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Navigation involves the integration of methodologies and systems for estimating the time
varying position and attitude of moving objects. Inertial Navigation Systems (INS) and the
Global Positioning System (GPS) are among the most widely used navigation systems. The
use of cost effective MEMS based inertial sensors has made GPS/INS integrated navigation

systems more affordable. However MEMS sensors suffer from various errors that have to be
calibrated and compensated to get acceptable navigation results. Moreover the performance
characteristics of these sensors are highly dependent on the environmental conditions such

as temperature variations. Hence there is a need for the development of accurate, reliable
and efficient thermal models to reduce the effect of these errors that can potentially de-
grade the system performance. In this paper, the Allan variance method is used to charac-

terize the noise in the MEMS sensors. A six-position calibration method is applied to
estimate the deterministic sensor errors such as bias, scale factor, and non-orthogonality. An
efficient thermal variation model is proposed and the effectiveness of the proposed cali-

bration methods is investigated through a kinematic van test using integrated GPS and
MEMS-based inertial measurement unit (IMU).
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1. INTRODUCTION. Navigation provides the best possible estimate of the
moving object in terms of its position, velocity and attitude (Titterton and Weston,
1997) by measurement systems such as Inertial Navigation Systems (INS) and the
Global Positioning System (GPS). The current market for integrated positioning
and navigation systems is clearly dominated by GPS as one of the major compo-
nents to provide absolute positioning information about the vehicle. Besides being
globally available, GPS provides good navigation accuracies at very low cost. It
is also highly portable, has low power consumption, and is well suited for inte-
gration with other sensors, communication links, and databases (Aggarwal et al,
2006). At this point in the development of navigation technology, the need for
alternative positioning systems only arises because GPS does not work in all
environments. One promising development is the emergence of Micro-Electro-
Mechanical Systems (MEMS) technology. MEMS is an enabling technology with a
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massive global market, predicted to be US $180 billion in 2007. A portion of this
market will support inertial sensor technology since INS technology is capable of
working in environments where GPS has difficulties.

MEMS-based INS provides accurate navigation data over short time intervals
but suffers from accuracy degradation with time due to the combined effects of errors
like noises, biases, drifts and scale factor instabilities (Nassar et al, 2006; Godha,
2006). Due to the integration of inertial measurements, any residual deterministic
error will accumulate and grow without bound, resulting in ever increasing position
and orientation errors. These errors can be corrected using frequent updates from
external sources like GPS, which forms the basis of many integrated INS/GPS sys-
tems. In the past two decades, the use of cost effective MEMS based inertial sensors
has made the integrated navigation systems more affordable. With the most desired
features for civilian navigation including small size, low cost and light weight, these
sensors still have to make their way in the field due to their significant error sources
such as turn-on biases or scale factors variations. These errors are considerably larger
than those of their navigation grade predecessors.

Inertial sensor errors can be divided into two parts : random and deterministic or
systematic (Nassar, 2003). In order to integrateMEMS inertial sensors with GPS, and
to provide a continuous and reliable navigation solution, the characteristics of differ-
ent error sources and the understanding of the stochastic variation of these errors
are of significant importance (Park, 2004). The random errors include bias-drifts or
scale factor drifts, (El-Sheimy, 2003) and the rate at which these errors change with
time. These random errors have to be modelled stochastically. The deterministic error
sources include the bias and the scale factor errors which can be removed by specific
calibration procedures in a laboratory environment. However, for low cost sensors
such as MEMS sensors, these errors are quite large and their repeatability is typically
poor because of environmental factors dependence, especially temperature, which
makes frequent calibration a necessity (El-Diasty et al, 2006). More explicitly, the
actual value of the bias and the scale factor varies from that obtained through the
calibration process due to the difference between the operational and calibration
temperatures (Walid, 2005). Hence there is a need for the development of accurate,
reliable and efficient thermal models to be used for online and post processing appli-
cations. Since these errors accumulate with time, the position accuracy degrades if
the thermal variations for both accelerometer and gyroscope biases and scale factors
are not modelled and compensated (Shcheglov et al, 2000).

In this paper, we aim at establishing a standard testing/calibration procedure for
MEMS inertial sensors that will be used for inertial navigation applications. This
includes the six-position calibration, Allan variance analysis, and thermal testing.
Also the effect of varying temperature on the MEMS inertial sensor errors is
examined in detail and a thermal model is developed to compensate for the effects
of biases and scale factor errors due to temperature variation.

2. METHODOLOGY. In this section the basic calibration methods of a
modified six-position static test, the angle rate test, stochastic modelling and thermal
testing are explained.

2.1. Calibration Methods. The calibration of inertial instruments is required
to reduce the errors in the INS derived position, velocity and attitude of moving
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platforms. Calibration is the process of comparing instrument outputs with known
reference information and determining the coefficients that force the output to agree
with the reference information over a range of output values. To determine the bias,
scale factor and non-orthogonal error parameters, the first step in inertial navigation
is to calibrate its sensors. Generally, calibration methods such as the local level frame
(LLF) method; the six-position static method and rate tests are used for this purpose.

The common methods used for calibrating Inertial Measurement Units (IMUs)
were primarily designed for in-lab tests and for high quality sensors, such as
navigation or tactical grade IMUs. These tests often require the use of special refer-
ences such as alignment to a given frame or specialized equipment. The six-position
static and rate tests are among the most commonly used (Titterton and Weston,
1997).

2.1.1. Six-Position Static Test. The six-position method requires the inertial
system to be mounted on a levelled table with each sensitive axis pointing alternately
up and down. For a triad of orthogonal sensors this results in a total of six positions.
The bias (b) and scale (S) factors can then be calculated using the following
equations:

b=
l
up
f +ldownf

2
(1)

S=
l
up
f xldownf x2rK

2rK
(2)

Where l
up
f is the sensor measurement when the sensitive axis is pointed upward,

ldownf is the measurement when the sensitive axis is pointed downwards and K is
the known reference signal. For accelerometers, K is the local gravity constant and
for gyroscopes K is the magnitude of the earth rotation rate at the given latitude.
However, the earth rotation rate can only be used for navigation and tactical
grade gyroscopes, since low grade gyroscopes such as MEMS suffer from bias
instability and noise levels that can completely mask the earth’s reference signal.

The six-position calibration accuracy depends on how well the axes are aligned
with the vertical axes of the local level frame. For accurate results a perfect cube
shaped mounting frame is required. This standard calibration method can be used to
determine the bias and scale factors of the sensors, but cannot estimate the axes
misalignments (non-orthogonalities). To estimate the non-orthogonalities an im-
proved six-position test can be performed which takes into account all three types of
errors. In matrix form the output of a triad of sensors (e.g. accelerometers) can be
represented as:
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The diagonal m elements represent the scale factors, the off diagonal m elements are
the non-orthogonalities and the b components are the biases. By aligning the IMU
using the standard six-position method the accelerometers measurements will be:
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The output of the sensors would be measured as a vector U :

U=[ u1 u2 u3 u4 u5 u6 ] (5)

The desire is to extract the components of the matrix in Equation 3 (call it matrixM)
and this can be done using the well-known method of least squares :

M=(AAT)x1ATU (6)

Angular rate tests are used for calibrating the scale factors and non-orthogonalities
of the gyroscopes. If both rate tests and the improved six-position static method are
used together, one can determine all the inertial sensors’ errors.

2.1.2. Angle Rate Test. Rate tests are typically done using a precision rate
turntable. By rotating the unit through precisely known angles the reference turning
rates can be developed. By comparing the outputs of the IMU to these references, the
biases, scale factors and non-orthogonalities of the gyroscopes can be estimated using
the same principle as the six-position method. This is typically accomplished by
rotating the table through a defined angle in both the clockwise and counter clock-
wise directions as given by Equation 7.

Sgyro=
wref (clockwise)xwref (anticlockwise)

2wref
(7)

where wref (clockwise) represents gyroscope output on rotating the turntable by wref

in the clockwise direction while wref (anticlockwise) represents gyroscope output on
rotating the turntable by wref in the anticlockwise direction and Sgyro is gyroscope
scale factor error.

These methods provide an estimate of the deterministic errors only and hence
stochastic error models are required to determine random errors.

2.2. Stochastic Modelling. The basic difference between deterministic and
stochastic modelling is that in deterministic modelling, relationship has to be estab-
lished between one or more inputs and one or more outputs, whereas in stochastic
modelling, there may not be any direct relationship between input and output (Hou,
2004). A model is theorized as if the system is being excited by white noise, having the
same output characteristics as the IMU under evaluation. Allan variance (IEEE Std
952-1997) is a time domain analysis technique and can be used to determine the
characteristic of the underlying random processes, such as data noise. It helps identify
the source of a given noise term in the data. The source may be inherent in the
instrument, but in the absence of a plausible mechanism within the instrument, its
origin should be sought in the test set up (Hou, 2004). The root mean square random
drift error is represented as a function of averaging times. In this method, it is
assumed that the uncertainty in the data is generated by noise sources of specific
characters. The magnitude of each noise source covariance is then estimated from the
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data. The five basic noise terms considered are angular random walk, velocity
random walk, bias instability, quantization noise and drift rate ramp. In MEMS
sensors, the stochastic models for gyro and accelerometers random errors are defined
in terms of angle and velocity random walk processes.

2.3. Methods of Thermal Testing. The purpose of thermal testing is to determine
the variation of the basic sensor parameters when operated under different tempera-
tures. There are two main approaches for thermal testing:

(1) Allow the IMU enclosed in the thermal chamber to stabilize at a particular
temperature corresponding to the temperature of the thermal chamber
and then record the data. This method of recording the data at specific tem-
perature points is called the Soak method.

(2) In the second method, called the Thermal Ramp method, the IMU tempera-
ture is linearly increased or decreased for a certain period of time (Titterton
and Weston, 1997).

In this study, the Soak method was used to investigate thermal effect of sensors and
to evaluate piecewise local temperature drift compensation models. A linear interp-
olation method was used in the thermal model as more advanced methods gave
similar results. In order to compensate for the thermal drifts of the low-cost MEMS
sensor, thermal calibration was conducted to calculate the biases and scale factors
variations of the sensors over a range of temperature from x25 xC to 70 xC.

In order to evaluate the biases and the scaling factor values for the accelerometers
and the gyroscopes, a local linear interpolation of the calculated values over the
temperature range x25 xC to 70 xC was performed. In this linear interpolation
method if two parameters po and p1 are known at temperatures to and t1, then an
intermediate value is given by Equation 8:

p(t)=
t1xt

t1xt0
p0+

txt0
t1xt0

p1 (8)

where, t is the required temperature point and p(t) is the calculated value at that
point. Other advanced methods like Cubic Spline Interpolation and Piecewise Cubic
Hermite Interpolation were also tried but comparable results were observed for all
the cases. Hence the simplest method of linear interpolation was used in this paper.

3. EXPERIMENTAL SETUP AND RESULTS. Tests were conducted
first to identify noise terms existing in the custom built MEMS unit ADI MEMS
IMU Sensor Triad (ADI) (Niu and El-Sheimy, 2005). This unit was designed by the
members of MMSS research group at the University of Calgary and was built as a
very low-cost alternative using MEMS inertial sensor chips. The IMU used surface
micromachined MEMS gyroscopes (ADXRS150) and accelerometers (ADXL105)
made by Analog Devices, Inc.

3.1. Sensor Random Noise Estimation (Allan Variance). Eighteen hours of static
data with the sampling frequency of 100 Hz was collected from the ADI IMU at
room temperature. The data was analyzed using the Allan variance method to
evaluate various random noise components. The raw outputs from ADI IMUs (i.e.,
voltage values) were converted to acceleration and angular rate. The mean was sub-
tracted from the data before the analysis. Figure 1 illustrates a log-log plot of s (T)
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versus time for the ADI accelerometers and gyroscopes. It can be observed from these
graphs that the angular random walk is the dominant noise term. Using these plots,
the Allan variance values fit a straight line with slope of x1/2 (from parametric least
square fitting). The fitted Allan variance line meets T=1 at a value called Velocity
RandomWalk (VRW) for accelerometer sensors and Angular RandomWalk (ARW)
for gyroscope sensors. The calculated VRW and ARW values are listed in Table 1.
These parameters are required for designing the process noise matrix Q to be used in
the Extended Kalman Filter algorithm in the GPS/INS integrated navigation systems.

3.2. Sensor Deterministic Errors Estimation (Six-position Estimation). The
modified six-position static test and angle rate tests were used to calculate the
deterministic sensor errors for the ADI sensor unit namely, biases, scale factor errors
and non-orthogonalities. These values for the accelerometers and gyroscopes are
given in Tables 2a and 2b respectively, and were calculated at room temperature
(22 xC).

3.3. Thermal Calibration. The process of characterizing the stochastic variation
at different temperatures is one of the most important steps in developing a reliable
low cost integrated navigation system. The actual value of the bias and the scale
factor varies from that obtained through the calibration process (six-position
method) due to the difference between the operational and calibration temperatures
(Walid, 2005). Unless an accurate temperature-dependent stochastic model is devel-
oped, the mechanization parameters will have higher error and could potentially
degrade system performance.

In the test setup, a turntable and a thermal chamber are assembled together to form
a Thermal-Turntable Unit as shown in Figure 2. The rotating axle of the turntable

Figure 1. ADI accelerometer (left) and gyroscope (right) Allan variance results.

Table 1. Velocity random walk for accelerometers and angular random walk for gyroscopes.

Accelerometer VRW (m=s=
ffiffiffiffiffi
hr

p
) Gyroscope ARW (deg =

ffiffiffiffiffi
hr

p
)

X Y Z Average s X Y Z Average s

0.1895 0.1806 0.1797 0.1832 0.0054 1.9850 2.2030 2.5800 2.2560 0.301
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is extended into the thermal chamber through a narrow round opening in the
chamber’s side wall. The ADI MEMS is placed in the chamber and is fixed on the
extended tabletop of the turntable. This placement of the IMU allows the freedom to
rotate it under controlled temperature. The data was collected in the Inertial Lab at

Table 2a. Accelerometer Deterministic Errors.

Accelerometers Acc. X Acc. Y Acc. Z

Biases (m/s2) 14.5502 18.9355 x13.0217

Scale Factor Error (%) 2.3811 3.3425 5.5556

Non-Orthogonalities (%)
NXY NXZ NYX NYZ NZX NZY

x1.5618 x1.1576 1.4444 0.1165 x1.6795 1.1772

Table 2b. Gyroscope Deterministic Errors.

Gyroscopes Gyro. X Gyro. Y Gyro. Z

Biases (deg/s) 9.2168 8.1723 8.6696

Scale Factor Error (%) 0.8000 0.8000 x0.4480

Non-Orthogonalities (%)
NXY NXZ NYX NYZ NZX NZY

x1.7834 0.6832 x1.3280 0.5304 x0.5848 x0.6056

Figure 2. Thermal test setup.
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the University of Calgary. The IMU signals were sampled at 100 Hz at different
temperatures and saved on a laptop via a 16-Bit A/D card (DAQCard-6036E) from
National Instrument for post processing. The variation of bias and scale factor with
temperature is evaluated for the low cost ADI MEMS unit. The calculated biases for
accelerometers and gyroscopes at different temperatures are shown in Figure 3. The
constant bias estimated from the conventional six-position static test was first re-
moved from each calculated bias at different temperature points and then the values
were plotted with respect to temperature.

As observed from Figure 3, the biases of accelerometers and gyroscopes vary
significantly with temperature and hence should be modelled to get accurate navi-
gation results. For accelerometers, the biases drift can be as high as 1 m/s2 while
for gyroscopes, the drift in biases can reach 5 degs/sec over the whole temperature
range. Hence there is a need to design an accurate thermal calibration model for
low cost MEMS sensors to compensate for these biases and scale factor drift with
temperatures. Scale factors were previously calculated for these inertial sensors. For
further details, please refer to Aggarwal et al, 2007.

4. RESULT VERIFICATION. This section covers the results obtained on
applying the proposed models to field test data.

4.1. Field Test Description. For the evaluation of the methodology explained
above for calibrating MEMS sensors, kinematic data was collected in March and
December 2005 by MMSS group using the ADI sensor triad, a higher grade IMU
and GPS receivers. The ADI MEMS sensor was installed in the cargo area of the
test van on a rigid platform along with the batteries and the laptops needed to record
the data. The OEM4 GPS receiver and a navigation grade IMU (CIMU from
Honeywell) were installed on the roof. For the first dataset (Run 1, December 2005)
the test was performed around the University of Calgary campus and consisted of
typical kinematic motion around the research park. The second dataset, Run 2
(March 2005) was also collected around the University of Calgary research park area
in mainly open sky conditions with several short (<10 seconds) real GPS signal
blockage periods. Two separate loops were followed in clockwise and counter-
clockwise directions along the same trajectory. Both loops involved stops for four to

Figure 3. Variation of accelerometer (left) and gyroscope (right) biases with temperature.
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six minutes near the same open sky area. This Run 2 trajectory is a typical low speed
scenario which mimics driving in residential areas. Figure 4 shows the trajectory
for Runs 1 and 2 together with the location of GPS signal outages.

The positional accuracy of the integrated solution mainly depends on the accuracy
level of the GPS position during GPS signal availability. Therefore the quality of
the position estimation is often evaluated by simulating a set of short term GPS
signal outages and by checking the position drifts during these GPS signal outages
where the INS has to work as a stand-alone navigation system. In order to test the
MEMS IMU performance with the uncalibrated and calibrated data, a few short
term GPS signal outages were simulated as shown in Figure 4. The IMU position
errors during GPS signal outages were obtained by comparing the corresponding
solution to the reference trajectory acquired from the smoothed best estimate of
the CIMU/DGPS data processed by Applanix Corporation POSPacTM software.
AINSTM, an Aided Inertial Navigation system Toolbox for MatLab1 Software, was
used to integrate GPS and INS data (Shin and El-Sheimy, 2005). AINSTM is a flexible
toolbox that can deal with different INS grades with multiple aiding sources such as
GPS, odometer, and heading sensor. The MEMS version of AINSTM, which has some
special functionality to deal with the large uncertainty of MEMS inertial sensors,
was used in this paper.

4.2. Comparison between Calibrated data and Un-Calibrated Data. The per-
formance of theMEMS IMUwas tested under the different scenarios listed in Table 3
by simulating various short-term GPS signal outages. Run 1 had four, 30 second
GPS outages, carefully selected to cover the characteristic dynamics in the system.

Figure 4. The ADI IMU trajectories for Run 1 (left) and 2 (right).

Table 3. The five test scenarios.

Scenario 1 Using Manufacturer specifications shown in Table 4.

Scenario 2 Using six-position static test biases and nominal Scale Factor.

Scenario 3 Using six-position static test biases, nominal Scale Factor and six-position static test

Non-Orthogonalities

Scenario 4 Using six-position static test biases and Scale Factor

Scenario 5 Using six-position static test biases, Scale Factor, Non-Orthogonalities and

Thermal Compensation Model
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In Run 2, four 60 second GPS outages were simulated by removing the GPS updates
from the Kalman filter. Due to the similar trend in the results, only the typical results
from Run 1 are presented for all scenarios. The detailed results for both runs are
provided in Section 4.2.6. in Tables 5 and 6.

4.2.1. Scenario 1. As previously stated, four 30 sec GPS signal outages were
applied at selected locations as shown in Figure 4 for Run 1 and four 60 sec outages
were applied for Run 2. The raw data was compensated according to the manu-
facturer specified nominal biases and scale factors. But this was not effective as
the AINSTM output diverged after few seconds. This showed that compensation
according to the manufacturer’s specifications are not enough and calibration of
low cost MEMS sensors is essential to obtain reliable vehicle navigation information.

4.2.2. Scenario 2. In the second condition, six-position static test biases and the
nominal scale factors specified in Table 4 were used to compensate the raw signal.
Figure 5 shows the position error obtained for Run 1. On comparison of the results
obtained from scenario 1 and 2, it was observed that biases are the dominant
stochastic error without which the filter diverges.

4.2.3. Scenario 3. For the third scenario, six-position static test biases, non-
orthogonalities and nominal scale factor values were used to calibrate the raw Run 1
signal. Figure 6 shows the results. Comparison between Figures 5 and 6 shows a
reduction of 5.7% in drift errors. If this is compared with scenario 1 where the filter
failed to converge, it can be concluded that non-orthogonalities are not as dominant
errors as biases.

4.2.4. Scenario 4. Here, six-position static test biases and six-position static test
scale factor are compensated, and the results are in Figure 7. Upon comparing
Figures 5 and 7, we see a 6.6% improvement by using six-position static test scale
factor values instead of using the nominal scale factor.

4.2.5. Scenario 5. In this case we applied all the six-position biases, scale factor
and non-orthogonalities along with the thermal model residual temperature de-
pendant biases and scale factors; the results are in Figure 8. A comparison of Figures
7 and 8 shows 4.3% improvement in the results. It is evident that this improvement
was due to the thermal compensation model (Aggarwal et al, 2007) and cannot be due
to the non-orthogonalities as this is the major difference between scenarios 4 and 5.
We also observed that the result obtained on using condition 5 had the least error
when compared with any other scenario. In Run 1, the total temperature variation
during the trajectory was 4 xC. Therefore the improvement due to thermal model was
not as significant as that for the Run 2 (16.3%), where the maximum temperature
variation was 8 xC. Table 5 summarizes the position errors obtained for Run 1 under
the conditions described in Table 3.

4.2.6. Summary of Position Errors for Run 2. Similarly all the position errors
obtained for Run 2 are given in Table 6. On comparing the Run 2, condition 2 and

Table 4. Manufacturer specifications for ADI units.

Accelerometer (ADXL 105A) specification Gyroscope (ADXRS 150 EB) specification

Nominal Bias 2.5 V Nominal Bias 2.5 V

Nominal Scale Factor 250 mV/g Nominal Scale Factor 12.5 mV/x/sec

Temperature sensor Scale Factor 8 mV/xC Temperature sensor Scale Factor 8.4 mV/xC
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condition 3 position errors, a 1.7% improvement is observed when the modified
six-position static test non-orthogonalities were used. The comparison between
six-position scale factor and nominal scale factor values, yielded 3.3% improvement.
Condition 5, from Table 6 shows us the improvement in position error reduction by
almost 16.3% on using six-position static test non-orthogonalities and the thermal
compensation model. The main effect in these values is due to the thermal model
where biases and scale factors are evaluated at each temperature point.

5. DISCUSSIONS. MEMS inertial sensors are inexpensive, compact and
rugged, and therefore, can be used to complement GPS in civilian vehicle navi-
gation when the signals are not available. The difficulty in using the MEMS sensors
is that they exhibit significant time and temperature varying errors. In order to
effectively use these sensors, the errors need to be calibrated and modelled before
the data can be used in the integration software. The primary objective of this
paper was to compare the improvements in performances achieved using calibrated
data on the un-calibrated data. Various conditions were analyzed to determine
the contribution of each error source and hence the need for obtaining calibrated
data.

The first steps in the design of Kalman filters for INS/GPS integration are the
stochastic error models and the design of Q matrix. The Q matrix should contain
the VRW and ARW, their standard errors along with other error parameters. Table 1
shows that the VRW of the accelerometers have a small standard error of only

Table 5. Position Errors for Run 1.

Position Drift in 30 sec GPS outages (m)

IMU Outage Scenario 2 Scenario 3 Scenario 4 Scenario 5

#1 33.665 39.855 24.187 22.226

#2 21.136 11.510 20.637 23.702

#3 51.569 55.044 48.957 58.828

#4 33.644 25.640 33.325 20.380

Mean 35.004 33.013 32.677 31.284

Improvement % — 5.688 6.648 10.627

Table 6. Position Errors for Run 2.

Position Drift in 60 sec GPS outages (m)

IMU Outage Scenario 2 Scenario 3 Scenario 4 Scenario 5

#1 89.558 86.125 83.104 110.393

#2 146.645 147.959 142.070 86.391

#3 259.606 259.756 257.476 202.533

#4 108.635 100.544 101.978 106.304

Mean 151.111 148.596 146.157 126.4053

Improvement % — 1.664 3.278 16.349
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0.0054 m=s=
ffiffiffiffiffi
hr

p
while the ARW for the gyroscopes have a considerably larger

standard error of 0.301 (deg =
ffiffiffiffiffi
hr

p
. These values were used in the Kalman filter

design and therefore, were utilized irrespective of the inertial data compensation for
deterministic sensor errors such as biases, scale factors or non-orthogonalities.

Figure 3 shows the variations in biases for accelerometers and gyroscopes over the
temperature range from x25 to +70 xC. The accelerometer bias changed approxi-
mately 0.94 m/s2 over the temperature range while the changes in gyroscope drift were
about 5 x/s. Such a temperature dependency of the bias and drift clearly indicates a
need to develop a thermal model. To develop a thermal model, a piecewise local
model based on linear interpolation method was used. Other advanced methods
yielded similar results and hence have not been discussed here.

Figure 5 to 8 show the performances by using un-calibrated and calibrated data.
Table 5 and 6 give the values obtained under various test conditions for Run 1 and
Run 2. Initially, manufacturer specified nominal scale and biases were compensated

Figure 5.  With 6-position bias
and nominal scale factor
compensation.

Figure 6.  With 6-position bias,
non-orthog and nominal scale
factor compensation.

Figure 7.  With 6-position bias
and 6-position test scale factor
compensation.

Figure 8.  With 6-position bias,
scale factor, non-orthog and
thermal effect compensation.

Figures 5–8. Position errors for Run 1 with different compensations applied.
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and processed in AINS1 software. However the filter did not converge due to
large errors. Consequently, the six-position static test biases were removed before
processing the inertial data. This made the convergence of the AINS1 filter possible.
six-position static biases and nominal scale factor were then compensated and
compared with six-position biases, non-orthogonalities and nominal scale factor
compensated data to show that the effects of non-orthogonalities were not signifi-
cant. Similarly nominal scale factor and six-position static test scale factor were
compared and the improvement was not as significant as that obtained by biases
compensation. Finally, the proposed thermal model evaluated biases and scale
factor were used to calibrate the raw inertial data. The biases and drifts were
computed at the exact temperatures that were recorded during the field tests and
then the data was calibrated. The best results were obtained by use of the proposed
thermal model.

6. CONCLUSIONS. MEMS sensors are lightweight and low cost but have
large errors compared to higher grade inertial sensors. These deterministic errors
have to be calibrated and compensated to get acceptable navigation results. This
paper analyzed the stochastic errors in MEMS sensors and found that angular
random walk (ARW) is the dominant noise term. Further six-position static test
calibration processes were applied to find the deterministic errors namely, bias,
scale factor, and non-orthogonalities. The effects of each of these error sources were
investigated by processing the inertial data in AINS1 filter. The results show that
bias is the most dominant error source and without its compensation, the filter
diverges. The effect of scale factor and non-orthogonalities are not as significant as
that of the biases. Furthermore, an efficient thermal model was used to calibrate
data along with the six-position static test parameters and further reduction in the
navigation errors was observed. This shows that the effects of thermal variations
on biases and scale factor errors are significant for MEMS sensors and need to be
precisely modelled. However the improvement obtained by using the thermal model
depends on the total temperature variation in the raw data.
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