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Abstract
Let P(ord π = ord π ′) be the probability that two independent, uniformly random permutations of [n]
have the same order. Answering a question of Thibault Godin, we prove that P(ord π = ord π ′)= n−2+o(1)

and that P(ord π = ord π ′)� 1
2n

−2 lg* n for infinitely many n. (Here lg* n is the height of the tallest tower
of twos that is less than or equal to n.)

2020 MSC Code: 60C05

1. Introduction
1.1 The problem
Let π be a random permutation of [n]. Write ord π for the order of a permutation π , i.e. the least
common multiple of its cycle lengths. The distribution of ord π is an object of basic interest in
probabilistic group theory. For example, a beautiful theorem of Erdős and Turán [3] asserts that
log ord π is asymptotically normal with mean log2 n/2 and variance log3 n/3. Manymore features
of the distribution of ord π are visible through the lens of the theory of logarithmic combinatorial
structures: see for example the book of Arratia, Barbour and Tavaré [1]. For example, the largest
cycles of π , which determine the magnitude of ord π and its divisibility by large primes, follow a
Poisson–Dirichlet law.

Amore subtle feature of the distribution of ord π is its collision entropy. Recall that the collision
entropy or Rényi 2-entropy of a random variable X is defined by

H2(X)= − log P(X = X′),

where X′ is an independent copy of X. In other words, for X = ord π , the problem is to estimate

e−H2(ord π) = P(ord π = ord π ′).

This problem was highlighted recently by Godin [7] in connection with automaton groups. We
are grateful to Sergey Dovgal for bringing this problem to our attention.

Let type π denote the cycle type of π , i.e. the multi-set of its cycle lengths. Since permutations
with the same type have the same order, it is clear that

P(ord π = ord π ′)� P( type π = type π ′).
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Using methods of analytic combinatorics, Flajolet, Fusy, Gourdon, Panario and Pouyanne [5,
Proposition 4] proved that

P(type π = type π ′)= c0
n2

+O
(

1
n3

)
, c0 =

∏
k�1

I
(
1
k2

)
≈ 4.26,

where I(z)= ∑
n�0 zn/n!2. Based on this lower bound and computations, Godin conjectured that

lim
n→∞ n2P(ord π = ord π ′)=K (1.1)

for some constant K with c0 �K � 12 (see [7, Conjecture 15]).
It follows from the Erdős–Turán limit law for log ord π that P(ord π = ord π ′)= o(1), but

establishing any explicit rate of decay is already non-trivial. A crude bound was established in
an earlier version of this paper and in the fifth author’s thesis [16]. Briefly, using estimates for
the probability that ord π is coprime to a given integer, one can prove that with high probability
there is a prime in the interval [ log n, 2 log n] that divides exactly one of ord π and ord π ′. This
argument leads to a bound of the form O( log log n/ log n), but does not come close to Godin’s
conjecture.

We can contrast the effort involved in estimating the collision entropies of type π and ord π

even further. Suppose k= o(n) and let λ = 〈1λ1 , 2λ2 , . . .〉 be a partition of k. Then

P(π and π ′ have type 〈λ, n− k〉)= 1
(n− k)2

∏
j�1

1
j2λj(λj!)2

≈ 1
n2

∏
j�1

1
j2λj(λj!)2

. (1.2)

Heuristically summing the rightmost approximation over all such k and λ yields a substantial
partial sum of

1
n2

∑
k�0

∑
λ	k

∏
j�1

1
j2λj(λj!)2

= c0
n2

, (1.3)

where λ 	 k has the usual meaning that λ is a partition of k (i.e. a multiset of positive inte-
gers whose sum is k). This together with the analysis of [5] shows that the main contribution
to n2P(type π = type π ′) comes from pairs of permutations having a cycle of length n− o(n).
Motivated by this, one may ask whether at least n2P(ord π = ord π ′ ∧ E) is bounded, where E is
the event that π and π ′ each have a cycle of length at least n− k(n), where k(n) is some slowly
growing function. This, however, is not the case.

In this paper we prove two main results. First we refute (1.1) by showing that

lim sup
n→∞

n2P(ord π = ord π ′)= ∞.

Quantitatively, we show that there is a sequence ni → ∞ such that if π , π ′ are drawn indepen-
dently from Sni then

P(ord π = ord π ′)� P(ord π = ord π = ni − o(ni))�
1
2
n−2
i lg* ni,

where lg* n is the height of the tallest tower of twos that does not exceed n. This precludes any
heuristic similar to (1.2) and (1.3) from succeeding here. On the other hand we show that (1.1) is
nearly true, in the sense that

P(ord π = ord π ′)� n−2+o(1). (1.4)

It would be interesting to estimate P(ord π = ord π ′) more precisely, but this appears to be a
complicated question tied to arithmetic considerations about n.

https://doi.org/10.1017/S0963548321000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000043


802 H. Acan, C. Burnette, S. Eberhard, E. Schmutz and J. Thomas

For a broader perspective, readers may be interested in the survey of Niemeyer, Praeger and
Seress on the applications of probabilistic and enumerative techniques to the analysis of group-
theoretic algorithms [12].

1.2 Analytic combinatorics
Analytic combinatorics relates the analytic behaviour of a generating function to the asymptotic
behaviour of its coefficients. While the problem of estimating P(type π = type π ′) is well suited to
the methods of analytic combinatorics, the same does not seem to be true of P(ord π = ord π ′).
We offer some brief comments about why this may be.

Elementary combinatorial techniques are sufficient for enumerating the ordered pairs of conju-
gate permutations. As a result, the numbers P(type π = type π ′) are expressible as the coefficients
of a well-behaved infinite product generating function closely related to the cycle index of the
symmetric group (as explained in [5, Section 4.2].

In contrast consider P(ord π = ord π ′). For any fixed positive integer m, the exponential
formula yields

Fm(x)=
∑
n

P(ord π dividesm)xn = exp

⎛
⎝∑

d|m

xd

d

⎞
⎠ . (1.5)

An application of Möbius inversion to (1.5) thus yields

Gm(x)=
∑
n

P(ord π =m)xn =
∑
d|m

μ

(
m
d

)
Fd(x). (1.6)

UsingMöbius and Lagrange inversion, and the saddle-point method,Wilf [18] used (1.6) to derive
an asymptotic formula for P(ord π =m) for fixed m, but asm growsWilf ’s formula becomesmore
complicated and the asymptotics are less well understood. In the special case of m= n there is a
theorem of Warlimont [17] that

P(ord π = n)= 1/n+O(1/n2),
and this estimate has been extended by Niemeyer and Praeger [11] to various other values ofm. A
general understanding of P(ord π =m) is lacking, and indeed complicated for arithmetic reasons.
As such, one cannot simply plug these asymptotic estimates into the sum

∑
m P(ord π =m)2 to

answer Godin’s question.
There is a rich literature about methods for extracting the coefficients of multivariate gen-

erating functions [13, 14]. Certainly we may define a bivariate generating function H(x, y)=∑
m Gm(x)Gm(y), and

P(ord π = ord π ′)= [[xnyn]]H(x, y). (1.7)
In some formal sense this is an answer, but we do not see any way to extract an asymptotic formula
from (1.2).

Analytic combinatorics, by itself, is likely inadequate for attaining a thorough asymptotic anal-
ysis of the sequence P(ord π =m) because the order of a permutation depends on arithmetic data
not easily extracted from the classical generating functions associated with permutations. Any
hope for a purely symbolic calculus that can handle the sequence P(ord π = ord π ′) might hinge
on techniques that are more in the realm of analytic number theory, such as a Mellin transform
or a Dirichlet series generating function.

Another notable obstruction to a generating-function-based approach is the apparently erratic
dependence of P(ord π = ord π ′) on n, which may be observed numerically. If the sequence
P(ord π = ord π ′) were realized as the coefficients of a generating function, the behaviour of that
function near its singularity would have to be similarly complicated.
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1.3 The anatomy of integers
In sharp relief to the beautiful formalism of analytic combinatorics, our proof of (1.1) is dirty
and hands-on, and more closely connected with the ‘anatomy of integers’: see Granville [9] for
an explanation of this term, and Ford [6] or the book of Hall and Tenenbaum [10] for a sense of
the scope of the theory. We have mentioned already that log ord π is asymptotically normal with
mean log2 n/2 and variance log3 n/3, and that the largest cycles of π are distributed asymptotically
according to the Poisson–Dirichlet law. By further analysing the distribution of the cycles of π ,
we show that apart from an exceptional event of probability n−1+o(1), including for instance the
event that π is an n-cycle or an (n− 1)-cycle, the integer m= ord π will have many large prime
divisors, so many in fact that the collision probability P(ord π ′ =m) is negligible. It follows that
the probability that ord π = ord π ′ is dominated by the event that π and π ′ are both exceptional.

2. Disproof of Godin’s conjecture
The results in this section are based on the third author’s mathoverflow post [15]. Define Tow(h)
to be a tower of twos of height h, i.e. Tow(0)= 1, and for h> 0, Tow(h)= 2Tow(h−1). Also define
lg* n=max{h : Tow(h)� n}.
Theorem 2.1. For infinitely many positive integers n,

P(ord π = ord π ′)� lg* n
2n2

.

Proof. For a positive integer n, let Kn = {k : 1� k< n/2 and k! divides n− k}. If π has a cycle of
length n− k, with k ∈Kn, then all other cycles have length at most k. Since the lengths of these
other cycles are at most k, they all divide k!, which in turn divides n− k (by the definition of Kn).
Therefore ord π = n− k. The probability that π has a cycle of length n− k is exactly 1/(n− k).
Since n− k> n/2, these events are disjoint, since there cannot be more than one cycle of length
greater than n/2. We therefore have

P(ord π = ord π ′)�
∑
k∈Kn

1
(n− k)2

� |Kn|
n2

.

Now consider the subsequence (ni)i�1 defined by n1 = 3 and ni+1 = ni + ni! for i� 1. We will
prove that the sets Kni are nested and that |Kni | = i for all i. From the definition of Kn, it is easy to
check that

• Kn1 = {1};
• ni �∈Kni ;
• k ∈Kni =⇒ k ∈Kni+1 , since if k! | ni − k and k� ni then also k! | ni+1 − k;
• ni ∈Kni+1 , for the same reason.

Also note that

• k �∈Kni+1 for k> ni since k! is too big to divide ni+1 − k;
• if k< ni and k ∈Kni+1 , then we already have k ∈Kni , since k< ni =⇒ k! | ni!, which in turn
implies k! | ni − k.

We therefore have Kni+1 =Kni ∪ {ni} and ni �∈Kni , so inductively

Kni = {1, n1, n2, . . . , ni−1}.
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This proves that |Kni | = i for all i. Since |Kni | → ∞ as i→ ∞, it is now clear that

lim sup
n→∞

n2P(ord π = ord π ′)= ∞.

To finish proving Theorem 2.1, we need to find a lower bound for i that is expressed in terms
of ni. Since 2n

2 � (n+ 1)!� n! + n for any positive integer n, we have

lg*(ni+1)= lg*(ni! + ni)� lg*(2n
2
i )= 1+ lg*(n2i )� 1+ lg*(2ni)= 2+ lg*(ni).

It follows from induction on i that lg*(ni)� 2i or equivalently, i� lg* (ni)/2. Hence

|Kni |
n2i

= i
n2i

� lg* (ni)
2n2i

.

3. Main proposition and proof sketch
Throughout let π be a random permutation of [n]. Our main result is the following.

Theorem 3.1. There is a setM with the following properties.

(1) If m /∈M then P(ord π =m)=O(n−100).
(2) P(ord π ∈M)� n−1+o(1).

Although the proof of Theorem 3.1 is postponed, we can immediately deduce a non-trivial
upper bound for the probability that two random permutations have the same order.

Corollary 3.1. P(ord π = ord π ′)� n−2+o(1).

Proof. By considering whether the collision occurs inM orMc, we have

P(ord π = ord π ′)� P(ord π ∈M)2 +
∑
m/∈M

P(ord π =m)2

� P(ord π ∈M)2 + max
m/∈M

P(ord π =m).

The first term is bounded by n−2+o(1) and the second term is bounded by O(n−100).

For the proof of Theorem 3.1, we construct a specific example of such a setM. For the remain-
der of this paper, let δ = δ(n)= 1/ log log log n, and let η = e−10/δ = 1/( log log n)10, though the
specific choice is largely irrelevant: all we require is that δ and η decay sufficiently slowly, with
δ decaying much more slowly than η. Let M be the set of all positive integers m having at most
δ log n distinct prime divisors p> nη.

Let us now informally sketch the proof of Theorem 3.1 (some readers may prefer to skip ahead
to the next section for the rigorous proofs). It suffices to consider the case where π has k� 2δ log n
cycles, because all except n−1+o(1) permutations have this property (recall δ = o(1)). These k cycles
will be drawn at random from {1, . . . , n} according to a harmonic weighting (conditional on their
sum being n). UsingMertens’ third theorem to bound the harmonic weight of the set of nη-smooth
numbers, we expect at least half of our 2δ log n cycles to fail to be nη-smooth. Therefore we expect
ord π to be divisible by some δ log n primes p> nη, proving part (2) of Theorem 3.1. The proof
of part (1) is easier, and follows from a simple union bound over all the ways that the cycles of π

might be divisible by the primes dividingm.
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4. Proof of Theorem 3.1, part (2)
Write Z = Z(π) for the number of cycles in a randomπ ∈ Sn. It is well known that Z − 1 is approx-
imately Poisson with parameter log n. (See, for example, the final section of [2] for tail bounds.)
The following lemma’s quantitative formulation is particularly convenient for us.

Lemma 4.1. Let n, k� 1, and let π ∈ Sn be random. Then

P(Z(π)= k)� 1
n

hk−1
n

(k− 1)! ,

where hn = ∑n
j=1 1/j.

Proof. Write pn,k for P(Z(π)= k). From Cauchy’s formula for the number of permutations in a
conjugacy class, we have

pn,k =
∑ 1

c1! · · · cn!1c1 · · · ncn ,

where the sum ranges over all c1, . . . , cn � 0 such that
∑n

i=1 ci = k and
∑n

i=1 ici = n. We can
‘smooth this out’ by using

pn,k = 1
n

n∑
j=1

pn−j,k−1,

which follows from conditioning on the length of one of the cycles of π . Thus we have

pn,k = 1
n

n∑
j=1

∑
∑

ci=k−1∑
ici=n−j

1
c1! · · · cn!1c1 · · · ncn

� 1
n

∑
∑

ci=k−1

1
c1! · · · cn!1c1 · · · ncn

= 1
n

hk−1
n

(k− 1)! .

The last line is an application of the multinomial theorem.

Using Stirling’s formula, and monotonicity of the bound

1
n

hk−1
n

(k− 1)!
as a function of k, we can prove the following corollary.

Corollary 4.2. The probability that π has o(log n) cycles is n−1+o(1), and the probability that π has
more than 10 log n cycles is O(n−14).

Proof. Let ξ = hn/ω, where ω = ω(n)→ ∞. By calculating the ratios of successive terms, one can
verify that the bound

1
n

hk−1
n

(k− 1)!
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is increasing as a function of k when k� ξ + 1. Thus

P(Z� ξ + 1)� (ξ + 1)
1
n

hξ
n

(ξ + 1)! �
1
n
(eω)ξ = n−1+o(1).

Similarly, when k> 10hn, the bound is decreasing as a function of k. In this range, a crude version
of Stirling’s formula yields

hk−1
n
k! �

(
ehn
k

)k
�

(
e
10

)k
.

Therefore

P(Z� 10 log n)� 1
n

∑
k�10hn

(
e
10

)k
=O

(
n10 log (e/10)−1

)
.

We use only Corollary 4.2 in the proof, but a similar argument establishes that, for fixed positive
ε, the probability that π has more than (1+ ε) log n cycles is bounded by n−f (ε)+o(1), where f (ε)=
(1+ ε) log (1+ ε)− ε.

Lemma 4.3. Let A1, . . . ,AZ be the cycle lengths of π in a random order. Then, for any k� 0 and
any k-tuple (a1, . . . , ak) of positive integers such that a1 + · · · + ak = n, we have

P(Z = k,A1 = a1, . . . ,Ak = ak)= 1
k!

1
a1 · · · ak .

Proof. Let the multiplicities among a1, . . . , ak be m1, . . . ,ms (so that
∑

i mi = k). Then by
Cauchy’s formula the probability that this cycle type arises is

1
m1! · · ·ms!a1 · · · ak .

When these cycles are ordered randomly, the probability that we get a1, . . . , ak in order is(
k

m1 · · · mk

)−1
.

The result follows from multiplying the previous two displays.

The combined message of the previous two lemmas is that we may assume π has between
δ log n and 10 log n cycles (for any slowly decaying δ), while, conditional on k, these cycles are
distributed roughly independently according to a harmonic weighting.

For any set S of integers, let us call hS = ∑
j∈S 1/j the harmonic weight of S. If P is any set

of prime numbers, a positive integer n is P-smooth if and only if all prime divisors of n are
elements of P.

Lemma 4.4. Let N � 1. Let P be the set of all primes p�N, as well as some o(N) further primes.
Then the harmonic weight of the set of P-smooth numbers is

(1+ o(1))eγ logN,
where γ is the Euler–Mascheroni constant.

Proof. The harmonic weight of the set of P-smooth numbers is∏
p∈P

(1− 1/p)−1.
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By Mertens’ third theorem we have∏
p�N

(1− 1/p)−1 ∼ eγ logN.

On the other hand we have∏
p∈P,p>N

(1− 1/p)−1 = exp
∑

p∈P,p>N
O(1/p)= eo(1).

Recall that δ = 1/ log log log n, and η = e−10/δ = 1/(log log n)10. With this choice of δ and η we
have the following proposition.

Proposition 4.5. Let π be drawn from Sn uniformly at random. Then, apart from an event of
probability n−1+o(1), π has at least δ log n cycles and ord π is divisible by at least δ log n primes
p> nη.

Proof. Let A1, . . . ,AZ be the cycle lengths of π in a random order. By Lemma 4.3, provided that
a1 + · · · + ak = n we have

P(Z = k,A1 = a1, . . . ,Ak = ak)= 1
k!

1
a1 · · · ak .

Define sets of primes Pi as follows.

(1) Let P0 be the set of all primes p� nη.
(2) For 0< i� k, ifAi is Pi−1-smooth, put Pi = Pi−1. Otherwise pick a prime pi /∈ Pi−1 dividing

Ai (the smallest such, say), and let Pi = Pi−1 ∪ {pi}.
Each set Pi contains at most k primes p> nη, so as long as k= o(nη) Lemma 4.4 implies that the
set of Pi-smooth numbers has harmonic weight at most 2ηhn.

Let I be the set of indices i ∈ {1, . . . , k} such that Ai is Pi−1-smooth (and hence Pi = Pi−1).
Assuming k� 2δ log n, if |I|� k/2 then we find that Pk contains at least δ log n distinct primes
p> nη, as desired. We will bound the probability that |I| > k/2.

Let Ek be the event that π has k cycles and |I| > k/2. Then, assuming 2δ log n� k� 10 log n,

P(Ek)=
∑

I0 : |I0|>k/2
P(Z(π)= k and I = I0)

=
∑

I0 : |I0|>k/2

∑
a1,...,ak�1

a1+···+ak=n

1
k!
1aiisPi−1−smooth for each i∈I0

a1 · · · ak

�
∑

I0 : |I0|>k/2

1
k!h

k−|I0|
n (2ηhn)|I0|

� hkn
k! 2

k(2η)k/2

� hkn
k! (8η)

δ log n

� hkn
k! n

−10+o(1).
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Hence

P

⎛
⎝ ⋃

2δ log n�k�10 log n
Ek

⎞
⎠� ehnn−10+o(1) = n−9+o(1).

On the other hand, by Corollary 4.2 the probability that π has either fewer than 2δ log n cycles or
more than 10 log n cycles is bounded by n−1+o(1). This proves the lemma.

This finishes the proof of part (2) of Theorem 3.1.

5. Proof of Theorem 3.1, part (1)
Recall that δ = 1/ log log log n, and η = e−10/δ = 1/(log log n)10.

Lemma 5.1. Let m be an integer having at least δ log n prime divisors p> nη. Then

P(ord π =m)� e−cδη log2 n.

Proof. Recall that the cycle lengths of a random permutation can be sampled using the follow-
ing process. Start by picking a1 uniformly from {1, . . . , n}. If a1 < n, pick a2 uniformly from
{1, . . . , n− a1}, etc. The process continues until a1 + · · · + ak = n.

Fix a set P of �δ log n� prime divisors p> nη of m. Now sample π ∈ Sn using the process just
described. For each fixed i and p, the probability that ai is divisible by p is at most 1/p, inde-
pendently of the previous steps in the process. In fact, for any set of primes p1, . . . , pt ∈ P, the
probability that ai is divisible by each of p1, . . . , pt is at most 1/(p1 · · · pt). On the other hand, in
order that ord π =m, for each p ∈ P there must be an index i such that ai is divisible by P.

The event that π has more than (log n)3 cycles is negligible (it has probability o(e−c(log n)3 )).
On the other hand, the probability that π has at most (log n)3 cycles and that for each p ∈ P there
is some i such that ai is divisible by p is bounded by

((log n)3)|P| ·
∏
p∈P

1/p� (log n)O(log n)(n−η)δ log n

� e−cδη log2 n.

This finishes the proof of Theorem 3.1.

6. Conclusion
While we have established that P(ord π = ord π ′) is generically larger than O(1/n2) but no larger
than n−2+o(1), its exact order of magnitude remains mysterious and appears to be linked with
arithmetical properties of n, as in the proof of Theorem 2.1. Establishing more precise estimates
should be of interest to anyone who considers themself to be a problem-solver (in the sense of
Gowers’ essay [8]), just because it is an easily stated problem that is not readily solved. We list
here a few related observations and open questions.

(1) What is the lim inf of n2P(ord π = ord π ′) as n tends to infinity? The integers n constructed
by Theorem 2.1 have a particular arithmetic form. What is the behaviour for n of the form
k! + 1?
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(2) What is maxm P(ord π =m), and for what value(s) of m is it attained? Theorem 3.1 gives
an upper bound of n−1+o(1) for this probability. Clearly the max is at least 1/n, since π

is an n-cycle with probability 1/n. In fact the max is at least 1/(n− 1), for the same rea-
son but with (n− 1)-cycles. The answer may be close to this, but we saw in the proof of
Theorem 2.1 that

P(ord π = n− k)� 1/(n− k)
for any k ∈Kn, so the maximum can be larger. This problem was mentioned by Erdős and
Turán in [4].

(3) Let πn be a random element of Sn. The quantity P(ord πn =m) as a function of m and n
can be very sensitive to the value of n. For example, if n is prime then P(ord πn = n)= 1/n
but P(ord πn−1 = n)= 0.

(4) As a generalization of Godin’s problem, one might consider symmetric groups of differ-
ent sizes. Consider random permutations (π1, π2) ∈ Sn1 × Sn2 , and estimate the probability
they have the same order. An upper bound is immediate from Corollary 3.1 and the
Cauchy–Schwarz inequality:

P(ord π1 = ord π2)=
∑
m

P(ord π1 =m)P(ord π2 =m)

� P(ord π1 = ord π ′
1)
1/2

P(ord π2 = ord π ′
2)
1/2

� n−1+o(1)
1 n−1+o(1)

2 .

References
[1] Arratia, R., Barbour, A. D. and Tavaré, S. (2003) Logarithmic Combinatorial Structures: A Probabilistic Approach, EMS

Monographs in Mathematics. European Mathematical Society (EMS).
[2] Devroye, L. (1988) Applications of the theory of records in the study of random trees. Acta Inform. 26 123–130.
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