
J. Fluid Mech. (2011), vol. 672, pp. 60–77. c© Cambridge University Press 2011

doi:10.1017/S0022112010005860

Fingering instability in buoyancy-driven
fluid-filled cracks

T. TOUVET1†, N. J. BALMFORTH2,3, R. V. CRASTER4,5‡
AND B. R. SUTHERLAND6
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69364 Lyon CEDEX 07, France

2Department of Mathematics, University of British Columbia, 1984 Mathematics Road,
Vancouver, BC V6T 1Z2, Canada

3Department of Earth and Ocean Science, University of British Columbia, 6339 Stores Road,
Vancouver, BC V6T 1Z4, Canada

4Department of Mathematical and Statistical Sciences, University of Alberta,
Edmonton, T6G 2G1, Canada

5Department of Mathematics, Imperial College London, South Kensington, London SW7 2AZ, UK
6Department of Physics, University of Alberta, Edmonton, T6G 2G1, Canada

(Received 26 May 2010; revised 2 September 2010; accepted 9 November 2010;

first published online 24 February 2011)

The stability of buoyancy-driven propagation of a fluid-filled crack through an elastic
solid is studied using a combination of theory and experiments. For the theory, the
lubrication approximation is introduced for fluid flow, and the surrounding solid
is described by linear elasticity. Solutions are then constructed for a planar fluid
front driven by either constant flux or constant volume propagating down a pre-cut
conduit. As the thickness of the pre-cut conduit approaches zero, it is shown how these
fronts converge to zero-toughness fracture solutions with a genuine crack tip. The
linear stability of the planar solutions towards transverse, finger-like perturbations
is then examined. Instabilities are detected that are analogous to those operating in
the surface-tension-driven fingering of advancing fluid contact lines. Experiments are
conducted using a block of gelatin for the solid and golden syrup for the fluid. Again,
planar cracks initiated by emplacing the syrup above a shallow cut on the surface
of the gelatin develop transverse, finger-like structures as they descend. Potential
geological applications are discussed.
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1. Introduction
The propagation of fluid-filled cracks through elastic solids is of recurrent interest

in several areas of geophysics, including the rise of magma through the lithosphere
(Weertman 1971; Spence & Turcotte 1990; Rubin 1995; Taisne & Jaupart 2009), the
migration of fluid-filled glacial crevasses (Weertman 1971), the detachment of glaciers
from their bed (Tsai & Rice 2010), the calving of icebergs (Weiss 2004) and the
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drainage of supraglacial lakes (Krawczynski et al. 2009). In geological engineering,
the use of hydraulic fracturing techniques is commonplace in enhancing the recovery
of oil and gas (Desroches et al. 1994; Economides & Nolte 2000; Adachi et al. 2007),
and in carbon sequestration (Boschi et al. 2009).

The theory of buoyancy-driven cracks was pioneered by Spence and co-workers
(Spence, Sharp & Turcotte 1987) and Lister (Lister 1990a ,b). These authors built
solutions for the propagation of two-dimensional cracks or dykes. Notably, the crack
profiles develop distinct bulges near their tips where the elastic restoring forces in the
ambient solid restrain fluid flow. The profiles of the resulting planar cracks therefore
have shapes that are reminiscent of fluid films with contact lines advancing down
inclined planes, which develop pronounced ridges due to surface tension. The aim
of the present work is to explore this analogy a little further and, in particular,
determine whether planar buoyancy-driven cracks are prone to three-dimensional
fingering instabilities, as found for contact lines (Huppert 1982; Silvi & Dussan V.
1985; Oron, Davis & Bankoff 1997; Craster & Matar 2009). If so, there could well be
important implications in the various practical applications. For example, fingering
provides a mechanism for flow localization in planar magma dykes that is independent
of thermal and solidification effects, which might explain geological observations such
as regularly spaced volcanic features above subduction zones (Bloomer, Stern & Smoot
1989).

We approach the problem by first performing a theoretical analysis that follows
along similar lines to that used for fluid contact lines (Troian et al. 1989; Spaid
& Homsy 1996). More specifically, we build planar crack solutions similar to those
constructed by Spence, Lister and co-workers, and then test the linear stability of
these solutions towards non-planar (transverse) perturbations. In order to accomplish
the task, we make some simplifications and avoid some of the issues regarding the
actual crack tip by assuming that the fluid flows up an existing, but relatively narrow
conduit. This latter approximation is often used to regularize the singular behaviour
of fluid contact lines; as we show here, this approximation is less significant for the
crack problem because in the limit in which the thickness of the pre-existing conduit
approaches zero, the solutions converge to that for a finite crack without fracture
toughness (which has geophysical relevance, if not industrial).

Having established that fingering may occur from a theoretical perspective, we
then move on to describe some experiments that demonstrate that the phenomenon
can also be reproduced in the laboratory. Given the inaccessibility of the geophysical
and petroleum engineering applications (often kilometres deep within the Earth
and involving fluids at extreme pressures and temperatures), analogue laboratory
experiments have been conducted previously to study buoyancy-driven cracks. In
particular, experiments have been conducted on the migration of cracks through
blocks of gelatin driven by negatively buoyant viscous fluids (Takada 1990; Heimpel
& Olson 1994; Menand & Tait 2001, 2002; Taisne & Tait 2009). None of these
previous experimental studies have set up the geometrical arrangement in a way that
allows for the possibility that an initially largely planar crack could finger in the
transverse direction, which motivates our present experiments. The work by Taisne &
Tait (2009) is perhaps closest to our current attempts: their single three-dimensional
crack is effectively one of our fingers. To whet the reader’s appetite, we show in
figure 1 a photograph of a fingering crack in a typical experiment. Note the build-up
of fluid, or bulging of the conduit, near the advancing crack front (as evidenced
by the darker shading of those regions, which reflects a thicker layer of the dyed
fluid).
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Figure 1. (Colour online) Three photographs showing a buoyancy-driven fluid-filled crack
propagating through gelatin at times t = 0, 400 and 980 s. The experiment is initiated by
cutting a 4 cm deep slot filled with 45.36 g of Golden Syrup. Details of the experimental set-up
and materials are provided in § 3. The internal dimensions of the box are 59.6 × 29.7 × 7.2 cm.
Inclined mirrors at the ends of the tank display the crack cross-section. Diagnostic finger
measurements are L(t), the length of each finger, the maximal width of a well-developed finger
W , and the spacing between those fingers S.

2. Theoretical analysis

Following previous authors (Spence et al. 1987; Lister 1990a), we assume that a
long, thin fluid-filled crack lies within a homogeneous, isotropic elastic medium. The
fluid density ρf differs from the solid density ρs , resulting in a buoyancy force acting
in the positive x-direction. The z-axis is orientated in the direction of the relatively
narrow dimension of the crack, with y pointing along the fissure, see figure 1.
The half-thickness of the crack is given by z =h(x, y, t). The elastic solid is
characterized by Young’s modulus E and Poisson ratio ν, and we assume that the
deformations are sufficiently small that linear theory applies. The fluid is isothermal
and has viscosity µ. We assume that the resulting fluid flow is sufficiently slow that
the Reynolds number is small, and we may therefore apply Reynolds’ lubrication
approximation.
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2.1. The equations

Reynolds’ lubrication equation is

∂h

∂t
= ∇ ·

[
h3

3µ
∇p

]
− β

3µ

∂h3

∂x
, (2.1)

where p(x, y, t) is the fluid pressure (which is independent of z to leading order) and
β = (ρs − ρf )g is the ‘buoyancy’. Using Kelvin’s fundamental solution for a slender
planar crack opening under symmetrical compressional loading, p is related to the
opening displacement 2h via the non-local relationship,∫∫

Ω

h(x ′, y ′, t)

R3
dx ′ dy ′ = −2π(1 − ν)

G
p(x, y, t), (2.2)

where the bulk modulus G =E/[2(1 + ν)],

R =
√

(x − x ′)2 + (y − y ′)2, (2.3)

and the integral is to be interpreted in the sense of the Hadamard finite part (e.g.
Ioakimidis 1982). For a finite crack with an edge given by a genuine fracture, the
domain of integration Ω denotes the projection onto the (x, y)-plane of the footprint
of the crack, and the fracture position must be calculated as part of the solution of the
resulting free-boundary problem. As mentioned in the introduction, however, although
we consider buoyantly driven cracks, our approach to the problem is indirect: we do
not introduce a finite edge to the crack and impose a fracture condition there, but
instead pre-cut the solid with an infinitely long, planar conduit. Thus, for the present
case, Ω is the entire (x, y)-plane.

We non-dimensionalize the equations using a typical crack half-width H for lengths
in the z-direction, and a length scale based on a balance between elastic pressure and
buoyancy L given by

L2 =
GH

(1 − ν)β
(2.4)

for lengths in the crack plane (the x- and y-directions). That is,

h = Hĥ, x = Lx̂, y = Lŷ. (2.5)

We scale the pressure and time according to

p = βLp̂, t =
3µL
βH2

t̂ . (2.6)

The hatted variables are all dimensionless, and since we use only these variables
hereon we now discard the hat decoration. The dimensionless governing equations
then read

∂h

∂t
= ∇ · (h3∇p) − (h3)x (2.7)

and ∫∫
Ω

h(x ′, y ′, t)

R3
dx ′ dy ′ = −2πp(x, y, t). (2.8)

We consider two different configurations for advance of fluid down the pre-cut
fissure, each of which dictates the boundary conditions. First, we consider a constant
flux situation in which fluid is constantly fed in from x → −∞ with a flux Q pushing
open the conduit there to a given thickness. Taking the associated half-thickness to
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be the characteristic scale, H, implies that h → 1 as x → −∞, with H = (3µQ/2β)1/3.
The influx of fluid feeds a buoyant current that gradually opens up the conduit
further along (provided h(x, y, 0) is less than H), but well ahead of that current, the
half-thickness is given by that of the pre-cut conduit. Thus, denoting b as the ratio
of the half-thickness of the pre-cut conduit to H, we impose h → b as x → ∞. A
convenient state from which to commence a planar initial-value problem is then

h(x, y, 0) = 1
2
(1 + b) − 1

2
(1 − b) tanh x. (2.9)

Provided b is taken sufficiently small, this step-like initial condition is expected to
steepen up into a propagating fluid front. Indeed, as shown below, those propagating
fronts converge to a limiting solution as b → 0 (unlike in the corresponding contact-
line problem, see Spaid & Homsy 1996), which corresponds to a constant-flux
buoyancy-driven crack propagating through an elastic solid with vanishing fracture
toughness.

Second, we study a constant-volume problem in which a section of the pre-cut
conduit is initially inflated with an additional volume of fluid. We take the maximum
half-thickness of the inflated section to be H, and then impose h → b as x → ±∞. A
planar initial condition suitable for this situation is then

h(x, y, 0) = b + 1
2
(1 − b){tanh[σ (x + 1)] − tanh[σ (x − 1)]}, (2.10)

and we choose σ = 20 to get a smoothed ‘top-hat’ initial condition. The additional
volume added to inflate the conduit is then of the order of V0 = 4HL2, if b � 1,
implying H =V0/4L2.

Although it is not necessary to incorporate fracture toughness into our problem,
it remains helpful to estimate the magnitude of its effect in the experiment and
geological applications. The relevant dimensionless measure (Roper & Lister 2007) is

K =
(1 − ν)K

GH

(
2L
π

)1/2

, (2.11)

where K is the fracture toughness (with units Pa m1/2; Freund 1990a). As noted by
Roper & Lister (2007), the geological applications are characterized by K � 1. In
experimental situations K can be larger and we return to this issue in the discussion
of § 4.

2.2. Constant-flux fronts

Two-dimensional (planar) solutions, h(x, y, t) =H (x, t) and p(x, y, t) =P (x, t), to the
initial-value problem with (2.9) satisfy

Ht = ∂x[H
3(Px − 1)] (2.12)

and

P (x, t) =
1

π
−
∫ +∞

−∞

∂H (z, t)

∂z

dz

(x − z)
, (2.13)

subject to H → 1 as x → −∞ and H → b as x → +∞; the decoration on the integral
reminds us that the Cauchy principal value must be taken. As illustrated in figure 2,
numerical solutions to the initial-value problem show rapid convergence to steadily
propagating fronts. (For the computations, we approximate spatial derivatives with
centred finite differences on a uniform grid of 2001 points and evaluate the integral
using a simple trapezoid rule, then time step the resulting ordinary differential
equations with a standard stiff integrator.)
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Figure 2. Snapshots of solutions to the two-dimensional initial-value problem with (2.9) for
b = 0.05, 0.025, 10−2 and 10−3, at times t = 0, 1, . . . , 6.
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Figure 3. Steady front profiles for different b together with the K = 0 solution. The inset
shows the maximal crack width versus b.

2.2.1. Steady planar fronts

The steady planar front solutions are given by [H (x, t), P (x, t)] → [Hf (ξ ), Pf (ξ )],
where ξ = x − ct and c is the front speed. The front profile satisfies the integro-
differential system:

c − 1 − cHf = H 3
f

(
dPf

dξ
− 1

)
, Pf (ξ ) =

1

π
−
∫ +∞

−∞

dHf (χ)

dχ

dχ

(ξ − χ)
. (2.14)

Because Hf → b for ξ → ∞, we find that the front speed c = 1 + b + b2. In practice,
although we could attack this system directly, we extract the front profiles from
the end states of initial-value problems, ensuring convergence by moving into the
frame translating with the front and computing for as long as necessary. We do this
primarily because of the way in which we detect transverse instabilities, as described
in § 2.2.2.

Examples of the steady fronts for differing values of b are shown in figure 3.
A notable difference from the analogous surface tension problem (Spaid & Homsy
1996) is that the solutions converge to a common limit as b → 0, with the maximum
width approaching a value just above 1.25. We interpret this limit as a solution to
the zero-toughness fracture problem; indeed figure 3 also shows a recomputation of
the K = 0 solution of Lister (1990a).
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2.2.2. Transverse instability

We explore the transverse stability of the planar states by introducing
three-dimensional perturbations of the form h = H (x, t) + η(x, t) exp(iky) and
p = P (x, t) + 
 (x, t) exp(iky), and linearizing in the amplitudes η(x, t) and 
 (x, t),
where k is the transverse wavenumber. The amplitudes satisfy the linear equations

ηt = ∂x[3H 2η(Px − 1) + H 3
x] − k2H 3
 (2.15)

and


 (x, t) = − k

π

∫ ∞

−∞
η(z, t)

K1(k|x − z|)
|x − z| dz, (2.16)

subject to η → 0 as x → ±∞. The integral in (2.16) involves the modified Bessel
function K1(x) (Abramowitz & Stegun 1969) and follows from (2.8) on using the
Fourier cosine transform ∫ ∞

0

cos ky

(y2 + x2)3/2
dy =

k

|x|K1(k|x|). (2.17)

We solve these equations by again transforming into the frame moving with the
front, and then searching for normal mode solutions with time dependence exp(λt)
and growth rate λ(k). We use the front solutions extracted from the initial-value
computations and the same treatment of spatial derivatives and the integral to convert
(2.15) into a matrix eigenvalue problem. Sample growth rates, λ(k), computed in this
fashion are shown in figure 4, and reveal a band of unstable modes at sufficiently
small values of k.

The growth rates shown in figure 4(a) have a maximum near k = 0.5 and a higher
wavenumber cutoff near k = 0.8 for b → 0. The most unstable eigenfunction η is
strongly localized to the fluid front, indicating that the main effect is to distort that
front into an array of transverse fingers. The physical mechanism for the instability
is similar to that for a capillary ridge, discussed in Spaid & Homsy (1996): if one
imagines rearranging the fluid to create alternating thick and thin regions along
the fluid front in the transverse direction, then the thicker (thinner) portions have
lower (higher) viscous drag and propagate faster (slower). The thickened fingers
subsequently draw in more fluid from the retarded thinned regions to either side,
which continues to reduce the drag and further accelerates the fingers. Spaid &
Homsy (1996) employed an energy analysis to unequivocally identify this mechanism
for the advancing contact line; the same methodology can be adapted to the current
problem.

2.2.3. Long transverse waves

Analytical results follow in the limit of long transverse wavelength, k � 1. In this
limit, we introduce the asymptotic sequences λ= k2λ2 + · · · and

η(ξ ) =
dHf

dξ
+ k2η2(ξ ) + · · · , 
 (ξ ) =

dPf

dξ
+

(1 − b)

2π
k2 log k + k2
2(ξ ) + · · · .

(2.18)

The final relation is guided by the small-argument expansion of the modified
Bessel function K1(z) (Abramowitz & Stegun 1969), which determines the O(k2 log k)
correction and implies that∫ ∞

−∞

dHf (χ)

dχ

K1(k|ξ − χ |)
|ξ − χ | dχ =

dPf

dξ
+ o(k2), (2.19)
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Figure 4. (a) Growth rates λ versus k for b = 0.1, 0.05 and 0.025. (b) A magnification at small
k, comparing numerical results (solid) with the long-wave approximation in (2.21) (dotted) for
b = 0.05. In (c), the eigenfunction for the maximal growth rate is shown (solid) along with the
front profile (dotted) also for b = 0.05.

given that dHf /dξ ∼ O(ξ−3), as ξ → ±∞ (which follows from generalizing results
presented by Spence et al. 1987).

Introducing these long-wave forms into the perturbation equation (2.15) provides,
at order k2,

λ2

dHf

dξ
− c

dη2

dξ
=

d

dξ

[
3H 2

f η2

(
dPf

dξ
− 1

)
+ H 3

f

d
2

dξ

]
− H 3

f

dPf

dξ
. (2.20)

Integrating this equation in ξ from −∞ to +∞, and imposing the boundary conditions
η2 → 0 and 
2 → 0 as ξ → ±∞, leads to

λ ∼ λ2k
2 =

k2

1 − b

∫ ∞

−∞
(1 + b + Hf )(Hf − 1)(Hf − b) dξ. (2.21)

This prediction is also included in figure 4(b) and confirms the fidelity of the numerical
calculation.

2.3. Finite-volume releases

2.3.1. Initial-value problems

A numerical solution to the planar initial-value problem (2.12)–(2.13) with (2.10) is
shown in figure 5. The top-hat-like initial inflation collapses quickly along the conduit
under buoyant acceleration. A sharp fluid front develops, which eventually advances
algebraically in time, spanning a narrowing section of the conduit and waning in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

58
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005860


68 T. Touvet, N. J. Balmforth, R. V. Craster and B. R. Sutherland

10–1

100 101 102 103

100

101

hmax

t−1/6

xs(t)

hs(t)

xmax

Lnose

Time
(e)

(a) (b)

(c)

(d)

0 5 10 15 20 25 30
0

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30
0

0.05

0.10

20 22 24 26 28 30
0

0.05

0.10

H

H

H

0 5 10 15 20 25 30
0

0.1

0.2

0.3

x x

H

Figure 5. The evolution of the finite volume crack starting from (2.10) with b = 10−4. In (a)
the temporal evolution of the maximal half-thickness, hmax , the position where H = 2b, denoted
by xmax , and Lnose , the length between xmax and the maximum opening are shown. The dotted
lines indicate the predictions of § 2.3.2. In (b), snapshots of H (x, t) at t = 0, 10, 100, 250, 500
and 1000 are shown. In (c), a snapshot of H (x, t) at t = 1000 (solid) is shown along with the
corresponding slot solution (2.22) (dashed) and the position xs in (2.23) (vertical dot-dashed).
In addition, (d ) at t = 1000 shows the front region in more detail, with the dashed line again
showing (2.22) and the dotted line showing the rescaled steadily propagating front solution. In
(e), we show the profile of the b = 10−4 solution at t = 100, 1000 (solid), together with those of
a K = 0 computation (dots).

strength. More specifically, the tip of the front, defined as the position xmax , where
H = 2b, converges to xmax = O(t1/3); the width of the front, as measured by the length
from the tip of the front to the maximum opening Lnose = O(t−1/6); and the maximum
opening max(h) = hmax(t) = O(t−1/3). The front leaves behind a gradually thinning
and tapered slot whose thickness decreases as O(t−1/2). These algebraic dependences
can all be extracted by a scaling analysis of the equations, and reflect an underlying
matched asymptotic solution that takes a self-similar form in the two distinct regions
(the front and the tapered slot; cf. Roper & Lister 2007).

Again, the solutions for small b approach a common limit corresponding to a
zero-toughness solution with a genuine fracture edge. This is shown in figure 5(e),
which compares a solution with b = 10−4 to one with K =0. The latter computation
explicitly calculates the fracture edge positions X1(t) and X2(t) by using a fixed grid
on an expanding domain 0 � x̃ � 1, defined by x̃ = [x − X1(t)]/[X2(t) − X1(t)], and
determining ordinary differential equations for X1(t) and X2(t) by requiring that ht = 0
at those edges (Balmforth et al. 2006). The resulting partial differential equations are
then spatially discretized (it is advantageous to cluster gridpoints at the ends to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

58
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005860


Fingering of fluid-filled cracks 69

0 5 10 15 20
−5

−4

−3

−2

−1

0

x

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0 100 200 300

10–1

100

Time

 

 

k = 0.25
k = 0.50
k = 0.75
k = 1.00
k = 1.25
k = 1.50

m
ax

|η
|

(a) (b)

(c)

Figure 6. Solution of the initial-value problem for non-planar perturbations to
constant-volume releases with b = 0.025. (a) The evolution of max(|η|) versus time for
k =0.25, 0.5, 0.75, 1, 1.25, 1.5. (b, c) Snapshots of the base state h(x, t) and the perturbation
η(x, t), for k = 0.75, at times t = 20, 40, . . . , 300.

accurately capture the sharp gradients; a non-uniform Chebyshev–Lobatto grid with
400 points is used) and integrated in time.

As for the case of constant flux, the planar fronts that emerge in figure 5 develop
a pronounced ridge, and for related physical reasons, this structure may again suffer
non-planar fingering instabilities. Unlike the steadily propagating constant-flux fronts,
however, the constant-volume releases lead to structures that slow down and decrease
in strength as they collapse, due to the waning flux feeding them. It is unclear whether
the linear fingering instability survives this depletion of the basic state. On the other
hand, the front sharpens as it wanes, to provide a partly compensating effect.

To determine the fate of the fingering instability, we compute solutions to the
perturbation equations (2.15) and (2.16) in tandem with the planar front equations
(2.12)–(2.13), beginning from the initial conditions η(x, 0) = hx(x, y, 0) and (2.10). A
sample solution for k = 0.75 is shown in figure 6. In this example, the pre-cut conduit
has a half-thickness of b =0.025, which is not particularly small, but needed in order
to resolve the perturbation amplitudes, which develop severe peaks in the vicinity
of the front. The main consequence of this choice of b is that the ridge at the
front is slightly shallower than it would be for b → 0, reducing the potential for a
fingering instability. Nevertheless, the solution clearly displays an amplification in the
perturbation amplitude, defined as max(|η|).

Figure 6 also displays results for several other values of transverse wavenumber,
k. For the duration of the computation, the modes with the lowest and highest
wavenumbers (k = 0.25 and 1.5) display no appreciable growth, whilst the intermediate
wavenumbers all become amplified to a degree depending on k. This suggests a
k-dependent amplification with a form reminiscent of the growth rates for constant-
flux fronts shown in figure 4. However, figure 6 also demonstrates that growth is no
longer exponential in time. We offer some rationale for the observed behaviour in
§ 2.3.3.
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2.3.2. Self-similar planar fronts

For the tapered slot behind the front, following Spence & Turcotte (1990), we first
note that when the elastic pressure term becomes small (and which we show later is
relevant over this region), (2.12) reduces to Ht ≈ −3H 2Hx . Although this equation can
be solved in general by the method of characteristics, the form of the initial condition
dictates that the solution takes a self-similar form H = F (Z), where Z = (x + 1)/t ,
with a shock at its leading edge (bearing in mind that the trailing edge x = −1 barely
moves). Demanding that the function F (Z) solve the governing equation indicates
that

H ≈
√

x + 1

3t
, (2.22)

which is included in figure 5(c). Moreover, because most of the fluid is contained
in the slot, mass conservation determines the location x = xs(t) of the shock at the
leading edge, plus the maximum opening h(xs; t), for b � 1,

xs(t) = −1 + 3t1/3 (2.23)

and

h(xs, t) = hs(t) = t−1/3, (2.24)

which are compared with the numerical results in figure 5.
In the vicinity of the front, we introduce the time-dependent coordinate

transformation,

x = −1 + 3t1/3 + t−1/6X, (2.25)

to capture the overall advance of the front together with its shrinking width. We then
search for a self-similar solution of the form

H (x, t) = t−1/3f (X) and P (x, t) = t−1/6Φ(X). (2.26)

The scaling of the pressure follows from (2.13):

P (x, t) → 1

πt
−
∫

S

FZ(Z) dZ

(x + 1 − tZ)
+

1

πt1/3
−
∫

F

fX(X) dX

(x + 1 − 3t1/3 − t−1/6X)
, (2.27)

where the integral is divided into contributions from the slot (S) and the front (F ).
When x = tZ−1 lies inside the slot, the first integral dominates, implying P ∼ t−1, and
therefore Px ∼ O(t−2), justifying the neglect of the pressure gradient over this region.
If x lies inside the front region, on the other hand, we make the transformation in
(2.25), discovering that the second term dominates and is O(t−1/6):

P (x, t) = t−1/6Φ(X) ∼ 1

πt1/6
−
∫ ∞

−∞

df (χ)

dχ

dχ

(X − χ)
. (2.28)

Equation (2.12) can now be reduced at leading order to

−fX ∼ [f 3(ΦX − 1)]X. (2.29)

However, (2.28) and (2.29) are identical to the system satisfied by our steadily
propagating, constant-flux fronts for b � 1, with the travelling-wave coordinate ξ

replaced by X. Thus, f (X) ≡ Hf (X). We illustrate how the rescaled solution within
the front region collapses to the constant-flux front in figure 5(d ); the rescaled solution
is positioned using the computed front location.
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2.3.3. Self-similar instabilities

The similarity analysis can also be adapted to the linear-stability problem. Using the
same rescalings as above, we search for perturbation solutions that are exponentially
localized to the front region. A key detail of these self-similar perturbations is that in
addition to rescaling x = −1 + 3t1/3 + t−1/6X, we also rescale the transverse coordinate
and therefore the corresponding wavenumber:

Y = yt1/6 and κ = kt−1/6. (2.30)

Thus, we set

η(x, t)eiky = ζ (X, t)eiκY and 
 (x, t)eiky = t1/6φ(X, t)eiκY , (2.31)

where the scaling of 
 (x, t) is guided by the development of (2.16), which in view of
the localization of the eigenfunction to the front provides an analogue of (2.27):


 (x, t) → t1/6φ(X, t) ∼ −t1/6 κ

π
−
∫ ∞

−∞
ζ (χ, t)K1(κ |X − χ |) dχ

|X − χ | . (2.32)

Note that this pressure perturbation decays exponentially beyond the front region,
justifying the search for localized eigenfunctions in ζ (X, t).

Equation (2.15) now reduces to

t1/2ζt − ζX ∼ ∂

∂X
[3f 2ζ (ΦX − 1) + f 3φX] − κ2f 3φ, (2.33)

where terms O(t−1/2) have been omitted. If we set

ζ (X, t) = ζ̂ (X)eλ(κ)τ , with τ = 2t1/2, (2.34)

then (2.32) and (2.33) recover the linear eigenvalue problem for the steadily
propagating constant-flux fronts. In other words, the computations of figure 4 can
be translated into predictions for the growth rate λ(κ) for self-similar instabilities.
Notably, the modes are expected to amplify exponentially in τ ∝

√
t , but with the

time-dependent rate λ(kt−1/6). That is, the effective growth rate sweeps across the
dispersion curves of figure 4(a) from right to left as time advances (assuming that
the thickness of the pre-cut conduit plays no role). Over times for which the effective
wavenumber κ ∼ 1/2 we sweep across the maximum of the curve of λ(κ), the effective
growth rate changes little, and we expect the instabilities to amplify exponentially in
τ = 2

√
t . On the other hand, over later times, when the self-similar wavenumber κ has

entered the long-wave regime where λ(κ) ∼ λ2t
−1/3k2, we anticipate exponential growth

in t1/6. The computations, shown in figure 6, broadly show this kind of behaviour in
time (with the logarithm of the maximum perturbation amplitude varying like tα with
1/6 < α < 1/2). Moreover, perturbations with smaller values of k begin to amplify
at earlier times and then trail off sooner in comparison to the higher wavenumbers
(the case with k = 1.5 has apparently yet to enter the phase of evolution for which
the perturbation is expected to amplify, which is not surprising in view of the fact
that the effective wavenumber kt−1/6 ≈ 0.6 has barely entered the unstable band by
the end of the computation).

3. Experiments
3.1. Set-up

For the experiments, we fracture blocks of gelatin by the downward propagation
of a crack filled with pure Rogers Golden Syrup, dyed with a small amount of
food colouring to enhance visualization. The blocks were prepared by dissolving
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Tank: Length 59.6 cm Depth 29.7 cm Width 7.2 cm

Golden syrup Gelatin
Fluid density 1421 kgm−3 Solid density 1050 kg m−3

Fluid viscosity 183 Pa s Poisson ratio 0.5
Shear modulus 2913 Pa
Fracture toughness 89 Pam1/2

Magma Rock
Fluid density 2600 kgm−3 Solid density 2900 kg m−3

Fluid viscosity 100 Pa s Poisson ratio 0.25
Shear modulus 2 × 1010 Pa
Fracture toughness 106 Pam1/2

Table 1. Experimental data. The Young’s modulus for gelatin E = 8740 Pa was found from
a classical compression test (allowing a small mass, 200.00 × 10−3 kg, to deform the surface
vertically by 8 × 10−3 m, see Jaeger 1964; Oakenfull, Parker & Tanner 1988). As the material is
almost incompressible, the Poisson ratio ν =1/2, so the shear modulus is G = E/3. The fracture
toughness of the gelatin was estimated using an empirical relation suggested by Menand &
Tait (2002). Data for magma and rock are taken from Lister (1990b) and Rubin (1995); these
imply a dimensionless fracture toughness of K ∼ 5 × 10−4.

550 g of commercial gelatin powder (supplied by David Roberts Food Corporation,
Mississauga, Ontario, Canada) in 11 l of boiling water, and then leaving the solution
to solidify in the tank. The top of the tank was covered to avoid evaporation while
the gelatin set for 22 h in an air-conditioned room at 23 ◦C. Physical data for the
experimental materials and the dimensions of the tank are summarized in table 1.
Note that these values indicate that the Reynolds number of the flow inside the
fingers is estimated to be Re = ρf HV /µ ∼ 5.4 × 10−5 � 1, which certainly justifies
the use of the Stokes approximation that underlies the lubrication model used for
the fluid motion.

Once set, the gelatin blocks were prepared for the experiment by cutting slots of
depth 4 cm at the top using a heated strip of metal with thickness 0.5 mm. A given
mass of viscous fluid was then quickly poured directly into the cuts to uniformly
fill them over the length of the tank to a thickness of the order of a millimetre, as
illustrated in figure 1(top). The fluid then drove a fracture into the gelatin underlying
the pre-cut slots, and images of the shape of the ensuing cracks were recorded by a
digital camera as those structures migrated towards the base of the tank.

3.2. Observations and measurements

As already illustrated in figure 1, the initially planar cracks lose their two-
dimensionality and develop fingers as predicted theoretically. Figure 7 displays a
summary of measurements taken from the experiments. Figure 7(a) shows the number
of ‘fully developed’ fingers versus the mass of fluid emplaced, along with a selection
of images of the finger patterns; fingers were identified as fully developed when they
had descended at least 2 cm below the initial planar crack, and provided they had
a distinct minimum (ruling out occasional side branches). Figure 7(b, c) displays the
average finger spacing and their width, again plotted against the emplaced fluid mass,
with error bars showing the variations encountered amongst the multiple, differently
shaped fingers. The number of fingers initially increases with the emplaced fluid
mass, but eventually the dimensions of the box constrain the available space within
which the fingers can evolve. Note that, although crack propagation was largely
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Figure 7. Experimental results for different emplaced masses of fluid. Shown in (a) are the
number of developed fingers; the inset photographs display four sample finger patterns. In
(b, c), the mean finger spacing and width are shown, respectively with error bars showing the
variations amongst all the fingers appearing in the experiment.

in the vertical, a sideways deflection was impossible to eliminate, as illustrated by the
reflections of the sides of the gelatin block in the angled mirrors bordering the tank
in figure 1.

Multiple fingers developed in each experiment that was conducted. In some cases, as
in figure 1, the initial instability appeared to set the finger spacing, which then persisted
throughout the experiment. However, in other cases, the original finger pattern did
not persist; a subset of the fingers grew at the expense of their neighbours, suppressing
some of the fingers and increasing the overall spacing. Thus, nonlinear effects are
clearly present and contribute to the finger development, and so linear dynamics
cannot describe all the finger attributes.

More images and data from the experiment with emplaced mass 47.5 g are shown
in figure 8. The sequence of photographs shows the development of two particular
fingers. Figure 8(e) presents an image of the finger thickness based on the intensity
of the green colour in the photograph at t = 912 s; the intensity is approximately
proportional to thickness (Liu, Paul & Gollub 1993), and although the scale is
arbitrary in the figure it is roughly equivalent to millimetres (the intensity scale
can, in principle, be directly calibrated to thickness, but we did not attempt this
refinement).

There are broadly three phases in the evolution evident in figure 8: an initial,
planar phase; a period over which fingers appear and lengthen; and a final rundown
phase in which finger growth is arrested. In the initial phase, the nearly planar crack
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Figure 8. (Colour online) The time evolution of a pair of fingers for the experiment with
47.5 g of fluid). In (a) a sequence of photographs is shown of the developing fingers at the
times indicated; this pair corresponds to the rightmost pair in the photograph inset into the
centre of figure 7(a). In (b), a time series is presented of the positions of the finger tips and
the base between them; the vertical dotted lines delineate the phases of evolution. In (c) and
(d ), the finger length, L(t), is shown, first on a linear scale, and then logarithmically along with
the scalings expected for the two-dimensional constant-volume theory (the circles indicate the
times of the photographs shown in (a)). In (e), the cross-sectional thickness of the fingers is
displayed, extracted by measuring the intensity of the green colour in a photograph at t = 912 s;
as this intensity was not calibrated directly to actual thickness the scale is arbitrary.

descends approximately linearly in time, suggesting our method of triggering crack
propagation is similar to supplying a constant flux. There is little distinction between
the finger tips and bases between the fingers during this initial phase, which lasts for
about 120 s. The second phase of evolution then emerges as fingers appear and the
tip and base positions diverge from one another; the bases slow down significantly,
whereas the finger tips descend much as the original planar front. Eventually (at a
time of about 360 s) the final rundown sets in when the bases of the fingers come
to a complete standstill because most of the fluid has drained into those conduits,
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trapping a finite volume within each finger. During the rundown, fingers continue
to lengthen, slowing all the while; the t1/3 scaling appropriate for two-dimensional
propagation of a finite volume is shown for comparison in figure 8(d ), but compares
poorly with the data.

The fingers shown in figure 8 came to a standstill before they reached the base of
the tank, in contrast to our constant-volume, zero-fracture-toughness solutions which
slow down but never stop. Although the approach to the bottom surface might be
partly responsible, fingers with a relatively small amount of trapped fluid often braked
to a halt much higher in the tank, suggesting that some other effect is responsible
for ending their downward progression (see also Taisne & Tait 2009). One possibility
is that the three-dimensional structure of the finger is responsible, although it is not
clear how the geometry could affect the propagation in this fashion, especially given
that one might expect the localization of the flow to drive the crack more effectively.

A second possibility is that the finite fracture toughness of the gelatin is able to
arrest the propagation of a fingered crack driven by a finite volume of fluid. To gauge
the merit of this proposal, we use dimensional analysis to determine that buoyancy
becomes comparable to fracture toughness for a length of the order of (K/β)2/3

(Taisne & Tait 2009), which is equivalent to demanding that K in (2.11) is order
one and then replacing GH using (2.4) to furnish an estimate of L. We compare
this distance with the length of that part of the crack containing most of the fluid;
should (K/β)2/3 exceed that length, we conclude that fracture toughness may control
the dynamics. For our experiments, (K/β)2/3 ∼ 9 cm, which is certainly of the order of
or greater than the lengths of the fluid-filled cracks that came to a halt (see figure 8).
Although this argument does not demonstrate that fingers halt because of the fracture
toughness, it does suggest that the explanation may be plausible.

4. Concluding remarks
Fluid-filled and buoyancy-driven planar cracks develop bulges near the fracture tip

that may suffer three-dimensional fingering instabilities by a similar mechanism that
allows an advancing fluid contact line to finger. In this article, we have demonstrated
both experimentally and theoretically that such instabilities do indeed occur, despite
the fact that aspects of the fracture problem make the study more challenging than
the corresponding surface tension problem.

Theoretically, the non-local dependence of the elastic forces on the crack shape
leads us to an integro-differential problem to solve once we make the conventional
lubrication approximation for the fluid and describe the solid by linear elasticity
(Spence et al. 1987; Lister 1990a). To simplify this problem, and especially the linear-
stability analysis for three-dimensional perturbations about steady planar fronts,
we avoided the introduction of a genuine fracture altogether, by considering fluid
propagation along pre-cut, but narrow conduits. The precise technical issue is that
linear perturbations are formally singular at the crack tip due to the shape of the
underlying crack and the requirement that this tip is shifted by the perturbation.
Nevertheless, we showed that as the thickness of the initial conduit approached zero,
the solutions converged to true fracture solutions provided the elastic material had
zero fracture toughness.

Although negligible fracture toughness may characterize geological applications,
for our experiments the gelatin block actually possessed a non-negligible fracture
toughness (according to the numbers quoted in table 1, the dimensionless fracture
toughnesses, K, are O(1)). Though this places those experiments in a different
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physical regime, the fact that we observed fingering also in the laboratory indicates
that the instability does not rely on vanishing fracture toughness. Indeed, although
our theoretical discussion took K = 0 in order to avoid the details of the crack edge,
steadily propagating solutions with finite toughness are available (Lister 1990a) and
our long-wave perturbation analysis (§ 2.2.3) can be adapted to gauge stability in that
limit. As in the surface tension problem, the primary feature driving instability is the
extent of the fluid ridge near the crack tip, which increases with toughness, as shown
by Lister (1990a). This suggests that we have actually explored the least unstable
situation from the theoretical side.

The experiments themselves were particularly challenging: the gelatin required
some care in its preparation in order to minimize problems with transparency and
homogeneity, difficulties that were compounded by the need to have a relatively
long tank in order to unambiguously observe multiple finger wavelengths. Also, we
were then forced to use a tank that was not specially wide. Consequently, the crack
is influenced by the proximity of the sidewalls, not least because the cracks often
drifted horizontally, sometimes to intersect those walls and thereafter peel the gelatin
away lower down. Fractures without simple geometry also sometimes emerged; in
weaker gelatin, the crack developed complicated petal or bladed patterns. All of
these complications are presumably why these instabilities have not been documented
before.

The differing fracture toughness precludes us from comparing the theory with the
experiment in detail. Nevertheless, it is worth pointing out that the characteristic length
scales, based on the physical parameters given in table 1, H and L are about 3 mm
and 7 cm, respectively, for the syrup–gelatin configuration. These scales are certainly
representative of experimental crack thicknesses and finger widths and spacings. More
appropriate is a comparison with the geological application. Unfortunately, physical
data for magmatic processes are unreliable, but a suggestive set of values is given in
table 1. These numbers (along with the flux estimate Q = 500 m3 s−1) suggest length
scales of H ∼ 3 m, L ∼ 6 km, which are not unreasonable values of dyke extent. The
most unstable wavelength for a constant-flux crack is then predicted to be 60 km,
which is satisfyingly within the 50–70 km spacings of volcanoes observed along the
Mariana Arc (Bloomer et al. 1989).
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