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Hypersurfaces with Prescribed Boundary
and Small Steklov Eigenvalues

Bruno Colbois, Alexandre Girouard, and AntoineMétras

Abstract. Given a smooth compact hypersurface M with boundary Σ = ∂M, we prove the existence
of a sequence M j of hypersurfaces with the same boundary as M, such that each Steklov eigenvalue
σk(M j) tends to zero as j tends to inûnity. he hypersurfaces M j are obtained from M by a local
perturbation near a point of its boundary. heir volumes and diameters are arbitrarily close to those
of M, while the principal curvatures of the boundary remain unchanged.

1 Introduction

Let M be an n-dimensional smooth compact Riemannian manifold with boundary
Σ = ∂M. he Steklov eigenvalue problem on M consists in ûnding all numbers σ ∈ R
for which there exists a nonzero function u ∈ C∞(M), which solves

⎧⎪⎪⎨⎪⎪⎩

∆u = 0 in M,
∂νu = σu on Σ.

Here, ∆ is the Laplacian induced from the Riemannian metric g on M, and ∂ν is the
outward pointing normal derivative along the boundary Σ. he Steklov eigenvalues
form an unbounded increasing sequence 0 = σ0 ≤ σ1 ≤ σ2 ≤ ⋅ ⋅ ⋅ → ∞, each of which
is repeated according to its multiplicity. Note that if M is connected, then σ1 > 0. See
[9, 12] for background on this problem.

One of ourmain interests in recent years has been to understand the particular role
that the boundary Σ plays with respect to Steklov eigenvalues. Some papers studying
this question are [2,4–7, 11, 14–16]. In particular, we have considered the eòect of var-
ious geometric constraints on individual eigenvalues σk . One particularly interesting
question is to prescribe a Riemannian metric gΣ on the boundary Σ and to investi-
gate lower and upper bounds for the eigenvalue σk among all Riemmanian metrics g

that coincide with gΣ on the boundary. Given any Riemannian metric g on M such
that g = gΣ on Σ, it is proved in [4] that one can make any eigenvalue σk arbitrarily
small by modifying the Riemannian metric g in an arbitrarily small neighborhood
V ⊂ M of a point p ∈ ∂M. More precisely, for each є > 0 and each k ∈ N, there
exists a Riemannian metric g̃ = g̃є ,k on M that coincides with gΣ on Σ and also with
g outside the neighborhood V , such that σk(M , g̃) < є. For manifolds M of dimen-
sion n ≥ 3, one can also obtain arbitrarily large eigenvalues, but in general not using
a perturbation that is localized near the boundary of M (see [2, 4]). In [5] a more
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restrictive constraint was imposed by requiring themanifold M to be a submanifold
of Rm with prescribed boundary Σ = ∂M ⊂ Rm . In this context an upper bound for
σk was given in terms of Σ and of the volume of M. he authors were unable at the
time to give a lower bound and they raised the question of whether one exists, or if
instead, arbitrarily small eigenvalues are possible. he goal of this paper is to answer
that question.

heorem 1.1 Let M ⊂ Rn+1 be a smooth n-dimensional compact hypersurface with

nonempty boundary Σ = ∂M. For each p ∈ Σ, there exists a sequence of hypersurfaces

M j ⊂ Rn+1, j ∈ N, with boundary ∂M j = Σ and with the hypersurface M j coinciding

with M outside of a ball B(p, 1
j ), such that

lim
j→∞

σk(M j) = 0 for each k ∈ N.(1.1)

he principal curvatures of Σ ⊂ M j are independent of j. Moreover, the volume and

diameter of M j converge to those of M as j →∞.

In order for (1.1) to hold for each k ∈ N, it is necessary that the perturbed hyper-
surfaces M j diòer from M arbitrarily close to the boundary Σ as j →∞. Indeed, let b
be the number of connected components of Σ and note that any hypersurface M̃ that
coincides with M in a neighborhood Ω of Σ satisûes σb+1 ≥ C > 0, where C is given
by a sloshing problem on Ω ∩M; see [5] for details.

Remark 1.2 heorem1.1 holds in arbitrarypositive codimension and ambient space.
We decided to state it for hypersurfaces in Rn+1for the sake of notational simplicity.
Note also that heorem 1.1 certainly holds under weaker regularity asumptions; for
instance, the boundary of M could be Lipschitz instead of smooth.

Remark 1.3 By construction (see Section 3), eachmanifoldM j coincideswith M in
a neighborhood Ω j of its prescribed boundary Σ. Hence, the Dirichlet-to-Neumann
maps D j ∶ C∞(Σ) → C∞(Σ) associated with M j all have the same full symbol [13,
Section 1]. he asymptotic behavior of σk(M j) as k → ∞ is therefore independent
of j. hat is, for each j1 , j2 ∈ N the following holds: σk(M j1) − σk(M j2) = O(k−∞);
see [7, Lemma 2.1]. In particular, the limits of σk(M j) as j →∞ and as k →∞ do not
commute.

1.1 The Strategy of the Proof

For eigenvalues of the Laplace operator, it iswell known that one can obtain arbitrarily
small eigenvalues by constructing thinCheeger dumbbells in the interior of theman-
ifold; see [1,3]. his strategy does notwork for Steklov eigenvalues. For Steklov eigen-
values, it is possible to obtain arbitrarily small eigenvalues by creating thin channels,
but this involves deformation of the boundary or a perturbation of the Riemannian
metric in the interior of M; see [4, 8]. In order to proveheorem 1.1, we have to use a
more elaborate strategy.
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Given a smooth function ũ ∶ Rn+1 → R, consider the restriction u = ũ∣M . It is well
known that if ∫Σ u dA = 0,

σ1(M)∫
Σ
u

2
dA ≤ ∫

M
∣∇u∣2 dV ;(1.2)

see [9] and Section 2 below. Here∇u is the tangential gradient of u. It is the projection
of the ambient gradient ∇ũ on the tangent spaces of M ⊂ Rn+1. he basic idea of
our proof is to ûx a function ũ ∈ C∞(Rn+1) and consider the vector ûeld ∇ũ in the
ambient space Rn+1. he hypersurface M is then deformed by creating “wrinkles”
that tend to make the various tangent spaces TpM, for p ∈ int M, perpendicular to
∇ũ(p). his is achieved by “folding the surface like an accordion” in the direction
perpendicular to∇ũ. In the limit the right-hand-side of inequality (1.2) tends to zero.
Let us illustrate this strategy with a simple example.

Example 1.4 Given a smooth function f ∶ D → R vanishing on the circle S1 = ∂D,
consider the surface

S f ∶= Graph of f = {(x , y, f (x , y)) ∶ (x , y) ∈ D} .

he boundary of S f is the same for each f . We will use the function deûned by
ũ(x , y, z) = x and its restriction u = ũ∣S f as a trial function in inequality (1.2). Because
∇ũ = (1, 0, 0), it follows from Lemma 2.4 that the Dirichlet energy of u ∶= ũ∣ S f ∶ S f →
R is given by

∫
S f

∣∇u∣2 = ∫
D

1 + f 2y√
1 + f 2x + f 2y

dx dy.

For n ∈ N, deûne f = fn ∶ D→ R by

f (x , y) = sin(nx)(

ϕ(x ,y)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1 − x

2 − y
2).

It follows from

f
2
x = n

2(cos(nx)ϕ + 1
n

sin(nx)ϕx)
2

and f
2
y = sin2(nx)ϕ2

y

that
lim
n→∞∫S fn

∣∇u∣2 = 0.

Together with (1.2), this shows that limn→∞ σ1(S fn) = 0.

he proof of heorem 1.1 is based on the above idea, but it is technically more
involved, because we want to localize this argument to a small neighbourhood of a
point p of the boundary. his is a signiûcant gain compared to the above example,
because it allows the construction of an arbitraryûnitenumber of disjointly supported
trial functions with small Dirichlet energy, leading to the collapse of each eigenvalue
σk rather than just σ1. For the sake of readability and simplicity, the deformations
that we use in the proof of heorem 1.1 are Lipschitz continuous but only piecewise
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smooth. his is not problematic because only integrals of the ûrst derivatives of these
deformations appear.

Plan of the Paper

In Section 2 we review the min-max characterization of Steklov eigenvalues, and we
prove a lemma regarding the control of the Dirichlet energy under quasi-isometries.
We then proceed to construct the perturbed hypersurfaces in Section 3. We use a
quasi-isometric chart to a hypersurfacewith a �at boundary. he perturbed subman-
ifold is then constructed by considering the graph of a locally supported oscillating
function. Finally, in Section 4 an appropriate trial function is used to conclude the
proof ofheorem 1.1.

2 Notation and Preliminary Considerations

Let M be a smooth compact manifold with boundary Σ. he volume form on M is
written dV , while the volume form on Σ is dA. We denote by H1(M) the standard
Sobolev space of functions in L2(M , dV) with weak ûrst derivative in L2(M , dV).
he Steklov eigenvalues σk admits a variational characterization in terms of the
Steklov–Rayleigh quotient of a function 0 ≠ u ∈ H1(M),

R(u) = ∫M
∣∇u∣2 dV
∫Σ u2 dA

.

he numerator D(u) = ∫M ∣∇u∣2 dV is the Dirichet energy of u ∈ H1(M). It is well
known that

(2.1) σk = min
S⊂H1

(M)
dim S=k+1

max
u∈S∖{0}

R(u),

where theminimumis takenover all (k+1)-dimensional linear subspaces S ⊂ H1(M).

2.1 Quasi-isometries and Dirichlet Energy

Let M and M̃ be two n-dimensional Riemannianmanifoldswith boundary. A diòeo-
morphism ϕ ∶ M → M̃ is a quasi-isometry with constant C ≥ 1 if for each p ∈ M and
each 0 ≠ v ∈ TpM,

1
C
≤

∥Dpϕ(v)∥2

∥v∥2 ≤ C .

Quasi-isometries provide a control of the Dirichlet energy of a function.

Lemma 2.1 Let ϕ ∶ M → M̃ be a quasi-isometry with constant C ≥ 1. Let f ∈ H1(M̃);
then

1
C

n
2 +1 ≤

∥∇( f ○ ϕ)∥2
L2(M)

∥∇ f ∥2
L2(M̃)

≤ C n
2 +1 .

Proof Let g̃ be the Riemannian metric of M̃ and let g be that of M. Let ĝ = ϕ⋆(g̃)
be the pull-back of the metric g̃. Because ϕ is a quasi-isometry with constant C, the
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following holds for each 0 ≠ v ∈ TM,

1
C
≤ g(v , v)

ĝ(v , v) ≤ C .

It follows that
1
C

g(∇g f ,∇g f ) ≤ ĝ(∇ ĝ f ,∇ ĝ f ) ≤ Cg(∇g f ,∇g f ).

he corresponding volume forms satisfy

C
−n/2

dVg ≤ dVĝ ≤ Cn/2
dVg .

his leads to

∥∇( f ○ ϕ)∥2
L2 = ∫

M
g(∇g( f ○ ϕ),∇g( f ○ ϕ)) dVg

≤ Cn/2+1 ∫
M

ĝ(∇ ĝ( f ○ ϕ),∇ ĝ( f ○ ϕ)) dVĝ

= Cn/2+1 ∫
M̃

g̃(∇ g̃ f ,∇ g̃ f ) dVg̃ .

he proof of the lower bound is identical, and accordingly omitted. ∎

2.2 Quasi-isometric Charts

Recall that a subset M ⊂ Rn+1 is a hypersurfacewith boundary if for each p ∈ M, there
exist open sets W ,W ′ ⊂ Rn+1 with p ∈ W and a diòeomorphism ψ ∶ W → W ′ such
that ψ(M ∩W) is an open set in the half-space

H = {x ∈ Rn+1 ∶ xn+1 = 0, x1 ≥ 0}.

he point p ∈ M is on the boundary Σ of M if and only if ψ sends it to the boundary
of the half-space H:

ψ(p) ∈ ∂H ∶= {x ∈ H ∶ x1 = 0}.
his deûnition is coherent. It does not depend on the choice of the diòeomorphismψ;
see [10, Chapter 1] for details. By further restricting ψ and scaling if necessary, we can
assume that it is a quasi-isometry and that its imageW ′ is a cylinder. his is summed
up in the next lemma.

Lemma 2.2 For each p ∈ Σ, there exists a quasi-isometry

ψ ∶ W Ð→W
′ = BRn(0, 1) × (−1, 1)

with ψ(p) = 0 and such that the image of M ∩W is

U ∶= ψ(M ∩W) = {x ∈ H ∶ ∣x∣ < 1}.

Remark 2.3 We identify U ⊂ Rn+1 with a subset of Rn so that we can write x =
(x1 , . . . , xn) ∈ U instead of x = (x1 , . . . , xn , 0) ∈ U .

In particular, the restriction of ψ to Σ ∩W is also a quasi-isometry.
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Figure 1: he domain U .

2.3 Dirichlet Energy on the Graph of a Function

Let U ⊂ Rn be a bounded open set and let f ∶ U → R be a bounded smooth function.
Consider the graph

S f = {(x , f (x)) ∶ x ∈ U} ⊂ Rn+1 .
Given a function u ∶ U → R, deûne ũ ∶ U × R → R by ũ(x , xn+1) = u(x) and deûne
u f ∶ S f → R by

u f (x , f (x)) = u(x) = ũ∣ S f .(2.2)

Lemma 2.4 he Dirichlet energy of u f ∶ S f → R is

(2.3) ∫
S f

∣∇u f ∣2 dV = ∫
U

∣∇u∣2 + ∣∇u∣2∣∇ f ∣2 − ⟨∇u,∇ f ⟩2√
1 + ∣∇ f ∣2

dx ,

where on the le�-hand-side ∇, dV , and the norm are taken on S f , and on the right-

hand-side dx = dx 1 . . . dxn is the Lebesguemeasure onU , while∇ is the usual gradient

on Rn .

he Cauchy–Schwarz inequality gives ∣∇u∣2∣∇ f ∣2 − ⟨∇u,∇ f ⟩2 ≥ 0 with equality if
and only if ∇u = c∇ f for some constant c.

Proof of Lemma 2.4 To simplify notation,wewillwrite S = S f . For any point p ∈ S,
the gradient ∇u f ∈ TpS is the projection of ∇ũ on TpS, that is,

∇u f = ∇ũ − ⟨∇ũ,N⟩N ,
where N is a unit normal vector to TpS. It follows from

∇ũ = ( ∂u

∂x1
, . . . ,

∂u

∂xn
, 0) ,

N = 1√
1 + ∣∇ f ∣2

( en+1 −
n

∑
i=1

∂ f

∂x i
e i) .
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that

∣∇u f ∣2 =
∣∇u∣2 + ∣∇u∣2∣∇ f ∣2 − ⟨∇u,∇ f ⟩2

1 + ∣∇ f ∣2 .(2.4)

he volume element on S f is given by

dV =
√

1 + ∣∇ f ∣2 .

Together with identity (2.4), this completes the proof. ∎

3 Perturbation of the Submanifold M

Given p ∈ Σ, let ψ be the quasi-isometric chart provided by Lemma 2.2. In order to
proveheorem 1.1, we will deform the submanifoldM in the neighborhoodW of the
point p by deforming the neighborhood U ⊂ W ′ inside W ′ and pulling back to W

using the quasi-isometry ψ. Consider a smooth function f ∶ U → R that is supported
in the interior of U and which satisûes ∣ f (x)∣ < 1 for each x ∈ U . his last condition
implies that the graph of f ,

S f = {(x , f (x)) ∶ x ∈ U},

is contained in the cylinderW ′. Hence it can be used to deûne a deformation ofM as
follows:

M̃ f ∶= (M ∖W) ∪ ψ
−1(S f ).

Because f is smooth and supported in U and S f ⊂ W ′, the subset M̃ f ⊂ Rn+1 is also
a submanifold with boundary ∂M̃ f = Σ = ∂M.

Remark 3.1 Itmight be possible to proveheorem 1.1 by performing a deformation
of M directly in the ambient space Rn+1, but it appears to be simpler to use quasi-
isometric charts.

3.1 Deformation Function

We now construct speciûc functions f and u such that the Dirichlet energy of u f ,
deûned by (2.2), is small. Our method is based on Lemma 2.4, which shows that
if ∇u and ∇ f are parallel the numerator of (2.3) is independent of ∇ f , while the
denominator behaves as ∣∇ f ∣. hus, we want f and u to have parallel gradients with
∣∇ f ∣ big to get a small Dirichlet energy for u f .
Consider numbers є, δ1 , δ2 , ρ > 0 that are suõciently small and deûne δ ∶= δ1 + δ2.

hese constants will be adjusted later in equation (4.3). Let q = (δ, 0, . . . , 0) ∈ H.
Consider the following subsets of U :

A ∶= {(x1 , . . . , xn) ∣ x1 ≥ δ, ∥x − q∥ ≤ є} ,
B ∶= {(x1 , . . . , xn) ∣ δ1 ≤ x1 ≤ δ, ∥Πx∥ ≤ є} ,
C ∶= {(x1 , . . . , xn) ∣ 0 ≤ x1 ≤ δ1 , ∥Πx∥ ≤ є} ,
D ∶= {x ∈ U ∖ (A∪ B ∪ C) ∣ d(x ,A∪ B ∪ C), ≤ ρ}
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Figure 2: Perturbation region.

where Π(x1 , x2 , . . . , xn) = (x2 , . . . , xn) is the projection on the boundary. Let Ω =
A∪ B ∪ C. See Figure 2, where the x1-axis is vertical.
Deûne cutoò functions

η ∶ [0,∞)→ R, γ ∶ [0, δ]→ R,

η(t) = max{0, 1 − t}, γ(t) =
⎧⎪⎪⎨⎪⎪⎩

0 if t ≤ δ1,
t − δ1 if δ1 ≤ t ≤ δ.

Finally, deûne F ∶ [0,∞) → R to be periodic of period 4, given on the interval [0, 4]
by

F(t) =
⎧⎪⎪⎨⎪⎪⎩

1 − t if t ∈ [0, 2],
t − 3 if t ∈ [2, 4].

Given ω > 0, deûne f ∶ U → R by

(3.1) f (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

η( d(x ,Ω)ρ )γ(x1)F(ω∥Πx∥) if x1 ≤ δ,

η( d(x ,Ω)ρ )δ2F(ω∥x − q∥) if x1 ≥ δ.

Note that functions η and γ are used to localize the deformation function f . In partic-
ular, the use of the function γ restrict the deformation function f outside a neighbor-
hood of the boundary, hence keeping this neighborhood ûxed under the deformation.
he parameter ω will be sent to ∞ later in the proof. It is important to remark that
∣F′(x)∣ = 1 at points where F is diòerentiable and ∣F(x)∣ ≤ 1 for all x.

Remark 3.2 he deformation function f is Lipschitz continuous and piecewise
smooth. Because only integrals of ûrst order derivatives of this function appear in the
estimates below, one could replace it by smooth approximationswithout aòecting the
results.

https://doi.org/10.4153/S000843951900050X Published online by Cambridge University Press

https://doi.org/10.4153/S000843951900050X


54 B. Colbois, A. Girouard, and A. Métras

4 Trial Function

he trial function u is supported on Ω ⊂ U and is deûned by

u(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − ∥Πx∥
є if x ∈ B ∪ C,

1 − ∥x−q∥
є if x ∈ A,

0 elsewhere.

By construction, the function u f deûned by (2.2) belongs to H1(S f ), and we can es-
timate its Dirichlet energy. On A, the Dirichlet energy of u f can be made small by
taking ω big. Indeed, for almost all x ∈ A,

∇ f = ±δ2ω
x − q

∥x − q∥ ,(4.1)

∇u = − 1
є

x − q

∥x − q∥ ,

and using the fact that ∇ f and ∇u are parallel, the Dirichlet energy is

∫
S f∩A×R

∣∇u f ∣2dV = ∫
A

∣∇u∣2√
1 + ∣∇ f ∣2

dx = 1
є2

1√
1 + δ2

2ω
2
VolA

= c1є
n−2

√
1 + δ2

2ω
2

where c1 is some dimensional constant.
On B and C, ∇ f and ∇u are not parallel, but it is possible to make the Dirichlet

energy small by making the volume of B and C small. For B, we have for almost all
x ∈ B:

∇ f (x) = F(ω∥Πx∥)e1 ± γ(x1)ω
Πx

∥Πx∥ ,(4.2)

∇u(x) = − 1
є

Πx

∥Πx∥ ,

and since e1 and Πx are orthogonal,

∣∇ f (x)∣2 = F(ω∥Πx∥)2 + γ(x1)2
ω

2 .

hen the Dirichlet energy on B is

∫
S f∩B×R

∣∇u f ∣2dV = ∫
B

1
є2 +

1
є2 F(ω∥Πx∥)2

√
1 + F(ω∥Πx∥)2 + γ(x1)2ω2

dx

≤ 1
є2
∫
B

2√
1 + γ(x1)2ω2

dx

= c2єn−3 ∫
δ2

0

1√
1 + x2

1 ω
2
dx1

= c2єn−3 ln(δ2ω +
√

1 + δ2
2)

ω
,
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where c2 is a constant that depends only on the dimension. And on C, since f = 0,
the Dirichlet energy is simply

∫
S f∩C×R

∣∇u f ∣2dV = 1
є2

VolC = c3δ1єn−3 ,

where c3 is a constant that depends only on the dimension. he denominator in the
Steklov–Rayleigh quotient of u f satisûes

∫
B(0,є)

( 1 − ∣x∣
є
)

2

dx ≥ 1
4
Vol(B(0, є

2
)) = c4єn−1 ,

for some constant c4 > 0. In total, the Steklov–Rayleigh quotient of u f on S f is
bounded as follows:

R(u f ) ≤
1

c4єn−1 ( c1
єn−2

√
1 + δ2

2ω
2
+ c2

єn−3 ln(δ2ω +
√

1 + δ2
2ω

2)
ω

+ c3δ1єn−3)

= 1
c4

( c1
є−1

√
1 + δ2

2ω
2
+ c2

є−2 ln(δ2ω +
√

1 + δ2
2ω

2)
ω

+ c3δ1є−2) .

We are now ready to deûne the constants more precisely. By using the following:

(4.3) δ1 = є
3 , δ2 = є

3/2 , ω = є
−3 , ρ = є,

we obtain
R(u f ) = O(є1/2) as є Ð→ 0.

We have proved that a local perturbation of U allows the construction of a local trial
function with arbitrarily small Steklov–Rayleigh quotient. he proof of our main re-
sult is now an easy consequence.

Proof of Theorem 1.1 Without loss of generality,weworkunder the asumption that
k ∈ N is ûxed. he general case will then follow by a standard diagonal selection ar-
gument. Let k, j ∈ N with j suõciently large. Let p1 , . . . , pk+1 ∈ B(p, 1

j ) ∩ Σ be dis-
tinct points, and let ψ be the quasi-isometric chart from Lemma 2.2. For each p i , we
follow the above construction to obtain deformation functions f i that are disjointly
supported, by taking є > 0 small enough, and trial functions u i that have disjoint sup-
ports contained in ψ(B(p, 1

j ) ∩M). By possibly choosing a smaller є in the previous
construction, we guarantee that the Rayleigh quotient of each u i is smaller than 1/ j.
Consider the deformation function f = f1 + ⋅ ⋅ ⋅ + fk+1 supported in B(p, 1/ j) and the
perturbed manifold M j = M̃ f . Taking the pullback by ψ, we obtain k + 1 trial func-
tions ψ∗(u i) with disjoint supports and from Lemma 2.1, their Rayleigh quotient is
less than c/ jwhere c is a constant depending onψ. By the variational characterization
(2.1) of the eigenvalue σk , we conclude that σk(M j) ≤ c/ j.

It remains to prove that the perturbed manifolds M j satisfy the geometric condi-
tions from the theorem. Without loss of generality, we consider a single perturbation
region Ω ∪ D near one of the points p i . Let x ∈ Ω. here exists x′ ∈ Ω such that
f (x′) = 0, and the distance in M f between x and x′ is O(є3/2). here is a path from
x′ to some point y on ∂M such that the length of the path is less than δ + єπ/2, it suf-
ûces to take the shortest path in {x ∈ M ∣ f (x) = 0} from x′ to ∂M (see Figure 3). his
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Figure 3: he set {x ∣ f (x) = 0} is shown in grey. he path in bold from an arbitrary x ∈ Ω to
a point on ∂M̃ f has length going to 0 as є → 0.

total length of the path from x to y goes to 0 when є goes to 0, and since ∂M̃ f = ∂M,
this implies that the diameter of M̃ f converges to the diameter ofM when є goes to 0.
For the volume of M̃ f , taking ρ = є, the volume diòerence between M̃ f andM goes

to 0 as є → 0. Indeed, using the fact that the chart ψ is a quasi-isometry, it is enough
to show that the diòerence in volume between S f and Ω ∪ D goes to 0. Note that

Vol(S f ) = ∫
Ω∪D

√
1 + ∣∇ f ∣2dx1 . . . dxn ≥ Vol(Ω ∪ D).

It follows from (4.1) and (4.2) that, on Ω, the following holds:

∣∇ f ∣2 ≤ 1 + δ2
2ω

2 = є
−3 .

Similarly, it follows from (3.1) that on D,

∣∇ f ∣2 ≤ c5(
δ2
2

є2
+ δ2

2ω
2) = c5(є + є

−3),

where c5 is a positive constant. It follows that

∣Vol(S f ) −Vol(Ω ∪ D)∣ = ∫
Ω∪D

√
1 + ∣∇ f ∣2dx1 ⋅ ⋅ ⋅ dxn −Vol(Ω ∪ D)

= O(єn−3/2),

which goes to 0 for n ≥ 2. Finally, it is clear that the curvatures of ∂M̃ f do not change,
as M is kept ûxed on some neighborhood of the boundary due to the localisation of
f by the function γ, which vanishes near the boundary; see Figure 3 and the deûni-
tion (3.1) of f . ∎
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