
Math. Struct. in Comp. Science (2009), vol. 19, pp. 1265–1278. c© Cambridge University Press 2009

doi:10.1017/S0960129509990193

Mobile Petri nets

A. ASPERTI† and N. BUSI

†Dept. of Comp. Sci., Univ. of Bologna, Mura Anteo Zamboni 7, 40127 Bologna, Italy

Email: asperti@cs.unibo.it

Received 27 April 2009; revised 25 June 2009

In memory of Nadia Busi

We add mobility to Place-Transition Petri nets: tokens are names for places, and an input

token of a transition can be used in its postset to specify a destination. Mobile Petri nets are

then further extended to dynamic nets by adding the possibility of creating new nets during

the firing of a transition. In this way, starting from Petri nets, we define a simple hierarchy

of nets with increasing degrees of dynamicity. For each class in this hierarchy, we provide its

encoding in the former class.

Our work was largely inspired by the join-calculus of Fournet and Gonthier, which turns out

to be a (well-motivated) particular case of dynamic Petri nets. The main difference is that, in

the preset of a transition, we allow both non-linear patterns (name unification) and (locally)

free names for input places (that is, we remove the locality constraint, and preserve reflexion).

1. Introduction

Petri nets are widely accepted as the main distributed model for concurrent computations.

Unfortunately, Petri nets are too static to be used directly as a specification language for

distributed programming. In particular, they offer no direct way to express processes with

changing structure, that is, communicating agents that can be dynamically linked to other

agents, possibly depending on previous communications. To bridge this gap, we define a

hierarchy of nets with increasing degrees of dynamicity. The first step is to add mobility in

the sense of Milner et al. (1992), namely the possibility of passing a reference to a process

(a channel name) in a communication. From the point of view of Petri nets, we can think

of channels as places, and mobility amounts to considering tokens as names (actually,

tuples of names) for places. The destinations in the postset of a transition can then depend

on the input tokens that have been read in the preset of the same transition. As a simple

example, we consider a variant of the print-spooler in Fournet and Gonthier (1996).

Available printers send their names and their type (colour or black and white) to a place

named ready, while users send their requests with the name of the file and the type of

printer required to a place named job. For example, the configuration where the black

and white printer named laser is ready and we have two pending requests to print the file

file1 on a black and white printer and the file file2 on a colour printer is described by the

marking

ready(laser, bw), job(file1, bw), job(file2, c).

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

A. Asperti and N. Busi 1266

The print spooler matches a ready printer with a request and sends the file to the printer,

as described by the following transition:

ready(PRINTER,TY PE), job(FILE,TY PE) � PRINTER(FILE).

Note the use of unification in the preset: the offer and the request match only if they have

the same type. Firing this transition in the previous marking, gives the new configuration

job(file2, c), laser(file1).

The next step is to allow a transition to generate not only a new marking, but also a new

set of transitions to be added to the system. This amounts to saying that the postset of a

transition is actually . . . just another net!

In specifying this net, we shall need a binding operator (νY) to distinguish the local

names Y from non-local ones. When spawning a net during the firing of a transition,

local names will be instantiated to fresh names, while non-local names will preserve their

current meaning.

These nets will be called dynamic nets. As a simple example showing the expressive

power of dynamic nets, consider the encoding of call-by-name λ-calculus.

Example 1 (call-by-name λ-calculus). A λ-term M is encoded as a net (νv)[[M]]v where:

[[x]]v = (�, x(v))

[[λx.M]]v = ({v(x, u) � [[M]]u},�)

[[(M N)]]v = (ν{x, u})([[M]]u ⊕ ({x(w) � [[N]]w}, u(x, v))).

The operator ⊕ denotes the sum of two nets defined in the obvious way (see Definition 5).

Intuitively, you may think of v as the ‘root’ of the term. A variable sends to the server

for x its ‘root’, which is the position where the actual value for x should be instantiated.

A term λx.M waits ‘on its root’ for two names x and u:

— the first name is the name of the server for the variable x,

— u is the new ‘root’ for M after the β-reduction.

Finally, an application (M N) creates two local names x and u:

— x is a server waiting for requests from variables: when a variable sends its ‘position’

w to x, the server spawns a new instance of the argument N at position w.

— u is the root for M: on this channel, the application sends the name of the server and

its own root (which, whenever M is ‘reduced’ to λx.M ′, must become the new root

for M ′).

This encoding is, in essence, borrowed from Milner et al. (1992).

Dynamic nets were directly inspired by the join-calculus (Fournet and Gonthier 1996),

which in turn owes a debt to the Chemical Abstract Machine (Berry and Boudol 1992).

The main difference between dynamic nets and the join-calculus is that, in the preset

of a transition, we allow both non-linear patterns (name unification) and (locally) free

names for input places. Using the terminology of Fournet and Gonthier (1996), we

remove the locality constraints, and just keep reflexion. While locality is clearly relevant

for implementation (each subnet is an independent reaction-site, which can be physically

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

Mobile Petri nets 1267

distributed without effort), the theoretical motivations behind this assumption are much

less evident and deserve deeper investigation. In fact, the locality constraint of the join-

calculus imposes a programming style that is not always intuitive, and in some cases really

frustrating. For example, the encoding of the λ-calculus in the join-calculus (regarded as

a dynamic net) is

[[x]]v = (�, x(v))

[[λx.M]]v = (ν{k})({{k(x, u) � [[M]]u}, v(k))
[[(M N)]]v = (ν{x, u})([[M]]u ⊕ ({x(w) � [[N]]w, u(k) � k(x, v)},�)),

which is considerably more contrived than the one given earlier.

2. Nets

In this section we recall the definition of Petri nets, and give the formal definition of

mobile and dynamic nets.

2.1. Petri nets

We recall the main definitions of Place/Transition nets without capacity constraints on

places (see, for example, Reisig (1985)). We provide a characterisation of this model using

a notation that is both convenient and consistent with our generalisations.

Definition 2. Given a set X, a multiset over X is a function m : X → (N ∪ {ω}). The set

of all multisets over X is denoted by MX . Let dom(m) = {x ∈ X | m(x) > 0}. A multiset

m is said to be empty if m(x) = 0 for all x ∈ X. Let

Mpost
X = {m ∈ MX | dom(m) is finite}

and

Mpre
X = {m ∈ Mpost

X | m is not empty ∧ ∀x ∈ X,m(x) ∈ N}.
Let i < ω and, for any i ∈ N, let i+ω = ω + i = ω +ω = ω. We write m ⊆ m′ if m(x) �
m′(x) for all x ∈ X. The operator ⊕ denotes multiset union: (m ⊕ m′)(x) = m(x) + m′(x).

The operator \ denotes multiset difference: (m\m′)(x) = m(x) �m′(x), where � is a partial

operation over natural numbers defined by i � j = i − j if i > j, i � j = 0 if i � j, and

ω � i = ω.

Let X be a denumerable set of names, which will be used to indicate places in the net,

ranged over by x, y, and so on.

Definition 3. Let N = (νY)(T ,m) where Y ⊆ X is the set of places, T ⊆ Mpre
X × Mpre

X is

the set of transitions and m ∈ Mpre
X is the initial marking. N is a P/T net if all names

occurring in its initial marking and in its transitions are contained in the set of places,

that is, if dom(m) ∪
⋃

(c,p)∈T (dom(c) ∪ dom(p)) ⊆ Y .

An element of MX is called a marking. Given a marking m and a place x, we say that

x contains m(x) tokens. A transition t = (c, p) will be written in the form c � p, where c is

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

A. Asperti and N. Busi 1268

called the preset of t and represents the tokens to be ‘consumed’; p is called the postset of

t and represents the tokens to be ‘produced’.

Let t = c � p be a transition: it is enabled at m if c ⊆ m; the execution of t enabled at m

produces the marking m′ = (m \ c) ⊕ p. This is written as m[t〉m′.

2.2. Mobile nets

Mobile nets are a variation of coloured nets (Jensen 1992), where the colours of the tokens

are tuples of names. The new feature of mobile nets is the fact that the postset of the

transitions is not static, but depends on the colours of the tokens the transition consumes.

For instance, returning to the print-spooler example of the Introduction, we can have a

transition like

ready(PRINTER,TY PE), job(FILE,TY PE) � PRINTER(FILE).

As in π-calculus and join-calculus, we use names to represent both places and placeholders

(variables) for names. In the example above, the upper case names are variables: they will

be instantiated to actual names at the moment of firing. In general, given two names a

and b, the notation a(b) has a different meaning if it occurs in a marking or in the preset

of a transition. In the former case, b is an actual parameter, while in the latter, b is a

formal parameter (which binds occurrences of the same name in the postset of the same

transition). So the preset of a transition defines a pattern (possibly non-linear) that has

to be unified with a subset of the current marking to enable the transition.

Definition 4. Given two sets X and Y , let MX,Y = X → (Y → (N ∪ ω)). Let dom(m) =

{(x, y) | m(x)(y) > 0},

Mpost
X,Y = {m ∈ MX,Y | dom(m) is finite}

and

M
pre
X,Y = {m ∈ Mpost

X,Y | m is not empty ∧ ∀x ∈ X, y ∈ Y ,m(x)(y) ∈ N}.
The operator ⊕ is defined by (m ⊕ m′)(x)(y) = m(x)(y) + m(x)(y), and the operator \ is

defined by (m \ m′)(x)(y) = m(x)(y) � m(x)(y).

The set of token colours is defined as the set of finite (possibly empty) sequences on

X : C = {(x1, . . . , xn) | n > 0 ∧ xi ∈ X, i = 1, . . . , n}.
In the following, we use �x,�y, . . . to denote finite tuples of names. The length of a tuple

is defined by |(x1, . . . , xn)| = n and the selection of the ith element by πi(x1, . . . , xn) = xi for

i = 1, . . . , n. The operation of concatenation is represented by juxtaposition. With abuse of

notation, we use x instead of (x) when no confusion may arise. Given a partial function

ρ on X, we define substitution on names and on name tuples by

xρ =

{
y if (x, y) ∈ ρ,

x otherwise,

(x1, . . . , xn)ρ = (x1ρ, . . . , xnρ).

Let n(ρ) =
⋃

(x,y)∈ρ{x, y}.

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

Mobile Petri nets 1269

Given m ∈ MX,C, the substitution on all names in m is defined by

(mρ)(x)(�y) =
∑

vρ=x∧�zρ=�y

m(v)(�z),

whereas the substitution performed just on the names occurring in the token colours (used

in the following for pattern instantiation) is

(m
b ρ)(x)(�y) =
∑
�zρ=�y

m(x)(�z).

Similarly, the definition of free and bound names is different in patterns (presets) and

markings (postsets).

The free and bound names of m seen as a pattern are

fnP (m) = {x | ∃�y(m(x)(�y) > 0)},
bnP (m) = {x | ∃z,�y, i, πi(�y) = x ∧ m(z)(�y) > 0)},

respectively.

The free and bound names of m seen as a marking are

fnM(m) = fnP (m) ∪ bnP (m),

bnM(m) = �,

respectively.

In a transition, the bound names of the preset are binders for the postset. We define

the free names of a transition t and of a set of transitions T by

fn(c � p) = fnP (c) ∪ (fbM(p)\bnP (c)),

fn(T) =
⋃

t∈T fn(t),

respectively.

Definition 5. Let N = (νY)(T ,m), where Y ⊆ X is the set of places, T ⊆ Mpre
X,C × Mpost

X,c

is the set of transitions and m ∈ MX,C is the initial marking. N is a mobile net if

fnM(T) ∪ fn(m) ⊆ Y . An element of MX,C is called a marking. Given a marking m, a

place x and a colour �y, we say that x contains m(x)(�y) tokens of colour �y. A transition

t = (c, p) is usually written in the form c � p. Let t = c � p be a transition: it is enabled at

m if there exists ρ ⊆ bnP (c) ×X such that c
b ρ ⊆ m; the execution of t enabled at m with

substitution ρ produces the marking m′ = (m \ c
b ρ) ⊕ pρ. This is written as m[t〉ρm′.

The closure condition on the names in the net is a sufficient condition to guarantee that

a name will not be used as a place name if it has not been declared in the set of places

of the net.

We use the following concrete notation for markings:

— m = x(�y) is the marking with a single token of colour �y in the place x, that is

m(x)(�y) = 1 and m(v)(�z) = 0 if v
= x or �y
=�z;

— m =
⊕∞

x(�y) = x(�y)∞ is the marking with ω tokens of colour �y in the place x, that is

m(x)(�y) = ω and m(v)(�z) = 0 if v
= x or y
= z.

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

A. Asperti and N. Busi 1270

2.3. Dynamic nets

A dynamic net is a mobile net where the set of places and transitions may increase

during the execution: instead of just producing new tokens, a transition can generate a

new subnet. As a consequence, the current state of the net is no longer represented by a

marking, but by a net.

Definition 6. DN is the least set satisfying the equation

X = {(νY)(T ,m) | Y ⊆fin X,

T ⊆fin {c � N | c ∈ Mpre
X,C, N ∈ X},

m ∈ MX,C}.

If (νY)(T ,m) ∈ DN, then Y is the set of places, T the set of transitions and m the marking.

Besides the bound names in the preset of a transition, we also have that the names

Y act as binders on (T ,m) in (νY)(T ,m). We define free names of transitions, sets of

transitions and nets as follows:

fn(c � N) = fnP (c) ∪ (fn(N) \ bnP (c)),

fn(T) = ∪t∈Tfn(t),

fn((νY)(T ,m)) = (fn(T) ∪ fnM(m)) \ Y .

In the definition of substitution on transitions and nets we must avoid the possibility

of names that are intended to be free being captured by a binder; if the side condition is

not satisfied, we have to perform alpha conversion on the transition (or on the net) first.

Let t = c � N and bnP (c) ∩ n(ρ) = �. Then

tρ = cρ � Nρ,

Tρ = {tρ | t ∈ T }.

Let N = (νY)(T ,m) and Y ∩ n(ρ) = �. Then

Nρ = (νY)(Tρ;mρ).

Let N1 = (νY1)(T1, m1) and N2 = (νY2)(T2, m2). If Y1 ∩ Y2 = �, fn(N1) ∩ Y2 = � and

fn(N2) ∩ Y1 = �, we define

N1 ⊕ N2 = (νY1 ∪ Y2)(T1 ∪ T2;m1 ⊕ m2).

If Y1 ∩ Y2 = �, we define

(νY1)N2 = (νY1 ∪ Y2)(T2, m2).

Definition 7. A dynamic net N is an element of the set DN that is closed, that is,

fn(N) = �. Let N1 = (νY1)(T1, m1) and t = c � N be a transition in T1. We say that t is

enabled at N1 if and only if there exists ρ ⊆ bn(c)×X such that c
bm1 ⊆ m1; the execution

of t enabled at N1 with substitution ρ produces the new net N2 = (νY1)[(T1, m1\c
bρ)⊕Nρ].

This is written as N1[t〉ρN2.

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

Mobile Petri nets 1271

3. Encodings

In this section we define the encoding of mobile nets in Petri nets, and of dynamic nets

in mobile nets. The encoding is proved correct with respect to interleaving, but we claim

that it also works for step and causal semantics.

3.1. Encoding mobile nets into Petri nets

We can simulate a mobile net using a Petri net as follows. We represent the presence of

a token with colour �y in the place x of the mobile net by means of a token in the place

called (x,�y). Given a transition in the mobile net, for each possible instantiation of the

bound names in its preset, we provide a corresponding transition in the Petri net.

Let N = (νY)(T ;m) be a mobile net. We will construct the corresponding Petri net

NPetri.

We first construct the set C of all tuples that may occur in the execution of N. Let

lenColours = {|�y| | ∃x, m(x)(�y) > 0 ∨ ∃(c � p) ∈ T , ∃x, c(x)(�y > 0 ∨ p(x)(�y) > 0)}.

If the set lenColours has a maximum element n, then C = {�x ∈ C | |�x| � n}, otherwise

C = C.

Now we define the mapping of a marking of N on a marking of NPetri:

U(m)(x,�y) = m(x)(�y).

Given a transition t and an instantiation ρ of its bound names, the corresponding

transition in NPetri is

U(c � p, ρ) = U(c
b ρ) � U(pρ).

Finally, let NPetri = (νYPetri)(TPetri, mPetri), where

YPetri = Y × C,

TPetri = {U(t, ρ) | t ∈ T ∧ ρ ∈ X → X},
mPetri = U(m).

We have that NPetri is a Petri net. Moreover, each move in the mobile net N is matched

by a move in the Petri net NPetri and vice versa.

Theorem 8. Let m1, m2 ∈ MX,C.

— If m1[t〉ρm2, then U(m1)[U(t, ρ)〉U(m2).

— If U(m1)[t
′〉m′

2, then there exist t, ρ, m2 such that m1[t〉ρm2, t
′ = U(t, ρ) and m′

2 = U(m2).

If the set of places and transitions of N are finite, the set of places and transitions of

NPetri are finite.

3.2. Encoding dynamic nets into mobile nets

The translation of a dynamic net into a mobile net is a bit tricky. So we will start with

an example. Consider the net

(ν{A,B})({A(X) � N ′}, A(A), A(B)),

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

A. Asperti and N. Busi 1272

where

N ′ = ({X(W), Y (Z) � W (Z)}, A(Y), Y (B)).

The external net N has initial marking A(A), A(B) and a single transition that reads a

token X from A and spawns a new instance of the subnet N ′. N ′ has initial marking

A(Y), Y (B) and contains a single transition

X(W), Y (Z) � W (Z).

The first (really rough) idea for transforming this net into a mobile net is to shift the

internal transition to the external level (leaving the internal marking inside):

(ν{A,B, Y }) ({A(X) � A(Y), Y (B),

X(W), Y (Z) � W (Z)},
A(A), A(B)).

Obviously, we have a lot of problems here, which we will consider in turn. First, the

internal transition is now always (potentially) enabled, while it should be activated by the

firing of the external one. Thus, we need an explicit enabling place for each subnet; we will

also use this place to pass actual parameters for the free names in the subnet-transitions.

For uniformity, we also add an enabling place for the initial net. According to this idea,

our pseudo-mobile net is now modified as follows:

(ν{A,B, Y }) ({enN(), A(X) � A(Y), Y (B), enN ′ (X)∞

enN ′ (X), X(W), Y (Z) � W (Z)},
A(A), A(B), enN()∞).

The second problem is that the spawning process should generate new instances at

each firing of the external rule. So, we must use new names to distinguish between these

different instances. In particular, a name X of a channel should become a pair X,Xδ

where Xδ denotes the particular instance of the channel X in use. These names are taken

from a tank (an infinite supplier of fresh names) at the moment of the firing.

When we send an information to a channel A, we shall also pass, as the first component

of the message, the particular instance of A we are referring to.

(ν{A,B, Y }) ({enN(this), A(this, X,Xδ), tank(new)�

A(this, Y , new), Y (new, B, this), enN ′ (new,X,Xδ)∞,

enN ′ (this, X,Xδ), X(Xδ,W ,Wδ), Y (Y δ, Z, Zδ) � W (Wδ,Z, Zδ)},
A(v0, A, v0), A(v0, B, v0), enN(v0)

∞,
⊕

i>0 tank(vi)).

The final problem is that the second transition is not yet a mobile transition in our

sense. The problem is the receiving channel on X. The obvious idea would be to consider

all its possible instantiations, but this would mean that too many transitions would be

activated, instead of just the single one whose name is received from the enabler. The

solution is to modify the structure of the tokens slightly so that they identify the place

they belong to: so each token in a place A will always be a tuple starting with A. Now,

we can instantiate X to an arbitrary (known) place of the net, and still be sure that it will

actually only consume tokens from the place whose name was indicated by the enabler.

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

Mobile Petri nets 1273

We will do this in two steps. First we enrich the structure of tokens:

(ν{A,B, Y }) ({enN(this), A(A, this, X,Xδ), tank(new)�

A(A, this, Y , new), Y (Y , new, B, this), enN ′ (new,X,Xδ)∞,

enN ′ (this, X,Xδ), X(X,Xδ,W ,Wδ), Y (Y , Y δ, Z, Zδ)�

W (W,Wδ,Z, Zδ)},
A(A, v0, A, v0), A(A, v0, B, v0), enN(v0)

∞,
⊕

i>0 tank(vi)).

Next we consider all possible instances of the second transition by substituting X for

one of the places A,B or Y :

(ν{A,B, Y }) ({enN(this), A(A, this, X,Xδ), tank(new)�

A(A, this, Y , new), Y (Y , new, B, this), enN ′ (new,X,Xδ)∞,

enN ′ (this, X,Xδ), A(X,Xδ,W ,Wδ), Y (Y , Y δ, Z, Zδ)�

W (W,Wδ,Z, Zδ)},
enN ′ (this, X,Xδ), B(X,Xδ,W ,Wδ), Y (Y , Y δ, Z, Zδ)�

W (W,Wδ,Z, Zδ)},
enN ′ (this, X,Xδ), Y (X,Xδ,W ,Wδ), Y (Y , Y δ, Z, Zδ)�

W (W,Wδ,Z, Zδ)},
A(A, v0, A, v0), A(A, v0, B, v0), enN(v0)

∞,
⊕

i>0 tank(vi)).

Let us provide an example of a token game in the two nets. The dynamic net has initial

marking A(A), A(B). By firing the (unique) transition with input token A(A), we get the

new marking A(B), A(Y1), Y1(B), where Y1 is a fresh name. Moreover, the transition

A(W), Y1(Z) � W (Z)

is now added to the system. We now have several possibilities. Suppose we fire the

‘external’ transition again with input token A(Y1). The marking becomes

A(B), Y1(B), A(Y2), Y2(B),

and the new transition

Y1(W), Y2(Z) � W (Z)

is activated. Now we can fire this transition, getting the marking A(B), A(Y2), B(B). The

same firing sequence is simulated in the mobile net by the following steps:

A(A, v0, A, v0), A(A, v0, B, v0), enN(v0)
∞,

⊕
i>0 tank(vi)

⇒
A(A, v0, B, v0), A(A, v0, Y , v1), Y (Y , v1, B, v0),

enN(v0)
∞, enN ′ (v1, A, v0)

∞,
⊕

i>1 tank(vi)

⇒
A(A, v0, B, v0), Y (Y , v1, B, v0), A(A, v0, Y , v2), Y (Y , v2, B, v0),

enN(v0)
∞, enN ′ (v1, A, v0)

∞, enN ′ (v2, Y , v1)
∞ ⊕

i>2 tank(vi)

⇒
A(A, v0, B, v0), A(A, v0, Y , v2), B(B, v0, B, v0),

enN(v0)
∞, enN ′ (v1, A, v0)

∞, enN ′ (v2, Y , v1)
∞ ⊕

i>2 tank(vi).

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

A. Asperti and N. Busi 1274

3.3. The formal definition

Given a net N = (νY)(T ,m), we use localsN to denote Y , and transN to denote T and

markN to denote m.

Definition 9. Let N1, N2 ∈ DN. N1 occurs in N2 if and only if N1 = N2 or there exist c

and N such that (c � N) ∈ T2 and N1 occurs in N. We say N1 occurs properly in N2 if

and only if N1 occurs in N2 and N1
= N2.

Let N = (νY)(T ,m) be a dynamic net. We assume that the names occurring in the

binders are all different. This condition can be easily fulfilled by performing an alpha

conversion that substitutes each bound name with a fresh name.

We now construct a corresponding mobile net NM .

For each N ′ = (νY ′)(T ′, m′) occurring in N, let:

— enN ′ be a fresh name;

— freeN ′ be a sequence containing exactly one occurrence of every name in fn(T ′) \ Y ′.

enN ′ is a place used to enable the corresponding net N ′; the colour of tokens in enN ′

will represent the current instantiation of the free names of N ′ occurring in the transitions

of N ′.

Let P laces = ∪
N ′ occurs in N

localsN ′ . This will be the subset of places in NM that

correspond to places in N.

Let tank; vi for i ∈ N be fresh names. The tank will contain a token for each colour vi,

for i > 0, whereas the name v0 will be associated with the names occurring in the (unique)

instance of the net N.

Given a function δX → X that associates to each name a name-instance, we proceed

to map markings in N to markings in NM . Given, a marking m ∈ MX,C, we define:

dδ(x1, . . . , xn) = x1, x1δ, . . . , xn, xnδ,

Dδ(m)(x)(x, xδ, y1, y1δ, . . . , yn, ynδ) = m(x)(y1, . . . , yn),

Dδ(m)(x)(y0, y0δ, y1, y
′
1, . . . , yn, y

′
n) = 0 if y0
= x ∨ ∃i, 1 � i � n, y′

i
= yiδ.

Let X ′ be a denumerable set of fresh names. Let δ0 : X → X ′ be a bijection.

Now we transform each transition occurring in N in a set of transitions in NM .

Let this, new be fresh names, and t = c � N ′′ ∈ transN ′ . Let

δ(x) =

⎧⎪⎪⎨
⎪⎪⎩
this if x ∈ locN ′

new if x ∈ locN ′′

δ0(x) otherwise

D1(t) = enN ′ (this, dδ(freeN ′) ⊕ Dδ(c) ⊕ tank(new)�

Dδ(m′′) ⊕
⊕∞

enN ′′ (new, dδ(freeN ′′)).

Let (c
f ρ) =
∑

ρ(z)=x c(x)(�y) (substitution on place names only);

D2(c � p, ρ) = c
f ρ � p,

D3(t, ρ) = D2(D1(t), ρ),

D4(N
′) = {D3(t, ρ) | t ∈ transN ′ ∧

ρ ⊆ (fnP (c) ∩ freeN ′) × P laces}.

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

Mobile Petri nets 1275

Let

δ1(x) =

{
v0 if x ∈ localsN,

δ0(x) otherwise.

The mobile net corresponding to N is NM = (νYM)(TM,mM), where

YM = P laces ∪ {tank} ∪ {enN ′ | N ′occursinN},
TM =

∑
N ′ occurs in N

D4(N
′),

mM = Dδ1 (m) ⊕
⊕

i>0 tank(vi) ⊕
⊕∞

enN(v0).

In our encoding we need transitions that put infinitely many tokens of the same colour

into a place: to simulate the generation of a new subnet from the firing of a transition in

N, the corresponding transition in NM puts an infinite number of tokens into the enabling

place corresponding to the subnet. We could avoid this kind of transition by extending

our model to contextual nets (Montanari and Rossi 1995), where a transition can ‘read’ a

token from a place without consuming it.

For uniformity in our encoding, we also add an enabling place for the initial net and for

subnets with an empty set of transitions; we could avoid adding these redundant places

to obtain a more compact net.

Let N = (νY)(T ,m). To relate the behaviour of N to the behaviour of NM , we need

to decorate the nets properly occurring in N with some information linking them to

the corresponding part of NM . To this end, we decorate each of these nets with the

corresponding enabling place and two occurrences of the names free in its transitions;

one of these occurrences will be modified by the instantiations performed on the net, while

the other is left unchanged. From this information, we obtain the actual instantiation of

the free names when a copy of the net is generated. Moreover, we decorate each transition

of these nets with all the corresponding transitions in NM (obtained by instantiation of

the free names), recording for each of them the instantiation it originates from. The last

information is used to say which one of the corresponding transitions will be enabled at

the generation of the net.

The decorated form of N is (νY)({c � dec(N) | c � N ∈ T }, m), where:

dec((νY)(T ,m)) = ((νY)(dec(T ,N), m); freeN; enN; freeN),

dec(T ,N) = ∪t∈Tdec(t, N),

dec(c � N ′, N) = {(c � dec(N ′), D3(c � N
′, ρ), ρ)) |

ρ ∈ (fnP (c) ∩ freeN) → P laces}.

The substitution on decorated nets is defined by

(N,�x, en,�y)ρ = (Nρ,�xρ, en,�y),

(t, t′, σ) = (tρ, t′, σ).

Given a transition t = c � (N ′′,�x; en;�y), the firing rule on decorated nets is N[t〉ρN ′ if and

only if c
b ρ ⊆ m and N ′ = (νY)((T ,m \ c
b ρ) ⊕ N ′′′ρ), where N ′′′ = (νY ′′)(π1(T
′′), m′′).

The relation between the current state of the net N and the net NM is recorded by a

tuple R = (V , En, P , T r), where:

— V is a set of names corresponding to the current content of the tank;

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

A. Asperti and N. Busi 1276

— En contains elements of the form (en, v,�z), meaning that N1 contains a subnet whose

corresponding enabling place and instance in NM are en and v, respectively, and when

it has been generated its free names were instantiated to �z;

— P contains elements of the form (x, (y, v)), meaning that the place x in N1 corresponds

with the instance v of the place y in the net NM;

— Tr contains elements of the form (t, (t′, v, ρ))), associating the transition t of N1 with

the instance v of the transition t in NM , and ρ gives the instantiation of each free

name with its actual value when t has been generated.

The initial relation between the net N and the initial marking of NM is

R0 = (V0, En0, P0, T r0),

where

V0 = {vi | i > 0},
En0 = {(enN, v0, ())},
P0 = {(y, (y, v0)) | y ∈ locN},

T r0 = {(t, (D1(t), v0,�)) | t ∈ transN}.
Given a current state N1 of the net N and a corresponding relation R = (V , En, P , T r),

we map the marking m = markN1
in a marking FR(m) of the net NM as follows:

FR(m)(tank)(v) =

{
1 if v ∈ V ,

0 otherwise.

FR(m)(en)(v, (Pz1) . . . (Pzn)) =

{
1 if (en, v, z1, . . . , zn) ∈ En,

0 otherwise.

FR(m)(π1(Px))((Px)(Py1) . . . (Pyn)) = m(x)(y1, . . . , yn).

FR(m)(x)(y1, y
′
1, . . . , yn, y

′
n) = 0 if x
= y1∨

∃i, 1 � i � n ∧ ∀x, (x, (yi, y′
i))
∈ P .

We map a substitution ρ referring to tokens in N1 to the corresponding substitution SR(ρ)

on tokens in NM using

SR(ρ) = ∪(x,y)∈ρ{(x, π1(Py)), (δ0(x), π2(Py))}.

We are now ready to state the correspondence between N and NM .

Theorem 10. Let N1 be the current state of the net N and R = (V ;En;P ;Tr) be the

associated relation.

— If N1[t〉ρN2, with t = c � (N3,�x, en,�y), then there exists (t, tM, vthis, τ) ∈ Tr such that

FR(markN1
)[tM〉ρMFR′(markN2

), where, given vnew ∈ V ,

ρM = {(this; vthis, (new, vnew)} ∪ SR(ρ ∪ τ)

and R = (V ′, En′, P ′, T r′), with

V ′ = V \ {vnew},
En′ = En ∪ {(en; vnew;�x)},
P ′ = P ∪ {(σ(y), (y, v)) | y ∈ localN3

},
T r′ = Tr ∪ {(t, (t′, v, {�x/�y}) | ∃ρ, (t, t′, ρ) ∈ transN4

∧ ρ ⊆ {�x/�y})},

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

Mobile Petri nets 1277

where N4 is the net obtained by alpha conversion of the place names in N3 with the

substitution σ, which has been added to N1 to obtain N2.

— If FR(markN1
)[tM〉ρMm′

M , then there exists (t, tM, ρM(this), τ) ∈ Tr, with t = c �

(N3,�x, en,�y), such that N1[t〉ρN2 and m′
M = FR′(markN2

), where

ρ = {(x, y) | x ∈ bnP (c) ∧ ∃z1, z2, (x, z1) ∈ ρM ∧ (y, (z1, z2)) ∈ P }

and R′ = (V ′, En′, P ′, T r′), with

V ′ = V \ {ρM(new)},
En′ = En ∪ {(en, ρM(new),�x)},
P ′ = P ∪ {(σ(y), (y, v)) | y ∈ localN3

},
T r′ = Tr ∪ {(t, (t′, v, {�x/�y}) | ∃ρ, (t, t′, ρ) ∈ transN4

∧ ρ ⊆ {�x/�y})},
where N4 is the net obtained by alpha conversion of the place names in N3 with the

substitution σ, which has been added to N1 to obtain N2.

4. Conclusions

We have enriched Petri nets with mobility (mobile nets) and reflexion (dynamic nets). We

propose dynamic nets as both a new foundational model of concurrency and a formal

basis for a specification language for distributed programming. From the theoretical

point of view, there is obviously still a lot more work to be done. We claim that our

encoding of dynamic nets in Petri nets should also work for step and process semantics,

but these notions need further investigation before the theorem can be proved. In the

spirit of dynamic nets as a specification language, it would also be interesting to study

observational semantics. We are currently investigating a higher-order extension of our

nets to allow the possibility of using nets as token colours, which would allow explicit

transmission of processes (Sangiorgi 1993). We believe that we could use techniques

similar to those described in this paper to translate these higher-order nets into dynamic

nets. Another interesting extension would be to permit recursive definitions, which are

not covered by the current approach.

Finally, we would again like to acknowledge the great influence that the join-calculus had

on our definition of dynamic nets. The proper subset of dynamic nets that corresponds

to terms of the join-calculus seems to have nice properties of locality that would be

interesting to study in more detail (for instance, its encoding in mobile nets is much

simpler than for the general case). However, dynamic nets seem to provide a higher degree

of dynamicity than the join-calculus, so the encoding of dynamic nets in the join-calculus

would provide an interesting test case for assessing the expressivity of the latter formalism.

Even if a simple encoding could be written, it might still be better to use dynamic nets

at the specification level, and view the join-calculus as a sort of intermediate ‘machine’

language leading towards a real distributed implementation.

References

Berry, G. and Boudol, G. (1992) The chemical abstract machine. Theoretical Computer Science

96 (1) 217–248.

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

A. Asperti and N. Busi 1278

Fournet, C. and Gonthier, G. (1996) The reflexive cham and the join-calculus. POPL 372–385.

Jensen, K. (1992) Coloured Petri Nets, EATCS Monographs in Computer Science, Springer-Verlag.

Milner, R., Parrow, J. and Walker, D. (1992) A calculus of mobile processes. Information and

Computation 100 (1) 1–77.

Montanari, U. and Rossi, F. (1995) Contextual nets. Acta Inf. 32 (6) 545–596.

Reisig, W. (1985) Petri Nets: An Introduction, EATCS Monographs in Computer Science, Springer-

Verlag.

Sangiorgi, D. (1993) Expressing Mobility in Process Algebra, Ph.D. thesis, University of Edinburgh.

https://doi.org/10.1017/S0960129509990193 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990193

