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This study examines the dynamics of zonally elongated transient flows (ZELTs) in
the context of quasi-geostrophic turbulence. Unlike stationary zonal jets considered in
previous studies, these flow features do not span the entire oceanic basin and propagate
in the zonal direction at a speed slower than baroclinic Rossby waves. The analysis of
potential vorticity balance in a statistically steady state shows that ZELTs are maintained
by the vorticity flux divergences associated with the eddy—eddy interactions whereas the
eddy—-mean flow interactions play a secondary role. The divergences of the eddy fluxes of
barotropic relative vorticity and buoyancy are shown to be the dominant contributors. The
importance of specific eddy—eddy interactions are further studied using a dynamical model
with the removed eddy—eddy vorticity flux divergences, which is equivalent to the fluid
system with an absent cascade of eddy energy. Simulations with this reduced-dynamics
model exhibit a complete disappearance of ZELTs, confirming the expectations from the
analysis of the vorticity balance. Additional reduced-dynamics simulations demonstrate
that the eddy kinetic energy transport leads to the emergence of ZELTs, with the transport
in the baroclinic mode playing the leading role, while the potential energy transport acts
to damp them.
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1. Introduction

Dominant modes of mesoscale variability at midlatitudes appear as zonally elongated
transient flows, or ZELTs (Maximenko, Bang & Sasaki 2005; Rudko et al. 2018). Unlike
stationary zonal jets, which can be clearly observed in the atmospheres of Jupiter and
other gaseous planets, ZELTs have a long, but finite zonal extent, are weaker in magnitude
than the background flow field and vary in time. These properties complicate identification
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of ZELTs in oceanic flows, because straightforward low-pass filtering can lead to spurious
flow patterns (Schlax & Chelton 2008; Rudko ez al. 2018). ZELTs explain a significant part
of anisotropy in the spatial distribution of the velocity variance (Huang et al. 2007; Scott
et al. 2008; Stewart et al. 2015) and Lagrangian particle dispersion (Rypina et al. 2012;
Kamenkovich, Rypina & Berloff 2015). Because of this inherent anisotropy associated
with ZELTs, climate models that cannot reproduce these flow patterns can have large
biases in energy and tracer distributions (Kamenkovich et al. 2015). Thus, understanding
the processes leading to ZELT emergence and equilibration is of particular importance for
reliable forecasts of the present and future climates.

Two mechanisms have been proposed to explain the emergence of zonal flows in
geophysical turbulence. The first is due to inverse kinetic energy cascade, which occurs
as a result of the nonlinear interactions between transient flow anomalies (‘eddies’). The
energy is deposited to ever longer scales until it reaches the longest available scale. In
the geophysical context, meridional variations of the Coriolis parameter (the B-effect)
introduce asymmetry into the fluid flow; the flow undergoes anisotropization, and the
energy flux is redirected into zonal modes. The anisotropization of energy propagation
occurs at the Rhines scale (Rhines 1975), defined by the balance between the nonlinear
and B-terms. In fluid systems with imposed small-scale external forcing, there is an
additional length scale defined as a cross-over between the Rossby wave spectrum and
Kolmogorov—Kraichman spectrum (Vallis & Maltrud 1993). It has been shown that if these
two scales are separated widely enough, barotropic turbulence develops an inertial range
(‘zonostrophic regime’) with prominent zonal flows (Huang, Galperin & Sukoriansky
2001; Sukoriansky, Dikovskaya & Galperin 2007).

Dynamics of mesoscale ocean currents involves several additional processes. First,
non-uniform stratification of oceanic flows entails the difference in the directions of
cascading kinetic and available potential energies (Danilov & Gurarie 2000). To the
leading order, the stratification can be represented by the barotropic and first baroclinic
modes, with the latter being surface intensified (Pedlosky 2013). Scott & Arbic (2007)
shows that, for oceanographically relevant parameters, transport of the baroclinic kinetic
energy is 10 times larger than the transport of the barotropic kinetic energy. Second, in
order for the flow with the inverse energy cascade to reach an equilibrium, there must
be a sink of energy at large scales; the energy is typically removed with large-scale
drag, which can effect the width of inertial ranges (Sukoriansky, Galperin & Chekhlov
1999). For example, zonal jets appear as an equilibrated state in simulations of baroclinic
turbulence; the equilibrium is achieved as a balance between bottom drag and nonlinear
forcing with Reynolds stresses (flux of relative vorticity) supporting jets and form stresses
(flux of buoyancy) resisting them (Berloff, Kamenkovich & Pedlosky 20095). This result
is further elaborated by Khatri & Berloff (20185), who suggest that Reynolds stresses
force jets in both layers, while form stress act as a carrier of momentum from the top
to the bottom layers. Last, mesoscale flows in the ocean receive the energy either from
instability of large-scale currents or from the wind or external heating — the energy is
being deposited at the length scales of several Rossby deformation radii, which contradicts
the assumptions for the existence of zonostrophic inertial ranges. As inferred from both
idealized and full-physics models and satellite data, the inertial ranges in the ocean are
narrow or virtually non-existent (Scott & Wang 2005; Scott & Arbic 2007).

The second mechanism of the development of zonal flows involves linear instability
of large-scale oceanic currents: the emergence of modes with small zonal wavenumbers
that later equilibrate to finite amplitudes in the fully nonlinear regime. These modes can
emerge as weakly damped modes but be energized by the triad interactions with the most
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unstable mode (Wang et al. 2012), or be the most unstable modes on their own — baroclinic
instability of the combined zonally uniform vertical shear and a meridional wave (a Fourier
mode with a zero meridional wavenumber [/ = 0) (Berloff, Kamenkovich & Pedlosky
2009a). Furthermore, Berloff & Kamenkovich (2013a,b) demonstrate that under certain
conditions spectral properties of fully equilibrated turbulent flow can be ascertained from
the linear dynamics. Additionally, Khatri & Berloff (2018a, 2019) demonstrate that linear
dynamics can explain the meridional drift and an off-zonal tilt of the multiple jets over a
uniform topographic slope.

The key difference between the two scenarios is the relative importance of the nonlinear
processes. The relevance of these processes can be efficiently estimated in the dynamical
systems, which retain only certain types of interactions. Connaughton et al. (2010) show
that the instability of the meridional wave in the dynamical system with four interacting
modes leads to the emergence of zonal or zonally elongated flow patterns depending on
the magnitude of the nonlinearity parameter. Similarly, quasi-stationary barotropic zonal
jets emerge as a result of instability of the dynamical system, in which only eddy—mean
flow interactions are retained (Farrell & Ioannou 2007, 2008; Srinivasan & Young 2012).
This latter dynamical system is energetically consistent with the fully nonlinear model
in that the net total energy is preserved while the cascade of eddy energy is absent.
O’Gorman & Schneider (2007) and Marston, Conover & Schneider (2008) (see also
Abramov & Majda 2003) show that, for some values of model parameters, fully nonlinear
and reduced-dynamics simulations compare fairly well.

In this manuscript, we examine the dynamics of ZELTs in a two-layer quasi-geostrophic
model. The technical details of the model and the examples of its output are provided
in §2. We perform simulations with different parameter values corresponding to an
anisotropic flow with well-pronounced ZELTs, an anisotropic flow without ZELTs and
an isotropic flow (Rudko et al. 2018). In each case, we examine the role of nonlinear
processes sustaining the leading modes of mesoscale variability. Additionally, we further
explore the relevance of different types of energy transfers leading to the emergence of
ZELTs by performing simulations in the reduced-dynamics models.

2. Numerical model

We use a two-layer quasi-geostrophic model (Pedlosky 2013). The governing equations
are the conservation of potential vorticity in each layer, augmented with bottom drag
and viscosity to remove the energy from large scales and enstrophy from small scales,
respectively,
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% +J (2, 8) + (B - SZU)% = —y Vi + Vi, (2.2)

where the potential vorticity anomalies are given by

£ = Vi — S1(¥1 — ¥),
£ = Vi — Sa(Pa — Y1),

and where v, is the streamfunction in the nth layer (n = 1, 2; hereafter, indices 1
and 2 refer to the top and bottom layers, respectively), J(a, b) = (da/dx)(db/dy) —
(da/dy)(0b/0x) is the Jacobian operator, v is the lateral eddy viscosity and y is the
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bottom drag coefficient. The eastward background flow is restricted to the upper layer
only, U = 6 cm s~ and U, = 0 cm s~!. Such a background flow is subject to baroclinic
instability with the most unstable mode occurring at [ = 0 (‘noodle’ mode; Pedlosky
(2013)). Although properties of the mesoscale variability generated within a westward
background flow can be different (Berloff er al. 2009b), we restrict this study to the
eastward shear only.

The model was integrated in the rectangular domain (Ly x Ly, Ly = 3600 km and
L, = 7200 km). The number of grid points in the zonal and meridional directions are
Ny =512 and N, = 256, which gives a resolution of approximately 14 km. The first
baroclinic Rossby deformation radius is Ry = 25 km, which means that the length scale
associated with the most unstable modes is ~7 x Ry = 175 km, should fall within the
resolvable range. We also carried out some of the simulations with the doubled resolution
and confirmed that the results are nearly the same. To confirm that the spatial resolution is
sufficient for resolving the most important spatial scales, we repeat our main simulations
with a doubled spatial resolution. The spectral characteristics of the flow are verified to
be nearly unchanged. The model was integrated from the state of rest to 70 000 days, or
approximately 192 years.

We follow the study by Rudko et al. (2018) in defining ZELTs as several leading
empirical orthogonal functions (EOFs) for which the anisotropic ratio is more than
0.6. The anisotropic ratio @ = (%) — (v'?))/(('*) + (v'?)), where () indicates spatial
averaging, ’ is the transient flow component with removed zonal mean. In line with Rudko
et al. (2018), we compute these EOFs as the eigenvectors of the streamfunction covariance
matrix. Before computing the EOFs, the zonal and time mean components have been
removed from the flow. Such defined flow structures are transient and do not extend
across the entire computational domain in the zonal direction. Equivalently, the spectral
power (Fourier spectrum) associated with these flow structures at frequency (v = 0) and
wavenumber (k = 0) is zero. This is opposite to zonal jets, which are stationary (« = 0)
and extend entirely across the oceanic basin (k = 0). Rudko et al. (2018) show that model
solutions are particularly sensitive to variations in 8 and y, and identified ranges of values
of those parameters that are conducive to ZELT appearance.

For this study, we present the model simulations for three different y — 8 pairs,
each corresponding to a distinct flow regime. Note that the parameter dependence was
explored earlier by Rudko et al. (2018) and is not repeated here. The ZELT-dominated
regime (y =3 x 1077 s7!, B =2.15 x 107" m~! s1), in which the leading empirical
orthogonal functions (EOFs) are associated with ZELTs, corresponds to o ~ 0.8. The
two-dimensional (2-D) wavenumber spectrum contains a well-pronounced peak at small
zonal wavenumbers and an area of enhanced power at intermediate zonal wavenumbers
(figure 1b). The leading EOF for this case displays prominent ZELTs (figure le);
the autocorrelation (AC) function of the leading principal component (AC1) exhibits
regular oscillations with the slight decay (figure 14), thereby suggesting that ZELTs are
persistent, low-frequency flow patterns. The other two flow regimes discussed below
are characterized by the absence of ZELTs. In the isotropic regime with high bottom
friction (y =5 x 1077 s, =114 x 107" m~! s7!), @ « 1 and ZELTs are not
observed (figure 1f). The 2-D wavenumber (Fourier) spectrum has a doughnut-like shape
with the power distributed almost uniformly within a range of the total wavenumbers
(figure 1c). The leading EOFs show chaotically distributed anomalies around the domain,
and AC1 decays rapidly with time, indicating the lack of persistent patterns (figure 1).
Finally, we also consider the case with low bottom friction, for which « for the leading
EOFs exhibits unexpectedly low value (y =1 x 1077 s7!, 8 =2.15 x 107" m~! s71).

911 A6l1-4


https://doi.org/10.1017/jfm.2020.1056

https://doi.org/10.1017/jfm.2020.1056 Published online by Cambridge University Press

Zonal flows

@ 35 - P P Y 38
o 36
S 15 1.5 1.5 34
X 132
- 130
= -15 -15 15 o
g | | 26

35 -15 15 35 35 -15 15 35 35 -15 15 35
k(m1x107) k(m!x107) k(mx107)
e
()3600 : , (f)3600 — e g |
2800 2800 [~ 2 )
2000 = —= 2000 | = <Hzr=A |lo
1200 S = 1200 RPN
o 400 B - ' 400 [ S F S0 S =N 0
800 2400 4000 5600 7200 800 2400 4000 5600 7200 800 2400 4000 5600 7200
X (km) X (km) X (km)

@ 10 (M) 10 — ®» e—

0.5 - 0.5 | 0.5 -

WANANTAY JANYAN L. erreetvrcarreid

-0.5 =05 =05 |

-1.0 T -1.0 S -1.0 T
Q Q \} Q Q Q Q \} Q Q \} Q

\) \) \) \) N\ \) \) \) \) \) N\ \) N\ \) \)

,,)Q ‘QQ O’Q Q’Q {)Q %Q (OQ O’Q \,»Q \‘)Q ,,)Q @ Q’Q \,\’Q \‘)Q

Time (days) Time (days) Time (days)

Figure 1. The spatial Fourier spectra, leading EOF and AC function of leading principal component for model
solution with the parameter values (a,d,g) ¥y = 1 X 1077 ¢~ B =2.15x% 1071 m=1 ¢— 1 (b,e,h) y =3 x
107s 1, p=215x 100" m™ ' s land (¢,fi) y =5x 1077 s, =114 x 107 m~ s~

We term this case as ‘quirky’ as it basically represents the special case reported in Rudko
et al. (2018) (see figure 18 in that paper). The spatial structure of the leading EOF displays
rather irregular arrays of eddies and ZELTs are not visible (figure 1d). The spatial 2-D
Fourier spectrum displays two areas with enhanced power, one that is situated at small
zonal wavenumbers and the second that covers intermediate zonal wavenumbers and a
wide range of meridional wavenumbers (figure 1a). Unlike the simulation with prominent
ZELTs, whose spectrum has a somewhat similar shape, these two areas are well separated
and the spectral peak at small zonal wavenumbers is not as intense. The ACI for this case
displays several oscillations with vanishing magnitude at a 12 000 day time lag (figure 1g).
We note in passing that the ‘quirky’ regime is also characterized by prominent stationary
zonal jets. The ZELT-dominated regime, therefore, corresponds to the intermediate values
of bottom drag and can be interpreted as the transition from strongly anisotropic to
isotropic turbulence.

We are closing this section by discussing the limitations of the quasi-geostrophic model.
Simulations in a more realistic model would certainly entail some differences. ZELTs may
not show up as leading EOF modes since the mesoscale variability can be obscured by the
seasonal cycle and variability in the atmospheric forcing. Some additional filtering may
be required to separate ZELTs from the background field. Nevertheless, non-stationary
striations were reported in several general circulation model based studies (Richards
et al. 2006; Kamenkovich, Berloff & Pedlosky 2009; Melnichenko et al. 2010). Most
recently, ZELTs were also found in altimetry data by Chen, Kamenkovich & Berloff
(2016). We expect, however, that it suffices to use our two-layer quasi-geostrophic model
to represent the dominant processes associated with the nonlinear baroclinic dynamics of
ZELTs.
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Abbreviation Term Physical meaning

F_MBTI1 (J (WI,, q[/,), bi) Mean barotropic advection of eddy barotropic PV
F_MBT2 J (1//1’,, ), bi) Eddy barotropic advection of mean barotropic PV
F_MBCl1 011612 (J (We, q.), ¢i) Mean baroclinic advection of eddy baroclinic PV
F_MBC2 01012(JJ (V.. Ge). i) Eddy baroclinic advection of mean baroclinic PV
F_MRELI (J (1//7,,, £, ¢i) Mean barotropic advection of eddy baroclinic RV
F_MREL2 (J (1//]’,, &), i) Eddy barotropic advection of mean baroclinic RV
F_MX11 (J(We, qI’,)), oi) Mean baroclinic advection of eddy barotropic RV
F_MX12 (L, qp)s Gi) Eddy baroclinic advection of mean barotropic RV
F_MBI1 S1 4+ 8S2)(J (1//71,, v0), ¢i) Mean barotropic advection of eddy buoyancy
F_MB2 S1+S2)(J (1//;,, Vo), ¢i) Eddy barotropic advection of mean buoyancy
F_MBCI1 ((9121 — 9122)(J e, q.), i) Mean baroclinic advection of eddy baroclinic PV
F_MBCI12 ((0121 — 9122)(J Wl qe). di) Mean baroclinic advection of eddy baroclinic PV
F_EBT J (10];, q;,)’ , i) Eddy barotropic advection of eddy barotropic RV
F_EBC bW, q.), ¢i) Eddy baroclinic advection of eddy baroclinic PV
F_EREL T, &L, #i) Eddy barotropic advection of eddy baroclinic RV
F_MX2 (L, q;,)/ , &) Eddy baroclinic advection of eddy barotropic PV
F_EB (St +SDUW,, v, i) Eddy baroclinic advection of eddy buoyancy
F_EBC1 O} — )W, 4. bi) Eddy baroclinic advection of eddy baroclinic PV

Table 1. Projection of the nonlinear forcing onto EOFs. PV — potential vorticity, RV — relative vorticity.

3. Steady state dynamics

We examine which nonlinear terms in the potential vorticity balance play dominant roles
in the ZELT dynamics. This approach represents an extension of a similar analysis for
stationary zonal jets (Kamenkovich et al. 2009; Berloff et al. 2009a). We apply our analysis
to the barotropic and baroclinic balances for the zonally and time-dependent potential
vorticity components (see appendix A). In order to quantify the impact of nonlinearity on
ZELTs, we project the dynamical balance onto several leading EOFs of the streamfunction.
Note that the same EOFs are used to define ZELTs in the study. Our main focus is
on the advection of the potential vorticity, which represents the internally generated
nonlinear forcing. This nonlinear forcing is due to interactions between eddies and mean
state (EME) and due to interactions between eddies only (EEE). The projections of the
EME components are F_MBT1, F_ MBT2, F_ MBCI1, F MBC2, F_MRELI1, F_MREL2,
F_MBI1, F_MB2, F_ MBCI11, F_MBCI12, the projections of EEE components are F_EBT,
F_EBC, F_EREL, F_EB, F_EBCI (table 1). The acronyms follow these conventions:
F stands for forcing, M — eddy-mean component, E — eddy—eddy component, BT —
barotropic, BC — baroclinic and MX — mixed barotropic/baroclinic. When potential
vorticity is further split into the relative vorticity and buoyancy terms we use REL for
the relative vorticity, B for the buoyancy. All projections are conveniently summarized
in table 1. We report on the magnitude of the projections (averaged in time) and on a
time correlation between the projections of the tendency terms and the eddy forcing. The
magnitude of the projections informs us of the relative contribution of each components of
the nonlinear forcing to sustain ZELTs, while the correlations tell us whether the forcing
works in favour or against ZELTSs.
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Figure 2. The projection of different components of the nonlinear forcing onto the nine leading EOFs in the
‘quirky’ case: (a,b) barotropic mode, (c,d) baroclinic mode.

In order to emphasize the particularity of the regime in which ZELTs appear as dominant
modes of mesoscale variability, we carry out the analysis for three different cases discussed
in the previous section. In line with Rudko et al. (2018), who defined ZELTs as 9 leading
EOFs, we consider the projections of 9 EOFs in all three cases considered here as well. The
EME forcing dominates the eddy forcing in the low-friction case with no ZELTs (‘quirky’
case; figure 2(a,c)), thereby suggesting that the mean state imposes a strong control on the
structure and magnitude of the eddying field. This is reminiscent of the ‘linear control’
reported in Berloff & Kamenkovich (2013a,b) in a similar regime. In contrast, the EEE
forcing dominates the eddy forcing in the ZELT-dominated regime, suggesting a strongly
nonlinear dynamics (figure 3a,c). Both the EEE and EME forcing components are of the
same order of magnitude in the isotropic turbulence simulation (figure 4a,c) with high
bottom friction. In all cases, the projections of various components of the EME forcing
tend to cancel each other in both the barotropic and baroclinic modes (figures 2b, 3b, 4b).

We next turn our attention to the specific EEE forcing components, contrasting the
ZELT-dominated and isotropic regimes, since the eddy—eddy forcing is important in
both cases. The EEE forcing components in the barotropic balance always act in accord
with each other in the ZELT-dominated case: F_EBT and F_EBC support all EOFs
(figure 3a). The same is true in the isotropic regime (figure 4a). The EEE forcing in
the baroclinic balance exhibits a different behaviour. In the ZELT-dominated regime,
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Figure 3. The projection of the different components of the nonlinear forcing onto the nine leading EOFs in
the ZELT-dominated case: (a,b) barotropic mode, (c,d) baroclinic mode.

advection of potential vorticity by baroclinic eddies, F_MX2 and F_EBCI both resist
ZELTs (figure 3b). In contrast, advection of eddy buoyancy F_EB and eddy baroclinic
relative vorticity F_EREL by barotropic eddies always counteract each other, with
F_EREL supporting ZELTs and F_EB resisting them. However, the magnitudes of the
F_MX2 and F_EB projections are higher than the projections of other EEE forcings,
thereby suggesting that, in a steady state, the dynamics of ZELTs is predominantly
regulated by the advections of eddy barotropic potential vorticity and buoyancy, F_MX2
and F_EB (figure 3b). The same two terms, F_MX2 and F_EB, also tend to be important
in the isotropic regime, although the significance of F_EREL and F_EBCI1 is harder to
establish.

In summary, the ZELT dynamics is dominated by the eddy forcing associated with
eddy—eddy interactions, whereas the eddy—mean flow interactions play one of the
leading roles in the cases with no ZELTs. Two eddy forcing components that are
particularly important in the ZELT dynamics are the advection of eddy barotropic
potential vorticity and eddy buoyancy, F_MX2 and F_EB. In the next section, we
explicitly examine the relative importance of various types of EEE forcing for ZELT
existence.
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Figure 4. The projection of the different components of the nonlinear forcing onto the nine leading EOFs in
the isotropic case: (a,b) barotropic mode, (c,d) baroclinic mode.

4. Reduced-dynamics models

In this section, we discuss simulations with fully or partially precluded EEE forcing, as it is
this type of forcing that is associated with the cascades of eddy energy. Once can identify
a group of EEE terms that correspond to each type of eddy energy cascade. Setting these
EEE terms to zero in our numerical simulations effectively precludes the corresponding
energy cascade. We consider four reduced-dynamics sensitivity experiments with: (a)
precluded cascade of total eddy energy, (b) precluded eddy kinetic energy cascade in
the barotropic mode, (c) precluded eddy kinetic energy cascade in the baroclinic mode,
(d) precluded cascade of eddy potential energy. Table 2 lists the EEE terms that are set
to zero and corresponding energy cascades that are precluded in each of these sensitivity
experiments. In all cases the net energy is preserved. The duration of each simulation and
the values of parameters are the same as for the fully nonlinear simulations.

The ZELT-dominated simulation with no eddy energy cascade exhibits a complete lack
of power at the small zonal wavenumbers, implying the absence of ZELTs (figure 9a).
The complete disappearance of ZELTs is further confirmed by the spatial structure of the
the leading EOF, which displays meridionally elongated flow patterns similar to the most
unstable mode of the baroclinically unstable background flow (figure 6a). The ACI1 for this
case (figure 12a) exhibits high-frequency variability, which is at odds with the evolution
of AC1 in the fully nonlinear simulations. Similarly, the spectral power is dramatically
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Model

JWp, qy) — 0J(W., q.), — 0
J(Wy.q) — 0J(.,q,) — 0
JWige)e = 0

J(W,. q,) — 0

JWe q,) — 0J(, q.) — 0
(S1+ DI (W, Y) — 0

Physical meaning

No total eddy energy transport

No kinetic eddy energy transport in barotropic mode
No eddy kinetic energy transport in baroclinic mode
No eddy potential energy transport

Table 2. Reduced-dynamics models.

(@) 3600 1.0 () 3600 - 1.0
—~ 2800 0.5 2800 ’ 0.5
£ 2000 0 2000 0
> 1200 -0.5 1200¢ HH A RS 0.5
400 bsssrssssns 10 400 frrunisiisainnian N 10
800 2400 4000 5600 7200 800 2400 4000 5600 7200
() 3600 1.0 (@) 3600 1.0
. 2800+ 0.5 2800 : = 0.5
£ 2000 0 20000 - — 0
e} — -
12000 o5 1200 = — 05
400 Renstetasssstensaratare it 400
800 2400 4000 5600 7200  ° 800 2400 4000 5600 7200 10

X (km)

X (km)

Figure 5. Reduced-dynamics simulations for the ‘quirky’ case. Leading EOF for simulations with (a) no eddy
energy transport, (b) no eddy kinetic energy transport in the barotropic mode, (¢) no eddy kinetic energy
transport in the baroclinic mode and (d) no eddy potential energy transport.

reduced at small zonal wavenumbers in the cases with no ZELTs: the high-friction
isotropic and ‘quirky’ cases (figures 8(a) and 10(a), respectively). These results suggest
that the accumulation of energy at long zonal length scales in those two cases and
the emergence of ZELTs in the ZELT-dominated case, are due to nonlinear interactions
between eddies. This was expected for the ZELT-dominated regime simulations, because
the EEE terms play a key role in the potential vorticity balance. The importance of EEE
interactions in the ‘quirky’ case may look surprising, given the fact that the potential
vorticity balance is dominated by the eddy—mean flow interactions. Additionally, in
both isotropic and ‘quirky’ cases, the leading EOF shows no signs of zonal anisotropy
(figures 5a and 7a), while the AC1 indicates much higher temporal variability than in the
fully nonlinear simulations (figures 11a and 13a).

Removing the eddy kinetic energy cascade in the barotropic mode retains some spectral
power at small zonal wavenumbers for the ZELT-dominated and ‘quirky’ cases (figures 8b
and 9b). However, the leading EOF does not display zonally elongated patterns in either
case, although the tendency of organization of the flow into chains of eddies (‘eddy trains’,
Chen et al. (2016)) is still discernible (figures 5b and 6b). AC1 shows rapid decay with
ensuing fluctuating around zero, illustrating fast decorrelation of these eddies. In the
isotropic case, the spatial Fourier spectrum bears a lot of resemblance to the spectrum
of the fully nonlinear simulations (figure 5b). Interestingly, the leading EOF is anisotropic
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Figure 6. Reduced-dynamics simulations for the ZELT-dominated case. Leading EOF for simulations with
(a) no eddy energy transport, (b) no eddy kinetic energy transport in the barotropic mode, (¢) no eddy kinetic
energy transport in the baroclinic mode and (d) no eddy potential energy transport.
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Figure 7. Reduced-dynamics simulations for the isotropic case. Leading EOF for simulations with (a) no
eddy energy transport, (b) no eddy kinetic energy transport in the barotropic mode, (¢) no eddy kinetic energy
transport in the baroclinic mode and (d) no eddy potential energy transport.

in this case (figure 7b). We recall that the barotropic eddy—eddy interactions are acting
to enhance leading EOFs in the full isotropic simulation (figure 8), but these EOFs are
isotropic. When the barotropic energy cascade is removed, these isotropic modes disappear
and the latent anisotropy becomes visible.

The spectra for the simulation with no eddy kinetic energy cascade in the baroclinic
mode resemble the simulation with no eddy energy transport: there is a negligible amount
of spectral power at small zonal wavenumbers (figures 8c, 9¢ and 10c). It is interesting
that the removal of the baroclinic energy cascade in the ZELT-dominated case leads to a
significantly larger reduction in the spectral power than in the same case with no barotropic
kinetic energy cascade. The leading EOF in all three cases display arrays of isolated eddies
(figures 5¢, 6¢ and 7¢). The AC1 shows a slow decay in the ‘quirky’ and ZELT-dominated
cases (figures 11c¢ and 12¢); the ACI in the isotropic and fully nonlinear cases varies in
a similar manner. We can certainly claim that the cascade of the eddy kinetic energy
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Figure 8. Reduced-dynamics simulations for the ‘quirky’ case. Spatial Fourier spectra for simulations with
(a) no eddy energy transport, (b) no eddy kinetic energy transport in the barotropic mode, (c¢) no eddy kinetic
energy transport in the baroclinic mode and (d) no eddy potential energy transport.

in the baroclinic mode plays a leading role in assisting the emergence of ZELTS in the
ZELT-dominated case — the expected effect from the analysis of the potential vorticity
balances in the previous section.

In both the ‘quirky’ and ZELT-dominated cases, the simulation with no eddy potential
energy cascade exhibits spectral peaks at small zonal wavenumbers (figures 84 and 10d).
The leading EOFs are zonally elongated in all three cases, including the isotropic regime
(figures 5d, 6d and 7d). The AC1 exhibits a regular behaviour with rapidly decaying
oscillations, two long oscillations and slowly decaying oscillations (figures 11d, 12d and
13d). We recall that the F_EB term plays a key role in the baroclinic potential vorticity
balance, but acts to dissipate the flow patterns associated with the leading EOFs. It is,
therefore, not surprising that the removal of the potential energy cascade enhances ZELTs
in the ZELT-dominated case. The emergence of ZELTs in the isotropic and ‘quirky’ cases
is an interesting result, suggesting that the potential energy cascade dissipates ZELTs and
explains why they are not visible in either of the fully nonlinear simulations. Lastly, we
note an overall similarity of the reduced-dynamics simulations in the ZELT-dominated and
‘quirky’ regimes.

5. Summary and discussion

This study is concerned with the origins and mechanisms of mesoscale variability
in the mid-latitude oceans. This mesoscale variability is anisotropic, and a previous
study by Maltrud & Vallis (1991) reported that the dominant modes of this variability

911 A61-12


https://doi.org/10.1017/jfm.2020.1056

https://doi.org/10.1017/jfm.2020.1056 Published online by Cambridge University Press

Zonal flows

38 (b) 35 38
36 36
34 L5 34
32 32
30 30
-15
28 28
26 26
-3.5 -1.5 15 35
(d) 3.5 r w 38
r 36
=
” ‘ , 32 . . 3
= 30 30
N
< -15 -15
28 28
26 26
s " . A A
35 -1.5 15 3.5 -3.5 -1.5 15 35
k(m! x107%) k(m! x107%)

Figure 9. Reduced-dynamics simulations for the ZELT-dominated case. Spatial Fourier spectra for simulations
with () no eddy energy transport, (b) no eddy kinetic energy transport in the barotropic mode, (c¢) no eddy
kinetic energy transport in the baroclinic mode and (d) no eddy potential energy transport.

have the form of ZELTs. ZELTs vary in the zonal direction and time and are, thus,
different from stationary zonal jets that have been the subject of extensive studies of
anisotropic turbulence. In this paper, we have elucidated the mechanisms governing the
evolution of ZELTs, in the context of quasi-geostrophic turbulence. We used a two-layer,
quasi-geostrophic model with a resolution of 14 km. The governing equations are the
conservation of layerwise potential vorticity with added bottom drag and viscosity. We
have studied the dynamics of ZELTs using diagnostic (steady state dynamical balance) and
prognostic approaches (reduced-dynamics simulations). We have studied three different
flow regimes in which: (i) ZELTs appear as leading EOFs and the spectrum is anisotropic
(ZELT-dominated case); (ii) the spatial structure of the leading EOFs and the spectrum
is isotropic (isotropic case); and (iii) the leading EOFs display a quite irregular array
of flow anomalies, but the spectrum is anisotropic (‘quirky’ case). The key findings
of this study are that: (i) ZELTs are nonlinear phenomena that emerge as a result of
eddy—eddy interactions; (ii) kinetic energy cascade is essential for ZELT emergence, with
the baroclinic cascade being dominant; (iii) the potential energy cascade acts to damp
ZELTs.

To distinguish ZELTs from previously studied zonal jets we decomposed the flow
into zonally averaged (‘mean’) and deviation (‘eddy’) components. We have projected
the governing equations onto several leading EOFs and analysed the projections of the
nonlinear terms that are due to interactions between eddies (‘eddy—mean’ forcing) and
the mean flow and between eddies only (‘eddy—eddy’ forcing). In the simulations with
well-pronounced ZELTs (ZELT-dominated case), the eddy—eddy forcing dominates the
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Figure 10. Reduced-dynamics simulations for the isotropic case. Spatial Fourier spectra for simulations with
(a) no eddy energy transport, (b) no eddy kinetic energy transport in the barotropic mode, (c¢) no eddy kinetic
energy transport in the baroclinic mode and (d) no eddy potential energy transport.

(a) 1.0 (b)1.0
0.5 0.5
AC o 0 7
05 05}
003000 6000 9000 12000 15000 %0 3000 6000 9000 12000 15000
(©) 1.0 , , , , (d)1.0
0.5 1 o5t
AC 0 N4 0 Av/\
05| 1 Zost v

-1

0 ‘ ‘ ‘ ‘ -1 ‘ ‘ ‘ ‘
0 3000 6000 9000 12000 15000 ! OO 3000 6000 9000 12000 15000
Time (days) Time (days)
Figure 11. Reduced-dynamics simulations for the ‘quirky’ case. AC function for the leading principal
component for simulations with (a) no eddy energy transport, (b) no eddy kinetic energy transport in the
barotropic mode, (¢) no eddy kinetic energy transport in the baroclinic mode and (d) no eddy potential energy
transport.
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Figure 12. Reduced-dynamics simulations for the ZELT-dominated case. AC function for the leading principal
component for simulations with (a) no eddy energy transport, (b) no eddy kinetic energy transport in the
barotropic mode, (¢) no eddy kinetic energy transport in the baroclinic mode and (d) no eddy potential energy
transport.
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Figure 13. Reduced-dynamics simulations for the isotropic case. AC function for the leading principal
component for simulations with (@) no eddy energy transport, (b) no eddy kinetic energy transport in the
barotropic mode, (c¢) no eddy kinetic energy transport in the baroclinic mode and (d) no eddy potential energy
transport.

potential vorticity balance: the largest contributing components are the divergences of
the eddy barotropic vorticity flux and the eddy buoyancy flux. These components of
eddy forcing entail the fluxes of eddy kinetic and eddy potential energies, and they tend
to balance each other in all three regimes. In the ‘quirky’ case, the eddy—-mean flow
forcing dominates the dynamics, while the eddy—eddy interactions play a secondary role.
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This result is consistent with previous studies that reported the importance of the
linear control in this flow regime (Berloff & Kamenkovich 2013a,b) and the results
of quasilinear theory (Farrell & Ioannou 2007, 2008; Srinivasan & Young 2012). In
the isotropic simulation, both types of nonlinear interaction are of the same order of
magnitude.

To examine the importance of each type of energy transfer in the ZELT dynamics, we
have considered several reduced-dynamics models, in which certain types of eddy—eddy
interactions are truncated. Although the net energy is still conserved in all the experiments,
the regimes they correspond to are different from the original simulations and are sensitive
to the particular choice of truncation. The purpose of this exercise is to explore this
sensitivity and demonstrate the importance of a specific type of energy exchange for the
existence of ZELTs. The simulation with the removed transfer of the eddy energy shows no
spectral power at small zonal wavenumbers and EOFs that are not zonally elongated. These
results collectively demonstrate that ZELTs are a product of nonlinear interactions between
eddies, confirming our conclusions from the analysis of the steady state nonlinear forcing.
Analysis of the simulations, in which either the barotropic or baroclinic kinetic energy
fluxes are blocked, also demonstrates the absence of ZELTs, confirming the importance
of these types of energy cascades for ZELT emergence. The removal of the baroclinic
cascade, however, leads to a particularly dramatic reduction in spectral power. Instead,
the flow is dominated by eddies propagating along zonal tracks. These eddy trains have
been reported previously in both model simulations and satellite data (Chen et al. 2016),
and our results here further demonstrate that they become preferred modes of mesoscale
variability once the kinetic energy cascade is suppressed.

Finally, the simulations with the removed cascade of the eddy potential energy show
that the zonally elongated patterns are amplified and appear as dominating modes for
all parameter choices of this study. Since the cascade of the eddy potential energy is
directed downscale, and the corresponding term is shown to damp ZELTs, its removal
leads to the accumulation of energy in the long scales. Additionally, the removal stops
downward transfer the energy and weakens the energy dissipation by the bottom drag
(Khatri & Berloff 2018b). The change is particularly dramatic in isotropic and ‘quirky’
cases, which implies that this damping effect explains the lack of ZELTs in these regimes.
The damping effect of the eddy buoyancy advection, compensated by the relative vorticity
advection, is analogous to a similar balance in the stationary zonal jets, and is likely
to be a fundamental property of anisotropic turbulence in the ocean. These results
demonstrate the importance of baroclinic dynamics and the potential energy transfer,
which are often ignored in the analysis of ocean energetics. This importance does not
mean that ZELTs cannot be observed in barotropic flows. In fact, we expect zonally
elongated modes of mesoscale variability to be ubiquitous in geostrophic turbulence
with and without vertical stratification. For example, similar structures, termed ‘zonons’,
have been observed in barotropic flows with small-scale forcing (Danilov & Gurarie
2004; Sukoriansky, Dikovskaya & Galperin 2008; Galperin & Sukoriansky & Dikovskaya
2010). Similarly, stationary zonal jets are prominent features of barotropic turbulence
(Rhines 1994; Galperin et al. 2004), despite the importance of buoyancy transfers for their
baroclinic counterparts (Panetta 1993; Berloff ef al. 2009b).

The presence of the anisotropic flow patterns in oceanic circulation gives rise to
asymmetry in the distribution of momentum, energy and oceanic tracers. Although the
present study improves our understanding of the origins of anisotropy in mesoscale
turbulence, the scope of the work is limited due to the simplicity of the model. Studies
with general circulation models would definitely expand the current view on the issue.
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Appendix A. Dynamical balance

We derive the dynamical balance in several steps. First, the vertical structure of the
two-layer quasi-geostrophic system can be fully described by the barotropic and the first
baroclinic modes (Pedlosky 2013). The projection of the governing equations onto these
two modes gives

oy oy
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Decomposing the flow field into ‘mean’ (zonally averaged) and ‘eddy’ (deviation from
zonally averaged) components leads to a set of four equations

Igp

a5 = =—J(V). q)) q,) — 01012 (U], 4.) — yO12€, + yO11612E. + vVZE,, (A4)
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Equations (A4) and (A6) describe the dynamics of stationary (w = 0,k = 0) and
drifting zonal jets (w #0, k = 0), while equations (AS) and (A7) govern the evolution
of ‘eddies’ (w #0, k #0). Since ZELTs are a part of the ‘eddy’ flow component, we
discuss equations (AS) and (A7) only. The left-hand sides of these equations are the
tendency terms, which describe the rate of change in the ‘eddy’ potential vorticity, whereas
the right-hand side consists of several nonlinear terms (‘eddy forcing’), as well as linear
terms that contain the modified S-terms, external forcing terms and large- and small-scale
friction.
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