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We construct portfolios of stocks and bonds that are maximally predictable with respect to
a set of ex-ante observable economic variables, and show that these levels of predictability
are statistically significant, even after controlling for data-snooping biases. We
disaggregate the sources of predictability by using several asset groups—sector portfolios,
market-capitalization portfolios, and stock/bond/utility portfolios—and find that the
sources of maximal predictability shift considerably across asset classes and sectors as the
return horizon changes. Using three out-of-sample measures of predictability—forecast
errors, Merton’s market-timing measure, and the profitability of asset-allocation strategies
based on maximizing predictability—we show that the predictability of the maximally
predictable portfolio is genuine and economically significant.
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1. INTRODUCTION

The search for predictability in asset returns has occupied the attention of in-
vestors and academics since the advent of organized financial markets. While
investors have an obvious financial interest in predictability, its economic impor-
tance can be traced to at least three distinct sources: implications for how aggre-
gate fluctuations in the economy are transmitted to and from financial markets,
implications for optimal consumption and investment policies, and implications
for market efficiency. For example, several recent papers claim that the apparent
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predictability in long-horizon stock return indexes is due to business cycle move-
ments and changes in aggregate risk premia.1 Others claim that such predictability
is symptomatic of inefficient markets, markets populated with overreacting and
irrational investors.2 Following both explanations is a growing number of pro-
ponents of market timing or tactical asset allocation, in which predictability is
exploited, ostensibly to improve investors’ risk-return trade-offs.3 Indeed, Roll
(1988, p. 541) has suggested that “The maturity of a science is often gauged by its
success in predicting important phenomena.”

For these reasons, many economists have undertaken the search for predictabil-
ity in earnest and with great vigor. Indeed, the very attempt to improve the
goodness-of-fit of theories to observations—Leamer’s (1978) so-calledspecifi-
cation searches—can be viewed as a search for predictability. But as important as
it is, predictability is rarely maximized systematically in empirical investigations,
even though it may dictate the course of the investigation at many critical junctures
and, as a consequence, is maximizedimplicitly over time and over sequences of
investigations.

In this paper, we maximize the predictability in asset returnsexplicitly by con-
structing portfolios of assets that are the most predictable, in a sense to be made
precise below. Such explicit maximization can add several new insights to findings
based on less formal methods. Perhaps the most obvious is that it yields an upper
bound to what even the most industrious investigator can achieve in his search
for predictability among portfolios.4 As such, it provides an informal yardstick
against which other findings may be measured. For example, approximately 10%
of the variation in the CRSP equal-weighted weekly return index from 1962 to
1992 can be explained by the previous week’s returns—is this large or small? The
answer will depend on whether the maximum predictability for weekly portfolio
returns is 15 or 75%.

More importantly, the maximization of predictability can direct us toward more
disaggregated sources of persistence and time variation in asset returns, in the
form of portfolio weights of the most predictable portfolio, and sensitivities of
those weights to specific predictors, e.g., industrial production, dividend yield. A
primitive example of this kind of disaggregation is the lead/lag relation among
size-sorted portfolios uncovered by Lo and MacKinlay (1990a), in which the pre-
dictability of weekly stock index returns is traced to the tendency for the returns
of larger capitalization stocks to lead those of smaller stocks. The more general
framework that we introduce below includes lead/lag effects as a special case,
but captures predictability explicitly as a function of time-varying economic-risk
premia rather than as a function of past returns only.

In fact, the evidence for time-varying expected returns in the stock and bond
markets in the form of ex-ante economic variables that can forecast asset returns is
now substantial.5 Our results add to those of the existing literature in three ways: (1)
We estimate themaximally predictable portfolio(MPP), given a specific model of
time-varying risk premia; (2) we compute the sensitivities of this MPP with respect
to ex-ante economic variables; and (3) we trace the sources of predictability, via
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the portfolio weights of the MPP, to specific industry sectors, market-capitalization
classes, and stock/bond/utilities classes, over various holding periods.

Of course, both implicit and explicit maximization of predictability are forms
of data snoopingor data miningand may bias classical statistical inferences. But
the biases from an explicit maximization are far easier to quantify and correct
for—which we do below—than those from a series of informal and haphazard
searches.6 Moreover, we develop a procedure for maximizing predictability that
does not impart any obvious data-snooping biases (although subtle biases may
always arise), using an out-of-sample rolling estimation approach similar to that
of Fama and MacBeth (1973). We use a subsample to estimate the optimal portfolio
weights, form these portfolios with the returns from an adjacent subsample, and
obtain estimates of predictability by rolling through the data.

When applied to monthly stock and bond returns from 1947 to 1993, we find
that predictability can be increased considerably both by portfolio selection and
by horizon selection. For example, if we consider as our universe of assets the
11 portfolios formed by industry or sector classification according to SIC codes,
for an annual return horizon the MPP has anR2 of 53%, whereas the largest
R2 of the 11 regressions of individual sector assets on the same predictors is 40
percent.

Moreover, the weights of the MPP change dramatically with the horizon, point-
ing to differences across market capitalization and sectors for forecasting purposes.
For example, using the 11 sector assets as our universe and a monthly return hori-
zon, the MPP has a long position in the trade sector (with a portfolio weight of
36%), and a substantial short position in the durables sector (with a portfolio weight
of −138%). However, at an annual return horizon, the MPP is short in the trade
sector (−70%), and long in durables (126%). Although the portfolio weights are
much less volatile for the shortsales-constrained cases, they still vary considerably
with the return horizon. Such findings suggest distinct forecasting horizons for the
various sector assets, and may signal important differences in how such groups of
securities respond to economic events.

In Section 2, we motivate our interest in the MPP by showing that the typical two-
step approach of searching for predictability—fitting a contemporaneous linear
multifactor model, and then predicting the factors—may significantly understate
the true magnitude of predictability in asset returns and overstate the number of
factors required to capture the predictability. In contrast, the MPP provides a more
accurate assessment of the predictable variation. The MPP is developed more
formally in Section 3 and an example of its economic relevance is provided. In
Section 4, we apply these results to monthly stock and bond data from 1947 to 1993
and estimate the MPP for three distinct asset groups: a 5-asset group of stocks,
bonds, and utilities; an 11-asset group of sector portfolios; and a 10-asset group of
size-sorted portfolios. To correct for the obvious biases imparted by maximizing
predictability, we report Monte Carlo results for the statistical inference of the
maximal R2’s in Section 5. To gauge the economic significance of the MPP, in
Section 6 we present three out-of-sample measures of the portfolio’s predictability,
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measures that are not subject to the most obvious kinds of data-snooping biases
associated with maximizing predictability. We conclude in Section 7.

2. MOTIVATION

An increasingly popular approach to investigating predictability in asset returns
is to follow a two-step procedure: (1) Construct a linear factor model of returns
based on cross-sectional explanatory power, e.g., factor analysis, principal com-
ponents decomposition; and (2) Analyze the predictability of these factors. Such
an approach is motivated by the substantial and still-growing literature on lin-
ear pricing models such as the CAPM, the APT, and its many variants in which
expected returns are linearly related to contemporaneous “systematic” risk fac-
tors. Because time variation in expected returns can be a source of return pre-
dictability, several recent studies have followed this two-step procedure, e.g.,
Chen (1991), Ferson and Harvey (1991a, b, 1993), and Ferson and Korajczyk
(1993).

While the two-step approach can shed considerable light on the nature of asset
return predictability—especially when the risk factors are known—it may not be
as informative when the factors are unknown. For example, it is possible that the
set of factors that best explains the cross-sectional variation in expected returns is
relatively unpredictable, whereas other factors thatcanbe used to predict expected
returns are not nearly as useful contemporaneously in capturing the cross-sectional
variation of expected returns. Therefore, focusing on the predictability of factors
that are important contemporaneously may yield a very misleading picture of the
true nature of predictability in asset returns.

2.1. Predicting Factors vs. Predicting Returns

To formalize this intuition, consider a simple example consisting of two assets,
A and B, which satisfy a linear two-factor model. In particular, letRt denote the
(2× 1) vector of de-meaned asset returns [Rat Rbt]′ and suppose that:

Rt = δ1F1t + δ2F2t + εt, (1)

whereδ1 ≡ [δa1 δb1]′, δ2 ≡ [δa2 δb2]′, εt ≡ [εat εbt]′ is vector white noise with
covariance matrixσ 2

ε I , andF1t andF2t are the two factors that drive the expected
returns of A and B. Without loss of generality, we assume that the two factors are
mutually uncorrelated at all leads and lags, and have zero mean and unit variance;
hence,

E[F1t ] = E[F2t ] = 0, Var[F1t ] = Var[F2t ] = 1, (2)

Cov[F1s, F2t ] = 0 ∀ s, t. (3)
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Now suppose thatF1t is unpredictable through time, whileF2t is predictable. In
particular, suppose thatF1t is a white-noise process, and thatF2t is an AR(1):

F1t ∼ White Noise, F2t = βF2t−1+ ηt , |β| ∈ [0, 1), (4)

where{ηt } is a white-noise process with variance 1− β2 and independent of{εt }
and{F1t }. Under these assumptions, expected returns are explained by two con-
temporaneous factors, of which one is white noise and the other is predictable.
For later reference, we observe that under this linear two-factor model the con-
temporaneous covariance matrix and the first-order autocovariance matrix ofRt

are given by
Γ0 = Var[Rt ] = δ1δ

′
1+ δ2δ

′
2+ σ 2

ε I , (5)

Γ1 = Cov[Rt,Rt−1] = δ2δ
′
2β. (6)

For the remainder of this section, we shall assume that while (1) is the true data-
generating process, it isunknownto investors.

When the true factorsF1t andF2t are unobserved, the most common approach to
estimating (1) is to perform some kind of factor analysis or principal-components
decomposition [see, e.g., Roll and Ross (1980), Brown and Weinstein (1983),
Chamberlain (1983), Chamberlain and Rothschild (1983), Lehmann and Modest
(1985), Connor and Korajczyk (1986, 1988)]. For this reason, a natural focus for
the sources of predictability are the extracted factors or principal components. In
our simple two-asset example, the first principal component is a portfolioωPC1

which corresponds to the normalized eigenvector of the largest eigenvalue of the
contemporaneous covariance matrixΓ0. This yields the portfolio return

RPC1,t ≡ ω′PC1Rt, (7)

which may be interpreted as the linear combination of the two assets that “explains”
as much of the cross-sectional variation in returns as possible. In this sense,RPC1,t

may be viewed as the [cross-sectionally] “most important” factor. Therefore, this
is a natural focus for the sources of predictability in expected returns.

How predictable is this most important factor? One measure is the theoretical
or populationR2 of a regression ofRPC1,t on the lagged factorsF1t−1 andF2t−1.
This is given by

R2[RPC1,t ] = (ω′PC1δ2β)
2

ω′PC1Γ0ωPC1
. (8)

Observe that only the factor loadingδ2 of factor 2 appears in the numerator of
(8). Since factor 1 is white noise, it contributes nothing to the predictability of
RPC1,t ; henceδ1 plays no role in determining theR2. However,δ1 does appear
implicitly in the denominator of (8) since it affects the variance ofRPC1,t [see (5)].
Therefore, it is easy to see how an important cross-sectional factor may not have
much predictability. By increasing the factor loadingδ1, the first factor becomes
increasingly more important in the cross section, but holding other parameters
constant, this will decrease the predictability ofRPC1,t .
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A second measure of predictability is the squared first-order autocorrelation
coefficient ofRPC1,t , which corresponds to theR2 of the regression ofRPC1,t on
RPC1,t−1. This is given by the expression

ρ2
1[RPC1,t ] =

[
(ω′PC1δ2)

2β
]2

(ω′PC1Γ0ωPC1)2
. (9)

For similar reasons, it is apparent from (9) that an important cross-sectional factor
need not reflect much predictability.

2.2. Numerical Illustration

For concreteness, consider the following numerical example:

Rt =
[

10.0

15.0

]
F1t +

[
0.5

1.0

]
F2t + εt, (10)

E[εtε
′
t] = σ 2

ε I , σ 2
ε = 16, β = 0.90. (11)

Under these parameter values, the first principal-component portfolioRPC1,t ac-
counts for 95.5% of the cross-sectional variation in returns, i.e., when the eigenval-
ues ofΓ0 are normalized to sum to one, the largest eigenvalue is 0.955. However,
the predictability ofRPC1,t as measured byR2[RPC1,t ] in (8) is a trivial 0.3%, and
its squared own-autocorrelation is 0.0010%, despite the fact that factor 2 has an
autocorrelation coefficient of 90%!

In Section 3, we shall propose an alternative to cross-sectional factors such
as RPC1,t for measuring predictability: the MPP. In contrast toRPC1,t which is
constructed by maximizingvariance, the MPP is constructed by maximizingpre-
dictabilityor R2. For this reason, it provides a more direct measure of the magnitude
and sources of predictability in asset returns data. Although we develop the MPP
more formally in the next section, it is instructive to anticipate those results by
comparing the predictability of the MPP to that ofRPC1,t in this two-asset example.

As we shall see in Section 3, the MPPωMPP is defined as the normalized
eigenvector corresponding to the largest eigenvalue of the matrixV−1Γ̃0, where
Γ̃0 = δ2δ2

′ρ2 is the variance–covariance matrix of the one-step-ahead forecast
of Rt using F1t−1 and F2t−1 (see Section 3 for further details and discussion).
SubstitutingωMPP for ωPC1 in (7) and (8) then yields a comparable measure of
predictability for the MPP:R2[RMPP,t ].

By calibrating the parameter values of (1) to monthly data (measured in percent
per month), we can compare the predictability of the MPP to the PC1 portfolio
directly. In particular, if we let

Rt =
[

7.5

3.5

]
F1t +

[
δa2

5.0

]
F2t + εt, (12)

E[εtε
′
t ] = σ 2

ε I , σ 2
ε = 16, β = 0.90 (13)

https://doi.org/10.1017/S1365100597002046 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002046


                     

108 ANDREW W. LO AND A. CRAIG MACKINLAY

TABLE 1. Comparison of predictability of PC1 portfolio and
MPP for a universe of two assets, A and Ba

Asset ωa ωb R2[Asset] ρ2
1[Asset]

(a) δa2= 0.50
Stock A 1.00 0.00 0.003 0.000
Stock B 0.00 1.00 0.380 0.179
PC1 portfolio 0.58 0.42 0.096 0.011
MPP −0.51 1.51 0.450 0.249

(b) δa2= 7.50
Stock A 1.00 0.00 0.355 0.155
Stock B 0.00 1.00 0.380 0.179
PC1 portfolio 0.64 0.36 0.397 0.195
MPP 0.33 0.67 0.416 0.214

aReturns satisfy a two-factor linear model where the first factor is white noise and
the second factor is an AR(1) with autoregressive coefficient 0.90. Predictability is
measured in two ways: the populationR2 of the regression of each asset on the first
lag of both factors, and the population squared own-autocorrelationρ2

1 of each asset’s
returns. The return-generating processes for both assets are calibrated to correspond
roughly to monthly returns (see the text for details).

and letδa2 vary, we can see how well the two portfoliosωPC1andωMPP reflect the
predictability inherent in the two assets.

Table 1 reports theR2 measures for both portfolios under two different values
for δa2. In panel (a),δa2 is set to 0.50, in which case the stocks A and B haveR2’s
of 0.3 and 38.0%, respectively, and monthly standard deviations of 8.5 and 7.3%,
respectively. In this case, observe that the PC1 portfolio has anR2 of only 9.6%
and a squared own-autocorrelationρ2(1) of only 1.1%, and this despite the fact
that the squared own-autocorrelation of stock B is 17.9%. In contrast, the MPP
has anR2 of 45.0% and a squared own-autocorrelation of 24.9%.

As δa2 is increased to 7.5, factor 2 becomes more important in determining the
expected return of stock A, and its monthly variance also increases to 11.3%. In
this case, the PC1 portfolio more accurately reflects the predictability in A and
B, with an R2 and squared own-autocorrelation of 39.7 and 19.5%, respectively.
Nevertheless, the MPP exhibits slightly more predictability, with anR2 and squared
own-autocorrelation of 41.6 and 21.4%, respectively.

2.3. Empirical Illustration

To illustrate the empirical relevance of the difference in theR2 of the PC1 portfolio
and the MPP in this simple context, we anticipate the more detailed empirical
analysis of Section 4 by performing the following simple calculation here. Using a
sample of 11 sector portfolio returns and 6 predetermined factors, we calculate the
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sampleR2 (see Section 4 for details about these portfolios and factors). Using
monthly returns for the period 1947:1 to 1993:12, the sampleR2 of the MPP is
12.0%, whereas the sampleR2 of PC1 is only 7.2%. Similar results hold for annual
returns. Using annual returns, the MPPR2 is 52.5% and the PC1R2 is 35.5%.
These results show that, empirically, the differences in the level of predictability
of the returns on these two portfolios can be substantial.

This simple two-factor example illustrates the fact that while the PC1 portfolio
may be interesting in studies of cross-sectional relations among asset returns,
the MPP is more directly relevant when predictability is the object of interest.
Furthermore, the sampleR2 results suggest that the difference can be empirically
important. In the following sections, we shall define the MPP more precisely and
examine its statistical and empirical properties at length.

3. MAXIMIZING PREDICTABILITY

To define the predictability of a portfolio, we require some notation. Consider a
collection ofn assets with returnsRt ≡ [R1t R2t · · · Rnt]′, and for convenience,
assume the following throughout this section7:

Assumption A. Rt is a jointly stationary and ergodic stochastic process with
finite expectationE[Rt ] = µ ≡ [µ1 µ2 · · · µn]′ and finite autocovariance ma-
tricesE[(Rt−k − µ)(Rt − µ)′] = Γk, where, with no loss of generality, we take
k ≥ 0 sinceΓk = Γ′−k.

For convenience, we shall refer to thesen assets asprimary assets, assets to be
used to construct the MPP, but they can be portfolios too.

Denote byZt an(n× 1) vector of de-meaned primary asset returns, i.e.,Zt ≡
Rt − µ, and letZ̃t denote some forecast ofZt based on information available at
timet−1, which we denote by the information setÄt−1. For simplicity, we assume
thatZ̃t is the conditional expectation ofZt with respect toÄt−1, i.e.,

Z̃t = E[Zt | Ät−1], (14)

which would be the optimal forecast under a quadratic loss function (although
we are not assuming that such a loss function applies). We then may express
Zt as

Zt = E[Zt | Ät−1] + εt = Z̃t + εt, (15)

E[εt | Ät−1] = 0, Var[εt |Ät−1] = Σ. (16)

Included in the information setÄt−1 are ex-ante observable economic variables
such as dividend yield, various interest-rate spreads, earnings announcements, and
other leading economic indicators. Therefore, with a suitably defined intercept
term, (15) and (16) contain conditional versions of the CAPM [see Merton (1973),
Constantinides (1980), and Bossaerts and Green (1989)], a dynamic multifactor
APT [Ohlson and Garman (1980) and Connor and Korajczyk (1989)], and virtually
all otherlinear asset pricing models as special cases.
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We also assume throughout that theεt ’s are conditionally homoskedastic and
that the information structure{Ät } is well behaved enough to ensure thatZ̃t is also
a stationary and ergodic stochastic process.8

3.1. Maximally Predictable Portfolio

Let γ denote a particular linear combination of the primary assets inZt, and
consider the predictability of this linear combination, as measured by the well-
known coefficient of determination:

R2(γ) ≡ 1− Var[γ ′εt ]

Var[γ ′Zt ]
= Var[γ ′Z̃t ]

Var[γ ′Zt ]
= γ

′Γ̃0γ

γ ′Γ0γ
, (17)

where

Γ̃0 ≡ Var[Z̃t ] = E[Z̃t Z̃′t ], (18)

Γ0 ≡ Var[Zt ] = E[ZtZ′t ]. (19)

R2(γ) is simply the fraction of the variability in the portfolio returnγ ′Zt ex-
plained by its conditional expectation,γ ′Z̃t . Maximizing the predictability of
a portfolio of Zt then amounts to maximizingR2(γ) subject to the constraint
that γ is a portfolio, i.e.,γ ′ι= 1. But sinceR2(γ)= R2(cγ) for any constant
c, the constrained maximization is formally equivalent to maximizingR2 over
all γ, and then rescaling this globally optimalγ so that its components sum to
unity.

Such a maximization is straightforward and yields an explicit expression for
the maximumR2 and its maximizer, given by Gantmacher (1959) and Box and
Tiao (1977).9 Specifically, the maximum ofR2(γ) with respect toγ is given by
the largest eigenvalueλ∗ of the matrixB ≡ Γ−1

0 Γ̃0, and is attained by the eigen-
vectorγ∗ associated with the largest eigenvalue ofB. Therefore, when properly
normalized,γ∗ is the MPP.10

Observe that the MPP has been derived from the unconditional covariance ma-
trices (18) and (19) and, as a result, is constant over time. A time-varying version
of the MPP also can be constructed, simply by replacing (18) and (19) with their
conditional counterparts. In that case, the MPP must be recalculated in each period
since the matrixBt will then be a function of the conditioning variables and will
vary through time. However, to do this we require a fully articulated model of
the conditional covariances of bothZt and Z̃t , which then must be estimated.11

Although this is beyond the scope of this paper, recent empirical evidence suggests
that the conditional moments of asset returns do vary through time [see Bollerslev
et al. (1992) for a review], hence the conditional MPP may be an important exten-
sion from an empirical standpoint.
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3.2. Example: One-Factor Model

To develop some intuition for the economic relevance of the MPP, consider the
following example. Suppose we forecast excess returnsZt with only a single factor
Xt−1, so that we hypothesize the relation

Zt = βXt−1+ εt , (20)

E[εt | Xt−1] = 0, Var[εt | Xt−1] = Σ, (21)

whereβ is an (n × 1) vector of factor loadings, andΣ is any positive definite
covariance matrix (not necessarily diagonal). Such a relation might arise from the
CAPM, in which caseXt−1 is the periodt−1 forecast of the market risk premium
at timet .12 In this simple case, the relevant matrices may be calculated in closed
form as

Γ̃0 ≡ Var[Z̃t ] = σ 2
xββ

′, (22)

Γ0 ≡ Var[Zt ] = σ 2
xββ

′ +Σ, (23)

whereσ 2
x ≡ Var[Xt−1]. The MPPγ∗ and itsR2 are then given by

γ∗ = 1

ι′Σ−1β
Σ−1β, (24)

λ∗ = R2(γ∗) = σ 2
xβ
′Σ−1β

1+ σ 2
xβ
′Σ−1β

. (25)

To develop further intuition for (24) and (25), suppose thatΣ = σ 2
ε I , so that the

MPP and itsR2 reduce to

γ∗ = 1

ι′β
β, (26)

λ∗ = R2(γ∗) = β′βσ 2
x

/
σ 2
ε

1+ β′βσ 2
x

/
σ 2
ε

. (27)

Not surprisingly, with cross-sectionally uncorrelated errors, the MPP has weights
directly proportional to the assets’ betas. The larger the beta, the more predictable
that asset’s future return will beceteris paribus; hence, the MPP should place more
weight on that asset. As expected,R2(γ∗) is an increasing function of thesignal-
to-noiseratio σ 2

x /σε . But interestingly, the MPP weightsγ∗ are not, and do not
even depend on theσ 2

j ’s. This, of course, is an artifact of our extreme assumption
that the assets’ variances are identical. If, for example, we assumed that6 were
a diagonal matrix with elementsσ 2

j , j = 1, . . . ,n, then the portfolio weightsγ ∗j
would be proportional toβ j /σ

2
j . The larger theβ j , the more weight assetj will

have in the MPP; the larger theσ 2
j , the less weight it will have.

Since the level of predictability ofγ∗ does depend on how importantXt−1 is in
determining the variability ofZt , in the case whereΣ = σ 2

ε I as the signal-to-noise
ratio increases, theR2 of the MPP also increases, eventually approaching unity as
σ 2

x /σ
2
ε increases without bound. Also, from (27) it is apparent thatR2(γ∗) increases
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with the number of assetsceteris paribus, sinceβ′β is simply the sum of squared
betas. Of course, even in the most general case,R2(γ∗) must be a nondecreasing
function of the number of assets because it is always possible to put zero weight
on any newly introduced assets.

4. AN EMPIRICAL IMPLEMENTATION

To implement the results of Section 3, we must first develop a suitable forecasting
model for the vector of excess returnsZt . Using monthly data from 1947:1 to
1993:12, we consider three sets of primary assets for our vectorZt : (1) a five-asset
group, consisting of the S&P 500, a small stock index, a government bond index, a
corporate bond index, and a utilities index; (2) a 10-asset group consisting of deciles
of size-sorted portfolios constructed from the CRSP monthly returns file; and (3)
an 11-asset group of sector-sorted portfolios, also constructed from CRSP. The 11
sector portfolios are defined according to SIC code classifications: (1) wholesale
and retail trade; (2) services; (3) nondurable goods; (4) construction; (5) capital
goods; (6) durable goods; (7) finance, real estate, and insurance; (8) transportation;
(9) basic industries; (10) utilities; and (11) coal and oil. Within each portfolio, the
size-sorted portfolios and the sector-sorted portfolios are value weighted.

4.1. The Conditional Factors

In developing forecasting models for the three groups of assets, we draw on the
substantial literature documenting the time variation in expected stock returns to
select our conditional factors. From empirical studies by Rozeff (1984), Chen et
al. (1986), Keim and Stambaugh (1986), Breen et al. (1989), Ferson (1990), Chen
(1991), Estrella and Hardouvelis (1991), Ferson and Harvey (1991b), Kale et al.
(1991), and many others, variables such as the growth in industrial production,
dividend yield, and default and term spreads on fixed-income instruments have
been shown to have forecast power. Also, the asymmetric lead/lag relations among
size-sorted portfolios that Lo and MacKinlay (1990a) document suggest that lagged
returns may have forecast power. Therefore, we were led to construct the following
variables:

DYt Dividend yield, defined as the aggregated dividends for the CRSP value-weighted
index for the 12-month period ending at the end of montht divided by the index value
at the end of montht .

DEFt The default spread, defined as the average weekly yield for low-grade bonds in
montht minus the average weekly yield for long-term government bonds (maturity
greater than 10 years) in montht . The low-grade bonds are rated Baa.

MAT t The maturity spread, defined as the average weekly yield on long-term govern-
ment bonds in montht minus the average weekly yield from the auctions of three-
month Treasury bills in montht .

SPRt The S&P 500 Index return, defined as the monthly return on a value-weighted
portfolio of 500 common stocks.

https://doi.org/10.1017/S1365100597002046 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002046


                 

MAXIMIZING PREDICTABILITY OF STOCKS AND BONDS 113

IRTt The interest-rate trend, defined as the monthly change of the average weekly yield
on long-term government bonds.

SPDYt An interaction term to capture time variation in asset-return betas, defined as
the product DYtSPRt of the dividend yield and the S&P 500 Index return variables.

Of course, there is a possible pre-test bias in our choosing these variables based on
prior empirical studies. For example, Foster and Smith (1994) show that choosing
k out ofm regressors (k < m) to maximizeR2 can yield seemingly significantR2’s
even when no relation exists between the dependent variable and the regressors.
They show that such a specification search may explain the findings of Keim and
Stambaugh (1986), Campbell (1987), Ferson and Harvey (1991a).13

Unfortunately, Foster and Smith’s (1994) pre-test bias cannot be corrected eas-
ily in our application, for the simple reason that our selection procedure does
not correspond precisely to choosing the “best”k regressors out ofm. There is
no doubt that prior empirical findings have influenced our choice of conditional
factors, but in much subtler ways than this. In particular, theoretical considera-
tions have also played a part in our choice, both in which variables to include
and which to exclude. For example, even though a January indicator variable
has been shown to have some predictive power, we have not included it as a
conditional factor because we have no strong theoretical motivation for such a
variable.

Because a combination of empirical and theoretical considerations has influ-
enced our choice of conditional factors, Foster and Smith’s (1994) corrections are
not directly applicable. Moreover, if we apply their correctionswithout actually
searching for the bestk of m regressors, we will almost surely never find pre-
dictability even if it exists, i.e., tests for predictability will have no power against
economically plausible alternative hypotheses of predictable returns. Therefore,
other than alerting readers to the possibility of pre-test biases in our selection of
conditional factors, there is little else that we can do to correct for this ubiquitous
problem.

The final specification for the conditional-factor model forZt then is given by

Zt = α + β1DYt−1+ β2DEFt−1+ β3MAT t−1+ β4IRTt−1

+β5SPRt−1+ β6SPDYt−1+ εt . (28)

The interaction term SPDYt−1 allows the factor loading of the S&P 500 to vary
through time as a linear function of the dividend yield DYt−1.14

4.2. Estimating the Conditional-Factor Model

Tables 2–4 report ordinary least squares estimates of the conditional-factor model
(28) for the three groups of assets, respectively: the(5×1) vector of stocks, bonds,
and utilities (SBU); the(10× 1) vector of size deciles (SIZE); and the(11× 1)
vector of sector portfolios (SECTOR). Table 2a contains results for monthly SBU
returns and Table 2b contains annual results, and similarly for Tables 3a and b and
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TABLE 2. Ordinary least squares regression results for individual asset returns in
SBU asset group from 1947:1 to 1993:12

Regressorsa

Asset Constant DY DEF MAT SPR SPDY IRT D.W.b R2

(a) Monthly results
S&P 500 −2.27 0.70 −0.07 0.37 0.29 −0.09 −2.82 1.99 0.066

(−2.79) (3.86) (−0.32) (2.66) (1.39) (−1.72) (−2.93)
Small −2.67 0.71 0.24 0.26 0.73 −0.15 −2.52 1.89 0.055
stocks (−2.35) (2.90) (0.79) (1.29) (3.24) (−2.66) (−1.80)
Gov’t −1.08 0.16 0.15 0.31 −0.12 0.01 −0.26 1.94 0.044
bonds (−2.35) (1.75) (1.04) (2.71) (−1.07) (0.31) (−0.35)
Corp. −1.28 0.19 0.22 0.32 −0.07 −0.01 −0.79 1.80 0.068
bonds (−2.85) (2.14) (1.54) (3.02) (−0.72) (−0.22) (−1.23)
Utilities −2.35 0.65 0.16 0.23 0.17 −0.05 −1.66 1.91 0.055

(−3.25) (4.22) (0.82) (1.91) (1.12) (−1.43) (−2.15)

(b) Annual results
S&P 500 −35.07 12.88 −4.34 2.68 6.04 −1.81 −28.18 2.12 0.426

(−3.60) (4.35) (−1.72) (1.81) (2.01) (−2.30) (−2.44)
Small −42.12 15.91 −3.06 0.83 10.46 −3.10 −58.59 1.87 0.341
stocks (−2.45) (3.92) (−0.84) (0.39) (2.82) (−3.22) (−2.63)
Gov’t −11.73 2.35 0.46 3.85 2.42 −0.74 1.42 2.21 0.345
bonds (−1.59) (1.23) (0.28) (4.24) (1.36) (−1.48) (0.13)
Corp. −15.01 2.95 1.14 4.11 2.72 −0.83 3.53 2.15 0.425
bonds (−2.03) (1.55) (0.81) (4.89) (1.52) (−1.70) (0.37)
Utilities −38.65 12.58 −1.33 2.07 6.42 −1.88 −16.68 1.84 0.397

(−4.36) (5.06) (−0.67) (1.59) (2.61) (−2.86) (−1.72)

aDY = dividend yield; DEF= default premium; MAT= maturity premium; SPR= S&P 500 Index total return;
SPDY= SPR×DY; IRT = interest-rate trend. The five assets in the SBU group are the S&P 500 Index, a small
stock index, a government bond index, a corporate bond index, and a utilities index. Heteroskedasticity-consistent
z statistics are given in parentheses.

bDurbin-Watson test statistic for dependence in the regression residual.

4a and b.15 We perform all multi-horizon return calculations withnon-overlapping
returns since Monte Carlo and asymptotic calculations in Lo and MacKinlay (1989)
and Richardson and Stock (1990) show that overlapping returns can bias inferences
substantially.

The performance of the conditional factors in the regressions of Tables 2–4
are largely consistent with findings in the recent empirical literature. Among the
equity assets, the dividend yield is positively related to future returns and generally
significant at the 5% level. The default premium generally has little incremental
explanatory power for future returns. Additional analysis indicates that its usual
explanatory power is captured by the interest-rate trend variable. The maturity
premium has predictive power mostly for the utilities asset at the annual horizon.
In contrast, the S&P 500 Index return and the interest-rate trend variables are
strongest at the monthly horizon, the former affecting expected returns positively,
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TABLE 3. Ordinary least squares regression results for individual asset returns in
the SIZE asset group from 1947:1 to 1993:12

Asset Regressorsa

decile Constant DY DEF MAT SPR SPDY IRT D.W.b R2

(a) Monthly results
1 −2.90 0.74 0.43 0.17 1.48 −0.28 −2.69 1.90 0.082

(−1.90) (2.38) (0.95) (0.65) (4.22) (−3.40) (−1.67)
2 −2.74 0.71 0.29 0.20 1.12 −0.21 −2.69 1.90 0.073

(−2.03) (2.59) (0.73) (0.93) (4.25) (−3.32) (−1.77)
3 −3.33 0.84 0.31 0.27 0.89 −0.18 −2.61 1.92 0.064

(−2.63) (3.22) (0.90) (1.30) (3.64) (−3.00) (−1.76)
4 −3.01 0.80 0.24 0.24 0.80 −0.16 −2.54 1.92 0.058

(−2.49) (3.22) (0.72) (1.20) (3.52) (−2.91) (−1.81)
5 −3.15 0.83 0.21 0.25 0.67 −0.14 −2.89 1.92 0.058

(−2.72) (3.46) (0.68) (1.27) (3.11) (−2.63) (−2.04)
6 −3.16 0.85 0.20 0.29 0.69 −0.15 −3.07 1.93 0.066

(−2.81) (3.56) (0.67) (1.53) (3.34) (−2.89) (−2.28)
7 −2.83 0.78 0.17 0.30 0.58 −0.13 −3.24 1.91 0.065

(−2.74) (3.60) (0.64) (1.70) (2.98) (−2.77) (−2.54)
8 −2.89 0.77 0.17 0.34 0.51 −0.12 −3.12 1.92 0.066

(−2.96) (3.71) (0.67) (2.01) (2.69) (−2.65) (−2.61)
9 −2.65 0.78 0.07 0.30 0.42 −0.11 −3.09 1.93 0.062

(−2.81) (3.85) (0.28) (1.86) (2.19) (−2.35) (−2.76)
10 −2.15 0.66 −0.09 0.37 0.28 −0.08 −2.68 1.99 0.063

(−2.67) (3.72) (−0.44) (2.67) (1.34) (−1.67) (−2.79)

(b) Annual results
1 −41.45 18.20 −4.67 0.16 14.35 −4.21 −83.15 1.54 0.231

(−1.33) (3.01) (−0.97) (0.04) (2.62) (−3.03) (−2.43)
2 −40.67 16.77 −4.37 0.61 11.81 −3.55 −68.83 1.65 0.251

(−1.61) (3.14) (−1.04) (0.20) (2.64) (−3.18) (−2.35)
3 −48.33 17.66 −2.50 0.39 10.19 −3.11 −66.77 1.75 0.320

(−2.28) (3.79) (−0.67) (0.15) (2.56) (−3.10) (−2.47)
4 −46.98 17.63 −3.53 0.85 10.33 −3.18 −59.48 1.80 0.332

(−2.40) (4.02) (−0.96) (0.34) (2.73) (−3.35) (−2.66)
5 −48.08 17.32 −3.68 1.33 9.84 −3.00 −48.49 1.77 0.328

(−2.68) (4.04) (−1.05) (0.56) (2.71) (−3.28) (−2.24)
6 −46.88 16.72 −3.05 1.32 9.45 −2.81 −51.08 1.91 0.369

(−2.92) (4.27) (−0.96) (0.59) (2.70) (−3.13) (−2.64)
7 −44.42 16.04 −3.21 1.80 9.26 −2.77 −48.10 2.04 0.402

(−3.06) (4.38) (−1.06) (0.97) (3.01) (−3.45) (−2.79)
8 −44.36 15.64 −3.28 2.08 9.06 −2.73 −44.68 1.94 0.442

(−3.40) (4.48) (−1.14) (1.18) (3.08) (−3.44) (−3.17)
9 −36.50 13.75 −3.75 1.60 6.84 −2.07 −41.69 2.09 0.442

(−3.23) (4.52) (−1.50) (1.02) (2.54) (−2.90) (−3.29)
10 −33.18 12.08 −4.37 2.69 5.96 −1.75 −25.56 2.10 0.411

(−3.48) (4.20) (−1.79) (1.75) (1.96) (−2.24) (−2.22)

aDY = dividend yield; DEF= default premium; MAT= maturity premium; SPR= S&P 500 Index total return;
SPDY= SPR× DY; IRT = interest-rate trend. The 10 SIZE assets are portfolios of stocks grouped according to
their market value of equity. Heteroskedasticity-consistentz statistics are given in parentheses.

bDurbin-Watson test statistic for dependence in the regression residual.
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TABLE 4. Ordinary least squares regression results for individual asset returns in
the SECTOR asset group from 1947:1 to 1993:12

Regressorsa

Asset Constant DY DEF MAT SPR SPDY IRT D.W.b R2

(a) Monthly results
Trade −3.46 0.74 0.52 0.35 0.80−0.16 −2.84 1.82 0.077

(−3.05) (3.23) (1.64) (1.73) (3.59) (−2.93) (−2.08)
Services −3.27 0.80 0.39 0.30 0.88−0.17 −2.52 1.84 0.064

(−2.56) (3.09) (1.12) (1.41) (3.68) (−2.96) (−1.80)
Nondurables −3.17 0.72 0.45 0.29 0.82−0.17 −2.60 1.88 0.080

(−3.16) (3.41) (1.58) (1.69) (4.12) (−3.42) (2.14)
Construction −3.77 0.95 0.28 0.22 0.99−0.20 −4.69 1.89 0.092

(−3.08) (3.84) (0.82) (1.02) (3.75) (−3.21) (−3.10)
Capital goods −2.96 0.80 0.16 0.23 0.87−0.18 −2.78 1.87 0.061

(−2.48) (3.20) (0.50) (1.14) (3.77) (−3.17) (−1.94)
Durables −3.44 0.88 0.25 0.35 0.89−0.18 −2.61 1.88 0.060

(−2.63) (3.29) (0.73) (1.64) (3.56) (−3.04) (−1.76)
Fin, RE, Ins −4.20 1.03 0.27 0.29 0.80−0.16 −3.52 1.89 0.083

(−3.43) (4.30) (0.77) (1.46) (3.28) (−2.79) (−2.63)
Transportation −3.21 0.87 0.13 0.29 0.81−0.17 −3.47 1.87 0.058

(−2.57) (3.10) (0.39) (1.41) (3.07) (−2.60) (−2.27)
Basic industries −2.21 0.71 0.02 0.16 0.61−0.13 −3.26 1.96 0.055

(−2.05) (2.99) (0.09) (0.87) (2.88) (−2.46) (−2.38)
Utilities −2.35 0.65 0.16 0.23 0.17−0.05 −1.66 1.91 0.055

(−3.25) (4.22) (0.82) (1.91) (1.12) (−1.43) (−2.15)
Oil and coal −1.25 0.73 −0.30 −0.17 0.67 −0.16 −3.12 1.90 0.034

(−0.99) (2.62) (−0.92) (−0.76) (2.58) (−2.38) (−1.64)

(b) Annual results
Trade −57.42 18.09 0.34 1.95 12.86−3.76 −51.01 1.62 0.324

(−2.58) (3.68) (0.09) (0.73) (3.20) (−3.70) (−2.18)
Services −46.16 18.66 −3.87 0.09 12.92 −4.04 −74.54 1.69 0.335

(−1.93) (3.62) (−0.99) (0.03) (3.31) (−4.22) (−2.85)
Nondurables −49.54 16.39 −0.31 0.77 10.97 −3.25 −57.55 1.92 0.383

(−2.86) (4.13) (−0.09) (0.35) (3.37) (−3.89) (−3.24)
Construction −50.70 17.23 −2.52 1.75 9.11 −2.81 −57.43 1.83 0.345

(−2.71) (3.81) (−0.67) (0.69) (2.52) (−3.08) (−3.10)
Capital goods −42.81 16.11 −3.73 0.17 9.20 −2.75 −58.77 1.89 0.291

(−2.13) (3.46) (−0.93) (0.06) (2.24) (−2.63) (−2.51)
Durables −56.88 20.22 −3.55 0.67 13.29 −3.89 −63.26 1.83 0.345

(−2.59) (4.32) (−0.83) (0.26) (3.23) (−3.70) (−2.61)
Fin, RE, Ins −57.06 18.49 −2.67 1.21 11.57 −3.21 −44.28 1.47 0.298

(−2.85) (4.28) (−0.87) (0.51) (3.49) (−4.02) (−2.10)
Transportation −46.13 16.48 −3.53 2.19 7.57 −2.39 −63.51 1.90 0.324

(−2.56) (3.49) (−0.73) (0.97) (1.42) (−1.64) (−3.22)
Basic industries−37.67 15.16 −5.06 1.02 7.66 −2.37 −48.11 2.09 0.342

(−2.57) (3.71) (−1.45) (0.52) (1.97) (−2.22) (−2.82)
Utilities −38.65 12.58 −1.33 2.07 6.42 −1.88 −16.68 1.84 0.397

(−4.36) (5.06) (−0.67) (1.59) (2.61) (−2.86) (−1.72)
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TABLE 4. continued

Regressorsa

Asset Constant DY DEF MAT SPR SPDY IRT D.W.b R2

(b) Annual results
Oil and coal −24.66 13.32 −7.56 −3.75 7.93 −1.91 −26.39 1.90 0.164

(−1.05) (1.99) (−1.63) (−0.94) (1.32) (−1.24) (−0.82)

aDY = dividend yield; DEF=default premium; MAT=maturity premium; SPR= S&P 500 Index total return; SPDY
= SPR× DY; IRT = interest-rate trend. The eleven SECTOR assets are portfolios of stocks grouped according to
their SIC codes. Heteroskedasticity-consistentz statistics are given in parenthesis.

bDurbin-Watson test statistic for dependence in the regression residual.

and the latter negatively. For the bond assets, most of the forecastability is from
the positive relation with the maturity spread.

From Tables 2–4, it is also apparent that the market betas for monthly equity
returns exhibit substantial time variation since the SPDY regressor is significant
at the 5% level for the small stocks in Table 2a, and for most of the assets in
Tables 3a and 4a. In these cases, the estimated coefficient of SPDY is consistently
negative, indicating that the sensitivity of equity assets to the lagged aggregate
market return declines as the dividend yield rises. Note that in each of these cases
DY has additional explanatory power as a separate regressor, as its estimated
coefficient is also significant at conventional levels.

At the annual return-horizon, the market beta and the time variation in market
beta’s remains significant for the equity assets. In Tables 2b, 3b, and 4b, the coef-
ficients for SPR and SPDY are statistically significant in many of the regressions.
Also, DY is still significant, and in all cases theR2 is larger for annual returns. In
particular, whereas theR2’s for monthly asset returns reported in Tables 2a, 3a,
and 4a range from 3 to 9%, theR2’s for annual asset returns range from 16 to 44%
in Tables 2b, 3b, and 4b.16

Of course, like any other statistic, theR2 is a point estimate subject to sampling
variation. Since longer-horizon returns yield fewer non-overlapping observations,
we might expect theR2’s from such regressions to exhibit larger fluctuations, with
more extreme values than regressions for monthly data. We shall deal explicitly
with the sampling theory of theR2 in Section 5.

4.3. Maximizing Predictability

Given the estimated conditional-factor models in Tables 2–4, we can readily con-
struct the (sample or estimated) MPP’s. Given the estimateB̂ ≡ Γ̂

−1
o

ˆ̃Γo, the esti-
mated MPP ˆγ∗ is simply the eigenvector corresponding to the largest eigenvalue
of B̂.

We shall also have occasion to consider theconstrainedMPPγ∗c, constrained
to have nonnegative portfolio weights. It shall become apparent below that an
unconstrained maximization of predictability yields considerably more extreme

https://doi.org/10.1017/S1365100597002046 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002046


                  

118 ANDREW W. LO AND A. CRAIG MACKINLAY

TABLE 5. Conditional expected return of MPP for the three asset groups from
1947:1 to 1993:12

Regressorsa

Asset Constant DY DEF MAT SPR SPDY IRT D.W.b R2

(a) SBU
Monthly −1.50 0.35 0.05 0.38−0.11 −0.01 −1.76 1.85 0.106
unconstrained (−2.78) (3.01) (0.29) (3.83) (−0.72) (−0.36) (−2.87)
Monthly −1.61 0.36 0.12 0.34 0.05−0.03 −1.48 1.89 0.086
constrained (−3.43) (3.64) (0.86) (3.59) (0.50) (−1.19) (−2.41)
Annual −22.05 6.53 −0.58 3.34 4.36 −1.31 −11.27 2.06 0.497
unconstrained (−3.91) (4.28) (−0.48) (4.09) (2.89) (−3.34) (−1.70)
Annual −22.05 6.53 −0.58 3.34 4.36 −1.31 −11.27 2.06 0.497
constrained (−3.91) (4.28) (−0.48) (4.09) (2.89) (−3.34) (−1.70)

(b) SIZE
Unconstrained −0.08 −0.70 2.58 −0.03 9.47 −1.60 −6.24 1.96 0.116
monthly (−0.01) (−0.41) (1.09) (−0.02) (4.06) (−3.06) (−0.90)
Constrained −2.90 0.74 0.43 0.17 1.48−0.28 −2.69 1.90 0.082
monthly (−1.90) (2.38) (0.95) (0.65) (4.22) (−3.40) (−1.67)
Unconstrained−112.73 30.08 10.83 1.45 17.91−5.23 122.31 1.46 0.615
annual (−4.78) (5.02) (1.95) (0.49) (3.03) (−3.29) (−3.79)
Constrained −39.68 14.40 −3.62 1.96 7.75 −2.33 −40.94 2.04 0.445
annual (−3.41) (4.54) (−1.38) (1.21) (2.78) (−3.13) (−3.21)

(c) SECTOR
Unconstrained −6.73 1.15 1.27 0.41 1.92−0.37 −7.18 1.72 0.120
monthly (−3.50) (3.03) (2.14) (1.20) (4.20) (−3.37) (−3.37)
Constrained −3.87 0.97 0.28 0.23 0.95−0.20 −4.42 1.89 0.093
monthly (3.21) (4.01) (0.82) (1.13) (3.73) (−3.19) (−3.03)
Unconstrained−50.00 18.82 −4.59 1.74 11.47−3.51 −46.54 1.87 0.525
annual (−4.02) (6.06) (−1.59) (1.18) (3.80) (−4.42) (−3.99)
Constrained 40.68 13.99−2.33 1.76 7.35 −2.18 −29.44 1.87 0.455
annual (−4.31) (5.55) (−1.04) (1.25) (3.19) (−3.62) (−3.14)

aDY = dividend yield; DEF= default premium; MAT = maturity premium; SPR=S&P 500 Index total return; SPDY
= SPR×DY; IRT=interest-rate trend. The asset groups are SBU, SIZE, and SECTOR. Heteroskedasticity-consistent
z statistics are given in parentheses.

bDurbin-Watson test statistic for dependence in the regression residual.

and unstable portfolio weights than a constrained maximization. Moreover, for
many investors, the constrained case may be of more practical relevance. Although
we do not have a closed-form expression forγ∗c, it is a simple matter to calculate
it numerically. Again, given̂B, we may obtain ˆγ∗c in a similar manner.

In Table 5, we report the conditional-factor model of the MPP for the SBU, SIZE,
and SECTOR portfolios, constrained and unconstrained, for monthly and annual
return-horizons using the factors of Section 4.1. In Panel (a) of Table 5, the patterns
of the estimated coefficients are largely consistent with those of Tables 2a and 2b:
The coefficient of the interaction variable SPDY is negative, though insignificant
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for monthly returns; the coefficient of dividend yield DY is positive and significant
for all portfolios; and the maximalR2 increases with the horizon.

As expected, the maximalR2’s are larger than the largestR2’s of the individual
portfolio regressions. For example, the monthly constrained maximalR2 is 9%,
and the S&P 500 regression in Table 2a has anR2 of 7%. There is somewhat more
improvement at an annual horizon. For example, the unconstrained maximalR2

is 50% at an annual horizon, whereas theR2’s for the annual returns of the five
individuals assets in Table 2b range from 34 to 43%.

Panels (a) and (b) of Table 5 exhibit similar findings for the SIZE and SECTOR
assets. TheR2’s of monthly size portfolios range from 6 to 8% in Table 3a, whereas
Panel (b) reports the unconstrained maximalR2 to be 12%, and the constrained to
be 8%. But at an annual horizon, theR2’s for individual size portfolios range from
23 to 44%, while the maximal constrained and unconstrainedR2’s from Table 5
are 45 and 61%, respectively.

Table 5 also shows that the importance of the shortsales constraint for maxi-
mizing predictability depends critically on the particular set of assets over which
predictability is being maximized. It is apparent that the shortsales constraint has
little effect on the levels of the maximalR2 for the five SBU assets. Indeed, the
constraint is not binding for annual returns. However, this is not the case for either
the 10 SIZE assets or the 11 SECTOR assets. When the shortsales constraint is
imposed, maximalR2’s drop dramatically, from 62 to 45% for annual SIZE assets
and from 53 to 46% for annual SECTOR assets.

4.4. The Maximally Predictable Portfolios

Whereas the coefficients of the regressions in Table 5 measure the sensitivity of
the MPP to various factors, it is the portfolio weights of the MPPs that tell us
which assets are the most important sources of predictability. Table 6 reports these
portfolio weights for the three sets of assets: SBU, SIZE, and SECTOR.

Perhaps the most striking feature of Table 6 is how these portfolio weights
change with the horizon. For example, the unconstrained maximally predictable
SIZE portfolio has an extreme long position in decile 2 for monthly returns but an
extreme short position for annual returns. The maximally predictable SECTOR and
SBU portfolios exhibit similar patterns across the two horizons, but the weights
are much less extreme. These changing weights are consistent with a changing
covariance structure among the assets over horizons; as the structure changes, so
must the portfolio weights to maximize predictability.

When the shortsales constraint is imposed, the portfolio weights vary less
extremely—by construction, of course, since they are bounded between 0 and
1—but they still shift with the return horizon. For example, the constrained maxi-
mally predictable SBU portfolio is split between the S&P 500 and corporate bonds
for monthly returns, but contains all assets for annual returns. More interestingly,
the constrained maximally predictable SIZE portfolio is invested in decile 1 for
monthly returns, but is concentrated in deciles 8, 9, and 10 for annual returns.
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TABLE 6. Portfolio weights of MPP for three asset groups from 1947:1 to 1993:12

Monthly Monthly Annual Annual
Asset unconstrained constrained unconstrained constrained

(a) SBU
S&P 500 0.69 0.34 0.19 0.19
Small stocks −0.38 0.00 0.13 0.13
Gov’t bonds −0.48 0.00 0.18 0.18
Corp. bonds 1.19 0.66 0.49 0.49
Utilities −0.02 0.00 0.01 0.01

(b) SIZE
Decile 1 4.97 1.00 1.10 0.00
Decile 2 11.18 0.00 −4.68 0.00
Decile 3 −4.11 0.00 4.57 0.00
Decile 4 −7.13 0.00 −0.67 0.00
Decile 5 −13.97 0.00 −5.25 0.00
Decile 6 8.97 0.00 2.55 0.00
Decile 7 5.54 0.00 2.09 0.00
Decile 8 7.50 0.00 6.79 0.46
Decile 9 −12.01 0.00 −3.18 0.41
Decile 10 0.06 0.00 −2.32 0.13

(c) SECTOR
Trade 0.36 0.00 −0.70 0.00
Services −0.13 0.00 0.49 0.00
Nondurables 2.15 0.00 0.27 0.00
Construction 1.93 0.77 0.19 0.00
Capital goods −0.16 0.00 −1.70 0.00
Durables −1.38 0.00 1.26 0.09
Fin, RE, Ins 0.32 0.23 −0.01 0.01
Transportation 0.22 0.00 0.01 0.06
Basic industries −1.12 0.00 0.62 0.18
Utilities −0.95 0.00 0.59 0.67
Oil and coal −0.24 0.00 −0.03 0.00

That the larger capitalization stocks should play so central a role in maximizing
predictability among SIZE assets is quite unexpected, since it is the smaller stocks
that are generally more highly autocorrelated. However, as the example in Section
3.2 illustrates, it is important to distinguish between the factors that predict returns
and the assets that are most predictable. In the case of the SIZE assets, one expla-
nation might be that over longer horizons, factors such as industrial production and
dividend yield become more important for the larger companies since they track
general business trends closer than smaller companies (see Tables 3a and 3b).

Further insights concerning the sources of predictability are contained in the
SECTOR portfolio weights. The constrained MPP for monthly SECTOR returns
is invested in two assets: construction; and finance, real estate, and insurance.
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However, at an annual horizon, the composition of this portfolio changes dramat-
ically, consisting mostly of two completely different assets: basic industries and
utilities. This indicates that the sources of time variation in expected returns are
sensitive to the return horizon. The sectors that are important for maximizing pre-
dictability for monthly returns may be quite different from those that maximize
predictability for returns over longer horizons.

5. STATISTICAL INFERENCE FOR THE MAXIMAL R2

Although the magnitudes of the sampleR2’s of Section 4 suggest the presence of
genuine predictability in stock returns, we must still consider data-snooping biases
imparted by ourin-samplemaximization procedure. It is a well-known fact that
the maximum of a collection of identically distributed random variables does not
have the same distribution as the individual maximands. However, it is not always
an easy task to deduce the distribution of the maximum, especially when the
individual variables are not statistically independent as in our current application.
Moreover, maximizing theR2 over a continuum of portfolio weights cannot be
easily recast into the maximum of a discrete set of random variables. Therefore,
much of our inferences must be guided by Monte Carlo simulation experiments
in which the sampling distribution ofR2 and related statistics are tabulated by
generating pseudo-random data under the null hypothesis of no predictability.17

5.1. Monte Carlo Analysis

In particular, for the monthly return horizon, we simulate 564 observations of
independently and identically distributed Gaussian stock returns, calculate theR2

corresponding to the MPP ofq-period returns using the conditional factors of
Section 4.2, record thisR2, and repeat the same procedure 9,999 times, yielding
10,000 replications. For the annual horizon, we perform similar experiments: We
simulate 10,000 independent samples at the annual horizon (a sample size of 47
observations), and record the maximumR2 for each sample.

The simulations yield the finite-sample distribution for the maximalR2 under
thenull hypothesisof no predictability. The features of that distribution are reported
for various values ofq in Panel (a) of Table 7 for the unconstrained MPP, and in
Panel (b) for the constrained MPP. The rows withq= 1 correspond to a monthly
return horizon and those withq= 12 correspond to an annual horizon. Within each
panel, simulation results are reported for asset vectors with 5, 10, and 11 elements,
corresponding to the number of SBU, SIZE, and SECTOR assets, respectively.

Table 7 shows that when predictability is maximized by combining assets into
portfolios, spuriously largeR2’s may be obtained. With a monthly horizon and 564
observations, the problem is not severe. For example, whenq = 1 andN = 11, the
mean maximalR2 is 4.3%, a relatively small value. However, at an annual horizon,
the problem becomes more serious. With 11 assets, the maximalR2 distribution
for the unconstrained case has a mean of 50.0% and a 95% critical value of 62.9%
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TABLE 7.Simulated finite-sample distribution of maximumR2 of MPP ofN assets
under null hypothesis of no predictability, using six variables as predictorsa

q Mean S.D. Min Max 1% 5% 10% 50% 90% 95% 99%

(a) Unconstrained portfolio weights
N = 5

1 0.027 0.008 0.007 0.071 0.012 0.016 0.018 0.026 0.038 0.042 0.050
12 0.317 0.078 0.084 0.669 0.164 0.199 0.221 0.312 0.422 0.452 0.517

N = 10
1 0.043 0.010 0.017 0.095 0.024 0.028 0.031 0.042 0.055 0.060 0.069
12 0.473 0.077 0.232 0.758 0.308 0.350 0.374 0.470 0.573 0.606 0.664

N = 11
1 0.045 0.010 0.020 0.109 0.026 0.031 0.033 0.044 0.058 0.063 0.073
12 0.500 0.075 0.241 0.769 0.332 0.378 0.404 0.498 0.598 0.629 0.681

(b) Constrained portfolio weightsb

N = 5
1 0.023 0.007 0.005 0.069 0.010 0.013 0.014 0.022 0.033 0.037 0.044
12 0.269 0.075 0.068 0.606 0.124 0.157 0.177 0.262 0.369 0.402 0.472

N = 10
1 0.033 0.009 0.013 0.080 0.017 0.021 0.023 0.032 0.044 0.048 0.057
12 0.373 0.079 0.151 0.697 0.214 0.254 0.276 0.368 0.477 0.514 0.577

N = 11
1 0.035 0.009 0.014 0.082 0.019 0.022 0.025 0.034 0.047 0.051 0.060
12 0.391 0.079 0.132 0.751 0.230 0.269 0.292 0.386 0.495 0.529 0.591

aFor each panel, the simulation consists of 10,000 independent replications of 564 independently and identically
distributed Gaussian observations for the monthly horizon(q = 1) and 47 observations for the annual horizon
(q = 12).

bShortsales constrained case with nonnegative weights.

TABLE 8.Finite-sample distribution ofR2 of a given portfolio
under null hypothesis of no predictability, using six variables
as predictorsa

q 1% 5% 10% 50% 90% 95% 99%

1 0.002 0.003 0.004 0.010 0.019 0.022 0.030
12 0.021 0.038 0.051 0.120 0.224 0.259 0.330

aDistribution is tabulated for 564 independently and identically distributed Gaussian
observations for the monthly horizon(q = 1) and for 47 observations for the annual
horizon(q = 12).

for annual returns. Similar results hold for the constrained case—longer-horizon
non-overlapping returns can yield largeR2’s even when there is no predictability.

The effects of data snooping under the null hypothesis can be further quantified
by comparing Table 7 with Table 8, in which the percentiles of the finite-sample
distribution of theR2 for an arbitrary individual asset is reported, also under the null
hypothesis of no predictability. Forq= 1 the differences between the distributions
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in Table 7 and the distributions in Table 8 are small—for example, the 95% critical
value of an individual asset’sR2 is 2.2%, whereas the corresponding critical value
for the unconstrained MPP’sR2 are 3.8%, 5.5%, and 5.7% for 5, 10, and 11 assets,
respectively. But again, the effects of data snooping become more pronounced
at longer horizon. Using annual returns with 10 assets, the distribution of the
unconstrained maximalR2 has a 95% critical value of 60.6%, whereas Table 8
shows that without this maximization, the 95% critical value for theR2 is only
25.9%. These results emphasize the need to interpret portfolioR2’s with caution,
particularly when the construction of the portfolios is determined by the data [see
also Lo and MacKinlay (1990b)].

The statistical significance of the empirical results of Section 4 can now be
assessed by relating the maximum sampleR2’s in Table 5 to the empirical null
distributions in Table 7. The result of such an exercise is clear: The statistical
significance of predictability decreases as the observation horizon increases. For
the monthly horizon the sampleR2’s are substantially higher than the 95% critical
values, whereas at the annual horizon they are not.

Of course, this finding need not imply the absence of predictability over longer
horizons, but may simply be due to the lack of power in detecting predictability
via the maximalR2 for long-horizon returns. After all, since we are using non-
overlapping returns, our sample size for the annual return horizon is only 47
observations, and given the variability of equity returns, it is not surprising that
there is little evidence of predictability in annual data.

6. THREE OUT-OF-SAMPLE MEASURES OF PREDICTABILITY

Despite the statistical significance of predictability at monthly, semi-annual, and
annual horizons, we are still left with the problem of estimatinggenuinepre-
dictability: that portion of the maximalR2 not due to deliberate data snooping.
Although it is virtually impossible to provide such a decomposition without placing
strong restrictions on the return- and data-generating processes [see, for example,
Lo and MacKinlay (1990b) and Foster and Smith (1994)], an alternative is to
measure the out-of-sample predictability of our MPP. Under the null hypothesis
of no predictability, our maximization procedure should not impart any statistical
biases out-of-sample, but if there is genuine predictability in the MPP, it should be
apparent in out-of-sample forecasts.

We consider three out-of-sample measures of predictability. First, in a regres-
sion framework we examine the relation between the forecast error of a naive
constant-expected-excess-return model—an unconditional forecast—and a con-
ditional forecast minus the naive forecast, where the conditional forecast is con-
ditioned on the factors of Section 4.1. If excess returns are unpredictable, these
quantities should be uncorrelated. Second, we employ Merton’s (1981) test of
market timing to measure how predictable the MPP is in the context of a simple
asset allocation rule. Third, we present an illustrative profitability calculation for
this simple asset allocation rule to gauge the economic significance of the MPP’s
predictability.
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These three measures yield the same conclusion: Recent U.S. stock returns con-
tain genuine predictability that is both statistically and economically significant.

6.1. Naive vs. Conditional Forecasts

Denote byZ∗t theexcessreturn for the MPP in montht (in excess of the one-month
risk-free rate):

Z∗t ≡ γ̂∗′Rt − Rf t , (29)

whereRt is the vector of primary asset returns, ˆγ∗ is the estimated MPP weights,
andRf t is the one-month Treasury bill rate. A naive one-step-ahead forecast ofZ∗t
is the weighted average of the (time series) mean excess return for the past returns
of each of the primary assets, anunconditionalforecast ofZ∗t which we denote by
Ẑa

t . Now denote bŷZb
t theconditionalone-step-ahead forecast ofZ∗t , conditioned

on the economic variables of Section 4.1,

Ẑ
b
t ≡ γ̂∗′(Z̃t + µ̂)− Rf t , (30)

where we have added back the estimated mean vector ˆµ of the primary assets since
Z̃t is the conditional forecast of de-meaned returns.

To compare the incremental value of the conditional forecastẐb
t beyond the

naive forecast̂Za
t , we estimate the following regression equation:

Z∗t − Ẑa
t = β0+ β1

(
Ẑb

t − Ẑa
t

)+ εt . (31)

If Ẑb
t has no forecast power beyond the naive forecastẐa

t , then the estimated
coefficientβ̂1 should not be statistically different from zero.

To estimate (31) for each of our three groups of assets, we first estimate the
parameters of the conditional factor model (28) and the MPP weights ˆγ∗ for
monthly SBU, SIZE, and SECTOR asset returns using the first 20 years of our
sample, from 1947:1 to 1966:12. The one-month-ahead naive and conditional
forecasts,Ẑa

t and Ẑb
t , are then generated month by month beginning in 1967:1

and ending in 1993:12, using a rolling procedure where the earliest observation is
dropped as each new observation is added, keeping the rolling sample size fixed
at 20 years of monthly observations. Therefore, the conditional-factor model’s
parameter estimates and the MPP’s weights ˆγ∗ are updated monthly.

For the 324-month out-of-sample period from 1967:1 to 1993:12, the ordinary
least squares estimates of (31) for the three groups of assets are reported in the
Panel (a) of Table 9, labeled “monthly:monthly” to emphasize that monthly returns
are used to construct the forecast and that monthly returns are being forecasted
(see below). For the SBU asset group, thezstatistic of the slope coefficient is 1.47,
implying that the power of the one-step-ahead conditional forecast of the MPP
return is statistically indistinguishable from that of the naive forecast. However,
for both the SIZE and SECTOR groups, the correspondingz statistics are 3.20 and
3.30, respectively, which suggests that the conditional forecasts do add value in
these cases.
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TABLE 9. Out-of-sample evaluation of conditional one-step-
ahead forecasts of MPP using a regression model with six
predictorsa

Asset group Constant Ẑ
b − Ẑ

a
D.W.b R2

(a) Monthly:Monthlyc

SBU −0.01 0.32 1.91 0.013
(−0.05) (1.47)

SIZE −0.64 0.53 1.83 0.034
(−1.46) (3.20)

SECTOR −0.35 0.51 1.71 0.035
(−0.95) (3.30)

(b) Annual:Annualc

SBU −1.31 0.36 2.13 0.182
(−0.43) (2.38)

SIZE −1.96 0.25 1.81 0.104
(−0.46) (2.39)

SECTOR −0.45 0.24 1.62 0.075
(−0.09) (1.67)

(c) Annual:Monthlyd

SBU −0.35 0.72 1.81 0.052
(−1.59) (3.85)

SIZE −0.51 0.64 1.75 0.043
(−1.82) (3.65)

SECTOR −0.22 0.40 1.64 0.013
(−0.77) (2.07)

aConditional forecasts are evaluated by regressing the deviation of the MPP excess
return from its unconditional forecast on the deviation of the conditional MPP excess
return forecast from the same unconditional forecast (denoted asẐb − Ẑa). Condi-
tional forecasts for the time period 1967:1 to 1993:12 are constructed for three asset
groups and for two time horizons. Heteroskedasticity-consistentz statistics are given
in parentheses.

bDurbin-Watson test statistic for dependence in the regression residual.
cForecasts are evaluated using a return horizon equal to the forecast horizon.
dAnnual returns are used to forecast monthly returns.

To see how the return horizon affects forecast power, we perform a similar
analysis for annual returns—we use annual returns to forecast one annual-step
ahead. These results are reported in Panel (b) of Table 9, labeled “annual:annual.”
At the annual frequency, conditional forecasts seem to add value for SBU and
SIZE assets, but not for SECTOR assets.

Finally, in Panel (c) of Table 9, we consider the effect of using annual returns
to forecast monthly returns. For example, annual returns are used to forecast one
annual-step ahead, but this annual forecast is divided by 12 and is considered
the one-month-ahead forecast. This procedure is then repeated in a rolling fash-
ion for each month and the results are reported in Table 9’s Panel (c) labeled
“annual:monthly.”18
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Interestingly, in the mixed return/forecast-horizon case, conditional forecasts
add value for all three asset groups, withz statistics ranging from 2.07 (SECTOR
assets) to 3.85 (SBU assets). This suggests the possibility that an optimal forecast-
ing procedure may use returns of one frequency to forecast those of another. In
particular, we shall see in Section 6.3 that within the SBU asset group, the eco-
nomic significance of predictability is considerably greater when annual returns
are used to forecast monthly returns than for the monthly-return-horizon/monthly-
forecast-horizon combination.

These out-of-sample forecast regressions suggest that statistically significant
forecastability is present in the MPP, but the degree of predictability varies with
the asset groups and with the return and forecast horizon.

6.2. Merton’s Measure of Market Timing

As another measure of the out-of-sample predictability of the MPP, consider the
following naive asset-allocation rule: If next month’s MPP return is forecasted to
exceed the risk-free rate, then invest the entire portfolio in it; otherwise, invest the
entire portfolio in Treasury bills. More formally, letθt denote the fraction of the
portfolio invested in the MPP in montht . Then our naive asset-allocation strategy
is given by

θt =
{

1 if Ẑb
t > 0

0 if Ẑb
t ≤ 0

,

whereẐb
t , defined in (30), is the forecastedexcessreturn on the MPP, in excess of

the risk-free rate.
We can measure the out-of-sample predictability of the MPP by using Merton’s

(1981) framework for measuring market-timing skills. In particular, if the MPP
return Z∗t were considered the “market,” then one could ask whether the asset-
allocation ruleθt exhibited positive market-timing performance. Merton (1981)
shows that this depends on whether the sum ofp1 and p2 exceeds unity, where

p1 = Prob
(
θt = 1

∣∣ Z∗t > 0
)
, (32)

p2 = Prob
(
θt = 0

∣∣ Z∗t ≤ 0
)
. (33)

These two conditional probabilities are the probabilities that the forecast is correct
in “up” and “down” markets, respectively. Ifp1 + p2 is greater than 1, then the
forecastθt has value, i.e.,Z∗t is predictable; otherwise it does not.

To perform the Merton test, we use the same 20-year rolling estimation procedure
as in Section 6.2 to generate our MPP returns and the one-month-ahead forecastθt .
From these forecasts and the realized excess returnsZ∗t of the MPP, we construct
the following(2× 2) contingency table:

Z∗t > 0 Z∗t ≤ 0
θt > 0
θt ≤ 0

[
n1 n2

N1− n1 N2− n2

]
,

(34)
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TABLE 10.Out-of-sample evaluation of conditional one-step-
ahead forecasts of MPP using Merton’s measure of market
timinga

Asset Z > 0 Z > 0 Z ≤ 0 Z ≤ 0
group Ẑ > 0 Ẑ ≤ 0 Ẑ > 0 Ẑ ≤ 0 p̂1 + p̂2 p value

(a) Monthly:Monthlyb

SBU 139 92 40 53 1.172 0.001
SIZE 127 107 47 43 1.021 0.349
SECTOR 137 105 43 39 1.042 0.226

(b) Annual:Annualb

SBU 15 4 4 4 1.289 0.048
SIZE 14 5 4 4 1.237 0.092
SECTOR 13 5 6 3 1.056 0.362

(c) Annual:Monthlyc

SBU 160 98 29 37 1.181 0.002
SIZE 130 94 49 51 1.090 0.038
SECTOR 144 100 41 39 1.078 0.084

aMerton (1981). The number of outcomes are calculated for each of four possible
excess return-forecast outcomes: a positive MPP excess return and a positive MPP
conditional forecast, a positive excess return and a nonpositive conditional forecast, a
nonpositive excess return and a positive conditional forecast, and a nonpositive excess
return and a nonpositive conditional forecast.Z denotes the excess return andẐ
denotes the conditional forecast;p̂1 is the sample probability of a positive conditional
forecast given a positive excess return andp̂2 is the sample probability of a nonpositive
conditional forecast given a nonpositive excess return. Thep Value is the probability
of obtaining at least the number of correct positive conditional forecasts under the null
hypothesis of no forecastability. Conditional forecasts for the time period 1967:1 to
1993:12 are constructed for three asset groups and for two time horizons.

bForecasts are evaluated using a return horizon equal to the forecast horizon.
cAnnual returns are used to forecast monthly returns.

wheren1 is the number of correct forecasts in “up” markets,n2 is the number of
incorrect forecasts in “down” markets, andN1 andN2 are the number of up-market
and down-market periods, respectively, in the sample. Henriksson and Merton
(1981) show thatn1 has a hypergeometric distribution under the null hypothesis
of no market-timing ability, which may be approximated by

n1
a∼ N

(
nN1

N
,

n1N1N2(N − n)

N2(N − 1)

)
, (35)

whereN ≡ N1+ N2 andn ≡ n1+ n2.
Using this sampling theory, we perform nonparametric tests for market-timing

ability in our one-step-ahead conditional forecasts in Table 10 for the same return-
and forecast-horizon combinations as in Table 9. Table 10 reports the number of
forecasts in each category of (34), the estimated sump̂1 + p̂2, and thep value
based on (35).

The three panels of Table 10 show that predictability is statistically signifi-
cant for the SBU asset group at both horizons. When annual returns are used to
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construct monthly forecasts, both SBU and SIZE asset groups have significant
predictability. Merton’s (1981) market-timing measure also confirms the presence
of predictability in the MPP.

6.3. The Profitability of Predictability

As a final out-of-sample measure of predictability—one that addresses the eco-
nomic significance of the MPP’s predictability—we compare the total return of a
passive orbuy-and-holdinvestment in the MPP over the entire sample period with
the total return of the active asset allocation strategy described in Section 6.2. In
particular, for each of the three asset groups, and for the various return and forecast
horizons, we calculate the following two quantities:

WPassive
T ≡

T∏
t=1

(
1+ R∗t

)
, (36)

WActive
T ≡

T∏
t=1

[
θt
(
1+ R∗t

)+ (1− θt )(1+ Rf t )
]
, (37)

whereθt is given in (32),R∗t is the simple return of the MPP in montht , andWT is
the end-of-period value of an investment of $1 over the entire investment period,
which we take to be the 324-month period from 1967:1 to 1993:12 to match the
empirical results from Sections 6.1 and 6.2.

Table 11 shows that the active asset-allocation strategy generally outperforms
the passive for each of the three asset groups for all three return/forecast horizon
pairs, yielding a higher mean return, a lower standard deviation of return, and a
larger total returnWT over the investment period. For example, the monthly passive
strategy for the MPP in the SECTOR group of assets has a mean excess return of
0.82% per month and a standard deviation of 6.15% per month, whereas the active
strategy has a mean excess return of 1.00% per month and a standard deviation of
5.26% per month. These values imply Sharpe ratios of

√
12× 0.82/6.15= 0.462

for the passive SECTOR strategy and
√

12× 1.00/5.26 = 0.659 for the active
SECTOR strategy.

Table 11 also shows that the total returns of the active strategy dominate those
of the passive for each of the three asset groups and for all return/forecast horizon
pairs. A passive $1 monthly investment in the SECTOR asset group at the begin-
ning of 1967:1 yields a total return of $46.73 at the end of 1993:12, whereas the
corresponding active strategy yields a return of $99.38.

Of course, the total returns of the active strategy do not include transactions costs,
which can be substantial. To determine the importance of such costs, Table 11 also
reportsbreak-eventransactions costs, defined as that percentage cost 100× s of
buying or selling the MPP that would equate the active strategy’s total return to
the passive strategy’s. More formally, if the active strategy requiresk switches
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TABLE 11. Out-of-sample evaluation of conditional one-step-ahead forecasts of
MPP using a comparison of passive and active investment strategies in the
portfolioa

Passive strategy Active strategy

Mean Mean Number
Asset excess S.D. Ending excess S.D. Ending of Break-even
group return (%) (%) value ($) return (%) (%) value ($)b switchesc cost (%)d

(a) Monthly:Monthly
SBU 0.46 3.72 21.21 0.58 3.20 33.15 58 0.77
SIZE 0.76 7.65 28.98 0.96 6.17 75.57 80 1.19
SECTOR 0.82 6.15 46.73 1.00 5.26 99.38 66 1.14

(b) Annual:Annual
SBU 5.93 17.57 19.44 7.98 14.26 35.70 12 4.94
SIZE 8.77 22.63 30.89 9.72 18.09 48.00 10 4.31
SECTOR 10.33 25.55 40.55 10.99 22.07 58.21 12 2.97

(c) Annual:Monthly
SBU 0.54 3.93 27.55 0.70 3.53 47.70 30 1.81
SIZE 0.46 5.03 18.01 0.66 4.09 39.14 34 2.26
SECTOR 0.67 4.99 35.01 0.78 4.24 56.30 16 2.93

aConditional forecasts for the time period 1967:1 to 1993:12 are constructed for three asset groups and for two time
horizons. The forecasts are evaluated using a return horizon equal to the forecast horizon. For annual forecasts a
monthly return horizon is also considered. The active strategies invest 100% in the MPP if the conditional excess
return forecast is positive and invest 100% in Treasury bills otherwise.

bTerminal value of a $1 investment over entire sample.
cNumber of times the active strategy shifted into or out of the MPP.
dOne-way percentage transaction cost that equates the active and passive strategy’s ending value.

into or out of the MPP over the 324-month investment period, then the one-way
break-even transactions cost 100× s is defined by

WPassive
T = WActive

T × (1− s)k, (38)

s = 1−
(

WPassive
T

WActive
T

)1/k

. (39)

For a monthly-return/monthly-forecast horizon, Table 11 shows that the number
of switches into or out of the MPP ranges from 58 (SBU) to 80 (SIZE), implying
two or three switches per year on average. This, in turn, implies that the one-way
transactions cost would have to be somewhere between 0.77% (SBU asset group)
and 1.19% (SIZE asset group) for the active strategy to yield the same total return
as the passive.

At the annual-return/annual-forecast horizon, the number of switches declines
by construction, dropping to approximately one switch every 4.5 years, hence
the break-even transactions cost increases dramatically. In this case, the one-way
transactions cost would have to be somewhere between 2.97% and 4.94% to equate
the active and passive strategies’ total returns.
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Now we cannot conclude from Table 11 that the MPP is a market inefficiency
that is exploitable by the average investor since we have not formally quantified the
(dynamic) risks of the passive and active strategies. Although the active strategy’s
return has a lower standard deviation and a higher mean, this need not imply
that every risk-averse investor would prefer it to the passive strategy. To address
this more complex issue, we must specify the investor’s preferences and derive
his optimal consumption and portfolio rules dynamically, which lies beyond the
scope of this paper. Nevertheless, the three out-of-sample measures do indicate
the presence of genuine predictability in the MPP, which is both statistically and
economically significant.19

7. CONCLUSION

That stock-market prices contain predictable components is now a well-established
fact. At issue are the economic sources of predictability in asset returns, since this
lies at the heart of several current controversies involving the efficient-markets
hypothesis, stock-market rationality, and the existence of “excessively” profitable
trading strategies. Our results show that predictable components are indeed present
in the stock market, and that sophisticated forecasting models based on measures
of economic conditions do have predictive power. By studying the MPP, we see
that the degree and sources of predictability also vary considerably among assets
and over time. Some industries have better predictive power at shorter horizons,
whereas others have more power at longer horizons. The changing composition of
the MPP points to important differences among groups of securities that warrant
further investigation. Nevertheless, predictability is both statistically and econom-
ically significant both in sample and out of sample.

We hasten to emphasize that predictabilities need not be a symptom of market
inefficiency. While dynamic investment strategies exploiting predictability have
yielded higher returns historically, we have not attempted to adjust for risk or for
subtle selection biases that might explain such phenomena. But despite the ambi-
guity of the economic sources of predictability, our results suggest that ignoring
predictability cannot be rational either.

NOTES

1. See Fama and French (1990) and Ferson and Harvey (1991b) for example.
2. For example, see DeBondt and Thaler (1985), Lehmann (1990), and Chopra et al. (1992).
3. A few of the most recent examples include Clerke et al. (1989), Droms (1989), Vandell and

Stevens (1989), Hardy (1990), Kester (1990), Lee and Rahman (1990, 1991), Sy (1990), Weigel
(1991), Shilling (1992), and Wagner et al. (1992). However, see Samuelson (1989, 1990) for a caution
against such strategies.

4. As will become apparent below, we maximize predictability across portfolios, holding fixed the
set of regressors used to forecast asset returns. In a related paper, Foster and Smith (1994) maximize
predictability across subsets of regressors, holding fixed the asset return to be predicted. Therefore, our
upper bound obtains over a fixed set of regressors, while Foster and Smith’s obtains over a fixed set of
assets.
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5. See, for example, Gibbons and Ferson (1985), Chen et al. (1986), Keim and Stambaugh (1986),
Engle et al. (1987), Ferson et al. (1987), Lo and MacKinlay (1988), Ferson (1989, 1990), Ferson and
Harvey (1991), Fama and French (1990), Jegadeesh (1990), and Chen (1991).

6. For the biases of and possible corrections to such informal specification searches see Leamer
(1978), Ross (1987), Iyengar and Greenhouse (1988), Lo and MacKinlay (1990b), and Foster and
Smith (1994).

7. Assumption A is made for notational simplicity, since stationarity allows us to eliminate time
indexes from population moments such asµ andΓk. However, there are several alternatives to sta-
tionarity and ergodicity that permit time-varying unconditional moments and still satisfy a law of large
numbers and central limit theorem, which is essentially all we require for our purposes. The qualitative
features of our results will not change under such alternatives (e.g., weak dependence with moment
conditions), but would merely require replacing expectations with corresponding probability limits of
suitably defined time averages. See, for example, White (1984) and Lo and MacKinlay (1990a).

8. Our analysis can easily be extended to conditionally heteroskedastic errors, but at the expense
of notational and computational complexity. See Section 3.1 for further discussion.

9. Two closely related techniques are the multivariate index model and the reduced rank regression
model; see Reinsel (1983) and Velu et al. (1986).

10. Similarly, the minimum ofR2(γ) with respect toγ is given by the smallest eigenvalueλ∗ of
B and is attained by the eigenvectorγ∗ associated with the smallest eigenvalue ofB. Therefore,γ∗ is
theminimally predictable portfolio, i.e., the portfolio that is closest to a random walk.

11. See, for example, Bollerslev et al. (1988), Gallant and Tauchen (1989), and Hamilton (1994,
Ch. 21).

12. In particular, (21) may be viewed as a conditional version of a linear factor model where the
factor Zt is a linear function of economic variables observable att − 1 (namely,Xt−1). Examples of
such a specification in the recent literature include Chen et al. (1986), Engle et al. (1987), Ferson (1989,
1990), Ferson and Harvey (1991b), and Harvey (1989). To underscore this factor-pricing interpretation,
we have referred toβ as the vector offactor loadingsand will refer to the predictorXt−1 as aconditional
factor. However, it should be emphasized that a structural factor-model for our return-generating
process, one that links expected returns tocontemporaneousrisk premia (such as the security market
line of the CAPM), is not required by our framework. But even if such a structural factor-model
exists, the contemporaneous factors or risk premia are almost always written as linear functions of
ex-ante economic variables, especially when applying them to time-series data. Therefore, the simple
specification (21) is considerably more general than it may appear to be.

13. However, using similar conditional factors, Bessembinder and Chan (1992) find similar levels
of predictability for various commodity and currency futures which are nearly uncorrelated with equity
returns. This is perhaps the most convincing empirical evidence to date for the genuine forecast power
of dividend yields, short-term interest-rate yields, and the default premium.

14. This interaction term is motivated by several recent empirical studies documenting time variation
in asset-return betas, e.g., Ferson et al. (1987), Ferson (1989), Harvey (1989), and Ferson and Harvey
(1991b). In principle, we can model all of the factor loadings as time varying. However, the “curse
of dimensionality” would arise, as well as the perils of overfitting. Moreover, the evidence in Ferson
and Harvey (1991b, Table 8) suggests that the predictability in monthly size and sector portfolios is
primarily due to changing risk premia, not changing betas. Therefore, our decision to leaveβ1 through
β4 fixed through time is unlikely to be very restrictive.

15. We have also analyzed quarterly and semi-annual returns, but do not report them here to conserve
space. Although the variation in predictability across horizons exhibits some interesting features, the
results generally fall in between the range of monthly and annual values.

16. Note that the longer-horizon returns arenon-overlapping. In some unpublished Monte Carlo
simulations, we have shown that overlapping returns can induce unusually highR2’s even when the
conditional factors are statistically independent of the long-horizon returns. See also Richardson and
Stock (1990).
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17. We do have some analytical results for this problem, but they rely heavily on the assumption
that returns are multivariate normal. Moreover, the exact sampling distribution ofR2 is given by the
sum of zonal polynomials which is computationally tractable only for very simple special cases. See
Lo and MacKinlay (1992) for further details.

18. We have investigated other mixed return/forecast-horizon regressions but, in the interest of
brevity, do not report them here.

19. See also Breen et al. (1989, Table IV), who find similar results for monthly equal- and value-
weighted NYSE stock index returns.
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