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OPTIMAL TAXATION AND
SOCIAL NETWORKS
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We study optimal taxation when jobs are found through a social network. The network
determines employment, which workers may influence by engaging in social activities.
The network parameters play an important role in determining the economy’s
employment level and the optimal income tax. The optimal labor income tax depends on
both the traditional intensive margin of labor supply and a new extensive margin that
depends on the structure of the social network. Social activities that promote social
connections are instrumental to acquiring job information; taxation thus discourages both
social activities and labor supply, reducing employment. Labor taxes vary positively with
labor supply and negatively with employment. When networking is absent, taxes are
higher and the economy’s employment rate is lower. The optimal capital tax rate is zero,
independent of labor market frictions. Social networking reduces job search frictions and
is welfare-enhancing.
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1. INTRODUCTION

The importance of social networks in labor markets has long been understood.
Networking plays a critical role in job search and in improving the quality of the
match between firms and workers. Access to information about job opportunities
is influenced by social structure and individuals use connections with others (e.g.,
relatives, friends, acquaintances) to build and maintain information networks.1

Empirical research indicates that about half of jobs are obtained through net-
working and the other half are obtained through more formal methods [see Holzer
(1988); Montgomery (1991); Gregg and Wadsworth (1996); Addison and Portugal
(2001); Topa (2001)].2 The job network literature has shown that social networks
have important implications for the dynamics of employment, as well as the
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duration and persistence of unemployment [Calvó-Armengol and Jackson (2004)].
To the extent that networks can affect economic outcomes, the relevance of social
networks for the design of government policies must be recognized and explored.

The literature on optimal income taxation, however, has neglected the role of
social networks in the labor market and has mainly focused on competitive or
search labor markets. Well-known results in the theory of optimal labor taxation
are that tax rates on labor should be roughly constant [Barro (1979); Kyndland and
Prescott (1980); Chari and Kehoe (1999)] and labor taxes should vary positively
with employment [Zhu (1992); Scott (2007)]. Jones et al. (1997) show that optimal
capital and labor income taxes are zero in the long run, in an economy where labor
services are a combination of human capital and workers’ time. Basu and Renström
(2007) study the optimal dynamic taxation when labor supply is indivisible. The
optimal labor tax is generally positive, except for some special cases when leisure
is non-normal and the government can use debt as a policy instrument in addition
to its tax instruments. They show that optimal paths of the labor tax differ between
divisible- and indivisible-labor economies [see also Renström (1999)]. Regarding
the optimal capital tax rate, the Chamley (1986)–Judd (1985) result of optimal
zero capital tax is, in general, verified.

In this paper, we examine how different network structures affect the struc-
ture of optimal taxation. We study optimal tax policy in an economy where the
informational structure of the job market follows the job offer model of Calvó-
Armengol and Jackson (2004), adapted to large, complex networks, surveyed in
Vega-Redondo (2007). Each agent is connected to others through a social network.
Information about job opportunities arrives randomly; if an agent is unemployed,
she will take the job. On the other hand, if the agent is already employed, then she
may pass job information along to a friend, relative, or acquaintance. The strength
of social ties among workers determines the probability that their peers pass job
information along. Unemployment results when individuals are unsuccessful in
hearing about job opportunities either directly or through their peers in a network,
or when jobs exogenously break up.

This paper embeds the job network model into the general equilibrium frame-
work, and the design of optimal tax policy follows the Ramsey approach [Lucas
and Stokey (1983); Chari et al. (1991)]. We consider an economy with a repre-
sentative infinitely lived household. Each household consists of a continuum of
family members, who either work or are unemployed. Employed workers receive
a wage that is determined competitively, whereas agents without a job receive an
unemployment benefit. Unemployed workers do not search for a job but rather
learn about job opportunities through peers in their social network.

Workers are endowed with these peers exogenously. The rate at which job
information is passed from employed workers to his unemployed peers in any
period depends on how much time agents spent socializing in the previous period.
This “socializing effort” intensity represents an additional trade-off for the agents:
it improves their chances of becoming employed but at a cost of leisure. Our
model includes both intensive and extensive margins: employed family members
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decide how much they work (intensive), whereas family members without a job
can engage in social activities that develop their social connections, increasing the
strength of their ties to peers and, ultimately, influencing their chances of finding
a job (extensive).

The labor market studied in this paper is analytically simple and allows us to
calculate well the long-run average behavior of arbitrary networks. In particular,
we are able to analyze power-law networks that exhibit the “small-worlds” prop-
erties of low average distances between agents—the “six degrees of separation”
phenomenon—and dense “clusters” of connections. These properties have been
identified by Watts (1999a, 1999b) as crucial components of empirical social
networks, and have been found in many important contexts, including scientific
collaboration [see Jackson (2008) for a survey], long-distance telephone calls
received [Aiello et al. (2000)], e-mail contact networks [Ebel et al. (2002)], and
the sizes of e-mail address books at a large university [Newman et al. (2002)].

We consider several different classes of networks and characterize their ef-
fect on optimal government policies. The introduction of labor market frictions
through job networks implies that the optimal tax policy should feature some
response to unemployment and, consequently, to the dynamics of labor networks.
The economy’s equilibrium unemployment rate is determined by the structure
and properties of the job network. In our model, there are no frictions between
workers and firms. Frictions arise solely from information transmission among
workers, and firms have no active role in labor market search and cannot affect the
employment rate. We show that regardless of the structure of the social network
and the dynamics of the labor market, the optimal limiting capital tax rate is zero
[Judd (1985); Chamley (1986)].

Regarding the labor income tax, the role of labor supply intensity versus par-
ticipation in the labor market is key, and the optimal labor income tax responds
differently to each of these two margins. Taxation discourages labor supply (the
intensive margin) as well as those social activities that are instrumental to acquiring
job information. And consequently, it reduces the employment rate (the extensive
margin). Comparing numerical results across network structures, we observe that
the higher the labor supply, the higher the optimal labor tax, and the labor income
tax is decreasing in the economy’s employment rate. The extensive effect is small in
geometric and power-law networks, so the optimal tax is high in these networks. In
the power-law network, the network with the lowest employment rate, the optimal
tax is higher. In these networks, labor supply is highest and labor market participa-
tion is less responsive to effort than in any other network. The important element
here is the ability agents have to influence their participation in the labor market and
manipulate the extensive margin as well as the intensive margin. We also observe
that social networking is welfare-enhancing in this sense, and it can be interpreted
as a technology that uses time as its only input and reduces search frictions.

Finally, our approach differs from traditional search models of labor markets,
and previous attempts to introduce networks into labor markets, in important ways.
We assume that workers can only indirectly influence the rate at which they find
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each other; much of the labor market is exogenous.3 We show that with endogenous
link strength, complex networks are very different from regular networks. This
highlights the role of social structure, rather than search, in the labor market.

The paper proceeds as follows. In Section 2, we characterize the labor market
dynamics governed by social networks and exogenous job separation. In Section 3,

we define the economy, the social planner’s problem, and the steady-state behavior
of the labor market network. We discuss how the unemployment rate is affected
by social activities and the properties of the social network and derive the optimal
labor tax. Section 4 presents a numerical exercise and Section 5 offers concluding
comments.

2. DEMOGRAPHY, NETWORK STRUCTURE, AND EMPLOYMENT RATE

There is a continuum of infinitely lived agents whose total measure is normalized
to one. The economy is populated by agents in a representative household who
consume, save, and work and are connected to one another in a social network. Each
agent is either employed or unemployed. Time evolves in discrete periods indexed
by t , and information about job opportunities arrives randomly and depends on a
fundamental job arrival process and each agent’s position in the social network.
All jobs are identical, and employed workers receive a wage that is determined
competitively, whereas agents without a job receive an unemployment benefit. The
labor market is mediated by the social network, and social ties between workers
facilitate the transmission of job information.

Each agent hears about a job opening with probability γ ∈ [0, 1]. If the agent
is unemployed, she will take the job. On the other hand, if the agent is already
employed, then she may pass this information along to a friend, relative, or ac-
quaintance. The rate at which an employed worker passes information to each of
her unemployed peers is determined by the number of peers she has, z, the job
arrival rate, γ , and a parameter v ∈ [0, 1] that measures the strength of social ties.
Let ρ be the exogenous job separation rate, which is independent across agents.

Each agent may have peers to whom she passes job information when employed,
and from whom she may receive job information when unemployed. These peers
are connected to one another in a social network. A network is described by a
symmetric matrix M , where mij ∈ {0, 1} denotes whether a link exists between
agents i and j . That is, mij = 1 indicates that i and j know each other and
mij = 0 otherwise. We assume that mij = mji , meaning that the relationship
between i and j is reciprocal. The structure of this network m will determine
how information flows through the network, and will have a large impact on each
agent’s employment status.

We are concerned with large networks, that is, a network among the continuum
of agents, so that there are infinitely many nodes in this network. We identify
each network by its degree distribution {Dz}∞z=1, where Dz is the proportion of
agents who have z peers. A network’s degree distribution summarizes much of its
structure: whether there are some workers with many links, or not, and the relative
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prevalence of highly connected workers.4 In general, there may be many networks
consistent with a particular degree distribution {Dz}∞z=1. In large networks, much
local information ceases to matter, so focusing on degree distributions is appropri-
ate [Vega-Redondo (2007)]. In other words, we are not concerned about detailed
local interactions but rather focus on large classes of networks sharing the same
degree distribution. We may think of the actual network m as being a random
draw from the set of networks having degree distribution {Dz}∞z=1. This is called
the random network approach.

To analyze the dynamics of employment, we apply the mean field approach
to modeling complex systems, which assumes that there are no correlations or
neighborhood effects in information transmission. Essentially, how many peers a
worker has does not predict how many peers their own peers have nor how likely
those peers are to be employed. These peers are heterogenous in their employment
status, and the employment rate will differ among agents with different numbers of
peers. The average employment rate in the household can be expressed as follows:

nt =
∫ ∞

z=1
(nztDz) dz,

where nzt is the employment rate at time t among agents with z links. Agents who
have more links can expect to hear about jobs from their peers more often, and
their employment status will evolve differently than that of an unemployed agent
with fewer links.

Household members without a job can spend time in social activities, which
develops their social connections, increasing the strength of their ties to their
peers. Stronger ties result in more job information from their employed peers,
and will improve their chances of finding a job while unemployed. The structure
of the network is exogenous, and we assume that the time devoted to social
networking affects only a job transmission parameter v. That is, the rate at which
job information is passed from employed workers to their unemployed peers in
time t depends on how much effort (et−1) agents spent on social activities in
the previous period; i.e., v = v(et−1). This introduces an additional trade-off
for the agents, as they can improve their chances of becoming employed in the
future, but at a cost in terms of current leisure.5 The time spent on networking
does not depend on the number of links an agent has. However, the rate at which
an employed worker transmits job information to her unemployed peers will be
declining in her number of peers.

The job transmission rate is determined according to the following decreasing-
returns-to-scale technology:

v(et−1) = e1−λ
t−1 ,

where λ measures the efficacy of this technology. When λ is close to 1, workers
are able to build strong relationships with relatively little (leisure) cost. When λ is
close to 0, maintaining social relationships is more difficult, and requires a greater
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investment of time. Once a worker finds a job, he is beyond the social network
dynamics and will devote no effort to improving his social contacts. Viewing v as
a function of the investment in social ties implies that the entire long-run level of
employment in the economy is also a function of it; i.e., nt = n(et−1).

Our approach amounts to assuming that the average state of the network is
replicated locally, so that the proportion of an agent’s peers who are unemployed
depends only on the fundamentals of the job process and the network structure
[Vega-Redondo (2007)].6 We do not assume that all agents have the same employ-
ment rate, or that there is no heterogeneity among agents; rather, we assume that
among each agent’s peers, there is no correlation in employment states, so that
the probability that one peer is employed is independent of the probability that
another is, and depends only on that peer’s characteristics.

The mean field approach relies on an assumption of homogenous mixing, that
there are no systemic differences between workers’ local neighborhoods, beyond
their size z. Although we can imagine that the local structure of a network may be
important for how information is transmitted through the network, the degree dis-
tribution itself is not enough to determine this structure; many different networks
are consistent with a given degree distribution, ranging from highly structured
lattices and trees to more random networks with very different local architectures.
Averaging over these many possible configurations, however, allows the use of
more powerful tools to analyze the average state of the network, and simulations
have shown that in the networks we consider, this method’s results are often as
accurate as those that use detailed local properties on the network. In considering
long-run average behavior in these networks, we rely on this assumption and avoid
needlessly complicating the model.

Following this approach, and suppressing the subscript t when there is no
confusion, we can determine the law of motion for employment for workers with
z peers as follows:

ṅz = −ρnz + (1 − nz){γ + (1 − γ )[1 − (1 − �)z]}. (1)

The change in the level of employment has three main components. First, a fraction
ρ of agents who are employed will lose their jobs. Second, a fraction γ of the
unemployed agents will hear of a job themselves. Third, unemployed workers who
do not hear of a job opportunity themselves are passed job information from each
peer with probability �; the probability that at least one of their peers passes them
a job is therefore 1 − (1 − �)z.

We calculate � as follows. The probability that a given agent has s peers is
ψs = (sDs)/〈z〉, where 〈z〉 = ∫ ∞

z=1(zDz)dz is the average degree in the network.
Note that ψs �= Ds ; i.e., the probability that one of your peers has s links is not
equal to the proportion of the population that has s links. This is because agents
with many peers, and a large s, are disproportionately likely to be your peers, so we
must scale Ds by s/〈z〉. This gives the probability that a peer with s links passes you
a job. The employment rate among those with s peers is ns ; these agents hear about

https://doi.org/10.1017/S1365100513000096 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100513000096


OPTIMAL TAXATION AND SOCIAL NETWORKS 1689

a job with probability γ , and pass it on with probability (v/s). That is, the greater
v is, the more likely this job is to be passed, but the greater s, the more competition
for this job there is. Here we assume that workers do not know the employment
status of their peers; a worker with s peers may pass it to any one of them. This
leads to a potential inefficiency not present in the Calvó-Armengol and Jackson
(2004) model of job transmission: workers may wastefully pass job information
to a peer who already has a job. We believe our approach is more natural in an
infinite network setting. It amounts to assuming that only a single contact between
peers occurs for each piece of job information. The alternative assumption, that the
worker learns each of her peers’ status before passing any job information along,
implies a large implicit cost of job information transmission. Rather than model
the cost of learning about peers, we assume this information is not available.7

We interpret v as a “socializing” parameter, representing how strongly tied to
one another peers in this network are. Integrating over all possible s, the probability
a worker is passed job information from a peer is therefore

� =
∫ ∞

s=1
γ ns

v

s
ψsds

= γ v

∫ ∞

s=1
ns

1

s

(
s

〈z〉Ds

)
ds

= γ v
1

〈z〉
∫ ∞

s=1
nsDsds

= γ v
1

〈z〉n = γ vn

〈z〉 .

In words, the probability that one of your peers passes you job information depends
on the job arrival rate, the socializing parameter v, the average unemployment rate
n, and the average degree in the network 〈z〉. Hence, the average employment rate
in the economy nt will depend on each of these variables, as well as on the job
separation rate ρ, the job arrival rate γ , the network Dz, and networking effort e.

3. OPTIMAL TAXES AND NETWORK EFFORT

3.1. The Economy

In a typical household there are a measure nt of employed family members and a
measure 1−nt of unemployed family members. Employed members supply labor
hours lt and unemployed family members can spend time et in social activities,
which develops their social connections, increasing the strength of their ties to
their peers.

Preferences of the household are represented by the utility function

U =
∞∑
t=0

βtu(ct , ht ), (2)
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where the instantaneous utility function u is increasing, concave, and differentiable
and β is the discount rate, which lies in (0, 1). The variable ct is family consumption
and the time endowment is normalized to 1, so that average leisure in the household
is ht = 1 −nt lt − (1 −nt )et . Here we implicitly assume that there is consumption
sharing within the family, and the household cares only about average leisure.

The timing of the model is as follows. At the beginning of each period, employed
family members—those that started the period with a job and those that just heard
about and got a job—choose l. Family members without a job choose network
effort e.8 Then goods consumption c is determined. Households have two options
with output they do not consume: they can invest in capital (k) or purchase
government bonds (B). Next, employed family members are paid a wage (w) for
the labor services, the unemployed receives unemployment benefits (b), and the
family receives (tax-free) interest (R) earnings on bonds and rental rate (r) of
capital. The household takes as given government-determined tax rates on labor
(τ l) and capital (τ k) income. As in Calvó-Armengol and Jackson (2004), we
interpret the timing as one where job break-up occurs, essentially, at the beginning
of the period.

The sequence of real budget constraints reads as follows:

ct + kt+1 + Bt+1 = nt

(
1 − τ l

t

)
wt lt + (1 − nt )bt

+ [
1 + (1 − τ k

t )(rt − δ)
]
kt + BtRt , (3)

where δ is the rate at which capital depreciates each period, rt is the real rate of
return on capital, and [1 + (1 − τ k

t )(rt − δ)] is the gross return on capital after
taxes. Total household income is divided evenly among all individuals, so that
family members perfectly insure each other against variation in labor income. Or,
alternatively, we can assume that agents can insure themselves against earnings
uncertainty and, for this reason, wage earnings are interpreted as net of insurance
costs [Merz (1995); Andolfatto (1996); Faia (2008)]. Employed and unemployed
family members consume the same amount and capital allocation and bonds
purchase is a family decision.

Firms produce a single good and maximize profit, taking factor prices as given.
Production technology is a constant-returns-to-scale Cobb–Douglas specification,
so that output y is

yt = F (kt , lt ) = (kt )
α (nt lt )

1−α , (4)

where α ∈ (0, 1) is the capital income share. Firms operate under perfect compe-
tition and factors of production are paid their marginal products; i.e., Fk(t) = rt =
α(nt

1−α)kα−1
t l1−α

t and Fl(t) = wt = (1 − α)(nt
1−α)(kt )

αl−α
t , where Fk(t) and

Fl(t) denote the marginal product of capital and labor, respectively, and wt the
wage rate for labor. Differently than models of search that allow firms to influence
the number of workers to be hired through vacancies posted, we assume that the
number of workers employed is not a choice variable of the firms.
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The government faces the budget constraint

gt + (1 − nt )bt = ntτ
l
t wt lt + τ k

t (rt − δ)kt + Bt+1 − BtRt , (5)

where gt denotes government consumption, which is assumed to be exogenously
specified. The government finances its expenditures by levying taxes on labor and
capital and issuing government bonds.

The economy as a whole faces the following aggregate resource constraint:

ct + kt+1 + gt = (kt )
α (nt lt )

1−α + (1 − δ)kt . (6)

3.2. A Network Competitive Equilibrium

A representative household, taking prices, taxes, and the social network structure
as given, chooses {ct , kt+1, lt , et , Bt+1} to solve

max
{ct ,kt+1,lt ,et ,Bt+1}

∞∑
t=0

βtu(ct , ht ), (P.1)

subject to (3) and (1), with k0, B0, and n0 given. Let u(t) = u(ct , ht ) and likewise
ui(t) = ui(ct , ht ), where i = 1 for consumption and i = 2 for leisure. The equi-
librium conditions for an interior solution of the family’s maximization problem
are given by

u2(t) = u1(t)(1 − τ l
t )wt , (7)

Rt = [1 + (1 − τ k
t )(rt − δ)], (8)

(1 − nt )u2(t)

= βn′
t

{
u1(t + 1)

[(
1 − τ l

t+1

)
wt+1lt+1 − bt+1

] − u2(t + 1)(lt+1 − et+1)
}
,

(9)

where n′
t = ∂n(et−1)/∂et−1. Equation (7) is the standard equation showing how

the income labor tax affects the labor–leisure choice and equation (8) is the no-
arbitrage condition for capital and bonds. Equation (9) states that the utility cost of
socializing effort (LHS) equals the discounted (expected) gain from successfully
finding a job, where the gain of one additional worker equals the additional
consumption gain in period t +1 less the leisure cost of working and not spending
time in social networking.

DEFINITION 1. A network competitive equilibrium is a policy ϒ =
{τ l

t , τ
k
t }∞t=0, government spending Ḡ = {gt , bt }∞t=0, household’s allocations x̂ =

{ct , kt+1, lt , et , Bt+1}∞t=0, a price system P̂ = {wt, rt , Rt }∞t=0, and the state of the
network variables {ρ, γ, v,Dz} such that given the policy, government spending,
the price system, and the state of the network, the resulting household’s allocation
choice maximizes the consumer’s utility and satisfies the government’s budget
constraint, the economy’s resource constraint, and market clearing conditions.
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3.3. Ramsey Equilibrium

At the beginning of each period, the government announces its program of tax
rates and individuals behave competitively.9 The objective of the social planner is
to choose values of its fiscal instruments such that the agent’s utility is maximized.
The Ramsey problem is a programming problem of finding the optimum within
a set of allocations that can be implemented as a competitive equilibrium with
distortionary taxes. In other words, the Ramsey problem is to choose a process
for tax rates {τ l

t , τ
k
t } that maximizes social welfare and satisfies (3) and an imple-

mentability constraint [see Chari and Kehoe (1999)], a second-best optimal tax
problem. In this paper the unemployment benefit is exogenously given and the
planner does not choose it optimally.

DEFINITION 2. A Ramsey equilibrium is a policy �, an allocation rule x̂, and
a price rule P̂ that satisfy the following two conditions: (i) the policy � maximizes
(2) subject to the government budget constraint (5) and the state of the network
{ρ, γ, v,Dz} with allocations and prices given by x̂ and P̂ and (ii) for every �

′,
the allocation x̂(�′), the price rule P̂ (�′), and the policy �

′ constitute a network
competitive equilibrium.

The fact that agents can spend time on social activities leads to two important
changes for the formulation of the Ramsey problem with respect to (i) the imple-
mentability constraint and (ii) the intertemporal choice of labor supply. The key
element here is the relationship between effort in the current period and payment
of taxes in the future, in the case where an agent successfully finds a job.

We use the family’s first-order conditions and the intertemporal budget
constraint—problem (P.1)—to derive the following the implementability con-
straint (see Appendix A.1 for derivation details):

∞∑
t=0

βt

{
u1(t) (ct − bt ) − u2(t)

[
nt (lt − et ) + (1 − nt )

nt+1

n′
t

]}
= Z0, (10)

where Z0 = u1(0)[n(e−1)(1 − τ l
0)w0l0 − n(e−1)b0 + T0k0 + R0B0] −

u2(0)n(e−1)(l0 − e0).
We first assume that taxes at time zero (τ l

0, τ
k
0 ) are given. Next, equations (7)

and (8) can be used to compute τ l
t and τ k

t , respectively. This process leaves (9) as
a condition that must be imposed. Notice that the labor income tax affects both the
static choice of labor supply (lt ) and the dynamic choice of networking effort (et ).
Hence, it is necessary to guarantee that, given an allocation, the taxes τ l

t from (7)

and (9) coincide [Jones et al. (1997); Domeij (2005); Reinhorn (2009)]. Imposing
this equality is equivalent to requiring (t) = 0, where

(t) = (c, l, e, b) = (1 − nt ) u2(t) − βn′
t [u2(t + 1)et+1 − u1(t + 1)bt+1] .

(11)
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PROPOSITION 1. The household’s allocations and the date-0 policy ϒ0, in a
network competitive equilibrium, satisfy the economy’s resource constraint (6),
the law of motion for employed workers (1), the implementability constraint
(10), and a constraint on labor income taxes, equation (11). Furthermore, given
the household’s choices and ϒ0, prices and policies can be constructed for all
dates, which together with the choices and date-0 policies constitute a network
competitive equilibrium.

Proof. See Appendix A.2.

3.4. Long-Run Employment in Networks and Optimal Taxation

Our analysis focuses on the steady state of the labor marketthat is, when the change
in the level of employment for each type of worker is equal to zero, i.e., ṅz = 0
for all z. The number of newly employed agents of each type z is exactly equal
to the number of newly unemployed agents, and the economy will remain at this
level of employment indefinitely. This is the long-run prevalence of employment
in the economy.10

Setting ṅz = 0 in equation (1), we find that the steady-state level of employment
n∗

z , the employment rate for agents with z peers, satisfies

n∗
z = 1 −

⎛
⎜⎝ ρ

γ + ρ − (1 − γ )
[
1 −

(
1 − γ vn∗

〈z〉
)z]

⎞
⎟⎠ , (12)

which is averaged over z to get the average employment rate n∗:

n∗ =
∫ ∞

z=1
(n∗

zDz)dz. (13)

Note that because n∗
z depends on n∗, this equation defines n∗ only implicitly.

For different degree distributions Dz, the long-run steady-state employment rate,
equation (13), will have different solutions, with different characteristics and
different implications for optimal taxation.

There are several well-known classes of large, complex networks that we ana-
lyze. We first consider regular networks where every agent has the same number
of peers, k. For these networks, Dz = 1 for z = k, and Dz = 0 for all other z.
Each worker is exactly the same, so that 〈z〉 = k. For k = 0, this is the empty
network (our baseline), and may be taken as a worst case scenario, where workers
must hear of jobs themselves, at the exogenous arrival rate γ .

Empirical social networks have low average degree 〈z〉, compared to the size
of the network as a whole, but this is coupled with great heterogeneity in degree
across agents. For this reason, regular networks are not realistic. We consider two
alternative models of large networks with heterogeneous workers: geometric and
power-law degree distributions; these networks differ in how random their links
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are, and how many agents there are with a large number of peers. In the geometric
network, links are close to random. Power-law networks are less random and
have more agents with many peers. These networks exhibit the “small-worlds”
properties identified by Watts (1999a).11 The link formation processes that give
rise to geometric and power-law networks are discussed in Appendix A.3.

3.5. The Ramsey Problem

The planner’s maximization problem can thus be written as follows:

max
{ct ,kt+1,lt ,et }

∞∑
t=0

βtu[ct , 1 − nt lt − (1 − nt )et ], (P.2)

subject to (10), (11), (6), (1), and ḡ, τ l
0, τ k

0 , k0, n0 given.
Introduce the auxiliary function for this problem:

Z(ct , lt , et , nt ; η̂)

≡ u[ct , 1 − nt lt − (1 − nt )et ]

+η̂

{
u1(t) (ct − bt ) − u2(t)

[
nt (lt − et ) + (1 − nt )

nt+1

n′
t

]}
,

where η̂ is the Lagrange multiplier on (10). The first-order conditions of the
planner’s problem are not the same in the first period and subsequent periods,
which implies that this Ramsey problem is nonstationary. Because our goal is to
study this economy in the steady state, we will focus our attention on the first-order
conditions for period 1 and onward. Evaluating them at the steady state, and after
some manipulation, we obtain

0 = Z∗
c + μ∗[1 − n(e∗)]u∗

21 − κ
∗, (14)

0 = −1 + β[Fk(k
∗, n∗l∗) + (1 − δ)], (15)

0 = Z∗
l + μ∗[1 − n(e∗)]u∗

22 − κ
∗Fl(k

∗, n∗l∗), (16)

0 = Z∗
e + μ∗ (

u∗
22

{
[1 − n(e∗)]2 − βn′(e∗)(l∗ − e∗)[1 − n′(e∗)e∗ − n(e∗)]

})
+βμ∗ {

u∗
2

[
n′′(e∗)e∗ + n′(e∗)

] − u∗
1n

′′(e∗)b + u∗
12n

′(e∗)(l∗ − e∗)b
}

−βκ
∗Fl(k

∗, n∗l∗)n′(e∗)l∗, (17)

where μ, κ are the Lagrange multipliers on the condition (11) and resource
constraint (6), respectively and Z∗

c , Z∗
l , and Z∗

e are defined as follows:
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Z∗
c = (1 + η̂∗)u∗

1

+ η̂∗
(

u∗
11(c

∗ − b) − u∗
21

{
n(e∗)(l∗ − e∗) + [1 − n(e∗)]

n(e∗)
n′(e∗)

})
,

Z∗
l = (1 + η̂∗)u∗

2

+ η̂∗
(

u∗
12(c

∗ − b) − u∗
22

{
n(e∗)(l∗ − e∗) + [1 − n(e∗)]

n(e∗)
n′(e∗)

})
,

Z∗
e = (1 + η̂∗)u∗

2{[1 − n(e∗)] + βn′(e∗)(l∗ − e∗)}

− η̂∗u∗
2[(1 + β)n(e∗) + (1 − n(e∗)]

n(e∗)n′′(e∗)
[n′(e∗)]2

)

+ η̂∗
[
{[1 − n(e∗)] + βn′(e∗)(l∗ − e∗)}

×
(

u∗
12(c

∗ − b) − u∗
22

{
n(e∗)(l∗ − e∗) + [1 − n(e∗)]

n(e∗)
n′(e∗)

}) ]
.

In our model, there are no frictions between workers and firms. Frictions arise
solely from information transmission among workers, and firms have no active role
in labor market search and cannot affect the employment rate.12 We show that re-
gardless of the structure of the social network and the dynamics of the labor market,
the optimal limiting capital tax rate is zero [Judd (1985); Chamley (1986)]. Capital
taxation plays no role in reducing labor distortions and a zero tax on capital stimu-
lates investment, raising output and consumption for all households in the long run.

PROPOSITION 2. If the solution to the Ramsey problem converges to a steady
state and the labor market is governed by social networks, then in a steady state,
the tax rates are as follows:

τ ∗k = 0,
τ ∗l = 1 − [(Z∗

c /u
∗
1)/(Z

∗
l /u

∗
2)].

Proof. See Appendix A.4.

Recent papers have shown that the introduction of search frictions changes
the Chamley–Judd result of zero capital taxation, e.g., Shi and Wen (1999) and
Domeij (2005). Regarding the optimal labor income tax, our results are not directly
comparable to results obtained in the search environment. The structure of the labor
market and its frictions are very different, and we have to be cautious not to draw
inappropriate comparisons.

4. NUMERICAL RESULTS

4.1. Parameterization and Solution Method

We now use numerical methods to simulate calibrated versions of our model.
We use these results to illustrate our main points and to explore further the
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relationship between network structures and labor taxation. The model is calibrated
so that the steady state is consistent with U.S. data. We assume the instantaneous
utility function U(ct , ht ) = ln ct + κ ln ht and set the weight on leisure, κ , to
match initial steady-state labor force participation, n∗l∗ − (1 − n∗)e∗ = 0.68.
The time period is one year and we set the discount factor β = 0.96,
which implies a rate of time preference of 4% on an annual basis. Produc-
tion technology is a constant-returns Cobb–Douglas specification of the form
F(kt , lt ) = (kt )

α(nt lt )
1−α , and we set α = 0.30 and a depreciation rate of

0.04.
Regarding parameters related to the network structure, there are no available

estimates in the literature. Our strategy is to choose the job arrival and the job
break-up probability so that the steady-state employment rate in the empty network
(our baseline), i.e., nR

k=0 = γ /(ρ + γ ), is consistent with the annual employment
rate in the United States. The exogenous job separation probability ρ is set to
0.15 [Andolfatto (1996)] and the probability for a worker of finding a job γ is set
equal to 0.4. We assume that v(e) = e1−λ, where λ is initially set to 0.95. For what
follows, the average number of peers in each network is the same. We consider two
models of large complex networks with heterogeneous workers and set a = 2.25
and ν = 1.284 for the power-law and geometric degree distributions, respectively.
These numbers are calibrated so that all three networks (regular, power-law, and
geometric) have the same average number of peers, i.e., 〈z〉 = 5. We investigate
the sensitivity of the results by considering a range of alternative values for the
network parameters γ, ρ, and λ.

We calculate the solution of the optimal tax problem for the calibrated version
of the model described in the preceding and follow Domeij (2005)’s calibration
strategy and solution method. The initial capital and labor tax rates are set to i.e.,
τ k

0 = 0.30 and τ l
0 = 0.30 [Carey and Tchilingurian (2000)]. Initial government

debt, B0, is assumed to be zero and government purchases, gt , are such that the
steady-state ratio of government purchases to GDP generated by the model with
initial policy is of GDP. Unemployment benefits b are also constant and set equal
to 0.04. The method used to solve for the Ramsey equilibrium is standard in
the literature and we briefly describe it. We assume that the economy converges
to a steady state and the Ramsey equilibrium is characterized by a system of
nonlinear equations. We solve for the Ramsey equilibrium by adjusting the mul-
tiplier η̂ on the implementability constraint, equation (10), until this constraint is
satisfied.

4.2. Network Structure and the Employment Rate

Before turning to the analysis of the labor taxation, it is instructive to consider how
properties of the network labor market change with respect to network parameters.
When γ increases, this increases the rate at which jobs arrive, and naturally will
increase the employment rate n∗. In contrast, when the job separation rate ρ rises,
the employment rate will fall. An increase in socializing effort e will increase
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FIGURE 1. Job arrival rate and employment rate.

employment, whereas a rise in the average degree 〈z〉 increases competition for
job information, and will reduce the employment rate. We prove these results
formally in the Appendix A.5.

To illustrate how network structure affects the steady state employment rate,
we present numerical results for our baseline set of parameters (γ = 0.4, ρ =
0.15, λ = 0.95, 〈z〉 = 5). In all cases, the regular network has the highest
employment rate, followed by the geometric network, the power-law network,
and finally, the empty network, a network without any job transmission. This is
depicted as γ and ρ vary in Figures 1 and 2. As 〈z〉 increases, we see that the
employment rate in all networks falls, but falls most in the power-law network
(Figure 3).

Figure 4 shows that, for each of these networks, the employment rate is in-
creasing in agent’s networking effort. The ordering of employment by network
is unchanged; the regular network has the highest employment, followed by the
geometric and power-law networks.

The differences in optimal tax rates among different networks are driven by
differences in the efficacy of socializing effort, n′(e); exerting effort to strengthen
social ties is the means by which workers affect the employment rate in this
model, and network structure determines how effective this effort is. We see
that n′(e) is the largest in the regular network, followed by the geometric net-
work, whereas the power-law network has the least response to socializing effort
(Figure 5). This implies that the trade-off between time spent socializing and
leisure will be different in each network, with different implications for optimal
taxation.
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FIGURE 2. Job separation rate and employment rate.
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FIGURE 3. Average number of peers and employment rate.
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FIGURE 4. Effort and employment rate.
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FIGURE 5. Effort and marginal employment rate n′(e).
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TABLE 1. Social network, optimal tax and allocations average number of
peers 〈z〉 = 5, γ a = 0.40, ρa = 0.15, λa = 0.95

Empty Regular Geometric Power-law

Labor income tax τ l∗ 0.2231 0.1893 0.1897 0.1950
Welfare U ∗ −17.2460 −14.8330 −14.8330 −14.7890
Consumption c∗ 0.7784 0.8192 0.8196 0.8197
Labor l∗ 0.9229 0.8119 0.8184 0.8329
Effort e∗ 0.0000 0.0014 0.0011 0.0008
Leisure h∗ 0.3288 0.3688 0.3684 0.3700
Employment rate n∗ 0.7273 0.7770 0.7715 0.7561

aBaseline values.

4.3. Optimal Labor Tax Rates and Social Networks

The results for our benchmark parameterization are presented in Table 1. As
discussed in Section 3, in the presence of social networks where unemployment
arises because of frictions in information transmission among workers, the optimal
capital tax rate is zero and labor tax revenue only finances government expendi-
tures. The employment rate is lower in the empty network and employed family
members work more. For other network structures, employed agents tend to work
less in the regular network, whereas the family enjoys higher consumption and
welfare, though the differences among networks are slight. Taxes are highest in
the empty network.

As agents can influence the rate at which they learn about job opportunities,
the labor tax rate will influence this decision. In addition to discouraging labor
supply (the intensive margin), the tax will discourage social activities that are
instrumental to acquiring job information, and reduce the employment rate (the
extensive margin). Comparing results across network structures, we observe that
the optimal labor income tax responds differently depending on the extensive and
intensive margins. First, the higher the labor supply the higher the optimal labor
tax. Second, the labor income tax is decreasing in the economy’s employment
rate.

The extensive effect is small in geometric and power-law networks—that is, the
marginal employment rate n′(e) is small in these networks—so the optimal tax
is high, and varies negatively with n∗. In contrast, in the regular network n′(e) is
bigger. The intensive effect is smallest, whereas n∗ is largest. In the power-law
network, the network with the lowest employment rate, the optimal tax is the
highest. In these networks labor supply is highest, and it is less responsive to effort
than in any other network. This result illustrates the importance of the intensive
and extensive margins in the determination of our results.

From our numerical exercise, we can also compute a measure of the value of
the networks, in terms of welfare. It is clear that social networking is welfare-
enhancing. Between the empty network and other network structures, the higher
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TABLE 2. Regular network, optimal tax and allocations average number of
Peers 〈z〉 = 5, λ = 0.95a

Arrival rate
γ a = 0.40
ρa = 0.15 γ = 0.50 γ = 0.60 γ = 0.80

Labor income tax τ l∗ 0.1893 0.1800 0.1727 0.1651
Welfare U ∗ −14.8330 −14.8900 −14.9580 −15.0010
Consumption c∗ 0.8192 0.8196 0.8194 0.8185
Labor l∗ 0.8119 0.7848 0.7682 0.7471
Effort e∗ 0.0014 0.0010 0.0007 0.0003
Leisure h∗ 0.3688 0.3660 0.3639 0.3622
Employment rate n∗ 0.7770 0.8071 0.8277 0.8538

aBaseline values.

welfare comes from the fact that family members are enjoying more leisure; social
networks reduce search frictions. Steady state welfare is higher in the power-law
network than in the regular network, despite the higher employment rate in the
regular network. This is because, at the low levels of effort that are optimal, the
employment rate is more responsive to effort in the power-law networks. That is,
n′(e) is smaller in these networks than in the regular network. The household is
able to devote less time to networking, and still enjoy a relatively high level of
employment. This allows the household to obtain most of its leisure from unem-
ployed family members, and have employed members supply more labor. Even
though the optimal tax is higher, consumption and leisure are the highest, leading
to higher welfare in the power-law than in the regular network. In other words,
employed family members tend to work more, but the participation rate is lower,
which requires the government to tax those who have jobs more. Nevertheless, the
family’s welfare is higher and agents are better off.

Tables 2–5 show how the optimal tax rates and allocations are affected by a
variety of parameter changes. Although we could perform sensitivity analyses
for all parameters, we restrict our attention to those pertinent to social networks.
We present results for the regular network regarding the arrival and break-up
probability, efficacy of effort, and average number of peers. The first column
of each table shows the results for our benchmark parameterization, to allow
comparisons. We then vary one parameter at a time while all others are kept at
their benchmark levels. For other networks, results are similar, and are available
upon request. As the probability of a worker finding a job increases, the economy’s
employment rate increases (Table 2). The case of γ = 0.80 is illustrative. At this
rate, agents will become employed almost certainly—and this is actually a worse
outcome for them than if γ were smaller. Unemployed members of the household
exert very little effort in searching, whereas employed members supply less labor,
but there are so many more employed members of the household that average
leisure actually falls, and the fall in labor supply leads to a fall in consumption as
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TABLE 3. Regular network, optimal tax and allocations average number of
peers 〈z〉 = 5, λ = 0.95a

Separation rate
γ a = 0.40
ρa = 0.15 ρ = 0.10 ρ = 0.20 ρ = 0.25

Labor income tax τ l∗ 0.1893 0.1706 0.2058 0.2207
Welfare U ∗ −14.8330 −14.9840 −14.7920 −14.827
Consumption c∗ 0.8192 0.8181 0.8169 0.8119
Labor l∗ 0.8119 0.7550 0.8696 0.9275
Effort e∗ 0.0014 0.0011 0.0016 0.0018
Leisure h∗ 0.3688 0.3645 0.3731 0.3777
Employment rate n∗ 0.7770 0.8414 0.7204 0.6704

aBaseline values.

TABLE 4. Regular network, optimal tax and allocations average number of
peers 〈z〉 = 5, γ = 0.40a , ρ = 0.15a

Efficacy of networking effort

λ = 0.05 λ = 0.20 λ = 0.40 λa = 0.95

Labor income tax τ l∗ 0.4451 0.2227 0.2131 0.1893
Welfare U ∗ −14.0070 −14.3470 −14.5700 −14.8330
Consumption c∗ 0.6699 0.8166 0.8171 0.8192
Labor l∗ 0.4571 0.8378 0.8498 0.8119
Effort e∗ 5.0 × 10−9 1.9 × 10−7 0.0002 0.0014
Leisure h∗ 0.6675 0.3906 0.3813 0.3688
Employment rate n∗ 0.7272 0.7273 0.7279 0.7770

aBaseline values.

TABLE 5. Regular network, optimal tax and allocations baseline values:
γ = 0.40a , ρ = 0.15a , λ = 0.95a

Average number of peers 〈z〉
〈z〉a = 5 〈z〉 = 3 〈z〉 = 10 〈z〉 = 500

Labor income tax τ l∗ 0.1893 0.1887 0.1895 0.1895
Welfare U ∗ −14.8330 −14.8420 −14.1483 −14.8300
Consumption c∗ 0.8192 0.8193 0.8193 0.8194
Labor l∗ 0.8119 0.8117 0.8123 0.8128
Effort e∗ 0.0014 0.0014 0.0013 0.0013
Leisure h∗ 0.3688 0.3685 0.3687 0.3687
Employment rate n∗ 0.7770 0.7777 0.7765 0.7761

aBaseline values.
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well. It would be better in this case if γ were lower, so that the household could
specialize, allowing employed members to supply more labor, and unemployed
members to enjoy leisure. Note also that because employment is higher, the larger
tax base allows the government to reduce its labor income tax.

Compared to the benchmark case, a higher job separation rate ρ has two effects.
First, the equilibrium employment rate n falls. This leads employed members of
the household to supply more hours in labor. Second, employed members of the
household increase their socializing effort, to attempt to increase n. This effort is
less effective, however, and cannot compensate for the increased job separation.
In equilibrium, leisure rises and consumption falls. With a small tax base and
decreased sensitivity of labor hours, the optimal labor tax rises. Regarding the
efficacy of the socialization effort, for a small λ, effort is less effective at affecting
the transmission probability �; there are both income and substitution effects as λ

falls. Because effort is less effective, more is required to affect n (income effect).
The substitution effect is that time spent in socializing may now be better spent
in leisure, if socializing is ineffective. Furthermore, as λ falls, n′ falls, along with
the tax base, leading to a higher optimal labor tax—the intensive margin effect of
taxation decreases. As λ approaches 1, socializing effort becomes more effective,
and these effects reverse. At equilibrium, the optimal labor tax is decreasing in λ;
more unemployed workers find jobs, increasing the economy’s employment rate
and the family’s consumption. The household experiences less leisure and welfare
falls.

Finally, we analyze how the average number of peers affects our results. When
〈z〉 increases, there are two effects. First, the transmission probability � falls, as
there are now on the average more competitors for each peer’s job information,
which will tend to decrease the employment rate. Second, from our baseline 〈z〉 =
5, we observe that with more competition for job information, effort becomes less
effective, unemployed workers dedicate less time to social networking, and effort
falls. Employed workers work more, as the fraction of the family that is employed
decreases and the optimal tax rises.13

5. CONCLUSION

This paper studies optimal labor income taxation in the presence of social net-
works. The unemployment rate is determined by the dynamics of the labor market,
which is governed by social networks. The labor income tax is decreasing in the
economy’s employment rate (extensive margin) and increasing in hours worked
(intensive margin). Social networking reduces job search frictions and it is welfare-
enhancing; welfare gains are mainly due to the fact that agents can enjoy more
leisure. The optimal limiting capital tax rate is zero, independent of the labor
market frictions.

This paper also highlights the importance of worker heterogeneity, and the
exercise we carry out providesnew insight into the relationship between taxes and
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labor market dynamics. It should be seen as an illustration of a much broader line
of research. A natural extension of our model is to allow firms to have a more active
role in the labor market, for instance, receiving information on the productivity of
job applicants through current employees.

Another interesting research possibility is to analyze how agents with different
numbers of peers choose their social networking effort. Allowing members of the
household to exert varying levels of effort would potentially lead to more efficient
time allocation and increase employment. This complicates the household problem
substantially, however, and would require variational methods to characterize the
household behavior in a way that could be integrated into the planner’s problem.
We pursue these extensions in future research.

NOTES

1. See Granovetter (1995) and Ioannides and Loury (2004) for a recent survey.
2. For instance, according to the National Longitudinal Survey of Youth (NLSY), more than 85%

of workers use informal contacts when searching for a job [Holzer (1988)] and more than 50% of
all workers found their jobs through their social networks, according to data from the Panel Study of
Income Dynamics [Corcoran et al. (1980)]. On the firm side, between 37% and 53% of employers use
the social networks of their current employees to advertise jobs, according to data from the National
Organizations Survey [Mardsen (2001)] and the Employment Opportunity Pilot Project (EOPP),
respectively. According to the EOPP, 36% of firms filled their last openings through a referral [Holzer
(1987)].

3. Calvó-Armengol and Zenou (2005) extend the Calvó-Armengol and Jackson (2004) model to
provide a micro foundation of the matching function. They allow job search by workers and firms,
and explicitly model job information transmission between workers. Their approach differs from the
present paper in that they do not consider complex network or workers who are heterogeneous in the
number of peers they have, nor do they allow workers to invest in the strength of their social ties. The
key network parameter for them is the number of links a worker has; essentially, they restrict their
attention to regular networks.

4. Some important network properties, however, are not captured by the degree distribution, such
as detailed local structures and clustering. For example, if workers who have a common peer are also
likely to be connected themselves, this fact will not be captured by the degree distribution.

5. Although other means by which workers may affect their social network can be imagined,
we believe this captures the role networks play in job matching; network formation models capture
more the role networks play as an investment in social capital, which is beyond the scope of this
paper.

6. This is not true, in general, for many network structures. Calvó-Armengol and Jackson (2004)
showed that each worker’s employment status is correlated with that of his peers, so an agent who
remembers his past status could infer the expected employment rates of his peers, and this need not be
equal to the average state of the network.

7. If workers did pass job information only to their unemployed peers, this would reduce the
employment rate and increase the effectiveness of socializing effort. We believe it would have the
same effect as an increase in λ, which we explore in Table 4. We believe all our of network comparison
results would be unchanged.

8. We do not allow workers of various types z to choose different levels of effort. This is firstly
because we consider the household to be the decision making unit, not the individual worker. Secondly,
because we have a continuum of workers whose impact on job transmission depends on the entire
state of the network, allowing effort to vary by z would greatly complicate our analysis, requiring the
method of section 3.2 infeasible.

https://doi.org/10.1017/S1365100513000096 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100513000096


OPTIMAL TAXATION AND SOCIAL NETWORKS 1705

9. We follow the majority of the literature in assuming that the government can commit to follow a
long-term program for taxing labor income. We assume that there are institutions that effectively solve
the time inconsistency problem so that the government can commit to the tax plan it announces in the
initial period.

10. This definition is in terms of the Susceptible–Infected–Susceptible model of Vega-Redondo
(2007). That is, an agent has a job, and loses it, but could still get one again.

11. For more discussion of the structural properties of social networks, see Watts (1999a, 1999b)
and Jackson (2008).

12. Firms could have a more active role in the labor market, for instance, receiving informa-
tion on the productivity of job applicants through current employees. Krauth (2004) analyzes a
model economy in which networking arises because firms have limited information on the skill
of job applicants. A firm’s current employees provide information on the job-specific skill of their
friends, thus improving the likelihood of a productive match. See also Bramoullé and Saint-Paul
(2010).

13. For our parameterization, there is little overall effect as 〈z〉 becomes very large; effort is already
not very effective. This is mainly due to how we model the transmission probability � in section
2. If we were to considere an approach where the transmission probability was independent of the
number of links, effort would be more effective, although still decreasing in 〈z〉. Results available upon
request.
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APPENDIX

A.1. DERIVATION OF THE IMPLEMENTABILITY CONSTRAINT

To derive the implementability constraint, equation (10), first premultiply the family’s
budget constraint in period t with the associated Lagrangian multiplier βtϕt and sum over
all periods t ≥ 0.

∞∑
t=0

βtu1(t) (ct + kt+1 + Bt+1)

=
∞∑
t=0

βtu1(t)
{
n(et−1)

(
1 − τ l

t

)
wt lt + [1 − n(et−1)]bt + Ttkt + BtRt

}
. (A.1)

Using first-order conditions with respect to capital and bonds to eliminate the after-tax
return on capital and bonds, we obtain

∞∑
t=0

βtu1(t) [ct ] =
∞∑
t=0

βtu1(t)
{
n(et−1)

(
1 − τ l

t

)
wt lt + [1 − n(et−1)]bt

} + A00, (A.2)

where A00 = u1(0)[T0k0 + B0R0]. Multiplying equilibrium equation (9) by βt+1u1(t + 1),
we get

βt+1u1(t + 1)
(
1 − τ l

t+1

)
wt+1lt+1 = βt+1u1(t + 1)bt+1 + βt+1u2(t + 1)(lt+1 − et+1)

+ βtu2(t)
[1 − n(et−1)]

n′(et )
,

and then multiplying it by n(et ) yields

∞∑
t=0

βt+1n(et )u1(t + 1)
[(

1 − τ l
t+1

)
wt+1lt+1 − bt+1

]

=
∞∑
t=0

βt+1n(et )u2(t + 1)(lt+1 − et+1)

+
∞∑
t=0

βt+1n(et )u2(t)
[1 − n(et−1)]

n′(et )
. (A.3)

Notice that the right-hand side of equation (A.2) can be written as

u0(0)
{
n(−1)

(
1 − τ l

0

)
w0l0 + [1 − n(−1)]b0

}

+
∞∑
t=0

βt+1u1(t + 1)n(et )
[(

1 − τ l
t+1

)
wt+1lt+1 − bt+1

] +
∞∑
t=0

βtu1(t)bt .
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Substituting (A.3) into (A.2) and after some manipulation, we obtain the implementability
constraint for this problem equation,

∞∑
t=0

βt

(
u1(t) (ct − bt ) − u2(t)

{
n(et−1)(lt − et ) + [1 − n(et−1)]

n(et )

n′(et )

})
= A0,

where A0 = u1(0)[n(e−1)(1 − τ l
0)w0l0 − n(e−1)b0 + T0k0 + R0B0] − u2(0)n(e−1)(l0 − e0).

A.2. PROOF OF PROPOSITION 1

To show that any allocation that satisfies equations (6), (10), and (11) can be decentralized
as a network competitive equilibrium, we use these allocations together with the family’s
and firm’s first-order conditions to construct the corresponding prices and taxes. The rental
rate rt is given by the firm’s first-order condition with respect to capital. The capital tax τ k

t

is determined using the family’s and firm’s first-order condition with respect to capital, and
implicitly defined by

u1(t)

βu1(t + 1)
= {

1 + (
1 − τ k

t

)
[F1(t + 1) − δ]

}
.

The wage rate wt and the labor tax rate τ l
t are determined by substituting equation (9) into

the firm’s first-order condition with respect to labor, obtaining

1(
1 − τ l

t+1

) = u1(t + 1)F2(t + 1)lt+1

×
{
u1(t + 1)bt+1 + u2(t + 1)(lt+1 − et+1) + u2(t)

[1 − n(et−1)]

n′(et )

}−1

. (A.4)

The family’s first-order condition with respect to labor for period t + 1 is

1(
1 − τ l

t+1

) = u1(t + 1)

u2(t + 1)
F2(t + 1). (A.5)

Combining (A.4) and (A.5) and rearranging, we obtain

(ct , lt , et , ct+1, lt+1, et+1)

= [1 − n(et−1)] u2(t) − βn′(et ) [u2(t + 1)et+1 − u1(t + 1)bt+1] ,

which is equivalent to equation (11). The labor tax τ l
t is implicitly defined by both (A.4)

and (A.5), and to ensure that the labor taxes implied by these two conditions coincide, the
constraint (11) is imposed in the Ramsey problem.

To show that any network competitive equilibrium allocations satisfy equations (6), (1),
(10), and (11), we proceed as follows: (a) The resource constraint, equation (6), is implied
by the family’s and government’s period-by-period budget constraints; thus feasibility
is satisfied. (b) Premultiply the family’s budget constraint in period t by the associated
Lagrangian multiplier βtϕt and sum over all periods t ≥ 0. We proceed by solving for taxes
and prices as a function of allocations, using the family’s and firm’s first-order conditions.
This results in the implementability constraint, equation . (c) Because, by definition, the
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labor tax rate τ l satisfies both (A.4) and (A.5), the allocations also satisfy the intertemporal
constraint on labor taxes, equation (11). �

A.3. LINK FORMATION PROCESS: GEOMETRIC AND POWER-LAW NETWORKS

We will describe the link formation process that gives rise to geometric and power-law
networks. Suppose that agents arrive over time, forming links to those agents who arrived
before. Then, among those agents who arrive early, there will be some with many, many
links, whereas among agents who arrive later, there will be fewer. The geometric network
results from the limit of this process, as n → ∞. These networks are not qualitatively
very different from networks in which links are formed entirely at random [Vega-Redondo
(2007, p. 67)], and they exhibit relatively few agents with many links. This network has
distribution Dz = ν1−z log ν, where ν is a parameter that controls the average number of
links (among other properties).

The power-law network results from the case where, rather than forming links randomly,
agents have a preference for being linked to agents who already have many links. It is easy to
imagine why this bias might exist; workers with many links are more likely to be employed,
and have access to job information. This network has distribution Dz = (α − 1)z−α . Here,
there are many more agents who have very many links, the “fat tail” of the power-law
distribution. This leads to fundamentally different structural properties of the network than
for geometric networks. These networks have a number of attractive features, which matchl
many properties of empirical social networks well [Vega-Redondo (2007); Jackson (2008)].

The economy’s long-run employment rate for a regular network nR is equal to the
employment rate of the agents with k links; i.e., nR = nR

k , where nR
k is the solution of the

following expression:

n∗R
k = 1 −

⎛
⎜⎜⎝ ρ

γ + ρ − (1 − γ )

[
1 −

(
1 − avn∗

〈z〉

)k
]

⎞
⎟⎟⎠ . (A.6)

For the empty network, k = 0, and this expression simplifies to nE
k=0 = γ /(ρ + γ ),

whereas for the regular network it is the root of a k-degree polynomial. Unfortunately, for
the power-law and geometric networks, no analytical solution to equation (13) exists, and
it must be characterized numerically.

A.4. PROOF OF PROPOSITION 2

The result of Judd (1985) and Chamley (1986) that capital taxes are zero in the limit follows
directly from an evaluation of the first-order conditions of the family’s and the Ramsey’s
problems with respect to capital. Once again, τ ∗k = 0 regardless of the labor network
structure or dynamics. Next, we discuss the result for the labor income taxes.

Notice that the multipliers η, μ, and κ appear in equations (14), (16) and (17). First,
we reduce these three expressions to one, where only the Lagrangian multiplier on the
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implementability constraint, η, appears. Manipulating (14) and (16), we obtain

κ
∗ = Z∗

c + [Z∗
l − Z∗

c Fl(k
∗, n∗l∗)]u∗

21

Fl(k∗, n∗l∗)u∗
21 − u∗

22

, (A.7)

μ∗ = Z∗
l − Z∗

c Fl(k
∗, n∗l∗)

[1 − n(e∗)]
[
Fl(k∗, n∗l∗)u∗

21 − u∗
22

] . (A.8)

Substituting (A.7) and (A.8) into (17), we get

1

Fl(k∗, n∗l∗)
= β[1 − n(e∗)]n′(e∗)l∗

(
Z∗

l u
∗
21 − Z∗

c u
∗
22

) − [1 − n(e∗)]Z∗
e u

∗
21 + Z∗

c �
∗

Z∗
l �

∗ − [1 − n(e∗)]Z∗
e u

∗
22

,

(A.9)

where

�∗ = u∗
22

{
[1 − n(e∗)]2 − βn′(e∗)(l∗ − e∗)[1 − n′(e∗)e∗ − n(e∗)]

}
+ βu∗

2

[
n′′(e∗)e∗ + n′(e∗)

] − βu∗
1n

′′(e∗)b + βu∗
12n

′(e∗)(l∗ − e∗)b.

Manipulating (A.9) further and using the fact that Z∗
e = βn′(e∗)l∗Z∗

l , we obtain

1

Fl(k∗, n∗l∗)
= Z∗

c

Z∗
l

. (A.10)

Expression (A.10), together with the family’s problem (P.1) first-order conditions, implies
that

τ ∗l = 1 − u∗
2

u∗
1

Z∗
c

Z∗
l

. (A.11)

For a broad class of preferences, we argue that the labor income tax is nonzero. Labor
taxes would be zero in the limit under two possibilities: either η̂∗ = 0, in which case τ ∗l = 0
and the solution is first best, or η̂∗ �= 0, in which case τ ∗l = 0 if and only if

(u∗
11u

∗
2 − u∗

12u
∗
1)(c

∗ − b) = (u∗
21u

∗
2 − u∗

22u
∗
1)

{
n(e∗)(l∗ − e∗) + [1 − n(e∗)]

n(e∗)
n′(e∗)

}
.

(A.12)

In general, (A.12) will not be satisfied and the optimal labor income tax is given by
(A.11). �

A.5. COMPARATIVE STATICS: THE NETWORK AND THE EMPLOYMENT RATE

PROPOSITION 3. The economy’s employment rate is increasing in the job arrival
probability (∂n/∂γ > 0) and in the socializing effort (∂n/∂e > 0), and it is decreasing in
the job separation rate (∂n/∂ρ < 0) and in the network average degree z (∂n/∂〈z〉 < 0).

Proof. We can write the employment rate among agents with z links as follows:

nz = 1 − ρ

ρ + γ + (1 − γ )X
,
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where X = 1 − (1 − γ nv

〈z〉 )z. Therefore,

∂nz

∂γ
=

ρz{1 − X + (1 − γ )[ zv
〈z〉 (1 − γ nv

〈z〉 )z−1(n + γ ∂n
∂γ

)]}
[γ + ρ + (1 − γ )X]2

.

By the fundamental theorem of calculus, we have

∂n

∂γ
=

∫ ∞

1

∂nz

∂γ
Dzdz.

Remember that ∂n/∂γ appears on both the left and right sides of this equation. Some
algebra leads us to

∂n

∂γ
= A − Bn

1 − γB
,

where

A =
∫ ∞

1

ρz(1 − X)

[γ + ρ + (1 − γ )X]2
Dzdz,

B =
∫ ∞

1

(1 − γ ) zv
〈z〉 (1 − nvγ

〈z〉 )z−1

[γ + ρ + (1 − γ )X]2
Dzdz.

We will show that 0 < B < 1. Note that 0 < (1 − γ )v(1 − nvγ

〈z〉 )z−1 < 1 for all z ≥ 1,

and that [γ + ρ + (1 − γ )X]2 > 0. Thus, 0 < B <
∫ ∞

1
z

〈z〉Dzdz = 1. A similar argument
shows that 0 < A < 1, and is also used in the following. Therefore ∂n/∂γ > 0, as was to
be shown. We now show that ∂n/∂ρ < 0. We have

∂nz

∂ρ
=

ρ[1 + (1γ ) ∂X
∂ρ

]

[γ + ρ + (1 − γ )X]2
− 1

γ + ρ + (1 − γ )X
,

∂X

∂ρ
= γ zv

〈z〉
(

1 − γ nv

〈z〉
)z−1

∂n

∂ρ
,

and
∂n

∂ρ
=

∫ ∞

1

∂nz

∂ρ
Dzdz.

Let

E =
∫ ∞

1

ρ(1 − γ ) γvz

〈z〉 (1 − γ nv

〈z〉 )z−1

[γ + ρ + (1 − γ )X]2
Dzdz.

Solving for ∂n/∂ρ, we have

∂n

∂ρ
= ρ

[γ + ρ + (1 − γ )X]2
+ ∂n

∂ρ
D − 1

γ + ρ + (1 − γ )X

= ρ − [γ + ρ + (1 − γ )X]

(γ + ρ + (1 − γ )X)2
+ ∂n

∂ρ
D

⇒ ∂n

∂ρ
= (1 − γ )X + γ

(D − 1)[γ + ρ + (1 − γ )X]2
.
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Because 0 < D < 1, we have ∂n/∂ρ < 0, as was to be shown. Next, to show ∂n/∂e > 0,
we have

∂nz

∂e
= (1 − γ )ρ ∂X

∂e

[γ + ρ + (1 − γ )X]2
,

∂X

∂e
= γ z

〈z〉
(

1 − γ nv

〈z〉
)z−1 (

n
∂v

∂e
+ v

∂n

∂e

)
.

So
∂n

∂e
=

∫ ∞

1

∂nz

∂e
Dzdz.

We can solve this equation for ∂n/∂e, and find that

∂n

∂e
= E

1 − F
,

E =
∫ ∞

1

(1 − γ )ρ γz

〈z〉 (1 − γ nv

〈z〉 )z−1n ∂v
∂e

[γ + ρ + (1 − γ )X]2
Dzdz,

F =
∫ ∞

1

(1 − γ )ρ γz

〈z〉 (1 − γ nv

〈z〉 )z−1v

[γ + ρ + (1 − γ )X]2
Dzdz.

Because 0 < F < 1 and E > 0, ∂n/∂e > 0, as was to be shown.
Finally, we will show that ∂n/∂〈z〉 < 0. We have

∂nz

∂〈z〉 =
(1 − γ )ρ ∂X

∂〈x〉
[γ + ρ + (1 − γ )X]2

,

∂X

∂〈z〉 = vγ z

〈z〉
(

1 − γ nv

〈z〉
)z−1 (

∂n

∂〈z〉 − n

〈z〉
)

.

So we must solve
∂n

∂〈z〉 =
∫ ∞

1

∂nz

∂〈z〉Dzdz.

Letting

G =
∫ ∞

1

(1 − γ )ρ vγ z

〈z〉

(
1 − γ nv

〈z〉

)z−1

[γ + ρ + (1 − γ )X]2
Dzdz,

this simplifies to
∂n

∂〈z〉 =
(

∂n

∂〈z〉 − n

〈z〉
)

G.

Solving, we have
∂n

∂〈z〉 =
n
〈z〉G

G − 1

because 0 < G < 1, ∂n/∂〈z〉 < 0, as was to be shown.
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