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Abstract

Under sufficiently strong assumptions about the first prime in an arithmetic progression, we prove that the
number of Carmichael numbers up to X is � X1−R, where R = (2 + o(1)) log log log log X/log log log X.
This is close to Pomerance’s conjectured density of X1−R with R = (1 + o(1)) log log log X/log log X.
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1. Introduction: bounds

In 1910, Carmichael [3] discovered a numerical construct that now bears his name.

Definition 1.1. A composite number m is a Carmichael number if m | am − a for all
a ∈ Z.

Of course, if m is prime, it is always the case that m | am − a, so Carmichael numbers
are often called pseudoprimes. The referee provided an additional historical comment.
Carmichael was not the first to discover these numbers. Şimerka [12] discovered
the first seven Carmichael numbers in 1885, but he published his work in a Czech
journal that was not widely disseminated and his discovery was not known to most
mathematicians at the time.

The search for Carmichael numbers was aided by an earlier result of Korselt [8].

Korselt’s criterion. A composite number m is a Carmichael number if and only if m
is square-free and p − 1 | m − 1 for every prime p | m.

Although Korselt devised the criteria for such a pseudoprime in 1899, he never
computed any examples. It took another 11 years before Carmichael found the first of
these numbers.

Once Carmichael numbers were discovered, attention quickly turned to the obvious
follow-up question.
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Question 1.2. Let C(X) be the number of Carmichael numbers up to X. How large is
C(X)?

The first nontrivial lower bound for C(X) came in 1994, when Alford et al. [1]
proved that there are infinitely many Carmichael numbers. More specifically, they
proved the following result.

Theorem 1.3 (Alford, Granville and Pomerance, 1994). Let C(X) be as above. Then

C(X)� X2/7.

The current best result is by Harman [6].

Theorem 1.4 (Harman, 2008). Let C(X) be as above. Then

C(X)� X0.3336704.

On the other side, upper bounds for C(X) have been studied since the 1950s. In
1953, Knödel [7] proved the following result.

Theorem 1.5 (Knödel 1953). There exists a constant k > 0 such that

C(X)� Xe−k(log X log log X)1/2
.

Improvements by Erdős [5] and Pomerance [11] have brought this bound down.

Theorem 1.6 (Pomerance 1981). Let C(X) be as above. Then

C(X)� Xe−log X log log log X/2 log log X .

Pomerance has conjectured that this upper bound should be close to the correct
density for C(X); in the paper mentioned above, he posited the following conjecture.

Carmichael density conjecture (Pomerance 1981). For C(X) as above,

C(X) = Xe−(1+o(1)) log X log log log X/log log X .

In this paper, we provide further evidence for Pomerance’s heuristic by showing
that the assumption of a strong conjecture about the first prime in an arithmetic
progression will yield a lower bound for C(X) that is very close to his Carmichael
density conjecture.

2. Introduction: methods

The result of Alford, Granville and Pomerance established a blueprint for
proving density results about Carmichael numbers. The blueprint draws from two
conjectures/theorems that we describe below.

In order to describe our conjectures/theorems, let us define the following notation.
We will let P(n) denote the largest prime factor of n; we will let π(x) denote the number
of primes p up to x; we will let π(x, y) be the number of primes p up to x such that
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P(p − 1) < y; and we will let π(x; d, a) denote the number of primes p up to x such that
p ≡ a (mod d).

With this notation in hand, we can state the two conjectures/theorems. Progress
on these propositions is very closely linked to progress on the density of Carmichael
numbers.

Conjecture/Theorem 2.1. Let E ∈ (0, 1). Then there exists a constant γE > 0
depending only on E such that for all sufficiently large x,

π(x, x1−E) ≥ γEπ(x).

This has been proved for certain values of E but is conjectured to be true for all
E < 1.

Conjecture/Theorem 2.2. Let B ∈ (0, 1). Then there exists a constant DB depending
only on B such that for each sufficiently large x, there exists a set DB(x) consisting of
at most DB integers where

π(y; d, a) ≥
π(y)

2φ(d)

as long as (a, d) = 1, d < min{xB, y/x1−B} and d is not divisible by any of the integers
in DB. Moreover, all the elements in DB must be of size at least log x.

Again, this has been proved for some values of B but is conjectured to be true for
every B < 1.

Theorem 1.3 from [1] can then be restated in the following way.

Theorem 2.3 (Alford, Granville, Pomerance, 1994). Choose an E and a B for which
Conjectures/Theorems 2.1 and 2.2 are both true. Then

C(X)� XEB.

In particular, the conjectures/theorems are both proved theorems when B = 5/12 and
E = 1 − (2

√
e)−1.

Subsequent improvements have largely followed this framework, generally by
either improving the B and E or by slightly loosening the requirements of the
conjectures/theorems to allow for improvement. The most recent result [6] takes
B = 0.4736 and E = 0.7039, leading to the lower bound quoted above.

Of course, we expect that these conjectures are true for E = 1 − δ for any δ > 0
and B = 1 − ε for any ε > 0. Indeed, the first of these two conjectures/theorems
would follow from something like the Elliott–Halberstam conjecture (with level of
distribution 1 − E), while the second is a much weaker form of Montgomery’s
conjecture on primes in arithmetic progressions (see [10] for further discussion
of Montgomery’s conjecture). As such, we are fairly confident that C(X) should
be� X1−ε .

The current paper, however, moves past power loss to draw closer to the cavalcade
of logs appearing in Pomerance’s conjecture. To do this, we must take a different tack
and replace these two conjectures with a single one.
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3. Introduction: new results

To this end, we will invoke a conjecture that has commonly been used in the pursuit
of Carmichael numbers and related problems.

Heath-Brown conjecture. Let (a,m) = 1. There exists some constant A (independent
of a and m) such if p is the smallest prime such that p ≡ a (mod m) then p� m logA m.

This conjecture was first used by Banks, Ekstrom, Pomerance and Thakur in
two papers [2, 4] that would prove (conditionally) that (a) there are infinitely many
Carmichael numbers in arithmetic progressions (if the modulus and residue class are
coprime) and (b) there are infinitely many composite square-free numbers m such that
p + 1 | m + 1 for any prime p which divides m. Although these results were later made
unconditional in [16] and [14], the conjecture has also been used in other Carmichael
results, including [15].

Assuming this conjecture, we will prove the following result.

Theorem 3.1 (Main theorem). Assume the Heath-Brown conjecture above. Then

C(X) ≥ X1−(2+o(1)) log log log log X/log log log X .

Equivalently, we can say that

C(X) ≥ Xe−(2+o(1)) log X log log log log X/log log log X .

This barely misses Pomerance’s conjecture; it has an extra iteration of log in the
numerator and denominator of the exponent (as well as an extra 2).

We note that the Heath-Brown conjecture is actually slightly stronger than is
needed; we use it as it is written here for purposes of expediency and clarity. In
particular, we could prove the same result if we only assumed that the conjecture
is true for primes equivalent to 1 mod m, and we could even draw a similar result if
we allowed the A to go to infinity sufficiently slowly (something like A = log log m).
Moreover, if we were to take an even weaker version of the Heath-Brown conjecture
(say, p� m1+o(1)), our methods would still yield C(X) = X1−o(1).

4. Alford–Granville–Pomerance framework and proof framework

The general framework for finding infinitely many Carmichael numbers, as laid
out in [1], is as follows. Again, let P(n) denote the largest prime factor of n. In
the traditional framework, one first finds that there are many primes q such that
P(q − 1) < q1−δ for some δ. Multiplying these q’s together (apart from some small
finite number of q’s, which we omit for exceptional zero reasons) yields a number
L that has many factors and a small value for λ(L) (where λ(L) denotes the largest
possible order of an element of (Z/LZ)×). From this, one can find some k for which
there are a large number of primes p where p = dk + 1 for various choices of d | L;
if one has enough such primes p, there must exist some subset of these primes that
multiply to 1 mod Lk and hence multiply to give a Carmichael number.
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In order to use our conjecture (and remove the other two), we change the way in
which we find these q’s. In particular, we will generate q’s in the same way we generate
p’s. We take a number J that is the product of many small primes and we find an l such
that there are many primes q = gl + 1 for various g | J. This will make λ(L) much
smaller, giving us more flexibility in generating our Carmichael numbers.

This technique was first used in [17] in a paper that conditionally addressed the
question of whether there are infinitely many Carmichael numbers with a fixed number
of prime factors. In that paper, the technique was useful because it kept λ(L) really
small while generating a large number of primes p. In this paper, the use is slightly
different. The fact that we keep λ(L) small means that we can keep our p’s and our
Carmichael numbers relatively small, which allows for better density estimates.

It is interesting, if unfortunate, to note that these new methods cannot yet improve
unconditional results for densities of Carmichael numbers. If one were to use our
method of construction with the current known bounds and theorems, one would end
up with C(X)� XB2

; however, since the best known bound for B is less than that for
E, this is a worse result than the original Alford–Granville–Pomerance result.

5. Finding q’s

First, for some sufficiently large natural number z, let us define J by

J =
∏

√
z<r<z,r prime

r.

Let us consider the set of g’s where g | J. By the Heath-Brown conjecture, we can
assume that the following assertion is true.

Lemma 5.1. For any g | J, there exists a q such that q = gl + 1 for some l < logA g.

From this, we will winnow down our set of q’s to be a bit more helpful in our
Carmichael search. As is standard, we let ω(x) denote the number of prime factors of
x. So, for a given l, let us define the set of primes Ql such that

Ql = {q prime : q = gl + 1 for some g | J with ω(g) = blog zc}.

Then we can prove the following result.

Lemma 5.2. There exists an l0 < log2A z such that

|Ql0 | > zlog z−(2+o(1)) log log z.

Proof. We know that the number of divisors of J is > z/2 log z. So the number S of g’s
for which g | J and ω(g) = blog zc is

S >
(z/2 log z
blog zc

)
�

( z

2 log2 z

)log z
= zlog z−(2+o(1)) log log z.
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Additionally, note that g < zlog z for any such g. So by Lemma 5.1, for any such g,
there must exist a prime q = gl + 1 where

l < logA(zlog z) = log2A z = z2Alog log z/log z.

Since there are at least
zlog z−(2+o(1)) log log z

choices for g and at most
log2A z

choices for l, there must exist an l0 for which

|Ql0 | ≥
zlog z−(2+o(1)) log log z

log2A z
= zlog z−(2+o(1)) log log z. �

We note for future reference that for any q ∈ Ql0 ,

q = gl0 + 1 ≤ zlog z+2Alog log z/log z. (5.1)

6. Finding p’s

Now let us define
L =

∏
q∈Ql0

q.

Let λ(L) denote the largest possible order of a coprime residue mod L. We will require
two pieces of information about L: the size of λ(L) and the size of L itself.

Lemma 6.1. For λ as defined above,

λ(L) < z((1+o(1))z+2A log log z)/log z.

Proof. For every q ∈ Ql0 , we know that q − 1 | Jl. Since J is the product of fewer than
(1 + o(1))z/log z primes up to z,

J ≤ z(1+o(1))z/log z.

Moreover, as we saw above,
l < z2Alog log z/log z.

Multiplying these together gives us the lemma. �

Lemma 6.2. We have
log L < zlog z.

Proof. Recall that
q ≤ zlog z+2Alog log z/log z.

Since the number of possible q’s is at most zlog z−(2+o(1)) log log z,

L ≤ z(log z+2Alog log z/log z)(zlog z−(2+o(1)) log log z).
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So

log L ≤ zlog z−(2+o(1)) log log z
(

log z + 2A
log log z

log z

)
log z < zlog z

as required. �

Now, just as we did with J in the previous section, we will use this large product L
to construct more primes. Let us consider primes p where p = dk + 1 for some d | L.
In particular, for a given k, we define

Pk = {p = dk + 1 : p prime, ω(d) = z}.

We can use the Heath-Brown conjecture to prove the following result. As before, z
is a sufficiently large integer.

Theorem 6.3. There exists a k0 < (z log2 z + 2A(z log log z))A such that

|Pk0 | > zz log z−(2+o(1))z log log z.

Proof. First, recall that for every prime q | L,

q ≤ zlog z+2Alog log z/log z.

If ω(d) = z then
d ≤ zz log z+2Az log log z/log z.

So, for every d, there exists a k such that

k < logA zz log z+2Az log log z/log z = (z log2 z + 2A(z log log z))A,

and p = dk + 1 is prime.
The number of possible d’s for which ω(d) = z is

#{d | L : ω(d) = z} =
(zlog z−(2+o(1)) log log z

z

)
≥

(zlog z−(2+o(1)) log log z

z

)z
= zz log z−(2+o(1))z log log z.

By the pigeonhole principle, there is a k0 < (z log2 z + 2A(z log log z))A such that

|Pk0 | ≥
zz log z−(2+o(1))z log log z

(z log2 z + 2A(z log log z))A
= zz log z−(2+o(1))z log log z. �

Note that for a prime p ∈ Pk0 ,

p ≤ (zlog z+2Alog log z/log z)z(z log2 z + 2A(z log log z))A = zz log z+(2A+o(1))z log log z/log z.
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7. Carmichael number construction

In this section we can finally construct Carmichael numbers. To this end, we recall
a theorem of van Emde Boas and Kruyswijk [13] and Meshulam [9]. Let n(L) denote
the smallest number such that a sequence of at least n(L) elements in (Z/LZ)× must
contain some nonempty sequence whose product is the identity.

Theorem 7.1 [1, Theorem 1.5 and Proposition 2.1]. Let n(L) be as above. Then

n(L) < λ(L)(1 + log(φ(L)/λ(L))).

Moreover, if r > t > n(L), then any sequence of r elements in (Z/LZ)× contains at least(
r
t

)/(
r

n(L)

)
distinct subsequences of length at least t − n(L) and at most t whose product

is the identity.

In order to find the density of Carmichael numbers, we first need to know the size
of n(L) and n(k0L).

Lemma 7.2. For n(L) as defined above, n(L) < z2z/log z.

Proof. From Lemma 6.1,

λ(L) < z((1+o(1))z+2A log log z)/log z.

Additionally, from Lemma 6.2, log L < z2 log z. Putting this together gives

n(L) < z((1+o(1))z+2A log log z)/log z(1 + z2 log z) < z2z/log z. �

Lemma 7.3. We have
n(k0L) < z(2+o(1))z/log z.

Proof. From the Heath-Brown conjecture, k0 < logA L. Since

λ(k0L) ≤ k0λ(L) = λ(L)1+o(1),

the lemma follows easily. �

Now we can use Theorem 7.1 to construct Carmichael numbers. First, we show that
our construction actually yields the desired pseudoprimes.

Theorem 7.4. For r as defined in Theorem 7.1, let p1, p2, . . . , pr ∈ Pk0 be distinct
primes such that m = p1 p2 · · · pr ≡ 1 (mod k0L). Then m is a Carmichael number.

Proof. By construction, pi − 1 = dk0 | Lk0 for every pi ∈ Pk0 . So for every pi | m, we
have pi − 1 = dk0 | Lk0 | m − 1, which is Korselt’s criterion. �

Now that we know our construction yields Carmichael numbers, the next step is to
determine how many such numbers our method yields.
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Theorem 7.5. Let C(X) denote the number of Carmichael numbers up to X. Then

C(X) ≥ X1−(2+o(1))log log log log X/log log log X .

Equivalently, we can say that

C(X) ≥ Xe−(2+o(1))log X log log log log X/log log log X .

Proof. From the preceding lemmas, n(L) < z(2+o(1))z/log z. We apply Theorem 7.1 with
t = zz and r = zz log z−(2+o(1))z log log z. Clearly, t < r < |Pk0 |. Let I(z) denote the number of
subsequences whose product is the identity. Then from Theorem 7.1,

I(z)�
(zz log z−(2+o(1))z log log z

zz

)/(zz log z−(2+o(1))z log log z

z(2+o(1))z/log z

)
�

(zz log z−(2+o(1))z log log z

zz

)zz/
(zz log z−(2+o(1))z log log z)z(2+o(1))z/log z

� (zz log z−(2+o(1))z log log z)zz−z(2+o(1))z/log z

= zzz+1 log z−(2+o(1))zz+1 log log z−z1+(2+o(1))z/log z log z+(2+o(1))z1+(2+o(1))z/log z log log z

= zzz+1(log z−(2+o(1)) log log z).

We recall from before that for all of the primes p,

p ≤ zz log z+(2A+o(1))z log log z/log z.

By our construction t = zz and a Carmichael number m can consist of at most t such
primes p, so

m ≤ (zz log z+(2A+o(1))z log log z/log z)zz
= zzz+1(log z+(2A+o(1))log log z/log z).

Define
X = zzz+1(log z+(2A+o(1))log log z/log z),

so that

log X = zz+1(log2 z + (2A + o(1)) log log z),
log log X = z log z + O(log z),

log log log X = log z + O(log log z),
log log log log X = log log z + O(1).

From this,

C(X) ≥ zzz+1(log z−(2+o(1)) log log z)

= zzz+1(log z+(2A+o(1))log log z/log z)z−zz+1(2+o(1)) log log z

= Xz−zz+1(2+o(1)) log log z

= X(X−(2+o(1))((log log z)/(log z+(2A+o(1))log log z/log z)))

= X1−(2+o(1))log log z/log z.
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Since (1 + o(1)) log log log X = log z and (1 + o(1)) log log log log X = log log z,
this yields

C(X) ≥ X1−(2+o(1))log log log log X/log log log X

which is as stated in the theorem. �
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[7] W. Knödel, ‘Carmichaelsche Zahlen’, Math. Nachr. 9 (1953), 343–350.
[8] A. Korselt, ‘Problème chinois’, L’intermédiaire des mathématiciens 6 (1899), 142–143.
[9] R. Meshulam, ‘An uncertainty inequality and zero subsums’, Discrete Math. 84(2) (1990),

197–200.
[10] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I: Classical Theory

(Cambridge University Press, Cambridge, 2006).
[11] C. Pomerance, ‘On the distribution of pseudoprimes’, Math. Comp. 37(156) (1981), 587–593.
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