− iωt) (A 2a)

E(x, t) = E1(k, ω) exp(ik · x− iωt) (A 2b)

into (A 1), yielding

f̄1 =
−iqa E1 · ∂Fa/∂p

ω − k · v . (A 3)

As usual, a positive imaginary part of the complex frequency (Γ = I(ω) > 0) in
(A 2) is assumed.

We also apply the substitutions (A 2) to the linearized Poisson equation

∇ · E = 4π
∑
a

qana

∫
d3p f1(x, p, t),

yielding, after inserting (A 3),

k · E1 + 4π
∑
a

q2
ana

∫
d3p

E1 · ∂Fa/∂p
ω − k · v = 0. (A 4)

Writing (A 4) in the form (Bekefi 1966)

Λ(k, ω) k · E1(k, ω) = 0, (A 5)

we obtain for the longitudinal dispersion relation

Λ+(k, ω) = 1 +
∑
a

ω2
p,ama

k2

∫
d3p

k · ∂Fa/∂p
ω − k · v = 0, (A 6)

where ωp,a = (4πq2
ana/ma)1/2 denotes the plasma frequency of species a. The

superscript + indicates that (A 6) holds in the positive (Γ > 0) complex-
frequency plane. Introducing the momentum variables y = p‖/mac and E = γ =
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[1 + (p2
‖ + p2

⊥)/m2
ac

2]1/2 in terms of the cylindrical momentum variables (p‖, p⊥, φ),
with p‖ parallel to E1, reduces (A 6) to

Λ+ = 1 + 2π
∑
a

ω2
p,ama

k

∫ ∞
−∞

dp‖

∫ ∞
0

dp⊥
p⊥∂Fa/∂p‖
ω − kp‖/maγ

= 0. (A 7)

For isotropic plasmas Fa(p‖, p⊥) = Fa(p) with p = (p2
‖ + p2

⊥)1/2, (A 7) simplifies to

Λ+ = 1− 2π
k2c2

∑
a

ω2
p,a (mac)3

∫ ∞
1

dE E
∂Fa
∂E

∫ (E2−1)1/2

−(E2−1)1/2
dy

y

y − Ez , (A 8)

with the inverse index of refraction z ≡ ω/kc = 1/N .
For superluminal waves (Rz > 1) the value of the y integral in (A 8) is identical at

positive and negative values of the imaginary frequency part Γ since the poleEz lies
outside the integration interval [−(E2−1)1/2, (E2−1)1/2]. However, for subluminal
waves (Rz 6 1) we have to properly analytically continue the dispersion relation Λ
from positive to negative values of Γ, provided the poleEz lies inside the integration
interval [−(E2 − 1)1/2, (E2 − 1)1/2], which is equivalent to E > Ec = (1 − z2)−1/2.
The two integrals

lim
Iz→0+

∫ (E2−1)1/2

−(E2−1)1/2
dy

y

y − Ez = lim
Iz→0−

∫ (E2−1)1/2

−(E2−1)1/2
dy

y

y − Ez + 2πiEz (A 9)

then differ by 2πi times the residue at the pole Ez, since the real frequency plane
is approached from above and below, respectively. With∫ (E2−1)1/2

−(E2−1)1/2
dy

y

y − Ez = 2(E2 − 1)1/2 + Ez ln
Ez − (E2 − 1)1/2

Ez + (E2 − 1)1/2
,

the correct analytical continuation in the negative complex-frequency plane for
subluminal waves is therefore

Λ− = 1− 4π
k2c2

∑
a

ω2
p,a (mac)3

∫ ∞
1

dE E(E2 − 1)1/2 ∂Fa
∂E

− 2πz
k2c2

∑
a

ω2
p,a (mac)3

∫ ∞
1

dE E2 ∂Fa
∂E

ln
Ez − (E2 − 1)1/2

Ez + (E2 − 1)1/2

−i4π
2z

k2c2

∑
a

ω2
p,a (mac)3

∫ ∞
Ec

dE E2 ∂Fa
∂E

. (A 10)

Adopting the electron equilibrium distribution (1), the first and third E integrals
in (A 10) can be solved, and with the substitution u = µ(E − 1), (A 10) is identical
to (2) of the main text.

Appendix B. The function sM (q)
The condition Q = 1 is equivalent to

s = s1 ≡ −(1 +
√

2)q. (B 1)

The line (B1) divides the complex (q, s) plane into the two regions: (a) s1 6 s 6 −q,
where Q has values (0 6 Q 6 1) smaller than unity, and (b) s 6 s1, where Q > 1
(see Fig. 3).
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In region (a) we use the asymptotic behaviour of (11) and (8b) for small Q and
w respectively, yielding w(Q� 1) ≈ − 2

3Q� 1 so that |w|� 1, implying for (8b),
after rearrangement,

(s2 − q2)(s2 + q2)2

s2q2 ≈ 3µ
2
. (B 2)

Equation (9) suggests the ansatz

s2 = Aq2, A > 1, (B 3)

so that (B 2) becomes

(A− 1)(A + 1)2

A
≈ 3µ

2q2 =
(
q0

q

)2

(B 4)

with q0 = ( 3
2µ)1/2. For values of q > q0 we approximate the left-hand side of (B 4)

by 4(A− 1), implying

A(q > q0) ≈ 1 +
(
q0

2q

)2

,

and, with (B 3),

sM (q > q0) ≈ −q
[

1 +

(
q0

2q

)
2
]1/2

≈ −q − q2
0

8q
. (B 5)

For values of q 6 q0 we approximate the left-hand side of (B 4) by A2, implying

A(q 6 q0) ≈ q0

q

and

sM (q 6 q0) ≈ −(q0q)1/2. (B 6)

Since we are still in region (a) we have to require that sM (q) > s1 according to (B 1)
which is fulfilled for (B 5) for all values of q, and for (B 6) only for values of q > q1,
where

q1 =
q0

3 + 2
√

2
= 0.17q0. (B 7)

We therefore rewrite (B 6) as

sM (q1 6 q 6 q0) ≈ −(q0q)1/2. (B 8)

For values of q 6 q1 we are in region (b), where we use the asymptotic behaviour
of (11) and (8b) for large Q and w respectively, i.e. w(Q� 1) ≈ −(2Q)1/3, yielding
for (8b), after rearrangement,

(s2 + q2)2

s2 − q2 ≈
µ

2
. (B 9)

For q → 0, (B 9) gives sM (q → 0) = (1
2µ)1/2 = q0/

√
3. The ansatz (B 3) reduces (B 9)

to

(A + 1)2

A− 1
≈ µ

2q2 =
1
3

(
q0

q

)2

. (B 10)

Since q 6 q1 = q0/(3 + 2
√

2)1/2, the right-hand side of (B 10) is greater than (17 +
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12
√

2)/3� 1. Equation (B 10) is then solved for large values of A� 1 by

A + 3 ≈ 1
3

(
q0

q

)2

, (B 11)

since the second possibility A ≈ 1 + ε with ε� 1 leads to contradictions with the
requirement that s 6 s1 according to (B 1). Using (B 11) in (B 3) gives

sM (0 6 q 6 q1) ≈ − q0√
3

(
1− 9q2

q2
0

)1/2

≈ − q0√
3

+
3
√

3
2

q2

q0
. (B 12)

Collecting terms, we derive

sM (q) '



− q0√
3

+
3
√

3
2

q2

q0
for 0 6 q 6 q1,

−(q0q)1/2 for q1 6 q 6 q0,

−q − q2
0

8q
for q > q0 =

(
3
2
µ

)1/2

,

(B 13)

which is identical to (14).
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