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In this paper, we develop a general framework for continuous data representations using

positive predicate structures. We first show that basic principles of Σ-definability which are

used to investigate computability, i.e., existence of a universal Σ-predicate and

an algorithmic characterization of Σ-definability hold on all predicate structures without

equality. Then we introduce positive predicate structures and show connections between

these structures and effectively enumerable topological spaces. These links allow us to study

computability over continuous data using logical and topological tools.

1. Introduction

The main goal of the research presented in this paper is to provide a logical framework

for studying computability over discrete and continuous data in a common language. In

order to achieve this goal, we represent data as a structure which might not have effective

equality and employ Σ-definability theory.

Our approach is based on representations of data (discrete or continuous) by a suitable

structure A = 〈A, σ0〉 = 〈A, σP ∪ {�=}〉, where A contains more than one element, and σP
is a finite set of basic predicates. We assume that all predicates Qi ∈ σP and �= occur only

positively in existential and Σ-formulas and do not assume that the language σP contains

equality. We call these structures as predicate structures.

Definability is a very successful framework for generalized computability theory (Mos-

chovakis 1974), descriptive complexity (Ajtai 1989; Immerman 1999), set-theoretic spe-

cifications (Hoges 1993) and databases (Sazonov 2001). One of the most interesting

and practically important types of definability is Σ-definability, which generalizes recurs-

ive enumerability over the natural numbers (Barwise 1975; Ershov 1996; Hoges 1993;

Sazonov 2001). However, the most developed part of definability and Σ-definability theor-

ies deals with abstract structures with equality (i.e., the natural numbers, trees, automata,

etc). In the context, e.g., of continuous data, equality cannot be effectively represented.

It turns out that Σ-definability without equality is rather different from Σ-definability

with equality. It has been shown in Morozov and Korovina (2008) that there is no
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effective procedure which given a Σ-formula with equality defining an open set produces a

Σ-formula without equality defining the same set. Therefore, it is important to investigate

which properties of Σ-definability hold on structures with equality likewise on structures

without equality.

Some of the important properties of Σ-definability with respect to computability, i.e.,

existence of a universal Σ-predicate and an algorithmic characterization of Σ-definability

have been proven over structures with equality (Ershov 1996) and over the real numbers

without equality (Korovina 2003). In Sections 2–5, we show that these properties hold

over every predicate structure. In order to do this, we develop new tools and techniques

to overcome difficulties arising from possible absence of equality and particular properties

of the reals.

In Section 6, we investigate predicate structures with a computably enumerable existen-

tial positive theory called positive predicate structures. We discuss links between positive

predicate structures and effectively enumerable topological spaces which contain effective

ω-continuous domains and computable metric spaces as proper subclasses (Korovina and

Kudinov 2008). We show that a positive predicate structure A can be considered as a to-

pological space
(
A, τAΣ

)
with a base of topology τAΣ consisting of the subsets of A defined

by existential formulas. In this topology, Σ-definability coincides with effective openness.

Therefore, if an effectively enumerable topological space can be structured then we can

use Σ-definability for characterization of effective openness and computability.

On several examples we illustrate how to choose an appropriate finite language in such

way that the τAΣ-topology coincides with the usual topology. In Section 7, we prove that

any computable metric space can be structured.

2. Σ-definability over predicate structures

We start by introducing basic notations and definitions. In this paper, we are working

with an arbitrary structure A = 〈A, σ0〉 = 〈A, σP ∪ {�=}〉, where A contains more than one

element, σP is a finite set of basic predicates.

Example 2.1.

1. The natural numbers: N = 〈N , Q1, Q2, <〉, where Q1 and Q2 have the following

meanings:

N |= Q1(x)↔ x = 0 and N |= Q2(x, y)↔ x = y + 1.

2. The real numbers: R = 〈R,M∗
E,M∗

H,P+
E ,P+

H ,<〉, where M∗
E,M∗

H are interpreted as

the open epigraph and the open hypograph of multiplication respectively, and P+
E ,P+

H

are interpreted as the open epigraph and the open hypograph of addition respectively,

e.g.,

R |= M∗
H (x, y, z)↔ x · y < z and R |= M∗

E(x, y, z)↔ x · y > z;

R |= P+
H (x, y, z)↔ x+ y < z and R |= P+

E (x, y, z)↔ x+ y > z.

3. The complex numbers: C = 〈C, , P1, . . . , P12〉, where the predicates P1, . . . , P12 have the

following meanings for every x, y, z ∈ C.
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The first group formalizes relations between Re and Im of two complex numbers.

C |= P1(x, y)↔ Re (x) < Re (y) and C |= P2(x, y)↔ Im (x) < Im (y);

C |= P3(x, y)↔ Re (x) < Im (y) and C |= P4(x, y)↔ Im (x) < Re (y).

The second group formalizes properties of operations.

C |= P5(x, y, z)↔ Re (x) + Re (y) < Re (z);

C |= P6(x, y, z)↔ Re (x) + Re (y) > Re (z);

C |= P7(x, y, z)↔ Re (x) · Re (y) < Re (z);

C |= P8(x, y, z)↔ Re (x) · Re (y) > Re (z);

C |= P9(x, y, z)↔ Im (x) + Im (y) < Im (z);

C |= P10(x, y, z)↔ Im (x) + Im (y) > Im (z);

C |= P11(x, y, z)↔ Im (x) · Im (y) < Im (z);

C |= P12(x, y, z)↔ Im (x) · Im (y) > Im (z).

4. The function space: C[0, 1] = 〈C[0, 1], P1, . . . , P10〉 where the predicates P1, . . . , P10 have

the following meanings for every f, g ∈ C[0, 1]:

the first group formalizes relations between infimum and supremum of two functions.

C[0, 1] |= P1(f, g)↔ sup(f) < sup(g);

C[0, 1] |= P2(f, g)↔ sup(f) < inf(g);

C[0, 1] |= P3(f, g)↔ sup(f) > inf(g);

C[0, 1] |= P4(f, g)↔ inf(f) > inf(g).

The second group formalizes properties of operations on C[0, 1].

C[0, 1] |= P5(f, g, h)↔ f(x) + g(x) < h(x) for every x ∈ [0, 1];

C[0, 1] |= P6(f, g, h)↔ f(x) · g(x) < h(x) for every x ∈ [0, 1];

C[0, 1] |= P7(f, g, h)↔ f(x) + g(x) > h(x) for every x ∈ [0, 1];

C[0, 1] |= P8(f, g, h)↔ f(x) · g(x) > h(x) for every x ∈ [0, 1].

The third group formalizes relations between functions f and the identity function

λx.x.

C[0, 1] |= P9(f)↔ f > λx.x;

C[0, 1] |= P10(f)↔ f < λx.x.

In order to do any kind of computation or to develop a computability theory, one has

to work within a structure rich enough for information to be coded and stored. For this

purpose we extend the structure A by the set of hereditarily finite sets HF(A).

The idea that the hereditarily finite sets over A form a natural domain for computation

is quite classical and is developed in detail in Barwise (1975) and Ershov (1996) for the

case when σ0 contains equality.
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We construct the set of hereditarily finite sets, HF(A), as follows:

1. HF0(A) � A,

2. HFn+1(A) � Pω(HFn(A))∪HFn(A), where n ∈ ω and for every set B, Pω(B) is the set

of all finite subsets of B,

3. HF(A) �
⋃
n∈ω HFn(A).

We define HF(A) as the following model:

HF(A) � 〈HF(A), σ0 ∪ {U, ∈}〉� 〈HF(A), σ〉 ,

where the binary predicate symbol ∈ has the set-theoretic interpretation. Also we add the

predicate symbol U for urelements (elements from A).

The natural numbers 0, 1, . . . are identified with the (finite) ordinals in HF(A) i.e.,

�, {�}, {�, {�}}, . . ., so in particular, n + 1 = n ∪ {n} and the set ω is a subset of

HF(A). In this paper, we follow the standard agreement that for formula definitions a

countable list of variables {xi}i∈ω is used and a, b, c, x, y, t, z, s denote variables from

this list.

The atomic formulas include U(x), ¬U(x), x �= y, x ∈ s, x�∈s and also, for every Qi ∈ σP
of the arity ni, Qi(y1, . . . , yni ) which has the following interpretation:

HF(A) |= Qi(a1, . . . , ani ) if and only if

A |= Qi(a1, . . . , ani ) and, for every 1 � j � ni, aj ∈ A.

The set of ∃-formulas is the closure of the set of atomic formulas under ∧,∨ and existential

quantifiers.

The set of Δ0-formulas is the closure of the set of atomic formulas under ∧,∨, bounded

quantifiers (∃x ∈ y) and (∀x ∈ y), where (∃x ∈ y) Ψ means the same as ∃x(x ∈ y ∧ Ψ)

and (∀x ∈ y) Ψ as ∀x(x ∈ y → Ψ) where y ranges over sets.

The set of Σ-formulas is the closure of the set of Δ0-formulas under ∧,∨, (∃x ∈ y), (∀x ∈ y)
and ∃x, where y ranges over sets.

Remark 2.1. We recall that all predicates Qi ∈ σP and �= occur only positively in ∃-
formulas and Σ-formulas. Hence, when σP does not contain equality as a basic predicate,

it is not necessary that equality on the urelements (elements from A) is representable by

a ∃-formula or by a Σ-formula.

Let A be a predicate structure. We are interested in Σ-definability of sets on An which

can be considered as generalization of recursive enumerability. The analogy of Σ-definable

and recursively enumerable sets is based on the following fact. Consider the structure

HF = 〈HF(�),∈〉 with the hereditarily finite sets over � as its universe and membership

as its only relation. In HF, the Σ-definable subsets of ω are exactly the recursively

enumerable sets (Barwise 1975).

The notion of Σ-definability has a natural meaning also in the structure HF(A).
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Definition 2.1.

1. A relation B ⊆ HF(A)n is Σ-definable, if there exists a Σ-formula Φ(ā) such that

b̄ ∈ B ↔ HF(A) |= Φ(b̄).

2. A function f : HF(A)n → HF(A)m is Σ-definable, if there exists

a Σ-formula Φ(c̄, d̄) such that

f(ā) = b̄↔ HF(A) |= Φ(ā, b̄).

In a similar way, we introduce the notion of Δ0-definability. Let S(HF(A)) denote the set

of all sets in HF(A) and S ′(HF(A)) denote the set of all nonempty sets in HF(A).

Lemma 2.1.

1. The predicates S(x) � ‘x is a set’, �(x) � ‘ x is the empty set’, n ∈ ω and ¬�(x) �
‘x is not the empty set’ are Δ0-definable.

2. The predicate S ′(x) � ‘x is a nonempty set’ is Δ0-definable.

3. The following predicates are Δ0-definable: x = y, x = y ∩ z, x = y ∪ z, x = 〈y, z〉,
x = y \ z where all variables x, y, z range over sets.

4. If a function f : ωn → ωm is computable then it is Σ-definable.

5. Let Fun(g) mean that g : S ′(HF(A)) → S ′(HF(A)) is a finite function and g ∈
S ′(HF(A)). Then the predicate Fun(g) is Δ0-definable.

6. If HF(A) |= Fun(g) then the domain of g, denoted by dom(g), is Δ0-definable.

7. The set FF � {γ : ω → S ′(HF(A))|γ is a finite function} is Σ-definable.

Proof. Proofs of all properties are straightforward except (4) which can be found in

Ershov (1996).

For finite functions Fun(γ) let us denote γ(x) = y if 〈x, y〉 ∈ γ.

3. Gandy’s theorem and inductive definitions

Let us recall Gandy’s Theorem for HF(A) which will be essentially used in all proofs

of the main results. Let Φ(a1, . . . , an, P ) be a Σ-formula, where P occurs positively in

Φ and the arity of P is equal to n. We think of Φ as defining an effective operator

Γ : P(HF(A)n)→ P(HF(A)n) given by

Γ(Q) = {ā| (HF(A), Q) |= Φ(ā, P )}.

Since the predicate symbol P occurs only positively, we have that the corresponding

operator Γ is monotone, i.e., for all sets B and C , from B ⊆ C follows Γ(B) ⊆ Γ(C),

and continuous with respect to Scott topology on P(HF(A)n) (see, e.g., Ershov (1996)).

By monotonicity, the operator Γ has a least (w.r.t. inclusion) fixed point which can be

described as follows. We start from the empty set and apply operator Γ until we reach

the fixed point:

Γ0 = �, Γn+1 = Γ(Γn), Γγ = ∪n<γΓn,

where γ is a limit ordinal.
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One can easily check that the sets Γn form an increasing chain of sets: Γ0 ⊆ Γ1 ⊆ . . . .
By set-theoretical reasons, there exists the least ordinal γ such that Γ(Γγ) = Γγ . This Γγ is

the least fixed point of the given operator Γ.

Theorem 3.1 (Gandy’s theorem for HF(A)).

Let Γ : P(HF(A)n) → P(HF(A)n) be an effective operator. Then, the least fixed-point of

Γ is Σ-definable and the least ordinal such that Γ(Γγ) = Γγ is less or equal to ω.

Proof. See Korovina (2003).

Definition 3.1. A relation B ⊂ An is called Σ-inductive if it is the least fixed-point of an

effective operator.

Corollary 3.1. Every Σ-inductive relation is Σ-definable.

Proof. See Korovina (2003).

4. Universal Σ-predicate

In order to obtain a result on the existence of a universal Σ-predicate we first prove

Σ-definability of the predicate TR∀ introduced below.

We use a countable list of variables {xi}i∈ω and fix a standard effective Gödel numbering

of formulas of the language σ by finite ordinals which are elements of HF(�). Let �Φ�
denote the code of a formula Φ. It is worth noting that the type of an expression is

effectively recognizable by its code. We also can obtain effectively from the codes of

expressions the codes of their subexpressions and vice versa. Since equality is Δ0-definable

in HF(�), we can use the well-known characterization which states that all effective

procedures over ordinals are Σ-definable. Thus, for example, the following predicates

Codeelem0
(n, j) � n = �U(xj)�,

Codeelemi (n, j1, . . . , jni ) � n = �Qi(xj1 , . . . , xjni )�,
Code∧(n, i, j) � n = �Φ ∧Ψ� ∧ i = �Φ� ∧ j = �Ψ�

are Σ-definable. Hence, in Σ-formulas we can use such predicates.

Let FV (Φ) denote the set of variables with free occurrences in Φ and FF = {γ : ω →
S ′(HF(A))|γ is a finite function} as defined in Lemma 1.

Proposition 4.1. For every A of cardinality > 1 there exists a Σ-definable set

TR∀ ⊆ ω × FF

with the following properties.

1. Let n be the Gödel number of a Σ-formula Φ and f : FV (Φ) → HF(A) be

an assignment function such that HF(A) |= Φ[f]. We define the finite function

γ : ω → S ′(HF(A)) as follows γ(i) = {f(xi)} for all i : xi ∈ dom(f). Then 〈n, γ〉 ∈ TR∀.
2. If 〈n, γ〉 ∈ TR∀ then n is the Gödel number of a Σ-formula Φ and γ : ω → S ′(HF(A))

is a finite function such that, for every assignment function f : FV (Φ)→ HF(A) with

the property f(xi) ∈ γ(i), HF(A) |= Φ[f].
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Proof. The predicate TR∀ is the least fixed point of the operator defined by the following

formula:

Ψ(n, γ, P ) � Gödel(n) ∧ Correct(n, γ) ∧ (Ψelem(n, γ) ∨Ψ∧(n, γ, P )∨
Ψ∨(n, γ, P ) ∨Ψ∃∈(n, γ, P ) ∨Ψ∀∈(n, γ, P ) ∨Ψ∃((n, γ, P ))) ,

where n, γ are free variables and P is a new predicate symbol. The formula Ψ(n, γ, P )

represents the inductive definition of the predicate TR∀ where the immediate subformulas

have the following meaning. The first two formulas recognize the properties of n and

γ. The formula Gödel(n) represents that n is the Gödel number of a Σ-formula Φ; the

formula Correct(n, γ) represents that γ is a finite function from ω to S ′(HF(A)) such that

i ∈ dom(γ) if and only if xi ∈ FV (Φ). The formula Ψelem(n, γ) defines the basis of the

inductive definition and captures the cases when n is the Gödel number of an atomic

formula. The remaining formulas represent inductive steps for conjunctions, disjunctions,

bounded quantifiers, and existential quantifiers. By Lemma 2.1, the formulas Gödel(n)

and Correct(n, γ) are equivalent to Σ-formulas. We illustrate constructions of the rest of

the formulas. The basis of the inductive definition is given by the following formula:

Ψelem(n, γ) � ΨU(n, γ) ∨Ψ¬U(n, γ) ∨Ψ∈(n, γ)∨

Ψ�∈(n, γ) ∨Ψ �=(n, γ) ∨
∨
Qi∈σP

ΨQi(n, γ),

where the subformulas can be done in the following way:

ΨU(n, γ) � ∃i
(
n = �U(xi)� ∧ ∀z ∈ γ(i)U(z)

)
;

Ψ¬U(n, γ) � ∃i
(
n = �¬U(xi)� ∧ ∀z ∈ γ(i)¬U(z)

)
;

Ψ∈(n, γ) � ∃i∃j∃a(n = �xi ∈ xj� ∧ S ′(a) ∧ γ(j) = {a} ∧ γ(i) ⊆ a);
Ψ�∈(n, γ) � ∃i∃j(n = �xi �∈ xj� ∧ ∃a(S ′(a) ∧ γ(j) = {a} ∧ γ(i) ∩ a = �)

∨ ∀z ∈ γ(j)U(z) ∨ ∀z ∈ γ(j) �(z));

Ψ �=(n, γ) � ∃i∃j(n = �xi �= xj� ∧ ∀z ∈ γ(i)∀k ∈ γ(j)(U(z) ∧U(k) ∧ z �= k));

ΨQi (n, γ) � ∃j1 . . . ∃jni (n = �Qi(xj1 , . . . , xjni )�∀zj ∈ γ(j1) . . .
∀zjni ∈ γ(jn1

)Qi(zj1 , . . . , zjni ), for every basic predicate Qi ∈ σP .

Now, we construct the formulas for the inductive steps. For conjunctions and disjunc-

tions:

Ψ∧(n, γ, P ) � ∃m∃k
(
n = �Φ ∧Ψ� ∧ m = �Φ� ∧ k = �Ψ� ∧ P (m, γ) ∧ P (k, γ)

)
;

Ψ∨(n, γ, P ) � ∃m∃k
(
n = �Φ ∨Ψ� ∧ m = �Φ� ∧ k = �Ψ� ∧ (P (m, γ) ∨ P (k, γ))

)
.
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For bounded quantifiers:

Ψ∃∈(n, γ, P ) � ∃i∃j∃a∃v∃γ∗∃m
(
n = �∃xi ∈ xj Φ� ∧ m = �Φ� ∧ j ∈ dom(γ)∧

S ′(a) ∧ γ(j) = {a} ∧ γ ∪ {〈i, v〉} = γ∗ ∧ i /∈ dom(γ)∧
P (m, γ∗) ∧ v ⊆ a);

Ψ∀∈(n, γ, P ) � ∃i∃j∃a∃m(n = �∀xi ∈ xjΦ� ∧ m = �Φ� ∧ j ∈ dom(γ) ∧ (∀z ∈ γ(j)
U(z) ∨ ∀z ∈ γ(j) �(z) ∨ (S ′(a) ∧ γ(j) = {a} ∧ i /∈ dom(γ)

∧ ∀b ∈ a∃γ∗(i ∈ dom(γ∗) ∧ γ ⊆ γ∗ ∧ b ∈ γ∗(i) ∧ P (m, γ∗))))).

The formula Ψ∃(n, γ, P ) can be given as follows:

Ψ∃(n, γ, P ) � ∃i∃m∃v∃w
(
n = �∃xi Φ� ∧ m = �Φ� ∧ i�∈dom(γ)∧

S ′(v) ∧ w = γ ∪ {〈i, v〉} ∧ P (m,w)
)
.

From Gandy’s theorem (c.f. Section 3), it follows that the least fixed point TR∀ of the

effective operator defined by Ψ is Σ-definable.

Theorem 4.1. For every n ∈ ω there exists a Σ-formula Univn+1(m, x0, . . . , xn) such that for

any Σ-formula Φ(x0, . . . , xn)

HF(A) |= Φ(r0, . . . , rn)↔ Univn+1(�Φ�, r0, . . . , rn).

Proof. It is easy to see that the following formula defines a universal Σ-predicate for

the Σ-formulas of arity n+ 1.

Univn+1(m, x0, . . . , xn) � ∃y0 . . . ∃yn∃γ(S ′(y0) ∧ · · · ∧ S ′(yn)∧

γ = {〈0, y0〉 , . . . , 〈n, yn〉} ∧ TR∀(m, γ) ∧
∧

0�i�n

xi ∈ yi).

5. Semantic characterization of Σ-definability

In this section, we prove that a relation over A is Σ-definable if and only if it is definable

by a disjunction of a recursively enumerable set of existential formulas in the language

σ0.

Definition 5.1. A partial finite injective function from X to A is called an assignment.

Definition 5.2. Let a set of distinct variables X = {xi|i ∈ ω} and an assignment f : X → A

be given. For z ∈ HF(X), define sp(z) and [z]f as follows:

1. if z is a variable then sp(z) = {z} and [z]f = f(z); if f(z) is undefined then [z]f is

undefined;

2. if z is the set {z1, . . . , zk} then sp(z) =
⋃
i�k sp(zi) and

[z]f = {[z1]f, . . . , [zk]f}; if, for some zi, [zi]f is undefined then [z]f is undefined;

3. if z = � then sp(z) = � and [z]f = �.

https://doi.org/10.1017/S0960129513000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000315


Positive predicate structures for continuous data 1677

Definition 5.3. We say that z ∈ HF(X) structurally represents y ∈ HF(A) if [z]f = y for

an assignment f : X → A.

In the proposition below we use the language σ∗0 � σ0 ∪ {�,⊥}, where � represents a

logical truth which can be defined by the formula ∃x∃y(x �= y) and ⊥ represents a logical

false which can be defined by the formula ∃x(x �= x).

Proposition 5.1. Suppose ϕ is a Δ0-formula with s free variables and y1, . . . , ys are elements

of HF(A). Let z1, . . . , zs ∈ HF(X) structurally represent y1, . . . , ys with the same assignment

f : X → A. Then, we can effectively construct a quantifier-free formula ψ in the language

σ∗0 such that FV (ψ) ⊆ sp({z1, . . . , zs}) and

A |= ψ[f]↔ HF(A) |= ϕ([z1]f, . . . , [zs]f).

The choice of ψ depends on the tuple z̄ = (z1, . . . , zs) and ϕ, and does not depend on f.

Proof. In order to simplify the proof, without loss of generality, we assume that every

formula has subformulas distinguishing free variables. Using induction on the structure

of a Δ0-formula ϕ, we show how to obtain a required formula ψ.

Atomic case.

1. If ϕ(̄t) � Q(̄t) for Q ∈ σP and z1, . . . , zn represent y1, . . . , yn ∈ HF(A) then ψ � Q(z̄). If

ϕ(t1, t2) � t1 �= t2, and z1, z2 structurally represent y1, y2 ∈ HF(A) then ψ � z1 �= z2. The

subcase ϕ(t) � U(t) and ϕ(t) � ¬U(t) can be considered by analogy.

2. Suppose ϕ(t1, t2) � t1 ∈ t2 and z1, z2 structurally represent y1, y2 ∈ HF(A). If z1 ∈ z2
then ψ � � else ψ � ⊥. The subcase ϕ(y1, y2) � y1 �∈ y2 can be considered by analogy.

Disjunction and Conjunction. If ϕ � ϕ1τϕ2, where τ is ∨ or ∧, and ψ1, ψ2 are already

constructed for ϕ1, ϕ2 then ψ � ψ1τψ2.

Bounded quantifier cases.

Suppose ϕ(̄t) � (∃v ∈ tj)ν(v, t̄) and zj structurally represents yj ∈ HF(A). If zj ∈ X, then

the formula ϕ is false, so ψ � ⊥. Suppose zj = {z1
j , . . . , z

k
j }. By inductive assumption, for

every Δ0-formula ν(zij , t̄), where 1 � i � k, there exists a required ψi. Put ψ �
∨

1�i�k ψi.

For the subcase ϕ(̄t) � (∀v ∈ tj)ν(v, t̄), we put ψ �
∧

1�i�k ψi.

Theorem 5.1. A set B ⊆ An is Σ-definable if and only if there exists an effective sequence

of existential formulas {ϕs(x̄)}s∈ω in the language σ0 such that

(x1, . . . , xn) ∈ B ↔ A |=
∨
s∈ω

ϕs(x1, . . . , xn).

Proof. →) Without loss of generality suppose B is Σ-definable by the formula ∃tψ(t, x̄).

For every y ∈ HF(A) there exist z ∈ HF(X) which structurally represents y and we can

effectively enumerate HF(X). Using Proposition 5.1 we effectively construct the set of

formulas ψj(x̄j , x̄) such that

HF(A) |= ∃t ψ(t, x̄)↔ A |=
∨
j∈ω
∃x̄j ψj(x̄j , x̄).

←) Let B ⊂ An be definable by
∨
s∈ω ϕs(x1, . . . , xn). By Theorem 4.1, there exists a universal

Σ-predicate Univn(m, x̄) for Σ formulas with variables from {x1, . . . , xn}. Let the computable
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function f : ω → ω enumerate the Gödel numbers of the formulas ϕi, i ∈ ω. It is easy to

see that the following formula is required.

Φ(x̄) � ∃i Univn(f(i), x̄).

It is worth noting that both of the directions of this characterization are important.

The right-to-left direction reveals an algorithmic property of Σ-definability, i.e., gives us

an effective procedure which generates existential formulas approximating Σ-relations.

The converse direction provides tools for descriptions of the results of effective infinite

approximating processes by finite formulas.

6. Positive predicate structures and effectively enumerable topological spaces

In this section, we discuss links between predicate structures and topological spaces. Let

us consider a predicate structure A with the topology τAΣ formed by a base which is

the set of subsets definable by existential formulas in the language σ0. We assume that

the numbering of the base is induced by the Gödel numbering of the ∃-formulas in the

language σ0. The following proposition shows that the topology τAΣ is natural with respect

to Σ-definability.

Theorem 6.1. Every subset of A is effectively open in the topology τAΣ if and only if it is

Σ-definable.

Proof. The claim follows from Theorem 5.1.

Below, we illustrate how to pick an appropriate finite language in such way that τAΣ
coincides with the usual topology. First we consider the structures from Example 2.1.

Proposition 6.1.

1. For the structure N = 〈N , Q1, Q2, <〉 the topology τNΣ coincides with the discrete

topology.

2. For the structure R =
〈
R,M∗

E,M∗
H,P+

E ,P+
H <

〉
the topology τRΣ coincides with the

real line topology.

3. For the structure C = 〈C, , P1, . . . , P12〉 the topology τCΣ coincides with the plane

topology.

4. For the structure C[0, 1] = (C[0, 1], P1, . . . , P10), the topology τC[0,1]
Σ coincides with the

topology τ|| || induced by the supremum norm.

Proof. The first three claims are straightforward. Let us prove the last statement. ⊆). It is

easy to see that {x̄|HF(C[0, 1]) |= Pi(x̄)} ∈ τ|| || for every 1 � i � 10. Since
(
C[0, 1], d|| ||

)m
is a metric space, a projection of an open set is again open. So, {x̄|HF(C[0, 1]) |=
Q(x̄), Q is a ∃-formula} ∈ τ|| ||. By induction, τC[0,1]

Σ ⊆ τ|| ||.
⊇). First, recall that a base of the topology τ|| || is the following:

τ∗|| || = {{f| ||f − pi|| < ε}|p is a polynomial with rational coefficients, ε ∈ Q}.
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Since the set {p| p is a polynomial with rational coefficients} is dense in C[0, 1], it is suffi-

cient to show that f > p and f < p are ∃-definable. This claim follows from the following

equivalences:

f > 0↔ f + f > f;

f > 1↔ ∃g (f · g > g ∧ g > 0) ;

f < 0↔ f + f < f;

f < 1↔ ∃g (f < 0 ∨ g > 0 ∧ f · g < g) ;

f > x2 ↔ ∃g (g > λx.x ∧ f > g · g) ;

f < x2 ↔ ∃g (g < λx.x ∧ f < g · g) ;

f >
x

n
↔ ∃g (g > λx.x ∧ (f + · · ·+ f) > g) for n ∈ ω;

f <
x

n
↔ ∃g (g < λx.x ∧ (f + · · ·+ f) < g) for n ∈ ω.

So, the set {f| ||f − p|| < ε, p is a polynomial with rational coefficients, ε ∈ Q} is ∃-
definable for every considered p and ε. Therefore τCΣ ⊇ τ|| ||.

Now, we recall the definition of effectively enumerable topological spaces which contain

computable metric spaces and ω-continuous domains as proper subclasses (Korovina and

Kudinov 2008). Let (X, τ, ν) be a topological space, where X is a nonempty set, τ∗ ⊆ 2X

is a base of the topology τ and ν : ω → τ∗ is a numbering.

Definition 6.1 (Korovina and Kudinov 2008). A topological space (X, τ, ν) is effectively

enumerable if the following conditions hold.

1. There exists a computable function g : ω × ω × ω → ω such that

ν(i) ∩ ν(j) =
⋃
n∈ω

ν(g(i, j, n)).

2. The set {i|ν(i) �= �} is computably enumerable.

Definition 6.2 (Korovina and Kudinov 2008). An effectively enumerable topological space

(X, τ, ν) is strongly effectively enumerable if there exists a computable function h : ω×ω →
ω such that

X \ cl(ν(i)) =
⋃
j∈ω

ν(h(i, j)).

It is worth noting that the computable metric space are strongly effectively enumerable

(Korovina and Kudinov 2008).

Now we consider a predicate structure A. Let us denote

Th
pos
∃ (A) = {ϕ|ϕ is a ∃-sentence such that A |= ϕ}.

In fact, it is existential positive theory of A.

The following proposition shows a connection between predicate structures and effect-

ively enumerable topological spaces.
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Theorem 6.2 (Korovina and Kudinov 2008). For every predicate structure A the following

properties hold.

1. The topological space
(
A, τAΣ

)
is effectively enumerable if and only if Thpos∃ (A) is

computable enumerable.

2. If Thpos∃ (A) is decidable then
(
A, τAΣ

)
is strongly effectively enumerable.

Proof. The claim is straightforward from the definition of effectively enumerable topo-

logical space.

The Theorem 6.2 reveals the great importance of the predicate structures with computably

enumerable Thpos∃ (A). So, we would like to distinguish these structures as a special class.

Definition 6.3. A predicate structure A = 〈A, σ0〉 is called positive predicate structure if

Th
pos
∃ (A) is computably enumerable.

Remark 6.1. It is worth noting that the structures from Example 2.1 are positive predicate

structures.

Corollary 6.1. A predicate structure A is positive predicate structure if and only if the

corresponding topological space (A, τAΣ ) is effectively enumerable.

Proof. The claim follows from Theorem 6.2.

Definition 6.4. We say that an effectively enumerable space (X, τ, ν) can be structured if

there exists a finite predicate language σ such that for the predicate structure 〈X, σ〉 the

following properties hold:

1. for every P ∈ σ the interpretation of P on X is effectively open;

2. τ coincides with τXΣ and

3. the sets ν(n) are uniformly Σ-definable.

Definition 6.5. We say that an effectively enumerable space (X, τ, ν) can be semi-structured

if there exists a finite predicate language σ such that for the predicate structure

〈X �N , σ ∪ {Q1, Q2, R,N, P }〉 , the following properties hold:

1. Q1 and Q2 have the same interpretation as in Example 2.1, R is interpreted as X and

N is interpreted as N , the interpretation of P is an effectively open set;

2. for every P ∈ σ the interpretation of P on X is effectively open;

3. τ coincides with the restriction of τMΣ on X and

4. the sets ν(n) are uniformly Σ-definable.

The spaces R, C[0, 1] and many others (see Example 2.1) can be structured. It is worth

noting that any effectively enumerable space (X, τ, ν) can be semi-structured, we just put

P (x, n) ↔ R(x) ∧N(n) ∧ x ∈ ν(n).

On the other hand, the following example illustrates that there are non-structured effect-

ively enumerable spaces.

Example 6.1 (Non-structured space). Let us consider N with the base topology, consisting

of cofinite subsets. It is easy to see that this effectively enumerable space is non-structured.
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Indeed, any open predicate P of arity k on it should contain the power (ω \m)k for some

fixed m ∈ ω. By monotonicity and induction, any ∃-definable relation should contain the

corresponding power of ω \ m, so, for a finite language there are only finite number of

∃-definable subsets of N , contrary to an infinite topology base.

7. Positive predicate structures for computable metric spaces

In this section, we show that computable metric spaces can be structured. For the definition

of computable metric space we refer to Moschovakis (1976) and Weihrauch (2000). Let

M = (M, b,B, d) be a computable metric space, where B = {bi|i ∈ ω} ⊆ M is countable

and dense in M, b : ω → B is a numbering, and d : M ×M → R is a distance function

computable on (B, ν).

We define the corresponding predicate structure

M = 〈M,σP 〉 = 〈M,R0, S , D1, D2, D3〉 ,

where the predicates have the following meanings:

D1(x, y, u, v) � d(x, y) < d(u, v),

D2(y, z, v) � d(y, z)− d(y, v) < 1,

D3(y, z, t, w, s) � 2 (d(y, z)− d(y, v)) < d(t, w)− d(t, s),
R0(x, y, z, v) � 2d(x, b0) < d(y, z)− d(y, z),

S(x, y, z, v, a, b, c, d) �
∨
n∈ω

(Rn(x, y, z, v) ∧ Rn+1(a, b, c, d)),

where,

Rn(x, y, z, v) � 2d(x, bn) < d(y, z)− d(y, z) ∧ (∀i < n) 2d(x, bi) > d(y, z)− d(y, v).

Theorem 7.1. Let Mn be a computable metric space and M be the corresponding predicate

structure defined above. Then, the topology τMΣ coincides with the topology τd induced

by the metric in an effective way that means that the lists of effectively open sets coincide

and one can compute corresponding indices from each other.

Proof. ⊆). By definition, the predicates S, D1, D2, D3, and R0 define sets which are open

in the product topology. Since M is a metric space, a projection of an open set is again

open. So, by induction, every ∃-definable subset of M belongs to τd.

⊇). It is sufficient to show that the balls B(br, a), where br ∈ B and a ∈ Q+, are uniformly

Σ-definable.

First we show by induction on n, that Rn are uniformly Σ-definable.

n = 0. By the definition R0 ∈ σP .

Inductive step: n → n + 1. Since by definition Rn ∩ Rm = � for n �= m, we can Σ-define

Rn+1 as follows:

Rn+1(a, b, c, d) � ∃x∃y∃z∃v (Rn(x, y, z, v) ∧ S(x, y, z, v, a, b, c, d)) .
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The next step is to define predicates Ams with the following properties: for every m ∈ ω
and s ∈ ω, the set {x|HF(M) |= Ams (x)} is a subset of the ball B(bs,

1
2m

), and for all x ∈M
and m ∈ ω, there exists s ∈ ω such that HF(M) |= Ams (x).

Put

A1
s (x) � ∃y∃z∃v(Rs(x, y, z, v) ∧ d(y, z)− d(y, v) < 1);

Am+1
s (x) � ∃y∃z∃v∃s1 . . . ∃sm∃w1 . . . ∃wm∃t1 . . . ∃tm(Rs(x, y, z, v))∧

2(d(y, z)− d(y, v)) < d(t1, w1)− d(t1, s1)∧
d(tm, wm)− d(tm, sm) < 1∧∧
1�i<m−1

2(d(ti, wi)− d(ti, si)) < d(ti+1, wi+1)− d(ti+1, si+1).

It is easy to see that Aji is equivalent to a Σ-formula in the language σP . By definition, the

first property holds. We prove the second one. Let x ∈ M and m ∈ ω. We find the first

s ∈ ω such that 2d(x, bs) < d(ym, zm) < 1
2m

, where ym, zm, vm are inductively constructed as

follows:

0 < d(y0, z0)− d(y0, v0) < 1;

0 < d(y1, z1)− d(y1, v1) <
d(y0, z0)− d(y0, v0)

2
;

0 < d(yi+1, zi+1)− d(yi+1, vi+1) <
d(yi, zi)− d(yi, vi)

2
.

In order to avoid the case d(x, bi) = d(ym, zm) for i < s, we choose v ∈ B such that for

all i < s we have 2d(x, bi) > d(ym, zm) − d(ym, v) and 2d(x, bs) < d(ym, zm) − d(ym, v). Then

HF(M) |= Rs(x, ym, zm, v) and d(ym, zm) < 1
2m

. So x ∈ Ams . Now, we are ready to prove that

the balls B(br, a) are Σ-definable. For this we show the following equivalence:

d(x, br) < a↔ HF(M) |= ∃s∃m
(
d(br, bs) < a− 1

2m
∧ x ∈ Ams

)
.

←). If x ∈ Ams then as we have shown above d(x, bs) <
1
m
. So d(br, x) < d(br, bs)+d(x, bs) <

a.

→). Since a − d(x, br) > 0, we can find N ∈ ω such that a − d(x, br) > 1
2N

. We already

proved that for x and N there exists s such that x ∈ AN+1
s . So d(x, bs) <

1
2N+1 . Finally,

d(br, bs) < d(br, x) + d(x, bs) < a− 1
2N+1 .

Therefore, the equivalence has been shown which completes the proof of the theorem.

Corollary 7.1. Every computable metric space can be structured.

Proof. The claim follows from Theorem 7.1 and Korovina and Kudinov (2008).

Corollary 7.2. If M is a computable metric space then Thpos∃ (M) is computably enumerable.

Therefore, if M is a computable metric space then the corresponding M is a positive

predicate structure.

Proof. The claim follows from Theorem 7.1 and Korovina and Kudinov (2008).
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Corollary 7.3. Every subset of a computable metric space is effectively open if and only

if it is Σ-definable.

Proof. The claim follows from Theorems 5.1 and 7.1.

Corollary 7.4. Every function over a computable metric space is computable if and only

if it is effectively continuous in τMΣ topology.

Proof. The claim follows from Theorem 7.1 and Moschovakis (1976) and Weihrauch

(1993).

Corollary 7.5. A total function F : M → R is computable if and only if the epigraph and

the hypograph are Σ-definable.

Proof. The claim follows from Theorem 7.1 and Korovina and Kudinov (2008).

8. Conclusion

A finite language is preferable in many applications where effective representations of

continuous data are required. The main challenge in this work is to keep the language

finite yet powerful to express computability. The obtained results show that computable

metric spaces admit structurizations.
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