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SUMMARY
In this paper, an optimal fuzzy sliding mode controller has been designed for controlling the
end-effector position in the task space. In the proposed control, feedback linearization method,
sliding mode control, first-order fuzzy TSK system and optimization algorithm are utilized. In
the proposed controller, a novel heuristic algorithm namely self-adaptive modified bat algorithm
(SAMBA) is employed. To achieve an optimal performance, the parameters of the proposed
controller as well as the input membership functions are optimized by SAMBA simultaneously.
In this method, the bounds of structural and non-structural uncertainties are reduced by using
feedback linearization method, and to overcome the remaining uncertainties, sliding mode control is
employed. Mathematical proof demonstrates that the closed loop system with the proposed control
has global asymptotic stability. The presence of sliding mode control gives rise to the adverse
phenomenon of chattering in the end-effector position tracking in the task space. Subsequently, to
prevent the occurrence of chattering in control input, a first-order TSK fuzzy approximator is utilized.
Finally, to determine the fuzzy sliding mode controller coefficients, the optimization algorithm of
Self-Adaptive Modified Bat is employed. To investigate the performance of the proposed control,
a two-degree-of-freedom manipulator is used as a case study. The simulation results indicate the
favorable performance of the proposed method.

KEYWORDS: Robot manipulator; Task space; Chattering; Optimal fuzzy sliding mode control; TSK
method; SAMB algorithm; Uncertainty.

1. Introduction
In recent years, automatic industrial robots have found widespread use in industrial processes.
Industrial robot manipulators have completely non-linear dynamic equations in the form of multi-
input, multi-output as well as structured and unstructured uncertainties. Finding a precise model in
such systems is not easy. Hence, designing a controller with a favorable performance which is based
on the system model is difficult. Robot manipulator position control is usually established by the
method of control in the joint space; however, due to the effects of uncertainties, the favorable control
in the joint space does not result in favorable control in the task space.

In joint space control, feedbacks from the joint space are given to control the system while tracking
a desired trajectory. This control system does not detect the position error of the end-effector in the
work space. Even if a precise tracking of joint positions is achieved, a desired tracking in the task
space is not provided by the use of an imperfect transformation of the control space. Thus, due to
detecting tracking error of the end-effector, the task space tracking control of a normal-cost robot is
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superior to that of the joint space control. It means that we can expend less cost to achieve a desired
performance by a task space control of a normal-cost robot in replacement of the joint-space control
of an expensive robot. However, obtaining feedbacks from the task space is not as convenient as
the joint-space. The joint positions are measured suitably by optical encoders while the end-effector
position may be detected using vision systems.1,2

There is a challenge in robot control to overcome uncertainties, nonlinearities and couplings
from different aspects in the field of robust control as surveyed in ref. [3]–[6]. The robust control
provides stability under uncertainties with a tradeoff between tracking performance and bounds of
uncertainties. This control approach was extensively presented in the joint space while controlling a
robot in the task space is still a control problem. Recently, several regulating controllers were proposed
for the task space to overcome parametric uncertainties.7 The approximate Jacobian controllers were
proposed with the task space damping for the set-point control of robot with uncertain kinematics
and dynamics.8 Moreover, an adaptive Jacobian controller was proposed for the trajectory tracking
control of robot manipulators in the task space under parametric uncertainties.9 The controller does
not require exact knowledge of Jacobian matrix and dynamic parameters. Moreover, an adaptive task
space tracking control method was proposed using visual task space information to overcome the
parametric uncertainties in model including actuators.2 Thus, adaptive control of robot in the task
space is successful to overcome parametric uncertainties; however, unstructured uncertainties are
remained to consider.

In the paper,10–15 non-linear robust control, adaptive control and a combination of these two
methods have been adopted to control the robot manipulator in the task space. In the paper,10

dynamic uncertainties are only included in design of the proposed control. Hence, by occurrence
of an uncertainty in Jacobian matrix, the stability of closed loop system is not guaranteed. In the
papers,11–13 non-linear robust control has been utilized to control the robot manipulator in the task
space. The robot manipulator with the proposed method has global asymptotic stability in the presence
of all dynamic and kinematic uncertainties. However, due to the use of sliding mode technique and
Lyapunov redesign method in the suggested controllers, chattering in the control input is inevitable.
Although a number of solutions are provided in the aforementioned papers to eliminate chattering,
the robot manipulator with the modified controllers has uniform ultimate boundedness stability. In
the papers,14–15 a combination of non-linear robust control and adaptive control has been used to
design the controller. The proposed methods have desired performance in overcoming structured and
unstructured uncertainties as well as external disturbances in the robot manipulator dynamics in the
task space. However, due to the presence of several adaptive laws in the control input, these controller
have substantial number of calculations. Therefore, in case of delay in control input calculations, the
stability of closed loop system faces problems.

Researchers in recent years have shown that the application of fuzzy logic in control of non-
linear systems with uncertainty has led to excellent results.16 In as much as the robot manipulator is
completely non-linear and with uncertainty, the researchers have used fuzzy logic and neural network
in the robot manipulator position control.17,18 Although these methods proved capable of dealing with
uncertainties in the dynamics of a robot manipulator, all these controllers are designed in the joint
space and due to parametric uncertainties in Jacobian matrix, tracking precision in the joint space
does not guarantee the tracking precision in the task space.

In this paper, to design the proposed control, first, the equations of robot manipulator is transferred
to the task space. Next, using these dynamic equations as well as using feedback linearization
method, a sliding mode controller is designed to control the robot manipulator position in the task
space. Mathematical proof shows that a closed loop system with this controller has global asymptotic
stability. Afterwards, to eliminate the adverse phenomenon of chattering in the control input, a first-
order TSK fuzzy approximator is designed. Then, to determine the coefficients of the fuzzy sliding
mode controller, SAMBA optimization algorithm is used which considerably reduces the tracking
error of the position. Finally, to display the performance of the proposed control, the simulations in
three steps are conducted on a two-degree-of-freedom robot manipulator.

2. Dynamic Equations of a Robot Manipulator in the Joint Space
Dynamic equation of a robot manipulator in the joint space is a nonlinear, multi-
input, multi-output and second order differential equation which is expressed as
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follows:19

D(q)q̈ + V (q, q̇)q̇ + G(q) + Td + u (1)

In which D(q) ∈ Rn×n represents the inertia matrix, V(q, q̇) ∈ Rn×n is a matrix including sections
related to Coriolis and centrifugal forces, G(q) ∈ Rn stands for the gravitation vector, Td ∈ Rn is
a vector including disturbances or un-modeled dynamics, q(t) ∈ Rn is designated as the vector of
joint positions, q̇(t) ∈ Rn is assigned as the vector of joint velocities, q̈(t) ∈ Rn is the vector of joint
accelerations, and u ∈ Rn is the vector of robot manipulator input torque.

To simplify Eq. (1), the following equation is defined:

H(q, q̇) = V(q, q̇)q̇ + G(q) + Td (2)

By substituting (2) in (1) we obtain:

D(q)q̈ + H(q, q̇) = u (3)

Relation (1) has the following specifications:

Specifications 1: inertia matrix D(q) is symmetric and positive-definite.

3. Dynamic Equations of a Robot Manipulator in Task Space
To design controller in the task space, the dynamic equation of robot manipulator in the task space is
used. For this purpose, Eq. (3) can be simplified as follows:

q̈ = D−1(q)(u − H(q, q̇)) (4)

To obtain the velocity of end-effector in the task space, the following equation is used:19

Ẋ = J(q)q̇ (5)

In which J(q) ∈ Rn×n represents the Jacobian matrix, q̇(t) ∈ Rn is the vector of joint velocities, and
Ẋ(t) ∈ Rn is the vector of velocity in the task space. Differentiating with respect to time in Eq. (5),
we obtain:

Ẍ = J(q)q̈ + J̇(q)q̇ (6)

Assumption 1: Smoothness of the desired trajectory is condition of existence J̇(q). Assuming that
the task space trajectory is free from singularities, by substituting Eq. (4) in (6), we obtain:

Ẍ = J(q)D−1(q)(u − H(q, q̇)) + J̇(q)q̇ (7)

Equation (7) is rewritten as:

D(q)J−1(q)Ẍ + H(q, q̇) − D(q)J−1(q)J̇(q)q̇ = u (8)

J−1q is inverse Jacobian matrix.

Assumption 2: We assume that the robot is operating in a finite task space such that the Jacobian
matrix is full rank.

For transmission of torque space to force space, the following equation can be used:19

u = JT(q)F(t) (9)
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Where JT(q) is Jacobian matrix transpose and F(t) ∈ Rn is a force vector acting on the end-effector
of the robot. Equation (9) in (8) is substituted and arranged as:

J−T(q)D(q)J−1(q)Ẍ + J−T(q)H(q, q̇) − J−T(q)D(q)J−1(q)J(q)q̇ = F(t) (10)

According to Eqs. (2) and (10), the following equations are defined as:

⎧⎪⎨
⎪⎩

Dx(q) = J−T(q)D(q)J−1(q)

Vx(q, q̇) = J−T(q)(v(q, q̇) − D(q)J−1(q)J̇(q)q̇)

Gx(q) = J−T(q)G(q)

(11)

In the above equations, analogous to the joint space quantities, Dx(q) ∈ Rn×n is the Cartesian mass
matrix, vx(q, q̇) ∈ Rn×n is a vector of velocity terms in Cartesian space and Gx(q) ∈ Rn is a vector of
gravity terms in Cartesian space. Hx(q, q̇) is defined as:

Hx(q, q̇) = Vx(q, q̇)q̇ + Gx(q) + Tdx (12)

According to the Eqs. (10) and (12), the dynamic equations of robot manipulator in the task space
can be obtained as follows:

Dx(q)Ẍ + Hx(q, q̇) = F(t) (13)

In Eqs. (12) and (13), X(t) ∈ Rn is an appropriate Cartesian vector representing position and
orientation of the end-effector,20 Ẋ(t) ∈ Rn is the velocity vector of end-effector in Cartesian space,
Ẍ(t) ∈ Rn is the vector of end-effector acceleration in Cartesian space and Tdx ∈ Rn is a vector
including disturbances or un-modeled dynamics in Cartesian space.

Definition 1: Sylvester’s law of inertia: If A ∈ Rn×n is a symmetric square matrix and C ∈ Rn×n is
non-singular matrix, then the number of positive, negative and zero eigenvalues of matrix A and
matrix CTAC are the same, where CT is the transpose of C.21

According to the equation Dx(q) = J−T(q)D(q)J−1(q) and due to the non-singularity of J−1(q)
and in view of the specifications 1 expressed in Section 2, using Sylvester’s law of inertia, the
specifications 2 can be deduced.

Specifications 2: Cartesian mass matrix Dx(q) is a positive-definite matrix.

4. Design of Sliding Mode Controller for Robot Manipulator in Task Space
To design sliding mode control, the sliding surface vector is defined as:22

S = (d/dt + λ)n−1e (14)

In Eq. (14), e = X − Xd represents the tracking error vector in which X = [x1x2 . . . xn]T is the vector
of end-effector position and Xd = [x1dx2d . . . xnd ]T is the vector of desired trajectory in Cartesian
space and λ = diag [λ1, λ2, . . . , λn] is a diagonal matrix in which λ1, λ2, . . . , λn are constant and
positive coefficients.

Generally, to design sliding mode controller, the variable x(n−1)
r is defined as:

x(n−1)
r = x(n−1) − s (15)

Since the robot manipulator is expressed by the second order differential equation, Eq. (15) with
n = 2 is determined as:

ẋr = ẋ − s (16)
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Differentiating Eq. (16), we obtain:

ẍr = ẍ − ṡ (17)

Point 1: Since x, ẋ, ẍ and S are n × 1 vectors, thus ẋr and ẍr are n × 1 vectors.
To design the sliding mode controller, with respect to Eqs. (16) and (17), Eq. (13) is changed into:

Dx (q) ẍr + Dx (q) ṡ + Hx (q, q̇) = F(t) (18)

Next, the control law is proposed as:

F (t) = F̂ (t) − Ksgn(s) − As (19)

In which sgn(s) is the sign function and F̂ (t) is selected as:

F̂ (t) = D̂x (q) ẍr + Ĥx (q, q̇) (20)

In Eqs. (19) and (20), D̂x (q) and Ĥx (q, q̇) are estimations of Dx (q) and Hx (q, q̇) respectively and

K = diag [k1, k2, . . . , kn] is a positive-definite diagonal matrix and A = [
A11 · · · A1n

.

.

.
. . .

.

.

.
An1 · · · Ann

] is a positive-

definite matrix. Substituting Eqs. (19) and (20) in (18), we obtain:

Dx (q) ẍr + Dx (q) ṡ + Hx (q, q̇) = D̂x (q) ẍr + Ĥx (q, q̇) − Ksgn(s) − As (21)

Equation (21) is simplified as:

Dx (q) ṡ = (
D̂x (q) − Dx (q)

)
ẍr + (

Ĥx (q, q̇) − Hx (q, q̇)
)− As − Ksgn(s) (22)

For the sake of simplicity of the aforementioned equations, �Dx (q) = D̂x (q) − Dx (q), �Hx (q, q̇) =
Ĥx (q, q̇) − Hx (q, q̇) and �f = �Dx (q) ẍr + �Hx (q, q̇) are defined and Eq. (22) is simplified as:

Dx (q) ṡ = �Dx (q) ẍr + �Hx (q, q̇) − As − Ksgn (s) = �f − As − Ksgn (s) (23)

Point 2: �f ∈ Rn is a vector including all parametric, non-structural uncertainties as well as un-
modeled dynamics.

4.1. Proof of closed-loop system stability
To prove the closed-loop system stability of Eq. (22) with respect to the dynamic features of robot
manipulator as mentioned in Section 3, Lyapunov function candidate is proposed as:

V (s) = 1

2
sT Dx (q) s (24)

Differentiating with respect to time in Eq. (24), we obtain:

V̇ (s) = sT Dx (q) ṡ + 1

2
sT Ḋx (q) s (25)

Differentiating with respect to time of all entries of matrix Dx (q) and Ḋx (q) is defined as:

Ḋx (q) =

⎡
⎢⎣

Ḋ11 · · · Ḋ1n

...
. . .

...
Ḋn1 · · · Ḋnn

⎤
⎥⎦ (26)
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With respect to Eqs. (23) and (26), Eq. (25) is rewritten, and to understand them easier, the equations
are presented in matrix form:

V̇ (s) = [s1s2 . . . sn] ×

⎛
⎜⎜⎝
⎡
⎢⎢⎣

�f1

�f2
...

�fn

⎤
⎥⎥⎦−

⎡
⎢⎣

A11 · · · A1n

...
. . .

...
An1 · · · Ann

⎤
⎥⎦
⎡
⎢⎢⎣

s1

s2
...
sn

⎤
⎥⎥⎦−

⎡
⎢⎣

k1 0 0

0
. . . 0

0 0 kn

⎤
⎥⎦
⎡
⎢⎢⎣

sgn(s1)
sgn(s2)

...
sgn(sn)

⎤
⎥⎥⎦
⎞
⎟⎟⎠

+ 1

2
[s1s2 . . . sn]

⎡
⎢⎣

Ḋ11 · · · Ḋ1n

...
. . .

...
Ḋn1 · · · Ḋnn

⎤
⎥⎦
⎡
⎢⎢⎣

s1

s2
...
sn

⎤
⎥⎥⎦ (27)

After simplifying Eq. (27), in three steps, the following equations can be concluded:

V̇ (s) = [s1s2 . . . sn] ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎣

�f1

�f2
...

�fn

⎤
⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

siA1i

n∑
i=1

siA2i

...
n∑

i=1
siAni

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎣

k1sgn(s1)
k2sgn(s2)

...
knsgn(sn)

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1

2

[
n∑

i=1

siḊi1

n∑
i=1

siḊi2 . . .

n∑
i=1

siḊin

]⎡⎢⎢⎣
s1

s2
...
sn

⎤
⎥⎥⎦ (28)

V̇ (s) = [s1s2 . . . sn] ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�f1 −
n∑

i=1
siA1i − k1sgn(s1)

�f2 −
n∑

i=1
siA2i − k2sgn(s2)

...

�fn −
n∑

i=1
siAni − knsgn(sn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 1

2

(
n∑

i=1

sis1Ḋi1 +
n∑

i=1

sis2Ḋi2 + . . . +
n∑

i=1

sisnḊin

)
(29)

V̇ (s) =
n∑

i=1

(si (fi − kisgn(si))) −
n∑

i=1

n∑
j=1

sisjAij + 1

2

n∑
i=1

n∑
j=1

sisj Ḋij (30)

In Eq. (30), si is ith entries of sliding surface vector S, �fi is ith entries of vector �f , Ki is ith entries
of the main diameter of matrix k, Aij is entries in ith rows and jth columns of matrix A; in addition,
Ḋij is entries in ith rows and jth columns of matrix Ḋx (q). To prove the closed-loop system stability,
Eq. (30) must be less than zero, that is:

V̇ (s) =
n∑

i=1

(si (�fi − kisgn(si))) −
n∑

i=1

n∑
j=1

sisjAij + 1

2

n∑
i=1

n∑
j=1

sisj Ḋij < 0 (31)
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The aforementioned equation is satisfied if:

Ki > ||�fi || (32)

||Aij || >

∥∥∥∥Ḋij

2

∥∥∥∥ (33)

Thus by selecting appropriate K which satisfies Eq. (32) and also by selecting appropriate A which
satisfies Eq. (33), the closed-loop system will possesses the global asymptotic stability.

5. Design of Fuzzy Sliding Mode Controller for a Robot Manipulator in Task Space
A first-order fuzzy TSK system is delineated by fuzzy if-then rules show the relations between inputs
and outputs. Generally, first-order fuzzy TSK control system rules are defined as:

if x1 is Ai
1 and . . . and xn is Ai

n then yi = ai
0 + ai

1x1 + . . . + ai
nxn (34)

In which i = 1, 2, . . . , M and M is the number of fuzzy rules. yi’s are the output of these M fuzzy
rules and ai

0, ai
1, . . . , ai

n are constant coefficients.
To design the sliding mode controller, Eq. (19) can be stated as:18

{
Fp = F̂ + K − As, s < 0
Fn = F̂ − K − As, s > 0

(35)

With respect to Eq. (35), controller fuzzy rules can be stated as:

if s is A1
1 and Fp is A1

2 and Fn is A1
3 then y1 = a1

0 + a1
1s + a1

2up + a1
3un

if s is A2
1 and Fp is A2

2 and Fn is A2
3 then y2 = a2

0 + a2
1s + a2

2up + a2
3un

(36)

In the aforementioned relation, a1
0 = a2

0 = a1
1 = a2

2 = a2
1 = a1

3 = 0 and a1
2 = a2

3 = 1 and the
membership functions will be defined as:

A1
1 =

⎧⎪⎪⎨
⎪⎪⎩

1, s ≤ −γ1

1 − 2 (s + γ1)2 , −γ1 ≤ s ≤ 0
2 (s − γ1)2 , 0 ≤ s ≤ γ1

0, s ≥ γ1

(37)

A2
1 =

⎧⎪⎪⎨
⎪⎪⎩

0, s ≤ −γ2

2 (s + γ2)2 , −γ2 ≤ s ≤ 0
1 − 2 (s − γ2)2 , 0 ≤ s ≤ γ2

1, s ≥ γ2

(38)

In Eqs. (37) and (38), γ1 and γ2 are positive constants.

A1
2 = A2

2 = 1, lower bound of F ≤ Fp ≤ upper bound of F (39)

A1
3 = A2

3 = 1, lower bound of F ≤ Fn ≤ upper bound of F (40)

Point 3: To design the controller for the robot manipulator, designers need to have access to the
information of dynamic equations of robot. In this case, the uncertainties bound of the dynamic
equations of robot manipulator is determined. Therefore, for the desirable performance of robot
manipulator, the bound of exerted force to end-effector is determined.
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Assuming x = [s, Fp, Fn]T to be input vector of fuzzy TSK system, its output will be calculated
based on the combination of fuzzy rules (36) and is expressed as follows:

y =
∑2

i=1 f i(x)yi(x)∑2
i=1 f i(x)

(41)

fi(x) is the firing strength of the ith rule, which is obtained from the following equation:

f i (x) = μAi
1
(x1) ∗ μAi

2
(x2) ∗ μAi

3
(x3) (42)

∗ is the indicator of a t-norm and μAi
j
(xj) indicates the membership degree of the input xj in the

membership function Ai
j from the ith rule.

6. Self-Adaptive Modified Bat Algorithm (SAMBA)
In this section, a new optimization algorithm based on bat algorithm (BA) is proposed.

6.1. Original bat algorithm
BA is a met heuristic population based algorithm which simulates the searching behavior of bat
animals for food. The main concept behind the BA is constructed using three simple and basic
ideas:23

1. Each bat animal with the position Xi has the velocity of Vi producing an especial pulse with the
frequency and loudness of fi and Ai respectively.

2. Echolocation phenomenon is sued to distinguish between the food and prey.
3. Loudness Ai alters from a large value to a low value.
4. During the optimization process, the frequency fi and rate ri of each pulse is regulated

automatically.

Similar to the other evolutionary optimization algorithms, the BA also starts its search using a
random population. The process of updating the position of bats is as follows:

V new
i = V old

i + fi (Gbest − Xi) , i = 1, . . . , NBat

Xnew
i = Xold

i + V new
i , i = 1, . . . , NBat

fi = f min
i + ϕ1

(
f max

i − f min
i

)
, i = 1, . . . , NBat

(43)

Where Gbest is the best bat; NBat is the size of the population; f max
i /f min

i are the maximum /
minimum frequency of the ith bat and ϕ1 is a random value in the range [0,1].

In the BA, another random movement is also simulated. Therefore, a random number β is generated
randomly. If this random value is larger than ri , a new solution around the bat Xi is produced:

Xnew
i = Xold

i + εAold
mean, i = 1, . . . , NBat (44)

Where ε is a random value in the range of [−1,1] and Aold
mean is the mean value of the bats’ frequency

loudness. On the other hand, if the random value β is less than ri , a new solution Xnew
i is generated

randomly. The new solution Xnew
i can be accepted if the two conditions below are satisfied:

β < Aif (Xi) < f (Gbest) (45)

Meanwhile, the loudness and rate parameter are renewed as follows:

Anew
i = αAold

i rI ter+1
i = r0

i [1 − exp (−γ × I ter)] (46)

Here α and γ are constant values and I ter is the number of the iteration number.
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6.2. Self-adaptive modification method
In this section, a new self-adaptive modification method is proposed to advance the total search ability
of the BA efficiently. The key point behind this modification mechanism is to make use of an adaptive
structure to allow the bats to have the choice of selection between two different modifications. In
fact, the proposed modification method consists of two modification methods which are described at
below.

6.3. Sub-modification method 1
The purpose of the first modification is to increase the diversity of the bat population using
the crossover and mutation operators. The significant role of this modification is to improve the
performance of the optimization algorithms which is demonstrated in the literature.24,25 In this regard,
for each bat Xi three bats Xm1, Xm2 and Xm3 are chosen randomly such that m1 �= m2 �= m3 �= i .
Next, by the use of mutation operator, a test solution is generated:

XT est = Xm1 + ϕ1(Xm2 − Xm3)
XT est = [xT est,1, xT est,2, . . . , xT est,n] (47)

Where n is the length of the control vector. Then, the crossover operator is employed to produce two
new promising optimal solutions as follows:

XT est1 =
{

xi,j , ϕ2 < ϕ3

gbestj , , ϕ3 ≥ ϕ2

XT est2 =
{

xT est,j , ϕ3 < ϕ4

gbestj , ϕ4 ≥ ϕ3
(48)

Xi = [xi,1, xi,2, . . . , xi,n]

Gbest = [gbest1, gbest2, . . . , gbestn]

In the above equations, ϕ1 to ϕ4 are random values in the range [0,1].

6.4. Sub-modification method 2
This modification method is sued to update the parameter α in Eq. (46) during the optimization
adaptively.

αnew = (1/2I ter)1/I terαold (49)

This formulation is obtained experimentally by several running of the algorithm.
At the commencement, a probability parameter is defined for the sub-modification methods (called

Prθ for θ th sub-modification method). It is initially assumed that the probability parameters of both
modification methods are equal; i.e. Prθ = 0.5 & θ = 1, 2 . As mentioned before, the idea of this
adaptive modification is to give the bats the choice of preference. Nevertheless, it is the successful
performance of each sub-modification which can increase or decrease their probability. It is evident
that bigger Prθ shows more chance for θ th modification to be chosen as the proper sub-modification
method by the bats.

In each iteration, the bat population is sorted in descending order. Next, better bat solution will
take a higher weighting factor:

WTj = Log (N − j + 1)∑n
i=1 Log(i)

; j = 1, . . . , N (50)

Where N is the number of bats in the population. Next, the probability success of each sub-modification
method is updated as follows:

Prθ = Prθ + WTl

nModθ

; l = 1, . . . , nModθ
, θ = 1, 2 (51)
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Begin: 
    For  i=1:NBat where NBat is size of bat population
        If  1 ≤  Prb1

Iter+1  
        Select modification method 1 for the bat solution i 
       ElseIf   Prb1

 Iter+1< randi ≤ Prb1
 Iter+1+ Prb2

 Iter+1   
        Select modification method 2 for the bat solution i 
       End If

     End For i
End 

Fig. 1. Pseudo code for choosing θ th modification method by RWM.

Here,nModθ
indicates the number of bats that have chosen the θ th sub-modification method. At the

end of each iteration, the probability success parameters are updated as follows:

Prω = Prω∑2
ω=1 Prω

(52)

In order to keep the random characteristics of the algorithm, we make use of roulette wheel
mechanism for selection of the proper modification method by each bat. This process is shown in
Fig. 1.

Generally, the heuristic algorithm such as SAMBA only requires checking the cost function for
guidance of its search and no longer requiring information regarding the system.26–31 Therefore, in
this paper, the Mean of Root of Squared Errors (MRSE) is considered as follows:

MRSE = E (K) = 1/
N

N∑
i=1

|e(i)| (53)

Where, e(i) is the trajectory error of ith sample for the object, N is the number of sample, i is the
iteration number, u(i) is the control signal.

7. Implementation of Optimal Fuzzy Sliding Mode Control
To implement the proposed control, the following should be done step by step:

1. Based on the available information in the robot manipulator dynamics, determine the estimated
values of D̂x(q) and Ĥx(q, q̇).

2. By determining tracking error vectore and its differential ė, find sliding surface vector s.
3. By using Eq. (17), determine Ẍr .
4. By using Eqs. (32) and (33) and the information contained on the uncertainties in the robot

manipulator dynamics, determine the allowable range of the matrices K and A.
5. In this step, to design the first-order TSK fuzzy system, use singleton fuzzifier.
6. Since the values of Fp and Fn are determined until the fourth step, determine the rules base of

fuzzy system by using Eqs. (36), (37), (38), (39) and (40).
7. By using the SAMBA algorithm, determine the optimal values of entries of the matrices K and A,

the coefficients in the sliding surface vectors and coefficients of γ1 and γ2.

7.1. Advantage of optimal fuzzy sliding mode control
In the design of the proposed control, a number of factors have been considered which easily makes
the control to be implemented. The most important factors are as follows:

1. The use of the feedback linearization method causes the uncertainty bounds to reduce. Hence, in
determining the control input coefficients, we can act such that the amplitude of control input is
in a desired range.

2. Sliding mode control is capable of overcoming all uncertainties in the robot manipulator dynamics.
On the other hand, the fuzzy theory has proved its ability in controlling systems with uncertainties.
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Fig. 2. Robot manipulator with two revolute joints.

Therefore, using a combination of sliding mode control and fuzzy logic theory makes the proposed
control capable overcome structured and unstructured uncertainties as well as external disturbances
and hence, makes it more flexible.

3. One of the problems in practical implementation of sliding mode controllers is the occurrence of
control input chattering. In the proposed control, this problem is tackled by using the TSK fuzzy
system.

4. One of the most important issues in practical implementation of controllers is the number of
calculations of the control input. Since the rules base of fuzzy inference engine in the proposed
control has only two rules, the number of calculations of the control input is low.

5. In many of the controllers presented for the robot manipulator position tracking, trial and error is
used to determine the control input coefficients. Hence, the use of non-optimal coefficients lead
to an increase in control input amplitude. In this case, the actuators of robot manipulator go to
saturation mode. For such cases, the designers use actuators with high power. As a result, the
cost of practical implementation of the controllers increases. Since the input coefficients of the
proposed control is obtained from the SAMBA algorithm, the amplitude of control input is the
optimal and the problem of actuator saturation is resolved.

6. Since the proposed control is designed in the task space, kinematic uncertainties of the robot
manipulator has no effect on the performance of the proposed controller.

8. A Case Study on Revolute Double-Joint Robot Manipulator
The controllers which have been designed and scrutinized in this paper are conducted on the revolute
double-joint robot manipulator of Fig. 2.

Dynamic equations of this robot are as follows:19

Dx (q) Ẍ + Vx(q, q̇)q̇ + Gx(q) + TdX = F(t) (54)

In which:

Dx (q) =
[

m1 + m1
(sinq2)2 0

0 m2

]
(55)

Vx (q, q̇) =
[

V11 V12

V21 V22

]
(56)

V11 = −
(

m2L1 (cosq2) + m2L2)q̇1 − 2m2L2 + m2L1 (cosq2) + m1L1
cosq2

(sinq2)2

)
q̇2 (57)
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Table I. Parameters of revolute double-joint robot.

L̂1 = 1.1 m L1 = 1 m
m̂1 = 9.5 kg m1 = 10 kg
L̂2 = 0.9 kg L2 = 0.8 m
m̂2 = 7.5 kg m2 = 8 kg
g = 9.8 m

/
s2 Tdx

= Tdy
= 5

Table II. Controlling parameters in
revolute double-joint robot manipulator.

k2 = 200 k1 = 100
λ2 = 100 λ1 = 50
A12 = 0 A11 = 90
A22 = 100 A21 = 0
γ2 = 0.5 γ1 = 0.5

V12 = −m2L2q̇2 (58)

V21 = m2L1 (sinq2) q̇1 + m2L1 (sinq2) q̇2 (59)

V22 = 0 (60)

Gx (q) =
[

m1g
cosq1

sinq2
+ m2g (sinq1) (sinq2)

m2g (cosq1) (cosq2)

]
(61)

TdX =
[

Tdx

Tdy

]
(62)

In each link, the mass distribution is considered as point particle and the center of mass of each link
is considered to be determined at the end. L1 represents the length of the first link, L2 is designated as
the length of the second link, m1 is assigned as the mass of the first link, m2 is the mass of the second
link, g is the gravity, Tdx is the disturbance or un-modeled dynamic and F is the force exerted on the
end-effector.

The quantities for the robot which are utilized in this simulation have been presented in Table I.

Point 4: L̂1, m̂1, L̂2 and m̂2 are the estimations from the actual quantities of L1, m1, L2 and m2 which
have been utilized in calculation of F̂ .

The quantities of controlling parameters in controller (19) which have been utilized in this
simulation are presented in Table II.

Point 5: Quantities k1 and k2 are calculated based on Eq. (32) and also quantities A11,A12, A21and
A22 are calculated based on Eq. (33).

It is worth mentioning that these values are obtained in their allowable range by trial and error.
The values of Table II is only used in the first and second steps of simulations.

By the parameters mentioned in Tables I and II, the relation (19) is applicable. Matrix Dx (q) is
calculated as:

Ḋx (q) =
[ −m1(2(sinq2)(cosq2))

(sinq2)4 0
0 0

]
=
[

Ḋ11 Ḋ12

Ḋ21 Ḋ22

]
(63)
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In Eq. (63), upper bound of Ḋ11 is specified. Thus considering Lyapunov function candidate as Eq.
(24), we can conclude Eq. (30) for the double-link robot as:

V̇ (s) =
2∑

i=1

(si (�fi − kisgn(si))) −
2∑

i=1

2∑
j=1

sisjAij + 1

2

2∑
i=1

2∑
j=1

sisj Ḋij (64)

With respect to quantities of Ḋ11, Ḋ12, Ḋ21 and Ḋ22, Eq. (64) is simplified as:

V̇ (s) =
2∑

i=1

(si (�fi − kisgn(si))) − s2
1A11 − s1s2A12 − s2s1A21 − s2

2A22 + 1

2
s2

1Ḋ11 (65)

To prove the closed-loop system stability, Eq. (65) must be less than zero, that is:

V̇ (s) =
2∑

i=1

(si (�fi − kisgn(si))) − s2
1A11 − s1s2A12 − s2s1A21 − s2

2A22 + 1

2
s2

1Ḋ11 < 0 (66)

To satisfy the above equation, the following equations must be established:

Ki > ‖�fi‖ ; i = 1, 2 (67)

‖A11‖ >

∥∥∥∥Ḋ11

2

∥∥∥∥ (68)

In addition, quantities of A12, A21 and A22 are determined such that the matrix A to be positive-
definite. Therefore, we can conclude global asymptotic stability for the closed-loop system. The
Jacobian matrix is in the form of:

J (q) =
[

L1sinq2 0
L1cosq2 + L2 L2

]
(69)

To investigate the weaknesses of sliding mode controller (19) and indicating the favorable operation
of the proposed fuzzy sliding mode control, the simulations are performed in three steps:

Step 1 of simulation: Sliding Mode Control (SMC) input is simulated for revolute double-joint robot
in the task space. In this step, control input of Eq. (23) is simulated for the revolute double-joint robot.

After performing the simulation, the desired and actual trajectories in Cartesian space for end-
effector have been shown in Fig. 3.

According to Fig. 3, tracking errors of the end-effector position in Cartesian space for X and Y
axes are shown in Fig. 4.

As evident in Figs. 3 and 4, the maximum tracking error of the end-effector position is 14 × 10−6

meters for X axis and 32 × 10−5 meters for Y axis. Oscillations around the zero will occur in the X
and Y axes of tracking error of the end-effector position.

Figure 5 shows the exerted control input to the joints 1 and 2.
It is evident that the exerted control input has a chattering domain in the range of 46 to 786 Newton

meters for the joint 1 in most time intervals. This domain is from 24 to 358 Newton meters for the
joint 2. This chattering can lead to the activation of dynamic modes of the robot manipulator.

Step 2 of simulation: Fuzzy Sliding Mode Control (FSMC) input is simulated for revolute double-
joint robot in the task space.

After execution of the simulation, the tracking error of the end-effector position on X and Y axes
have been indicated in Fig. 6.

According to this figure, the tracking error of the end-effector position on X axis will reach zero
after 0.189 s; thereafter, tracking will continue with no errors and oscillations. In the event that
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Fig. 3. The desired and actual trajectories in Cartesian space for end-effector.

Fig. 4. Tracking error of the end-effector position in Cartesian space.

Table III. Controlling parameters in
revolute double-joint robot manipulator.

k2 = 158 k1 = 84
λ2 = 69 λ1 = 32
A12 = 0 A11 =57
A22 = 71 A21 = 0
γ2 = 0.2621 γ1 = 0.2783

the tracking error on Y axis will reach zero after 7.464 s; moreover, it never remains zero and the
maximum tracking error on Y axis is 8 × 10−7 meters.

Figure 7 shows the control inputs for the joints 1 and 2.
As it is understood from Fig. 7, the control inputs for the joints 1 and 2 have no chattering.

Step 3 of simulation: In this step of the simulation, the fuzzy sliding mode controller parameters are
searched and adjusted in the allowable range by the SAMBA algorithm. The values are presented in
Table III.
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Fig. 5. Exerted control inputs to joints 1 and 2 (a) The exerted control input to joint 1 (b) The exerted control
input to joint 2.

The Optimal Fuzzy Sliding Mode Control (OFSMC) input is simulated for the revolute double-joint
robot in the task space. Block diagram of this simulation is shown in Fig. 8.

So far in all steps of simulation, a constant quantity of disturbance, according to Table I, is applied
to the robot. In this step of the simulation, to test the robustness of the suggested control system
against disturbances, the control system is challenged and disturbances are applied to the robot as
shown in Fig. 9.

After execution of simulation, the tracking error of the end-effector position on X and Y axes have
been indicated in Fig. 10.

According to this figure, the tracking error of the end-effector position in X and Y axes is very
negligible and limited to zero. With a little care and comparing the tracking errors in the previous
steps of simulations, significant reduction of the tracking error of the end-effector position on X and
Y axes is visible.

Figure 11 shows the control inputs for the joints 1 and 2.
As it is observed from Fig. 11, the control inputs for joints 1 and 2 have no chattering. In addition,

with comparing Figs. 8 and 11, it is understood that in the timescales ranging, the size of control inputs
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Fig. 6. Tracking error of the end-effector position on X and Y axes.

Fig. 7. Exerted control inputs to joints 1 and 2 (a) Exerted control input to joint 1 (b) Exerted control input to
joint 2.
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Fig. 8. Block diagram of Optimal Fuzzy Sliding Mode Control (Step 3 of simulation).

Fig. 9. Exerted challenging disturbances to the revolute double-joint robot in task space.

Fig. 10. Tracking error of the end-effector position on X and Y axes by applying disturbances are shown in
Fig. 9.
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Fig. 11. Exerted control inputs to joints 1 and 2 by applying disturbances are shown in Fig. 9 (a) Exerted control
input to joint 1 (b) Exerted control input to joint 2.

declined so that the reduction of control inputs 1 and 2 are 42 to 57 and 4.3 to 7.2 Newton meters,
respectively. Given Figs, 10 and 11 and comparing them with the results of step 2 of simulation,
we understand that despite exerting disturbances to the revolute double-joint robot as shown in
Fig. 9, we have achieved our control objectives which had very negligible position tracking error and
free-of-chattering control inputs with ability to implement practically.

9. Conclusions
In this paper, the sliding mode controller has been presented to track robot manipulator position in
the task space. In the design of this controller, a combination of feedback linearization method and
sliding mode control has been utilized. The mathematical proof demonstrated that the closed loop
system with the proposed control has global asymptotic stability in the presence of all structured
and unstructured uncertainties as well as external disturbances. Further, to eliminate the problem of
chattering in the control input, a first-order TSK fuzzy approximator was designed by using the fuzzy
theory. The simulations of the second step showed that the presented fuzzy sliding mode controller
has no chattering and possesses all the advantages of sliding mode control. Ultimately, the SAMBA
algorithm was employed to adjust the input coefficients of the fuzzy sliding mode controller. The
results of the simulations of the third step revealed that the optimal fuzzy sliding mode controller has

https://doi.org/10.1017/S0263574714001258 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001258


A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator 2063

a favorable performance in overcoming all the uncertainties in the robot manipulator. In design and
modification of the proposed controllers, we considered factors which are discussed in the Section 7
of the paper. The simulations which were performed in the three steps clearly demonstrated the
problems of sliding mode control and the advantages of fuzzy sliding mode control and the optimal
fuzzy sliding mode control.
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