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ABSTRACT

In the context of life insurance with profit participation, the future discre-
tionary benefits (FDB), which are a central item for Solvency II reporting, are
generally calculated by computationally expensive Monte Carlo algorithms.
We derive analytic formulas to estimate lower and upper bounds for the FDB.
This yields an estimation interval for the FDB, and the average of lower and
upper bound is a simple estimator. These formulae are designed for real world
applications, and we compare the results to publicly available reporting data.
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1. INTRODUCTION

As of 1. 1. 2016, the European Union has implemented a new regulatory
regime (Solvency II Directive, 2009; Commission, 2014, 2015) which requires
insurance companies operating in Member States to assign market consistent
values to their balance sheet items. This requirement concerns, both, assets and
liabilities and is therefore a full balance sheet approach.

Market consistent valuation in the context of life insurance with profit par-
ticipation has been a developing subject over the past two decades. Early
works in this context include Sheldon and Smith (2004), O’Brien (2009),
Delong (2011), Wuthrich (2016). These works all highlight the interdepen-
dencies that exist between the insurer’s asset portfolio and the policyholder’s
expected payoff. Indeed, the defining feature of with profit contracts is that the

Disclaimer. The opinions expressed in this article are those of the authors and do not necessarily reflect
the official position of the Austrian Financial Market Authority.

Astin Bulletin 52(3), 835–876. doi:10.1017/asb.2022.16 C© The Author(s), 2022. Published by Cambridge University Press on
behalf of The International Actuarial Association.

https://doi.org/10.1017/asb.2022.16 Published online by Cambridge University Press

https://orcid.org/0000-0002-3978-3706
https://doi.org/10.1017/asb.2022.16
https://doi.org/10.1017/asb.2022.16


836 F. GACH AND S. HOCHGERNER

TABLE 1

RISK MARGIN VERSUS BEST ESTIMATE. AGGREGATE OF SOLO COMPANIES IN EEA FROM
2016 TO 2020 FOR LIFE INSURANCE (EXCLUDING HEALTH, INDEX-LINKED AND UNIT-LINKED).
IN MILLION EURO AND PERCENT OF BEST ESTIMATE. SOURCE: ITEMS R0670 AND R0680 IN

‘BALANCE SHEET EEA’ IN EIOPA STATISTICS.

2016 2017 2018 2019 2020

Best estimate 4,759,241.59 4,893,285.81 4,812,203.51 5,331,803.61 5,459,642.07
Risk margin 79,574.17 77,532.75 76,709.35 83,692.55 89,736.47

1.67% 1.58% 1.59% 1.57% 1.64%

policyholder’s benefit is a sum of, firstly, a guaranteed part depending, in par-
ticular, on the guaranteed technical interest rate, and, secondly, a bonus benefit
depending, in particular, on the performance of the company’s asset portfolio.

To obtain a more realistic model, the performance of the asset portfolio
should be measured as a return on balance sheet items, and, accordingly, there
are recent works which incorporate a strongly simplified, or stylized, version
of a balance sheet projection (Gerstner et al., 2008, 2009; Engsner et al., 2017;
Bacinello et al., 2021; Falden and Nyegaard, 2021).

However, to have a more accurate representation of the company’s finan-
cial income, which is to be shared with policyholders, the return on assets
should be derived according to local generally accepted accounting principles
(local GAAP). This necessity is explained in detail in Dorobantu et al. (2020),
Dhaene et al. (2017). Moreover, financial revenue can be controlled to a cer-
tain extent by management actions by realizing unrealized gains of individual
assets, that is the difference of market and local GAAP book value (Dorobantu
et al., 2020). Together with further management actions (e.g., strategic asset
allocation, reinvestment strategy, profit sharing and profit declaration), this
setup leads, in practice, to computationally expensive Monte Carlo algorithms
in order to obtain realistic calculations of market consistent values of liabili-
ties. See Vedani et al. (2017), Dorobantu et al. (2020), Dhaene et al. (2017),
Albrecher et al. (2018).

Under Solvency II, the market consistent value of liabilities is defined as a
sum of a best estimate and a risk margin (Directive, 2009, Article 77). For the
purpose of life insurance with profit participation, the risk margin is generally
several orders of magnitudes smaller than the best estimate (EIOPA Statistics),
as shown in Table 1.

The best estimate of liabilities is defined as the expected value of discounted
and probability weighted future policyholder and cost cash flows stemming
from contracts which are active at valuation time. Thus, new business is not
considered, and the expected value is to be taken with respect to a risk neu-
tral measure. This definition of Directive (2009, Article 77) is clarified in
Commission (2014).

Regarding life insurance with profit participation, the best estimate, denoted
henceforth by BE, can be split into a sum of two parts: BE =GB+ FDB; here
GB denotes the value of those cash flows which are guaranteed at valuation
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time while FDB is the value of future discretionary benefits. Both, FDB and the
total value BE, have to be reported individually by insurance companies on a
quarterly basis. The significance of this splitting is that the guaranteed benefits,
GB, are calculated by methods which are close to classical actuarial compu-
tations. If one allows dynamic policyholder behavior such that, for example,
surrender depends on economic scenarios, then a stochastic cash flow model is
needed to calculateGB. Nevertheless, in comparison to the future discretionary
benefits, the guaranteed benefits are more straightforward to calculate and val-
idate. This is so because the FDB depends directly on the company’s surplus
and thus in particular on management actions and financial revenue, while
GB depends on these quantities only indirectly via the part that is affected by
dynamic policyholder behavior. If a company chooses not to model dynamic
policyholder behavior, then GB can be calculated by a deterministic actuarial
cash flow model.

Due to the above described complexity, there exist no closed formula
solutions for FDB calculation in the context of life insurance with profit par-
ticipation. An analytic formula for an estimate of a lower bound for FDB has
been derived in Hochgerner and Gach (2019), and this has been applied to val-
idate the reported FDB of one major German life insurance company for the
reporting year 2017. The purpose of this paper is to improve and extend the
approach of Hochgerner and Gach (2019) in the following ways:

(1) In Equation (3.2), we derive a representation of the FDB which holds in
a generic valuation framework. This representation cannot directly be
applied to calculate the FDB since it relies on quantities which are just
as difficult to obtain as the FDB itself. However, due to its generality, it
can be used to validate the results of a given stochastic cash flow model,
and it is the basis for the subsequently described estimations.

(2) Starting from Equation (3.2), we derive in Section 5 estimations of lower
and upper bounds, L̂B and ÛB, for the FDB. These estimated bounds
are given by the analytic formulas (5.17) and (5.18), and all the data
needed to evaluate the latter are listed in Table 2.

(3) The constituents of the lower and upper bounds, L̂B and ÛB, are
derived in an economically meaningful way such that there is an inter-
pretation for each term and the dependency on market conditions at
valuation time is plausible. The latter point concerns specifically the
dependence on the market view of interest rate volatility. This, apart
from the new upper bound, is an improvement over the lower bound
formula given in Hochgerner and Gach (2019).

(4) Given L̂B and ÛB, we obtain an estimator, F̂DB= (L̂B+ ÛB)/2,
for FDB. This estimator is useful if the estimation error ±ε with
ε = (ÛB− L̂B)/2 is sufficiently small. This can be measured against the
market value,MV0, of the company’s portfolio at valuation time.

(5) In Section 7, we apply these formulas to publicly available data of a
German life insurance company for the reporting years 2017, 2018 and
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2019, and compare our results with their numerically calculated value
of FDB. We find that ε < 1.5%MV0 for all three reporting periods,
and, moreover, the difference δ = FDB− F̂DB satisfies δ < 1%MV0 in
all cases. Hence, in all three cases, the true value lies within the esti-
mation interval and the estimation is remarkably accurate, as measured
by δ. See Table 14.

(6) Finally, in Section 7 we also perform a sensitivity analysis with respect
to the parameters that are used in calculations of L̂B and ÛB for the
German life insurer, and find that the results are quite stable.

The main tools used to obtain the representation (3.2) are the no-leakage
principle of Hochgerner and Gach (2019) (see Remark 2.4) and an evolution
Equation (2.14) for the statutory reserves of shared profits. Thus, this deriva-
tion depends in a generic sense on the local GAAP framework but not on
specific management rules.

The derivation of the estimates, L̂B and ÛB, depends on a number of
assumptions. These are all listed and discussed in Section 4. While the assump-
tions are tailored to the German and Austrian markets, their derivation is
quite generic and is applicable whenever the company’s revenue is given by
well-defined local GAA Principles (e.g., as discussed for the French market
in Dorobantu et al., 2020). The main observation in this context is that book
values are expected to be more stable than market value movements. This con-
clusion is drawn from accounting principles for book values of assets (e.g.,
strict lower of cost or market price Dorobantu et al., 2020), on one hand, and
the use of surplus funds as buffer accounts for statutory reserves (Gerstner
et al., 2008), on the other hand.

The bounds (5.17) and (5.18) can be readily applied to real world data, as
we show in Section 7. Immediate and practical applications therefore include
the following:

(1) Internal validation: companies may use L̂B and ÛB to validate their
FDB calculations and thus their valuation models.

(2) External validation by parent companies: holdings may wish to validate
the valuation models in their subsidiaries.

(3) External validation by supervisors or auditors.

(4) Sensitivity analysis. The estimator F̂DB depends on economic quanti-
ties such as the prevailing interest rate and volatilities. These are at
the same time important drivers for the full Monte Carlo best esti-
mate calculation. Hence, one obtains a closed estimation formula which
allows for efficient sensitivity analysis without the necessity of stochastic
computation.

Clearly, the validation of the best estimate will be most effective when the
control is paired with a statistical analysis of the second-order assumptions
leading to GB and a verification that the contract specific features, which give
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rise to the guaranteed benefit cash flows, are correctly implemented. We do not
view our estimation formula as a substitute for FDB calculation as required by
Solvency II regulation.

The derivation of the bounds (5.17) and (5.18) relies on a detailed investiga-
tion of cash flows generated by local accounting principles. The notation that
is used in this context is quite heavy and therefore collected in the Appendix at
the end of the paper.

2. FRAMEWORK

We consider a life insurance company selling traditional life insurance prod-
ucts. ‘Traditional’ in this context means that the company’s gross surplus is
shared between policyholder, shareholder and tax office. Thus, these contracts
have a profit sharing feature.

Further we assume that the life insurance company under consideration is
subject to the Solvency II regulatory regime.

Let us fix a yearly time grid, t= 0, 1, . . . ,T , where t= 0 corresponds to val-
uation time and T may be large. For a time-dependent quantity, ft, we denote
the increments by �ft = ft − ft−1.

2.1. Book value return on assets

LetCt denote the amount of cash held by the company at time t. Let furtherAt
denote the set of assets, other than the cash account, in the company’s portfolio
at time t. Each asset, a ∈At, has at each time step a book value, BVa

t , and a
market value, MVa

t . The difference is the unrealized gains or losses, UGa
t =

MVa
t −BVa

t . The total portfolio values are correspondingly

BVt =
∑
a∈At

BVa
t +Ct, MVt =

∑
a∈At

MVa
t +Ct, UGt =MVt −BVt.

In accordance with Solvency II regulation, we assume that all market values
are determined in an arbitrage-free manner. Concretely, we assume an interest
rate model specified on a filtered probability space (�,F , (Ft),Q) such that Q
is the risk neutral measure for the money market numeraire Bt = �t−1

j=0(1+ Fj),
where Ft is the simple one year forward rate valid between t and t+ 1. For
example, this setting is satisfied for the LIBOR market model with respect
to the spot measure (Brigo and Mercurio, 2006). Further, all stochastic pro-
cesses shall be adapted to (Ft), and all expected values, E[ · ], are with respect
to Q. The discount factor from s to t< s is given by D(t, s)= �s−1

j=t (1+ Fj)−1 =
BtB−1

s . Hence, the value of a zero coupon bond paying one unit of currency at
s is given by P(0, s)=E[B−1

s ], and more generally, we have P(t, s)=E[D(t, s)]
for t< s.

Let a ∈At−1 and let cf as be the cash flow generated by a at s≥ t. For exam-
ple, if a is a bond, stock equity position or real estate investment, then cf at
would correspond to a coupon or principle payment, dividend yield or rental
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revenue, respectively. The cash flow, cf as , goes to the cash account, Cs, and
increases it accordingly. Cash flows can be influenced by market movements
(affecting, e.g., dividend payments) or by management decisions. Indeed, the
management may decide at any time, s<Ta, prior to the asset’s maturity to
sell the asset and realize the market value MVa

s as a cash flow. This step is
called realization because it converts the unrealized gains UGa

s into a book
value return. If an asset, a, is sold at s<Ta then its book value is terminated,
BVa

s = 0, and its market value is converted to a cash flow, cf as = (cf as )
′ +MVs

a,
where (cf as )

′ are those cash flows (e.g., coupon payments or dividend yield) that
result from holding a over the period [s− 1, s].

The cash flow process, cf at , is an (Ft)-adapted process.
To avoid notational difficulties, we set cf as = 0=MVa

s for s>Ta. At t− 1
the forward rate Ft−1 is known, that is it is (Ft−1)-adapted. We have the
relation

MVa
t−1 =E

[
T∑
s=t

D(t− 1, s)cf as
∣∣∣Ft−1

]
+E

[
D(t− 1,T)MVa

T

∣∣∣Ft−1

]
=
(
1+ Ft−1

)−1(
E
[
cf at
∣∣∣Ft−1

]
+E

[
MVa

t

∣∣∣Ft−1

])
(2.1)

where the first line involves the final market value, MVa
T , at the end of the

projection which satisfiesMVa
T = 0 if Ta ≤T .

The book value return, ROAat , at t of a single asset a ∈At−1 is

ROAat = cf at + �BVa
t , (2.2)

and that of the portfolio is

ROAt =
∑

a∈At−1

ROAat + Ft−1Ct−1 (2.3)

since we have fixed yearly time steps and Ft−1 is the corresponding forward
rate. Combining (2.2) with (2.1) yields the implication for the portfolio that

ROAt =E[ROAt|Ft−1]+ROAt −E[ROAt|Ft−1]

=
∑

a∈At−1

(
E[cf at |Ft−1]+E[�BVa

t |Ft−1]
)

+ Ft−1Ct−1 +ROAt −E[ROAt|Ft−1]

=
∑

a∈At−1

(
(1+ Ft−1)MVa

t−1 −E[MVa
t |Ft−1]+E[�BVa

t |Ft−1]
)

+ Ft−1Ct−1 +ROAt −E[ROAt|Ft−1]

= Ft−1BVt−1 + Ft−1UGt−1 −E[�UGt|Ft−1]+ROAt −E[ROAt|Ft−1],
(2.4)
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where we have used that
∑

a∈At−1
E[UGa

t |Ft−1]=E[UGt|Ft−1]. The signifi-
cance of this equation is that it splits ROAt into three terms: the forward yield
on the total book value, Ft−1BVt−1; a term depending on the Ft−1-prediction
of return due to realizations of unrealized gains, Ft−1UGt−1 −E[�UGt|Ft−1];
finally, the difference between return and Ft−1-predicted return. This interpre-
tation is illustrated in the following toy example.

Remark 2.1 (Example). Fix an arbitrary 1< t<T and assume the company’s
portfolio at time t− 1 consists of two identical bonds, denoted by a1 and a2,
with maturity t+ 1, fixed coupon payment KN/2 and notionalN/2, each, with
K ≥ 0 andN > 0. Suppose further that the company employs the strict lower of
cost or market value such that BVs =min(N,MVs) for s= t− 1 and s= t. The
cash flows generated by ai are coupon and notional payments or, if the man-
agement decides to sell ai at s< t+ 1, an additional payment of the prevailing
market value at s but no further (e.g., notional) payments after this time. We
assume that the time t− 1 predicted management rules are such that bonds are
held to maturity, that is, E[cf ait |Ft−1]=KN/2 and E[cf ait+1|Ft−1]= (K + 1)N/2
for i= 1, 2.

The market value of the portfolio at t is thenMVt = (1+ Ft)−1(1+K)N. At
t− 1, assume that K ≥ Ft−1 and E[(1+ Ft)−1|Ft−1](1+K)≥ 1 such that

MVt−1 = (1+ Ft−1)−1E[(1+ Ft)−1|Ft−1](1+K)N + (1+ Ft−1)−1KN ≥N,

whence BVt−1 =min(N,MVt−1)=N. The formula forMVt−1 is, in fact, inde-
pendent of management decisions at t which reflects the fact that future
investment strategies cannot affect the currently given market consistent value
of a portfolio. Now we describe the constituents of Equation (2.4) under two
management decisions at t: decision (1) is defined as the management’s default
strategy of not taking any action at t, while decision (2) shall mean that man-
agement decides to sell one of the two bonds at t, namely a1. For example, this
decision might depend on the observation of Ft.

In both cases, we clearly have Ft−1BVt−1 = Ft−1N, independently of man-
agement actions or market movements in Ft.

Decision (1): using (2.1), the second term in (2.4) is now calculated as

Ft−1UGt−1 − �E[UGt|Ft−1]= Ft−1(MVt−1 −N)−E[MVt|Ft−1]+MVt−1

+E[min(MVt,N)|Ft−1]−N

= (K − Ft−1)N

−E[max((Ft −K)/(1+ Ft), 0)|Ft−1]N.

https://doi.org/10.1017/asb.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.16


842 F. GACH AND S. HOCHGERNER

The third term gives

ROAt −E[ROAt|Ft−1]= cf a1t + cf a2t +min((1+ Ft)−1(1+K)N,N)−N −KN

−E[min((1+ Ft)−1(1+K)N,N)|Ft−1]+N

=min((1+ Ft)−1(1+K)N,N)

−E[min((1+ Ft)−1(1+K)N,N)|Ft−1]

since cf a1t =KN/2 with respect to strategy (1) and cf a2t =KN/2 in all cases.

Decision (2): the second term remains unchanged since it corresponds to
an Ft−1 prediction. This term therefore captures the contribution of unreal-
ized gains to book value return, ROAt, that is due to the expected evolution
of the portfolio. On the other hand, the third term becomes now, due to
cf a1t =KN/2+MVa1

t (coupon payments reward for having held the asset
over the period [t− 1, t] and thus precede market placements) and BVa1

t = 0
(termination of asset), to

ROAt −E[ROAt|Ft−1]=MVa1
t +min((1+ Ft)−1(1+K)N,N)/2

−E[min((1+ Ft)−1(1+K)N,N)|Ft−1]

= (1+ Ft)−1(1+K)N/2

+min((1+ Ft)−1(1+K)N,N)/2

−E[min((1+ Ft)−1(1+K)N,N)|Ft−1].

Notice that MVa1
t = (BVa1

t )′ + (UGa1
t )′ with (BVa1

t )′ =min((1+ Ft)−1(1+
K)N,N)/2 where (·)′ denotes the asset’s value before selling. Hence, this
corresponds to a realization of unrealized gains, (UGa1

t )′ =max((K − Ft)/
(1+ Ft), 0)N/2, as a cash flow. If K ≤ Ft, it follows that (UG

a1
t )′ = 0, and in

this case the decision to sell does not have any effect on the return because of
the lower of market value or cost principle. The third term thus represents the
unpredicted return (due to market movements or management actions at t).

Thus, this remark illustrates howmarket fluctuations andmanagement deci-
sions at t influence the third term,ROAt −E[ROAt|Ft−1], in (2.4) while leaving
the other two terms unaffected. The above formulae can be simplified by
considering the special cases Ft = 0 or K = 0 with Ft > 0.

2.2. Contracts and model points

We now describe the contracts which exist in the company’s liability portfolio
at valuation time. All contracts are assumed to have a minimum guaranteed
benefit and bonus benefit which depends on the company’s profit and is shared
between policyholder, shareholder and tax office. Each contract gives rise to
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either a single maturity or mortality benefit, or multiple annuity benefits, or
a surrender benefit, cost payments associated with the contract and premium
payments accepted by the company. We refer to Gerber (1997) for a detailed
exposition of life insurance mathematics.

Each contract, c, has at each time step, t, a mathematical reserve, Ṽc
t ,

defined by actuarial principles and first order assumptions. Further, at val-
uation time the contract may have already received bonus declarations. The
sum of these declared bonuses up to and including time t= 0 are denoted by
(D̃B

≤0
0 )c. If the contract is still active at t> 0, this account remains unchanged,

(D̃B
≤0
t )c = (D̃B

≤0
0 )c. The sum of bonus declarations after valuation time up to

and including time t> 0 is denoted by D̃B
c
t , and we have D̃B

c
0 = 0. The contract

total reserve is thus L̃P
c
t = Ṽc

t + (D̃B
≤0
t )c + D̃B

c
t .

If m> 0 is the contract’s maturity, the policyholder receives a guaranteed
minimum benefit, gbf cm, plus declared bonuses, that is, the benefit cash flow at

m equals gbf cm + (D̃B
≤0
m−1)

c + D̃B
c
m−1. Profit that is generated atm is not shared

with contracts maturing at the same time. Annuity payments are analogous
with a corresponding fraction of bonuses being paid out. If the policyholder
dies at 0< t<m, the death benefit similarly consists of a sum of a guaranteed
minimum benefit, gbf ct , and declared bonuses, (D̃B

≤0
t−1)

c + D̃B
c
t−1. Notice that,

contrary to D̃B
c
t−1, the cash flow due to (D̃B

≤0
t−1)

c is already guaranteed at val-
uation time since these bonuses have already been declared. If the policyholder
decides to surrender the contract at 0< t<m, the resulting surrender benefit is
(1− χc

t )L̃P
c
t−1 where 0≤ χc

t ≤ 1 is the fraction which gives rise to the surrender
gain made by the company.

For modeling purposes, it is advantageous to describe model points instead
of contracts. A model point is defined as either a single contract, or a collec-
tion of identical contracts, such that survival probabilities are already taken
into account. Thus, if x is the model point associated with a contract c and pt0
is the survival probability (incorporating mortality and surrender) between 0
and t the reserves are related by LPxt = pt0L̃P

c
t . However, pt0 may depend on the

underlying economic scenario via dynamic policyholder behavior and there-
fore we refrain from introducing these probabilities explicitly. Rather, we let
Vx
t , (DB

≤0
t )x, and DBxt denote the mathematical reserve, declared bonuses up

to and including valuation time, and declared bonuses after valuation time,
respectively, such that survival probabilities are taken into account. If policy-
holder behavior is dynamic with respect to economic scenarios, then Vx

t and
(DB≤0

t )x are also scenario-dependent. Future declared bonuses, DBxt , depend
on economic scenarios by construction. Notice that (DB≤0

t )x ≤ (DB≤0
0 )x, in

general. Analogously, the probability weighted minimum guaranteed (matu-
rity and mortality) benefits generated by model point x at t are denoted by
gbf xt . The probability weighted cash flows, at t, due to (DB≤0

t−1)
x are called

(gbf≤0
t )x. Those due to DBxt−1 are called ph

x
t .
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The total benefit cash flows are

gbft =
∑
x∈Xt

gbf xt , gbf≤0
t =

∑
x∈Xt

(
gbf≤0

t

)x
, pht =

∑
x∈Xt

phxt

and the total reserves are given correspondingly by

Vt =
∑
x∈Xt

Vx
t , DB≤0

t =
∑
x∈Xt

(
DB≤0

t

)x
, DBt =

∑
x∈Xt

DBxt ,

where Xt denotes the set of model points active at time t.

2.3. Gross surplus and profit sharing

Let Lt denote the book value of liabilities at time t, and we assume that
Lt =LPt + SFt is a sum of two items: firstly, the life assurance provision,
LPt =Vt +DB≤0

t +DBt; and secondly, the surplus fund, SFt. The surplus
fund at time t, SFt, consists of those profits that have not yet been declared
to policyholders. As opposed to LPt, SFt belongs to the collective of policy-
holders and cannot be attributed to individual contracts. This setup follows
the same logic as Gerstner et al. (2008) where Vt, DB

≤0
t +DBt, and SFt are

referred to as the actuarial reserve, allocated bonus, and free reserve (buffer
account), respectively.

The difference between total book value of assets and liabilities is the free
capital, BVt = FCt +Lt. Since return on free capital is not shared with policy-
holders and therefore does not contribute to the future discretionary benefits
that we are interested in, we assume without loss of generality that FCt = 0,
so that the initial book value of assets is equal to the initial value of liabili-
ties. Further, we assume that all shareholder gains that are produced by the
company over the projection time are directly paid out to shareholder and not
accumulated within the company so that FCt = 0 (cf. Hochgerner and Gach,
2019, A. 2.2):

BVt =Lt =LPt + SFt. (2.5)

Indeed, for purposes of best estimate calculation the free capital is not rele-
vant as this and the corresponding revenue is not shared with policyholders.
Moreover, assets used to cover statutory reserves may not be attributed sepa-
rately to Lt and FCt (Bundesministerium der Finanzen (BMF); Verordnung).
Hence, setting FCt = 0 leads to the appropriate scaling of revenue that is to
be shared with policyholders. Thus, the equality (2.5) can always be achieved

by replacing BV0,MV0, UG0 by BV ′
0 =BV0 − FC0,MV ′

0 = BV ′
0

BV0
MV0, UG′

0 =
BV ′

0
BV0

UG0, respectively, and assuming that future shareholder gains are paid out
as cash flows which leave the model. On the other hand, if the goal is to build
a comprehensive asset liability model to simulate the shareholder’s point of
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view then the free capital is of paramount importance. However, in the simu-
lation of a run-off liability book as under Solvency II such a point of view is
difficult to realize since the relation between FCt and Lt quickly becomes unre-
alistic (without introducing new business). Notice also that the equity position
in the balance sheet model of Gerstner et al. (2008) is a hybrid of free capital,
in the above sense of FCt, and hidden reserves, UGt. We do retain UGt in the
projection since this is indispensable for best estimate calculation.

The profit sharing mechanism depends on the company’s gross surplus with
respect to local accounting rules. The gross surplus can be described verbally
as the sum of book value return, increase or decrease of statutory reserves, and
all relevant cash flows (premiums, benefits, costs). The gross surplus, gst, at t
is therefore defined as

gst := ROAt − �Vt − �DB≤0
t −DB−

t +DBt−1

+ prt − gbft − gbf≤0
t − pht − cot,

where ROAt is the book value return (2.4), DB−
t is the account of declared

bonuses before bonus declaration at t, prt are premium payments and cot are
all cost cash flows. If χt is the appropriately averaged surrender fee factor at t,
the discrepancy between −DB−

t +DBt−1 and pht can be expressed as −DB−
t +

DBt−1 − pht = χtDBt−1. The analogous expression holds with an appropri-
ately chosen factor χ

≤0
t , representing surrender fees: −�DB≤0

t = χ
≤0
t DB≤0

t−1.
Let further ρt denote the averaged technical interest rate at t− 1 such that
−�Vt + prt − gbft − cot = −ρtVt−1−tgt where tgt is the technical gains due to
mortality and cost margins and surrender fees stemming from the mathemat-
ical reserves. We define γt := (tgt + χ

≤0
t DB≤0

t−1 + χtDBt−1)/LPt−1 and express
the gross surplus as

gst =ROAt − ρtVt−1 + γtLPt−1. (2.6)

Remark 2.2. The advantage of expressing the gross surplus in this form is that
the effects of book value return on assets, guaranteed technical interest rate
and technical gains (i.e., mortality, cost and surrender margin) can be isolated.

If gst is positive, it is the surplus shared between policyholder, shareholder
and tax office. If it is negative, it is covered by the shareholder. Indeed, profit
sharing is defined by legislation (Bundesministerium der Finanzen (BMF);
Verordnung; Dorobantu et al., 2020) and requires that gst is shared between
shareholders, policyholders and tax office according to

gst = sht + ph∗
t + taxt, (2.7)

where sht = gsh · gs+t − gs−t , ph∗
t = gph · gs+t and taxt = gtax · gs+t , and where

gsh, gph and gtax are positive numbers such that gsh+ gph+ gtax= 1.
Furthermore, c+ and c− denote the positive and negative parts of a number c,
respectively.

https://doi.org/10.1017/asb.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.16


846 F. GACH AND S. HOCHGERNER

Notice that sht and taxt constitute cash flows since this is money that leaves
the company (and the model), while ph∗

t is an accounting flow since this cor-
responds to a quantity that is transferred within the company to a different
account but is not paid out as a benefit at time t.

A fundamental principle of traditional life insurance is that profit sharing
is not equal to profit declaration (Bundesministerium der Finanzen (BMF);
Verordnung). This means that ph∗

t = gph · gs+t is not necessarily declared (or
credited) to its full extent to specific policyholder accounts. Rather, the profit
sharing mechanism in traditional life insurance is such that a part, νt · ph∗

t with
0≤ νt ≤ 1, of ph∗

t is declared to the policyholder accounts. Management may
choose the value νt at each accounting step t. However, declaration may also
be augmented by additional contributions, ηt · SFt−1 with 0≤ ηt ≤ 1, from the
previously existing surplus fund SFt−1. Again, management may choose the
value ηt at each accounting step t. Typically, surplus fund contributions will
take place when ph∗

t is small compared to management goals.
The total bonus declaration to DBt at time t is therefore of the form

νt · ph∗
t + ηt · SFt−1 (2.8)

with the factor νt and ηt determined according to management rules.
As above, let pht denote the amount of discretionary benefits paid out

at time t. This cash flow depends on declarations to the declared benefits
account, DBk, which have occurred at times 0< k< t. Declarations at valua-
tion time, t= 0, belong by definition to DB≤0

t , and the resulting cash flows are
already guaranteed at t= 0, whence these do not contribute to pht. Therefore,
we have

ph1 = 0. (2.9)

For k> 0, let 0≤ ηk ≤ 1 denote the amount of declaration from SFk−1 toDBk.
The numbers ηk and νk are, in general, unknown at t= 0 and depend on man-
agement rules. Let further 0≤ μt

k ≤ 1 denote the fraction of bonus declarations
at k, ηk · SFk−1 + νk · ph∗

k, that is either paid out as a future discretionary ben-
efit (in case of contract maturity or mortality) or kept by the company as a
surrender fee (in case of premature contract termination), sg∗

t , at time t. This
fraction is also unknown andmay depend, in general, on dynamic policyholder
behavior. The defining relation is thus

pht + sg∗
t =

t−1∑
k=1

μt
k

(
ηk · SFk−1 + νk · ph∗

k

)
, (2.10)

where t≥ 2. Since the sum of discretionary benefits and surrender fees cannot
exceed the amount of previous declarations, we must have

T∑
t=k+1

μt
k ≤ 1. (2.11)
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To sum up the above discussion, passing from t− 1 to t, DBt−1 is:

• increased by declarations ηt · SFt−1 from the surplus fund where 0≤
ηt ≤ 1 is chosen by the management,

• increased by direct policyholder declarations νt · ph∗
t where 0≤ νt ≤ 1 is

chosen by the management,
• decreased by cash flows, pht, to policyholders whose contracts terminate
at t, and

• decreased by accounting flows sg∗
t := χt ·DBt−1 with 0≤ χt ≤ 1 due to

surrender fees. The fraction χt ·DBt−1 is freed up, in the sense that it is
not attributed to specific contracts anymore, and thus contributes to the
annual gross surplus.

Therefore, we have the iterative relation

DBt =DBt−1 + ηt · SFt−1 + νt · ph∗
t − pht − sg∗

t (2.12)

with starting point DB0 = 0.
Consider the surplus fund SFt−1 at t− 1. Going one time step further, it is

increased by allocating (1− νt) · ph∗
t to the fund, which is the part of ph∗

t not
declared to the policyholders’ accounts, and decreased by declaring ηt · SFt−1
to policyholder accounts. We thus obtain

SFt = SFt−1 + (1− νt) · ph∗
t − ηt · SFt−1 (2.13)

with known starting point SF0. Together with (2.12) this yields

� (DBt + SFt)=DBt + SFt −DBt−1 − SFt−1 = +ph∗
t − pht − sg∗

t . (2.14)

Crucially, the model-dependent fractions νt and ηt do not appear in this
equation. This evolution equation for DBt + SFt is the starting point for the
subsequent analysis. The sum DBt + SFt is increased at each time step by the
total shared profit, ph∗

t , as opposed to the declaration (2.8), and therefore rep-
resents the statutory reserves of previously shared profit, although the totality
of this sum is not a (single) balance sheet item.

For further reference, we observe that

PH∗ := E
[∑

B−1
t ph∗

t

]
= gph ·E

[∑
B−1
t gs+t

]
(2.15)

= gph ·E
[∑

B−1
t gst

]
+ gph ·E

[∑
B−1
t gs−t

]
= gph · (VIF +PH∗ +TAX )+ gph ·COG.

Here we have used the splitting gst = sht + ph∗
t + taxt, where sht and taxt are

the shareholder and tax cash flows as defined above, to obtain the value of
in-force business

VIF =E

[
T∑
t=1

B−1
t sht

]
=E

[
T∑
t=1

B−1
t
(
gsh · gs+t − gs−t

)]
,
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the cost of guarantees

COG=E

[
T∑
t=1

B−1
t gs−t

]
, (2.16)

and

TAX =E

[
T∑
t=1

B−1
t taxt

]
=E

[
T∑
t=1

B−1
t gtax · gs+t

]
.

2.4. Future discretionary benefits

According to Solvency II (Directive, 2009; Commission, 2014), the best esti-
mate is the expectation of all future cash flows which are related to existing
business. These cash flows are benefits, gbft + gbf≤0

t + pht, premium income,
prt, and costs, cot. The best estimate is thus defined as

BE := E

[
T∑
t=1

B−1
t

(
gbft + gbf≤0

t + pht + cot − prt
)]

. (2.17)

The value of future discretionary benefits is given by

FDB := E

[
T∑
t=1

B−1
t pht

]
(2.18)

and the value of the guaranteed benefits is by definition

GB := BE − FDB=E

[
T∑
t=1

B−1
t

(
gbft + gbf≤0

t + cot − prt
)]

. (2.19)

If actuarial variables are independent from economical ones, then gbft +
gbf≤0

t , cot and prt, and hence GB, may be calculated from a purely deter-
ministic model. This independence would exclude the possibility of dynamic
policyholder behavior (e. g., surrender depends dynamically on a comparison
of declared bonuses and the prevailing yield curve). However, for our results
to hold, we do not need to make this assumption.

Lemma 2.3.

PH∗ = gph
1− gph

(
MV0 −E

[
B−1
T MVT

]
−GB− FDB+COG

)
(2.20)

Proof. We use the no-leakage principle (Hochgerner and Gach 2019,
Prop. 2.2) which states that MV0 =BE +VIF +TAX +E[B−1

T MVT ]. With
the decomposition BE =GB+ FDB and definition (2.15), this implies that
PH∗ = gph(PH∗ +MV0 −GB− FDB−E[B−1

T MVT ]+COG).
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Remark 2.4. The no-leakage principle (Hochgerner and Gach 2019, Prop.
2.2) essentially states that in a risk neutral model, all cash flows have to be
accounted for and all future expected gains or losses have to be reflected in
the initial market value. This is a general statement and uses only no arbitrage
theory and the generally accepted accounting principles which define the cash
flows leading to the quantities BE, VIF and TAX. However, the precise for-
mulation of the accounting principles is not relevant in this context since it
suffices that cash flows are well-defined and that there can be no other cash
flows except those to the policyholder (including costs), to the shareholder and
to the tax office.

3. A REPRESENTATION OF FDB

Equation (2.14) may be rephrased as B−1
t �(DBt + SFt)=B−1

t ph∗
t −B−1

t pht −
B−1
t sg∗

t . By virtue of �(ftgt)= (�ft)gt−1 + ft�gt, we obtain a discrete integra-
tion by parts formula

T∑
t=1

(
B−1
t ph∗

t −B−1
t pht −B−1

t sg∗
t

)
=

T∑
t=1

B−1
t �(DBt + SFt) (3.1)

=
T∑
t=1

�(B−1
t (DBt + SFt))

−
T∑
t=1

(DBt−1 + SFt−1)�B
−1
t

=B−1
T (DBT + SFT )− SF0 +

T∑
t=1

(DBt−1

+ SFt−1)Ft−1B
−1
t

since �B−1
t = −Ft−1B

−1
t . Taking the expectation of this equation and using

(2.20), we find

gph
1− gph

(
MV0 −E[B−1

T MVT ]−GB+COG
)

− 1
1− gph

FDB

=PH∗ − FDB

=E
[
B−1
T (DBT + SFT )

]
− SF0 +E

[
T∑
t=1

(DBt−1 + SFt−1)Ft−1B
−1
t

]

+E

[
T∑
t=1

B−1
t sg∗

t

]
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Because ofMV0 =BV0 +UG0 =LP0 + SF0 +UG0, rearranging yields:

Theorem 3.1.

FDB= SF0 + gph
(
LP0 +UG0 −GB

)
+ gph ·COG− I − II − III , (3.2)

where

I := E
[
B−1
T

(
DBT + SFT + gph

(
UGT +VT +DB≤0

T

) )]
II := (1− gph)E

[
T∑
t=2

B−1
t sg∗

t

]

III := (1− gph)E

[
T∑
t=1

Ft−1B
−1
t (DBt−1 + SFt−1)

]
.

Remark 3.2. The estimation formula (3.2) is derived without any model spe-
cific assumptions and relies therefore only on general accounting rules and the
application of the no-leakage principle in (2.20). The ‘integration by parts’ (3.1)
transfers the problem of calculating E[

∑
B−1
t �(DBt + SFt)] to one of eval-

uating or estimating the ‘boundary term’ E[B−1
T (DBT + SFT )]− SF0 as well

as II and III. The idea is now that these approximations should be feasible
since SF0 is known, E[B

−1
T (DBT + SFT )] is expected to be negligible at run-off

time T, and estimation errors in II and III concern only the surrender gains
from future declared bonuses and the return, due to Ft−1, on DBt−1 + SFt−1,
respectively.

Remark 3.3. The interpretation of the constituents of (3.2) is as follows:

• Term SF0 is not multiplied by gph. This makes sense since the surplus
fund, while not assigned to individual contracts, already belongs to the
policyholder collective (compare Directive, 2009, Article91). There can-
not be a transfer of funds from SFt to the shareholder or tax office. On
the other hand, the return on SFt is shared between all parties, whence
the corresponding deduction in term III .

• Term gph · (LP0 −GB): According to the local GAA principle of
prudentiality (e.g., Bundesgesetz, 2016, 148(1)), the life assurance
provisions are determined with respect to safety margins and
gph · (LP0 −GB) represents the policyholder share of this margin.

• Term gph ·UG0 represents the policyholder share in the unrealized gains
existing in the portfolio at valuation time.

• When the safety margins considered in the calculation of LP0 are not
sufficient (e.g., due to a very low interest rate environment), then cost of
guarantees arise and manifest as shareholder capital injections. When
the environment is such that losses are expected for all future valuation
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dates 1≤ t≤T , then the company’s management could choose to inject
just enough shareholder capital to cover these losses so that COG bal-
ances the right hand side of (3.2) to yield FDB= SF0 − I − II − III .
Balancing the right-hand side of (3.2) would mean to realize hidden
reserves, UGt, before injecting new capital, and while this might be
a realistic assumption, Equation (3.2) holds independently of all such
management rules. Moreover, in practice it is difficult to determine
this minimal amount precisely such that the possibly counter-intuitive
appearance of COG in (3.2) represents the policyholder share of excess
capital injections in gph(LP0 +UG0 −GB+COG).

• Term I is related to the policyholder share of assets that remain in the
company after run-off of the liability portfolio;

• Term II is the tax and shareholder share (since 1− gph= gsh+ gtax) in
the gross surplus due to the fraction of declared future profits,DBt, that
is freed up because of surrender fees.

• Term III captures the tax and shareholder shares in interests on allo-
cated profits as well as on the surplus fund.

4. ASSUMPTIONS

4.1. Liability run-off assumptions

Assumption 4.1. The projection horizon T corresponds to the run-off time of the
liability portfolio such that SFT =LPT =UGT = 0 (cf. Hochgerner and Gach,
2019, A. 3.13).

Assumption 4.2. The expected life assurance provisions E[LPt] decrease geomet-
rically: there is a fixed 1≤ h<T such that E[LPt]= lht LP0 where lht := 2−t/h for
t<T and lhT := 0.

Since the portfolio is in run-off there is a time, h, where E[LPh]=
LP0/2. Continuing from h onwards there has to be a time, h+ h′, such that
E[LPh+h′ ]=E[LPh]/2. Assuming that the company’s business model has been
stable over time, we have time homogeneity in the sense that h′ = h and run-off
of the liability book is geometric. This would not be satisfied if the com-
pany under consideration has taken up business only very recently but for
companies with a longer history we view this as a very good approximation.

Assumption 4.3. In expectation, the total declared bonuses are a fixed fraction
of the life assurance provisions: E[DB≤0

t +DBt]= σE[LPt] for all 0≤ t≤T and
a fixed 0≤ σ ≤ 1. Moreover, E[DB≤0

t ] does not vanish too quickly: E[DBt]≤
σtE[LPt] where σt := tσ/h for t≤ h and σt := σ for t> h.

Assumption 4.4. The relation SF0/LP0 = :ϑ remains constant in expectation:
E[SFt]= ϑE[LPt] for all 0≤ t≤T. (Cf. Hochgerner and Gach, 2019, A. 3.10)
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Assumptions 4.3 and 4.4 are also statements about time homogeneity.
Management rules concerning bonus declarations should remain reasonably
constant in the long run such that σ and ϑ do not vary too strongly. The rel-
evant point in this context is that these quantities should not vary arbitrarily
but follow from target rates set by management rules. Assumption 4.4 is com-
parable to the assumption concerning the ‘annual interest rate’ in Gerstner
et al. (2008, Section 4.2).

4.2. Surrender assumption

Assumption 4.5. The surrender gains, sg∗
t = χtDBt−1, can be estimated on aver-

age with the same factor, γt, as the technical gains in (2.6): E[sg∗
t ]≤E[γtDBt−1].

The factor γt comprises mortality, cost and surrender margins as a fraction
of the full life assurance provision, LPt−1. It is therefore reasonable to expect
that the same factor can be used as an upper bound on the surrender margin
arising from declared bonuses, DBt−1, alone.

4.3. Bonus benefit assumptions

Because of Equation (2.13), the bonus benefit declaration at t can be expressed
as ηt · SFt−1 + νt · ph∗

t = SFt−1 − SFt + ph∗
t . Management rules generally strive

to keep profit declarations stable while, in accordance with Assumptions 4.4
and 4.2, SFt is expected to decrease geometrically over time. In order for SFt to
decrease in expectation, the bonus benefit declarations must be strictly positive
in expectation. To achieve this, a fraction of the profit share, ph∗

t , must also be
declared to policyholders, at least in expectation. We turn this reasoning into
an assumption along all scenarios.

Assumption 4.6. There is a fixed 0< ν < 1 such that the declarations satisfy ηt ·
SFt−1 + νt · ph∗

t ≥ ν · ph∗
t for all 1≤ t≤T.

Assumption 4.7. Assume that μs+1
k is determined by the geometric run-off

Assumption 4.2: μs+1
k = lhs−lhs+1

lhk
.

Notice that, for fixed k, this definition entails
∑T−1

s=k μs+1
k = 1− lhT/lhk = 1;

cf. (2.11). That is, run-off is complete at T .

4.4. Gross surplus assumptions

According to (2.6) and (2.4), the gross surplus is given by

gst = Ft−1(LPt−1 + SFt−1)+ Ft−1UGt−1 − �UGt|Ft−1 +ROAt −ROAt|Ft−1

− (ρt − γt)Vt−1,
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where ρt and γt may, in general, also depend on the stochastic interest rate
curve via dynamic surrender.

For the purpose of estimating terms III and COG in (3.2), we make the fol-
lowing simplifying assumptions. The principle idea behind these assumptions
is that the main source of stochasticity in gst is the forward rate Ft−1 whence
all other quantities are replaced by their expected values. The simplified model
of gst will be denoted by ĝst.

Assumption 4.8. In ĝst, the technical interest rate ρt and the technical gains γt
are deterministic functions of t.

Assumption 4.9. In ĝst, the return ROAt is predictable, that is Ft−1-measurable,
and realizations of unrealized gains are determined by a fixed number 1< d <T:

(1) ROAt −E[ROAt|Ft−1]= 0;
(2) Ft−1UGt−1 −E[�UGt|Ft−1]=P(0, t)−1(ldt−1 − ldt )UG0 where ldt :=

2−t/d for t<T and ldT := 0;

The motivation for item (2) is as follows. The quantity Ft−1UGt−1 −
E[�UGt|Ft−1]= :cf UGt may be viewed as a cash flow due to realizations
of unrealized gains as assets approach their maturities (an example of this
reasoning is contained in Remark 2.1). Indeed, if an asset a has matu-
rity Ta, then we must have UGa

Ta
=MVa

Ta
−BVa

Ta
= 0, and thus, UGa

t tends
to 0 as t approaches Ta. As a proxy for the number d, we take the
duration of the portfolio. Assuming that cash flows, cf UGt , due to real-
izations of unrealized gains are known at valuation time t= 0, we obtain
UG0 =∑T

t=1 P(0, t)cf
UG
t . Setting

∑T
t=1 P(0, t)(Ft−1UGt−1 −E[�UGt|Ft−1])=∑T

t=1 P(0, t)cf
UG
t =UG0 =∑T

t=1 (l
d
t−1 − ldt )UG0 and insisting on equality of

the summands leads to the above assumption.

Assumption 4.10. The coefficient of variation of book valued items is negligible
in comparison to that of market movements. Concretely, the coefficients of vari-
ations of DBt, LPt and SFt are assumed to be negligible in comparison to those
of Ft and B

−1
t .

This assumption reflects the general principle that book values are expected
to be more stable than market values since not all market movements
are reflected in book values but rather lead to unrealized gains or losses
(Dorobantu et al., 2020).

Invoking the above Assumptions 4.2, 4.9, 4.10, 4.8, 4.3 and 4.4, we define

ĝst := Ft−1E[BVt−1]+P(0, t)−1(ldt−1 − ldt )UG0 − ρtVt−1 + γtLPt−1 (4.1)

=
(
Ft−1 +P(0, t)−1 l

d
t−1 − ldt
lht−1

UG0

(1+ ϑ)LP0
− (1− σ )ρt − γt

1+ ϑ

)
(1+ ϑ)lht−1LP0

to be used as a simplified model for gst.

https://doi.org/10.1017/asb.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.16


854 F. GACH AND S. HOCHGERNER

5. ANALYTICAL LOWER AND UPPER BOUNDS FOR FUTURE
DISCRETIONARY BENEFITS

The model dependent quantities in (3.2) are I , II , III and COG. Calculating
these explicitly is just as difficult as calculating the FDB. The purpose of this
section is therefore to derive analytical bounds for these quantities, that is
bounds which can be calculated without a numerical model.

5.1. Estimating I

In accordance with Assumption 4.1, we estimate I by

Î = 0. (5.1)

Compare also with the second statement in Hochgerner and Gach (2019,
Prop. 2.2).

5.2. Estimating II

The expression sg∗
t = χtDBt in Term II corresponds to the fraction ofDBt that

is freed up each year due to policyholder surrender fees and thus contributes
to the company’s surplus as a component of the surrender gains. Assumptions
4.10, 4.5, 4.3 and 4.2 imply that term II can be estimated as II ≤ ÎI with

ÎI := (1− gph)
T∑
t=2

γtσtP(0, t)lht−1LP0. (5.2)

Remark 5.1. The product (1− gph)γtσt is expected to be very small since
this represents the shareholder and tax share of the surrender gains from
future declared bonuses, such that ÎI should be also very small in comparison
toMV0.

5.3. Bounding III from above

The essential idea is to use the recursive relation (2.14) to obtain an upper
bound for DBt + SFt. Equation (2.14) implies

DBt + SFt = SF0 +
t∑

s=1

ph∗
s −

t∑
s=2

(phs + sg∗
s )= SF0 + gph · gs+t

+
t−1∑
s=1

(
gph · gs+s − phs+1 − sg∗

s+1

)
. (5.3)
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Assumptions 4.6 and 4.7 yield

t−1∑
s=1

(
phs+1 + sg∗

s+1

)
=

t−1∑
s=1

s∑
k=1

μs+1
k

(
ηk · SFk−1 + νk · ph∗

k

)

≥ ν

t−1∑
s=1

s∑
k=1

μs+1
k ph∗

k = ν

t−1∑
k=1

t−1∑
s=k

lhs − lhs+1

lhk
ph∗

k

= ν

t−1∑
k=1

lhk − lht
lhk

ph∗
k,

whence (5.3) satisfies

DBt + SFt ≤ SF0 + gph · gs+t + gph ·
t−1∑
s=1

(
1− ν(1− lht−s)

)
gs+s . (5.4)

Thus,

III = (1− gph)
T−1∑
t=0

E
[
B−1
t+1Ft(DBt + SFt)

]
(5.5)

≤ (1− gph)(1−P(0,T))SF0 + (1− gph)gph
T−1∑
t=1

E
[
B−1
t+1Ft · gs+t

]

+ (1− gph)gph
T−1∑
t=2

t−1∑
s=1

(
1− ν(1− lht−s)

)
E
[
B−1
t+1Ft · gs+s

]
.

The expression E[B−1
t+1Ft · gs+s ] gives the fair value of the risk free return on gs+s

in the period from t to t+ 1.

5.4. Bounding III from below

We use again Equation (5.3) and notice that Equations (2.10) and (2.13)
imply

t∑
s=2

(
phs + sg∗

s

)
=

t∑
s=2

s−1∑
k=1

μs
k

(
SFk−1 − SFk + ph∗

k

)

=
t−1∑
k=1

t∑
s=k+1

μs
k

(
SFk−1 − SFk + ph∗

k

)

≤ SF0 − SFt−1 +
t−1∑
k=1

ph∗
k
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since
∑t

s=k+1 μs
k ≤ 1 due to (2.11). Inserting this in (5.3) yields DBt + SFt ≥

ph∗
t + SFt−1 for all t≥ 1, and therefore

III = (1− gph)E

[
T−1∑
t=0

FtB
−1
t+1(DBt + SFt)

]

≥ (1− gph)F0(1+ F0)−1SF0

+ (1− gph)E

[
T−1∑
t=1

FtB
−1
t+1

(
gph · gs+t + SFt−1

)]
.

This estimate does not depend on any of the assumptions in Section 4.
Neglecting, in accordance with Assumption 4.10, the variation of SFt−1 in
comparison to that of Ft−1, and using Assumptions 4.4 and 4.2, yields

III ≥ (1− gph)

(
F0(1+ F0)−1SF0 + ϑ

T−1∑
t=1

(P(0, t)−P(0, t+ 1))lht−1LP0

)

+ gph(1− gph)E
[ T−1∑
t=1

FtB
−1
t+1gs

+
t

]
. (5.6)

5.5. Estimating the return on the deferred caplet

Let us rewrite FtB
−1
t+1gs

+
s = (B−1

t −B−1
t+1)gs

+
s = (D(s, t)−D(s, t+ 1))B−1

s gs+s
and abbreviate the coefficients of variations as

CV1
s,t := CV

[
D(s, t)−D(s, t+ 1)

]
, CV2

s := CV
[
B−1
s gs+s

]
. (5.7)

Since −1≤Corrts := Corr[D(s, t)−D(s, t+ 1),B−1
s gs+s ]≤ 1, it follows that

E
[
(D(s, t)−D(s, t+ 1))B−1

s gs+s
]
=E

[
(D(s, t)−D(s, t+ 1))

]
E
[
B−1
s gs+s

]
+Corrts ·CV1

s,tCV
2
s E
[
(D(s, t)−D(s, t+ 1))

]
E
[
B−1
s gs+s

]
≤
(
P(s, t)−P(s, t+ 1)

)
E
[
B−1
s gs+s

](
1+CV1

s,tCV
2
s

)
and

E
[
(D(s, t)−D(s, t+ 1))B−1

s gs+s
]

≥
(
P(s, t)−P(s, t+ 1)

)
E
[
B−1
s gs+s

](
1−CV1

s,tCV
2
s

)
.
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Hence, (5.6) and (5.5) lead to

(1− gph)

(
F0(1+ F0)−1SF0 + ϑ

T−1∑
t=1

(P(0, t)−P(0, t+ 1))lht−1LP0

)

+ gph(1− gph)
T−1∑
t=1

(
1−CV1

0,t CV
2
t

)(
1−P(t, t+ 1)

)
E
[
B−1
t gs+t

]
≤ III (5.8)

≤ (1− gph)(1−P(0,T))SF0

+ (1− gph)gph
T−1∑
t=1

(
1+CV1

0,t CV
2
t

)(
1−P(t, t+ 1)

)
E
[
B−1
t gs+t

]

+ (1− gph)gph
T−1∑
t=2

t−1∑
s=1

(
1− ν(1− lht−s)

)(
1+CV1

s,t CV
2
s

)
(
P(s, t)−P(s, t+ 1)

)
E
[
B−1
s gs+s

]
.

The term E[B−1
s gs+s ] is the value of the caplet with payoff gs+s at time s.

5.6. Estimating the caplet

Now we replace gss by its simplified model ĝss defined in (4.1). This implies
that the (simplified) caplet can be expressed as

E
[
B−1
s ĝs+s

]
=O+

s (1+ ϑ)lhs−1LP0, (5.9)

where

O±
s := E

[
B−1
s

(
Fs−1 +P(0, s)−1 l

d
s−1 − lds
lhs−1

UG0

(1+ ϑ)LP0
− (1− σ )ρs − γs

1+ ϑ

)±
]

(5.10)
is the value at 0 of the caplet (corresponding to +) or floorlet (correspond-

ing to −) with maturity s− 1 and payment (Fs−1 +P(0, s)
lds−1−lds
lhs−1

UG0
(1+ϑ)LP0

−
(1−σ )ρs−γs

1+ϑ
)± occurring at settlement date s. In the normal model, this value

is given by the Black formula (Black, 1976; Brigo and Mercurio, 2006)

O±
s =P(0, s) ·

(
± (F0

s−1 − ks)�(± κs)+ IVs
√
sφ(± κs)

)
, (5.11)
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where � and φ are the normal cumulative distribution and density functions,
respectively. Further,

κs :=
F0
s−1 − ks
IVs

√
s

,

where F0
s−1 =P(0, s− 1)−P(0, s) is the forward rate prevailing at time 0, the

strike is given by

ks := −P(0, s)−1 l
d
s−1 − lds
lhs−1

UG0

(1+ ϑ)LP0
+ (1− σ )ρs − γs

1+ ϑ
(5.12)

and IVs is the caplet implied volatility known from market data. Using the
normal model at this point is, of course, an additional model choice.

Therefore, estimate (5.8) may be reformulated as

ÎII lb ≤ III ≤ ÎIIub (5.13)

with

ÎII lb := (1− gph)

(
F0(1+ F0)−1SF0 + ϑ

T−1∑
t=1

(P(0, t)−P(0, t+ 1))lht−1LP0

)

+ gph(1− gph)
T−1∑
t=1

(
1−CV1

0,t CV
2
t

)(
1−P(t, t+ 1)

)
O+
t (1+ ϑ)lht−1LP0

(5.14)

ÎIIub := (1− gph)(1−P(0,T))SF0

+ (1− gph)gph
T−1∑
t=1

(
1+CV1

0,t CV
2
t

)(
1−P(t, t+ 1)

)
O+
t (1+ ϑ)lht−1LP0

+ (1− gph)gph
T−1∑
t=2

t−1∑
s=1

(
1− ν(1− lht−s)

)(
1+CV1

s,t CV
2
s

)(
P(s, t)

−P(s, t+ 1)
)
O+
s (1+ ϑ)lhs−1LP0.

5.7. Approximating COG

The shareholder cost of guarantees is defined in (2.16). We use again the
simplified model (4.1) to estimate COG by

ĈOG := E

[
T∑
t=1

B−1
t ĝs−t

]
=

T∑
t=1

O−
t (1+ ϑ)lht−1LP0, (5.15)

where O−
t is the value of the floorlet given in (5.11).
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TABLE 2

LIST OF DATA NEEDED TO CALCULATE L̂B AND ÛB.

(1) the balance sheet items SF0, LP0, UG0, GB;
(2) the gross policyholder participation factor gph;
(3) the initial discount curve P(0,t) and interest rate implied volatilities IVt;
(4) the coefficients of variation CV1

s,t and CV
2
s ;

(5) duration factor d in years;
(6) liability half life h in years;
(7) surplus fund fraction ϑ ;
(8) bonus account factor σ ;
(9) bonus declaration bound ν;
(10) expected technical interest rate ρt;
(11) expected technical gains rate γt;
(12) the information concerning the application of Article 91 as in Remark 5.2;
(13) the projection time T ;

5.8. Estimating FDB

Under the assumptions of Section 4, the terms COG, I , II and III can be esti-
mated by ĈOG, Î = 0, II ≤ ÎI and ÎII lb ≤ III ≤ ÎIIub as defined by (5.15), (5.1),
(5.2) and (5.14), respectively. These estimates yield a lower bound, L̂B, and an
upper bound, ÛB, for FDB:

L̂B≤ FDB≤ ÛB, (5.16)

where

L̂B := SF0 + gph
(
LP0 +UG0 −GB

)
− ÎI − ÎIIub (5.17)

ÛB := SF0 + gph
(
LP0 +UG0 −GB

)
+ gph · ĈOG− ÎII lb. (5.18)

If the difference ÛB− L̂B is sufficiently small (e.g., in comparison to BV0),
then F̂DB= (L̂B+ ÛB)/2 may be used as an estimator for FDB.

These estimation formulas are analytic in the sense that they do not depend
on a numerical model. For the reader’s convenience, we provide a compact list
of data which have to be known or estimated in order to calculate these bounds
in Table 2.

Remark 5.2. The estimations L̂B and ÛB regard the FDB as calculated with
a stochastic cash flow model. The stochastic cash flow model is the numerical
model used to generate cash flows relevant for best estimate calculation as in
Gerstner et al. (2008), Vedani et al. (2017). In those EU member states that
have authorized Article 91(2) of Directive 2009/138/EC (Directive, 2009), the
surplus fund (in fact, the part that is not used to compensate losses) is not
considered as a liability and is therefore not part of the life assurance provision.
Thus, if a company chooses to deduct the part, denoted by SFArt. 91

0 , of the
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TABLE 3

ALLIANZ LEBENSVERSICHERUNGS-AG: PUBLIC DATA FOR 2017–2019,
VALUES ARE IN BILLION EUROS.

Quantity 2017 2018 2019

L0 189.8 201.2 219.6
UG0 41.4 32.8 54.0
SF0 10.4 11.0 11.5
Solvency II value of SF0 10.9 10.5 11.3
GB 154.1 158.8 195.2
FDB 48.6 46.2 47.4

surplus fund that is not used to absorb losses (in the risk neutral average over
all scenarios), this is subtracted from the FDB to yield the future discretionary
benefits as reported to the supervisor and in financial statements, FDBArt. 91 =
FDB− SFArt. 91

0 . Hence, this information has to be known and when relevant
the corresponding quantity has to be subtracted from the bounds L̂B and ÛB.
If this is the case we, choose to approximate SFArt. 91

0 by SF0 itself in order to
remain model free and thus use L̂B′ = L̂B− SF0 and ÛB′ = ÛB− SF0.

6. PUBLIC DATA

6.1. Allianz Lebensversicherungs-AG: publicly reported values

The data in Table 3 are taken from publicly available reports for the account-
ing years 2017–2019. The relevant references are listed in Table 4.

The value of UG0 is already scaled to L0, which is in line with the gen-
eral assumption (2.5). The reason behind this scaling is that according to
Bundesministerium der Finanzen (BMF), 3 only the fraction of the capital
gains, corresponding to the assets scaled to cover the average value of lia-
bilities in the accounting year under consideration, contribute to the gross
surplus.

As for L0, we adjust the local GAAP value of life insurance with profit
participation for necessary regrouping of business, as explained in Allianz
Lebensversicherungs-AG (2017b, p. 52), Allianz Lebensversicherungs-AG
(2018b, p. 46), Allianz Lebensversicherungs-AG (2019b, p. 46) for the different
accounting years 2017–2019.

6.2. Estimating technical gains from market data

For the German life insurance market, technical gains can be determined from
tables 130 and 141 in Bundesanstalt (2019). The relevant items are stated
below:
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TABLE 4

ALLIANZ LEBENSVERSICHERUNGS-AG: REFERENCES FOR THE DATA LISTED IN TABLE 3.

Quantity Source for 2017 Source for 2018 Source for 2019

L0+i Allianz
Lebensversicherungs-AG
(2017b, p. 46, 52)

Allianz
Lebensversicherungs-AG
(2018b, p. 42, 46)

Allianz
Lebensversicherungs-AG
(2019b, p. 42, 46)

UG0+ii Allianz
Lebensversicherungs-AG
(2017a, p. 46)

Allianz
Lebensversicherungs-AG
(2018a, p. 42)

Allianz
Lebensversicherungs-AG
(2019a, p. 46)

SF0+iii Allianz
Lebensversicherungs-AG
(2017a, p. 55)

Allianz
Lebensversicherungs-AG
(2018a, p. 51)

Allianz
Lebensversicherungs-AG
(2019a, p. 55)

Solvency
II value of
SF0+iv

Allianz
Lebensversicherungs-AG
(2017b, p. 52)

Allianz
Lebensversicherungs-AG
(2018b, p. 46)

Allianz
Lebensversicherungs-AG
(2019b, p. 46)

GBv Allianz
Lebensversicherungs-AG
(2017b, p. 46)

Allianz
Lebensversicherungs-AG
(2018b, p. 42)

Allianz
Lebensversicherungs-AG
(2019b, p. 42)

FDBvi Allianz
Lebensversicherungs-AG
(2017b, p. 46)

Allianz
Lebensversicherungs-AG
(2018b, p. 42)

Allianz
Lebensversicherungs-AG
(2019b, p. 42)

iVersicherung mit berschussbeteiligung.
iiStille Reserven der einzubeziehenden Kapitalanlagen.
iiiRckstellung fr Beitragsrckerstattung abzglich festgelegte, aber noch nicht zugeteilte Teile.
ivberschussfonds.
vBester Schtzwert: Wert fr garantierte Leistungen.
viBester Schtzwert: zuknftige berschussbeteiligung.

TABLE 5

BAFIN: PUBLIC DATA FOR 2017–2019, VALUES ARE IN BILLION EUROS.

Quantity Symbol 2017 2018 2019

Gross surplus net of direct policyholder
declarationsi

a 8.3 9.9 11.3

Direct policyholder declarationsii b 2.3 2.1 2.1
Share of gross surplus allocated to the surplus fundiii c 6.4 8.1 9.3
Interest marginiv d 3.5 5.2 6.1
Gross technical provisions for direct businessv e 991.4 1011.1 1069.1
Gross technical provisions of those contracts where
the investment risk is carried by the policyholdervi

f 109.1 101.7 124.8

iÜberschuss.
iiDirektgutschrift.
iiiZuführung zur RfB.
ivKapitalanlagenergebnis 1 b).
vTabelle 130, Versicherungstechnische Rückstellungen brutto, selbst abgeschlossenes Geschäft.
viBilanzposten a) 6 a) brutto: Tabelle 130, Versicherungstechnische Rckstellungen, soweit das Anlagerisiko vom
Versicherungsnehmer getragen wird.
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TABLE 6

VALUES OF γ FOR 2017–2019.

2017 2018 2019

γ̂LP 0.80% 0.74% 0.78%

TABLE 7

VALUES OF ρ̂ FOR 2017–2019.

2017 2018 2019

ρ̂ 2.63% 2.52% 2.38%

We estimate the technical gains relative to the life assurance provisions by
γ̂LP := (a+ b− d)/(e− f ) and find

6.3. Estimating ρ

The average technical interest rate of the Allianz Lebensversicherungs-AG can
be derived from the distribution of life assurance provision over the guaranteed
interest rates, with the following results:

The underlying data can be found in Allianz Lebensversicherungs-AG
(2017a, p. 34), Allianz Lebensversicherungs-AG (2018a, p. 33), and Allianz
Lebensversicherungs-AG (2019a, p. 37). (To obtain the values stated in
Table 7, we have taken the upper end points where technical interest rate
intervals are provided.)

6.4. Calculating gph

The net policyholder shares, nph for the accounting years 2017–2019, can be
obtained via nph= (b+ c)/a from the values collected in the table below (see
Allianz Lebensversicherungs-AG, 2017a, p. 9, Allianz Lebensversicherungs-
AG, 2018a, p. 9, and Allianz Lebensversicherungs-AG, 2019a, p. 8 for
accounting years 2017–2019).

The gross policyholder share, gph, is calculated from nph according to
the relation gph= (1− τ )nph/(1− τ · nph). Applying the German tax rate of
τ = 29.9% (Bundesministerium der Finanzen (BMF) 2019, p. 16) yields the
following table:

For the estimation of Term III , we fix gph= 75.5% as the average of the
values in Table 9.
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TABLE 8

VALUES ARE IN BILLION EUROS.

Quantity Symbol 2017 2018 2019

Gross surplus net of direct policyholder declarationsi a 2.6 3.1 3.6
Share of gross surplus allocated to the surplus fundii b 2.0 2.3 2.9
Direct policyholder declarations iii c 0.1 0.1 0.2

iBruttoüberschuss.
iiZuführung zur RfB.
iiiDirektgutschrift.

TABLE 9

VALUES OF gph FOR 2017–2019.

Quantity 2017 2018 2019

nph 80.8% 77.9% 85.6%
gph 74.7% 71.2% 80.6%

6.5. Discount rates

The following are the publicly available EIOPA discount rates for 2017, 2018
and 2019.

7. ESTIMATION OF F̂DB FROM PUBLIC DATA

We use the publicly available data collected in Section 6 to find the estimation
interval for F̂DB according to (5.16) and compare the result with numerically
calculated FDB contained in the public data.1 In order to calculate L̂B and
ÛB, we have to know or estimate the data listed in Table 2. This is done as
follows:

(1) the balance sheet items SF0, LP0, UG0, GB: These are given in Table 3
with L0 − SF0 =BV0 − SF0 =LP0.

(2) the gross policyholder participation factor gph: We use the average value
of gph= 75.5% given in Table 9. The average is employed since this
factor subsequently remains constant over the full projection time and
should not depend on special circumstances at valuation time.

(3) the initial discount curve P(0,t) and interest rate implied volatilities IVt:
The discount curve is the relevant EIOPA curve as listed in Tables 10, 11
and 12; the implied volatilities are taken from Bloomberg (end of year
2019) for available maturities, linearly interpolated between available
maturities and extrapolated by keeping the last available volatility con-
stant. This leads to IVt = 10+ 50(t− 1)/21 for 1≤ t≤ 21 and IVt = 50

https://doi.org/10.1017/asb.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.16


864 F. GACH AND S. HOCHGERNER

TABLE 10

EURO DISCOUNT RATES AS OF 31.12.2017. THE RATES ARE WITH VOLATILITY ADJUSTMENT.
SOURCE: RISK-FREE.

t P0,t t P0,t t P0,t t P0,t t P0,t t P0,t

1 1.003 11 0.902 21 0.740 31 0.534 41 0.362 51 0.241
2 1.004 12 0.885 22 0.720 32 0.514 42 0.348 52 0.232
3 1.001 13 0.868 23 0.700 33 0.495 43 0.334 53 0.222
4 0.996 14 0.850 24 0.679 34 0.477 44 0.321 54 0.214
5 0.988 15 0.834 25 0.658 35 0.459 45 0.308 55 0.205
6 0.977 16 0.819 26 0.637 36 0.441 46 0.296 56 0.197
7 0.965 17 0.804 27 0.616 37 0.424 47 0.284 57 0.189
8 0.951 18 0.790 28 0.595 38 0.408 48 0.273 58 0.181
9 0.936 19 0.774 29 0.574 39 0.392 49 0.262 59 0.174
10 0.920 20 0.758 30 0.554 40 0.377 50 0.252 60 0.167

TABLE 11

EURO DISCOUNT RATES AS OF 31.12.2018. THE RATES ARE WITH VOLATILITY ADJUSTMENT.
SOURCE: RISK-FREE.

t P0,t t P0,t t P0,t t P0,t t P0,t t P0,t

1 1.001 11 0.890 21 0.722 31 0.525 41 0.360 51 0.244
2 1.001 12 0.872 22 0.703 32 0.506 42 0.347 52 0.234
3 0.998 13 0.853 23 0.684 33 0.488 43 0.334 53 0.225
4 0.992 14 0.835 24 0.664 34 0.470 44 0.321 54 0.217
5 0.983 15 0.818 25 0.644 35 0.453 45 0.309 55 0.208
6 0.972 16 0.803 26 0.623 36 0.436 46 0.297 56 0.200
7 0.958 17 0.788 27 0.603 37 0.420 47 0.285 57 0.192
8 0.943 18 0.773 28 0.583 38 0.405 48 0.274 58 0.185
9 0.926 19 0.757 29 0.563 39 0.389 49 0.264 59 0.178
10 0.908 20 0.740 30 0.544 40 0.375 50 0.254 60 0.171

TABLE 12

EURO DISCOUNT RATES AS OF 31.12.2019. THE RATES ARE WITH VOLATILITY ADJUSTMENT.
SOURCE: RISK-FREE.

t P0,t t P0,t t P0,t t P0,t t P0,t t P0,t

1 1.004 11 0.975 21 0.878 31 0.665 41 0.466 51 0.320
2 1.006 12 0.967 22 0.861 32 0.643 42 0.449 52 0.308
3 1.008 13 0.957 23 0.842 33 0.621 43 0.432 53 0.296
4 1.009 14 0.947 24 0.821 34 0.600 44 0.416 54 0.285
5 1.008 15 0.937 25 0.800 35 0.579 45 0.401 55 0.275
6 1.006 16 0.929 26 0.778 36 0.559 46 0.386 56 0.264
7 1.001 17 0.922 27 0.755 37 0.539 47 0.372 57 0.254
8 0.996 18 0.914 28 0.733 38 0.520 48 0.358 58 0.245
9 0.990 19 0.904 29 0.710 39 0.501 49 0.345 59 0.236
10 0.982 20 0.893 30 0.687 40 0.483 50 0.332 60 0.227
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for t≥ 21, expressed in basis points. Additional sensitivity analysis is
performed.

(4) the coefficients of variation CV1
s,t and CV2

s : Since the product of two
such coefficients is expected to be small, and it is the product that enters
the calculation of L̂B and ÛB, these are estimated as CV1

s,t·CV2
s = 0.

While this parameter choice is certainly very practical, it is not very
well founded from a theoretical perspective, and an estimation from
historical data would be a more justifiable approach.

(5) duration factor d: This factor is known only to the company under
consideration. We set d = 8 and perform sensitivity analysis on this
assumption.

(6) liability half life h: This factor is known only to the company under
consideration. We set h= 10 and perform sensitivity analysis on this
assumption.

(7) surplus fund fraction ϑ : We take ϑ = SF0/LP0, and perform sensitivity
analysis.

(8) bonus account factor σ : We choose σ = 20%, and perform sensitivity
analysis.

(9) bonus declaration lower bound ν: We choose ν = 75%, and perform
sensitivity analysis.

(10) expected technical interest rate ρt: We use the values constant ρ̂ = ρt as
listed in Table 7, and perform sensitivity analysis.

(11) expected technical gains rate γt: We use the constant values γ̂ = γt as
listed in Table 6, and perform sensitivity analysis.

(12) the information concerning the application of Article 91 as in Remark
5.2: the company in question does apply Article 91 as stated in Allianz
Lebensversicherungs-AG (2017b) and seen in Table 3. Hence, we sub-
tract SF0 from the bounds to estimate FDB.

(13) the projection time T : we have chosen T = 50 years to reflect the long
term nature of life insurance.

Remark 7.1. The coefficient of variation CV2
s cannot be estimated from mar-

ket data. To estimate it correctly, one would need a full numerical model
to calculate the variation of gs+s . To avoid the need for a numerical best
estimate model, one may also approximate CV2

s by CV [B−1
s ĝss] using the sim-

plified model (4.1). However, management rules are usually structured so as to
reduce variations in bonus declarations. Hence, we expect that CV2

s should be
sufficiently small so that the product CV1

s,t·CV2
s is negligible.

The results corresponding to these assumptions are referred to as the base
case and are shown in Tables 13 and 14 in absolute value (billion Euros) and in
percent of the initial market valueMV0 =LP0 + SF0 +UG0, respectively. The
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TABLE 13

BASE CASE, DISPLAYED NUMBERS ARE IN BILLION EUROS.

LP0 SF0 UG0 GB FDB F̂DB L̂B ÛB ε δ ÎI ĈOG

2017 179.40 10.40 41.40 154.10 48.60 46.78 43.82 49.73 2.96 −1.82 1.10 0.50
2018 190.20 11.00 32.80 158.80 46.20 45.16 42.24 48.08 2.92 −1.04 1.07 0.85
2019 208.10 11.50 54.00 195.20 47.40 47.44 44.05 50.84 3.40 0.04 1.39 1.50

TABLE 14

BASE CASE, DISPLAYED NUMBERS ARE IN PERCENT OF MV0 =LP0 + SF0 +UG0.

LP0 SF0 UG0 GB FDB F̂DB L̂B ÛB ε δ ÎI ĈOG

2017 77.60 4.50 17.91 66.65 21.02 20.23 18.95 21.51 1.28 −0.79 0.48 0.21
2018 81.28 4.70 14.02 67.86 19.74 19.30 18.05 20.55 1.25 −0.44 0.46 0.36
2019 76.06 4.20 19.74 71.35 17.32 17.34 16.10 18.58 1.24 0.02 0.51 0.55

value FDB is the numerically calculated number as reported by the company,
see Table 3.

We use throughout the notation δ = F̂DB− FDB and ε = (UB−LB)/2,
either as absolute values or relative toMV0, as indicated. The estimation inter-
val is thus given by F̂DB± ε, and the estimation is considered successful if
|δ| < ε such that the true value, FDB, lies within this interval. This holds for
the base case as well as for all sensitivities.

Table 14 shows that the estimation error, δ, compared to the true value is in
all three cases below 1% of the initial market value,MV0. We view this as quite
a remarkable result for an analytically calculated approximation. Further, it
is shown that the influence of ÎI on L̂B is quite small. The estimated cost of
guarantee, ĈOG, increases noticeably from 2018 to 2019. This is due to the
significantly lower interest rate curve, as can be seen by comparing Tables 10,
11 and 12. Generally speaking, one may also remark that the ratio SF0/LP0
has a significant impact on cost of guarantees: if SF0 is large compared to LP0
the basis, BV0 = SF0 +LP0 for the return on assets is comparatively large and
this is advantageous from the company’s point of view since the guaranteed
interest rate acts only on V0 ≤LP0.

Table 15 shows the corresponding results for an implied volatility curve
which has been reduced by 50%. The effect is most pronounced on the esti-
mation of the upper bound, ÛB, since it leads to a reduced cost of guarantees.
Further, we notice that the estimation interval F̂DB± ε shrinks quite strongly.
This makes sense since the estimation of a stochastic quantity should improve
as the underlying volatility is reduced.

The notation �rel in Table 15, as well as below, is understood relative to
the base case and in percent of FDB, that is �relX = 100(X −X0)/FDB where
X and X0 are in billion Euros, and X0 is taken from Table 13. Thus, all the
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TABLE 15

SENSITIVITY: VOLATILITY IS REDUCED BY 50%, IV ′
t = IVt/2. LHS: DISPLAYED NUMBERS ARE

IN PERCENT OF MV0 =LP0 + SF0 +UG0; RHS: DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.16 18.97 21.35 1.19 −0.86 −0.35 0.08 −0.74
2018 19.74 19.18 18.08 20.29 1.10 −0.56 −0.61 0.13 −1.32
2019 17.32 17.16 16.13 18.19 1.03 −0.16 −1.01 0.19 −2.26

TABLE 16

SENSITIVITY: VOLATILITY INCREASED BY 50%, IV ′
t = 1.5 IVt; LHS: DISPLAYED NUMBERS ARE

IN PERCENT OF MV0; RHS: DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.47 18.90 22.05 1.57 −0.55 1.15 −0.25 2.55
2018 19.74 19.62 17.99 21.26 1.64 −0.12 1.62 −0.32 3.59
2019 17.32 17.75 16.02 19.48 1.73 0.43 2.38 −0.44 5.17

TABLE 17

SENSITIVITY: ρ′ = 0.75 ρ; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF
MV0 =LP0 + SF0 +UG0; RHS: DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.02 18.62 21.43 1.41 −1.00 −1.01 −1.60 −0.39
2018 19.74 19.07 17.72 20.41 1.34 −0.68 −1.19 −1.67 −0.69
2019 17.32 17.12 15.84 18.41 1.29 −0.20 −1.24 −1.52 −0.99

sensitivities in Table 15 are at most of the order of 5% FDB and would be
almost 0% when compared to MV0. This observation holds also for all the
other sensitivities considered subsequently.

Table 16 shows the effect of increasing volatility by 50% which leads to a
noticeable increase in ĈOG and therefore of ÛB. Increasing the volatility thus
also implies a larger estimation error ±ε. This effect is most pronounced for
2019 because of the very low interest rate environment.

Table 17 shows that the effect of reducing the (constant) technical interest
rate by 25% is quite small compared to FDB.

Table 18 shows that the effect of increasing the (constant) technical interest
rate by 25% is quite small compared to FDB. However, it can also be seen
that this conclusion depends on the specific circumstances, as the conditions
corresponding to 2018 lead to a slightly more pronounced effect.

Table 19 shows that the effect of reducing the (constant) technical gains rate
by 50% is quite small compared to FDB.

Table 20 shows that the effect of increasing the (constant) technical gains
rate by 50% is quite small compared to FDB.
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TABLE 18

SENSITIVITY: ρ′ = 1.25 ρ; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF
MV0 =LP0 + SF0 +UG0; RHS: DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.57 19.27 21.86 1.30 −0.46 1.58 1.50 1.69
2018 19.74 19.82 18.33 21.30 1.49 0.07 2.62 1.41 3.81
2019 17.32 17.63 16.35 18.91 1.28 0.31 1.69 1.43 1.90

TABLE 19

SENSITIVITY: γ ′ = 0.5 γ ; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF MV0; RHS:
DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.57 19.44 21.71 1.14 −0.45 1.63 2.28 0.97
2018 19.74 19.76 18.49 21.03 1.27 0.02 2.34 2.23 2.45
2019 17.32 17.69 16.56 18.83 1.13 0.37 2.05 2.66 1.41

TABLE 20

SENSITIVITY: γ ′ = 1.5 γ ; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF MV0; RHS:
DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 19.95 18.46 21.45 1.49 −1.07 −1.34 −2.35 −0.31
2018 19.74 19.01 17.58 20.43 1.43 −0.74 −1.47 −2.38 −0.56
2019 17.32 17.03 15.63 18.44 1.40 −0.29 −1.77 −2.70 −0.84

TABLE 21

SENSITIVITY: θ ′ = 0.5 θ ; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF MV0; RHS:
DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.30 18.98 21.61 1.32 −0.72 0.29 0.12 0.49
2018 19.74 19.37 18.08 20.66 1.29 −0.37 0.35 0.15 0.54
2019 17.32 17.37 16.12 18.63 1.25 0.05 0.19 0.08 0.25

Table 21 shows that the effect of reducing θ , estimated by θ = SF0/LP0, by
50% is quite small compared to FDB.

Table 22 shows that the effect of increasing θ , estimated by θ = SF0/LP0,
by 50% is quite small compared to FDB.

Table 23 shows that the effect of reducing σ , estimated by the chosen value
σ = 20%, by 50% is quite small compared to FDB.

Table 24 shows that the effect of increasing σ , estimated by the chosen value
σ = 20%, by 50% is quite small compared to FDB.

https://doi.org/10.1017/asb.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.16


ESTIMATION OF FUTURE DISCRETIONARY BENEFITS 869

TABLE 22

SENSITIVITY: θ ′ = 1.5 θ ; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF MV0; RHS:
DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.17 18.93 21.41 1.24 −0.85 −0.31 −0.12 −0.47
2018 19.74 19.23 18.02 20.44 1.21 −0.51 −0.35 −0.15 −0.52
2019 17.32 17.31 16.08 18.54 1.23 −0.01 −0.17 −0.08 −0.25

TABLE 23

SENSITIVITY: σ ′ = 0.5 σ ; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF MV0; RHS:
DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.48 19.36 21.60 1.12 −0.54 1.15 1.91 0.43
2018 19.74 19.63 18.43 20.83 1.20 −0.12 1.67 1.90 1.43
2019 17.32 17.60 16.48 18.71 1.12 0.27 1.50 2.19 0.76

TABLE 24

SENSITIVITY: σ ′ = 1.5 σ ; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF MV0; RHS:
DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.01 18.55 21.47 1.46 −1.01 −1.09 −1.93 −0.21
2018 19.74 19.06 17.66 20.46 1.40 −0.68 −1.21 −1.97 −0.45
2019 17.32 17.10 15.72 18.49 1.38 −0.22 −1.37 −2.22 −0.55

TABLE 25

SENSITIVITY: ν′ = 0.75 ν; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF MV0; RHS:
DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.10 18.69 21.51 1.41 −0.92 −0.64 −1.26 0.00
2018 19.74 19.19 17.83 20.55 1.36 −0.55 −0.56 −1.13 0.00
2019 17.32 17.23 15.88 18.58 1.35 −0.09 −0.61 −1.27 0.00

Table 25 shows that the effect of decreasing ν, estimated by the chosen value
ν = 75%, by 25% is quite small compared to FDB.

Table 26 shows that the effect of increasing ν, estimated by the chosen value
ν = 75%, by 25% is quite small compared to FDB. The parameter ν does not
enter the estimation formula (5.18) for the upper bound and hence �rel ÛB= 0
in Tables 25 and 26.

Table 27 shows that the effect of increasing d = 8 to d + 2, while leaving
h= 10 unchanged, is quite small compared to FDB.
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TABLE 26

SENSITIVITY: ν′ = 1.25 ν; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF MV0; RHS:
DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.36 19.22 21.51 1.15 −0.66 0.62 1.26 0.00
2018 19.74 19.41 18.27 20.55 1.14 −0.33 0.56 1.13 0.00
2019 17.32 17.45 16.32 18.58 1.13 0.13 0.63 1.27 0.00

TABLE 27

SENSITIVITY: d ′ = 10= h LHS: DISPLAYED NUMBERS ARE IN PERCENT OF MV0; RHS:
DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.26 18.98 21.55 1.28 −0.76 0.12 0.10 0.16
2018 19.74 19.38 18.06 20.71 1.32 −0.36 0.43 0.04 0.82
2019 17.32 17.32 16.12 18.53 1.21 −0.00 −0.11 0.08 −0.32

TABLE 28

SENSITIVITY: h′ = 12= h+ 2; LHS: DISPLAYED NUMBERS ARE IN PERCENT OF MV0; RHS:
DIFFERENCE TO BASE CASE IN PERCENT OF FDB.

FDB F̂DB L̂B ÛB ε δ �rel F̂DB �rel L̂B �rel ÛB

2017 21.02 20.15 18.69 21.61 1.46 −0.87 −0.39 −1.23 0.47
2018 19.74 19.24 17.80 20.68 1.44 −0.51 −0.30 −1.28 0.67
2019 17.32 17.37 15.88 18.85 1.48 0.04 0.17 −1.24 1.56

Table 28 shows that the effect of increasing h= 10 to h+ 2, while leaving
d = 8 unchanged, is quite small compared to FDB.

8. CONCLUSIONS

The bounds (5.17) and (5.18) have been derived in a manner which is quite
basic from the mathematical point of view but seems at the same time adequate
for real world applications. We view the accuracy of F̂DB as demonstrated
by δ = (F̂DB− FDB)/MV0 < 1% and ε = (ÛB− L̂B)/MV0 < 1.5% in all three
cases in Table 14 as quite remarkable.

However, it would certainly also be interesting to further refine the model:
for example one could relax the Assumption 4.9 and attempt to model ROAt,
or also the difference ROAt −E[ROAt|Ft−1] along the lines of Dorobantu
et al. (2020). Moreover, the estimation of the return on the deferred caplet
in Equation (5.8) relies on simply estimating the absolute value of a correla-
tion factor by 1, and this estimate could possibly be improved. At the same
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time, the product, CV1
s,tCV

2
s , of the coefficients of variation as mentioned in

Table 2 has been simply set to 0 in Section 7. The validity of this parameter
choice remains to be analyzed.
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APPENDIX: LIST OF SYMBOLS

Symbol Meaning Definition Reference

A
At set of assets, excluding cash, at

time t
– p. 5

B
Bt bank account at time t Bt =∏t−1

j=0 (1+ Fj) p. 5

BE best estimate BE =E[
∑T

t=1 B
−1
t (gbft + gbf≤0

t +
pht + cot − prt)]

p. 14

BVt book value of the asset portfolio
at time t

BVt =∑
a∈At

BVa
t +Ct p. 5

BVa
t book value of asset a – p. 5

C
Ct amount of cash held by the

company at time t
p. 5

cf at cash flow of asset a at time t – p. 5
χt surrender fee factor at time t – p. 11

COG cost of guarantees COG=E
[∑T

t=1 B
−1
t gs−t

]
p. 14

cot cost cash flows at time t – p. 11

CV1
s,t first coefficient of variation CV1

s,t =CV

[
D(s, t)−D(s, t+ 1)

]
p. 23

CV2
s second coefficient of variation CV2

s =CV

[
B−1
s gs+s

]
p. 23

D
d duration – p. 19
D(t,s) discount factor from s to t< s D(t, s)=∏s−1

j=t (1+ Fj)−1 p. 5
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Symbol Meaning Definition Reference

DBt declared bonuses after valuation
time

DBt =∑
x∈Xt

DBxt p. 9

DBxt declared bonuses after valuation
time of model point x at time t

– p. 9

DB−
t account of declared bonuses

before bonus declaration at time t
– p. 11

DB≤0
t declared bonuses up to and

including valuation time
DB≤0

t =∑
x∈Xt

(DB≤0
t )x p. 9

(DB≤0
t )x declared bonuses up to and

including valuation time of model
point x at time t

– p. 9

�ft increment of ft �ft = ft − ft−1 p. 5

E
ηt fraction of declaration of SFt−1

to DBt
– p. 12

F
Ft simple one year forward rate

between t and t+ 1
– p. 5

FCt free capital at time t FCt =BVt −Lt p. 10

FDB value of future discretionary
benefits

FDB=E
[∑T

t=1 B
−1
t pht

]
p. 14

G
γt fraction of technical gains γt = (tgt + χ

≤0
t DB≤0

t−1 +
χtDBt−1)/LPt−1

p. 11

GB value of guaranteed benefits GB=BE − FDB p. 14
gbft guaranteed benefits at time t gbft =∑

x∈Xt
gbf xt p. 14

gbf xt guaranteed benefits generated by
model point x at time t

– p. 10

gbf≤0
t cash flows due to DB≤0

t−1 gbf≤0
t =∑

x∈Xt
(gbf≤0

t )x p. 9
(gbf≤0

t )x cash flows due to (DB≤0
t−1)

x – p. 9
gph policyholder share in gross

surplus
– p. 12

gst gross surplus at time t gst =ROAt − �Vt − �DB≤0
t −

DB−
t +DBt−1 + prt − gbft −

gbf≤0
t − pht − cot

p. 11

gsh share holder share in gross
surplus

– p. 11

gtax tax paid on gross surplus at time t – p. 11

H
h half life of assurance provisions – p. 17

I
IVs caplet implied volatility – p. 24

K
ks strike – p. 24

L
Lt book value of liabilities at time t Lt =LPt + SFt p. 10
LPt life assurance provision at time t LPt =Vt +DB≤0

t +DBt p. 10
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Symbol Meaning Definition Reference

M
μt
k fraction of bonus declarations

from time k paid out (or kept as
surrender fee) at t

– p. 12

MVt market value of the portfolio at
time t

MVt =∑
a∈At

MVa
t +Ct p. 5

MVa
t market value of asset a at time t – p. 5

N
ν bonus declaration bound – p. 18
νt declaration fraction of ph∗

t – p. 12

O
O+
s value of the caplet with maturity

s− 1
– p. 24

O−
s value of the floorlet with maturity

s− 1
– p. 24

P
P(t,s) value of a zero coupon bond, with

nominal of 1 at s, at time t
P(t, s)=E[D(t, s)] p. 5

PH∗ time value of the accounting flows
ph∗

t

PH∗ =E
[∑T

t=1 B
−1
t ph∗

t

]
p. 14

pht amount of discretionary benefits
paid out at time t

pht =∑
x∈Xt

phxt p. 10

ph∗
t policyholder accounting flow at

time t
ph∗

t = gph · gs+t p. 12

phxt cash flows due to DBxt−1 – p. 9
prt premium payments at time t – p. 11

R
ρt average technical interest rate at

time t− 1
– p. 11

ROAt book value return at time t ROAt =∑
a∈At−1

ROAat
+Ft−1Ct−1

p. 6

ROAat book value return of asset a at
time t

ROAat = cf at + �BVa
t p. 5

S
SFt surplus fund at time t – p. 10
sg∗
t surrender fee at time t – p. 12

sht share holder cash flow at time t sht = gsh · gs+t − gs−t p. 12
T
T projection horizon – p. 17

TAX time value of tax TAX =E
[∑T

t=1 B
−1
t taxt

]
p. 14

taxt tax cash flow at time t taxt = gtax · gs+t p. 12
tgt technical gains at time t – p. 11
θ surplus fund fraction – p. 18

U
UGt unrealized gains at time t UGt =MVt −BVt p. 5
UGa

t unrealized gains of asset a at time
t

UGa
t =MVa

t −BVa
t p. 5
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Symbol Meaning Definition Reference

V
Vt mathematical reserves at time t Vt =∑

x∈Xt
Vx
t p. 10

Vx
t mathematical reserve of model

point x at time t
– p. 9

VIF value of in-force business VIF =E
[∑T

t=1 B
−1
t sht

]
p. 13

X
Xt set of model points active at

time t
– p. 10
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