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Abstract. We consider the propositional logic equipped with Chellas stit operators for a finite
set of individual agents plus the historical necessity modality. We settle the question of whether
such a logic enjoys restricted interpolation property, which requires the existence of an interpolant
only in cases where the consequence contains no Chellas stit operators occurring in the premise. We
show that if action operators count as logical symbols, then such a logic has restricted interpolation
property iff the number of agents does not exceed three. On the other hand, if action operators are
considered to be nonlogical symbols, then the restricted interpolation fails for any number of agents
exceeding one. It follows that unrestricted Craig interpolation also fails for almost all versions of stit
logic.

§1. Introduction. The so-called stit logic is the modal logic of actions that uses the
locution “j sees to it that A” (where j is an agent name and A a sentence) as its paradigm of
action modality. The very name “stit” derives from the acronym of this paradigm locution.
This logic has been present and explored in the literature on philosophical logic at least
since the 1980s. Many of the early defining texts in the stit tradition were authored and
coauthored by N. Belnap, and the book [2] is a useful guide to the early steps of this type
of research and its attending controversies. However, in [2] N. Belnap comes forward as
a proponent of the so-called achievement stit operator, whereas the later work in stit logic
mainly concentrated around the Chellas stit and deliberative stit operators.1 Deliberative
stit operator was independently proposed by F. von Kutschera (see, e.g., [14]) and J. Horty
(see, e.g., [9]). The present article follows this line so that the name of stit logic gets applied
to the logic of Chellas stit/deliberative stit operator with Chellas stit taken as the basic stit
operator, and deliberative stit as the defined one.

Most of the work on stit logic since these early days had a conceptual focus, applying
stit semantics to modelling philosophical questions and exploring alternative stit operators
which were proposed as improved versions of achievement and deliberative stit in some
respect (see, e.g., [3]). More recently emerged the attempts to enrich stit logic with other
types of operators, e.g., the ones borrowed from temporal logic (see, e.g., [10]) or justi-
fication logic (see, e.g., [12] and [11]). Sometimes these attempts were intertwined with
attempts to recast the stit semantics itself so as to make it more suitable for the enrichment
in question.
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1 Chellas stit is named after B. Chellas, who introduced a similar operator in [5]. These two stit
operators are interdefinable in the presence of historical necessity modality; therefore, one is
inclined to say that they share the same logic. Chellas stit operator is somewhat simpler and often
used as the basic one, whereas the deliberative stit is often defined in terms of Chellas stit.
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As for the more technical work on stit logic, it mostly concentrated on forging axiomati-
zations and, to some extent, solving the computational complexity questions. Some of the
relatively recent important contributions to this research are, e.g., [7] and [1].

One of the standard refinements of completeness results is the Craig Interpolation Prop-
erty. However, to the best of our knowledge, this direction of research in stit logic has yet
to see its first contributions. We hope that our article will be able to cover this gap at least to
some extent. The article mainly focuses on a restriction of the Craig Interpolation Property
which only requires existence of an interpolant if the antecedent shares no agent names
with the consequent. However, we show that even this weakened version of interpolation
property fails for stit logic if the logic deals with more than three different agents. Of
course, the failure of restricted Craig interpolation entails also the failure of the unrestricted
interpolation property. Therefore, an easy corollary to the main result of this article is the
failure of unrestricted Craig interpolation in stit logic for any number of agents exceeding
three, which yields the negative solution to the problem of Craig interpolation for the vast
majority of variants of the basic stit logic.

We now briefly touch upon the structure of the text below. §2 defines the version of stit
logic at hand in terms of language, semantics, and a strongly complete axiomatization. We
also introduce the main notations to be used in the article and give the precise definition
of the Restricted Craig Interpolation Property for stit logic of n agents. The latter property
will be the main subject of the two following sections. We are going to show, first, that
whenever our version of stit logic has no more than three different agents, it enjoys this
property. The proof of this positive part of our main result is given in §3. The corresponding
negative part, saying that the Restricted Craig Interpolation Property fails for stit logic with
more than three agents, is then formulated and proven in §4. After that, §5 explores the
various corollaries of the main result in relation to the following topics: (a) unrestricted
Craig interpolation, (b) the Restricted Robinson Consistency Property, and (c) the stronger
versions of both unrestricted and restricted interpolation property which treat stit operators
as nonlogical symbols.

§6 sums up the preceding sections and charts some natural continuations for the line of
research presented in the article.

§2. Preliminaries. On the basis of a given a finite agent community Ag and a set of
propositional variables V , we define the set LAg

V of (Ag, V)-stit formulas as follows:

A := p | (A → A) | ⊥ | �A | [j]A,

where p ∈ V and j ∈ Ag. Stit formulas will be denoted by letters A, B, C, D, decorated with
sub- and superscripts whenever needed. Formulas of the type �A and [j]A are informally
read as “A is (historically) necessary” and “the agent j sees to it that A,” respectively. We
reserve �A and 〈j〉A as the notations for the duals of these modalities.

We will also use below the standard conventions for omitting the parentheses; the con-
texts ¬A, (A ∧ B), (A ∨ B), and (A ↔ B) are assumed to be defined in terms of → and ⊥
in the standard manner.

Modalities of the form [j] for j ∈ Ag are called action modalities and will be interpreted
as Chellas stit operators for the respective agent j. We will not use deliberative stit operator
[d : j] in this article, but it can be defined on the basis of Chellas stit and historical necessity:
[d : j]A := [j]A ∧ ¬�A. Although Ag is normally assumed to be nonempty, in this article
we will allow for Ag = ∅ as a border case for the sake of notational convenience. The set
L∅

V is then basically a variant of the language of the logic of historical necessity. This logic
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RESTRICTED INTERPOLATION AND LACK THEREOF IN STIT LOGIC 461

is known to coincide with propositional S5 and hence has Craig Interpolation Property.2

Therefore, even though empty agent communities are allowed by our notation, we will
not consider interpolation properties of the languages devoid of action modalities in this
article.

Stit formulas are interpreted over the respective classes of stit models. An (Ag, V)-stit
model is a structure of the form S = 〈Tree, ≤, Choice, V〉, such that:

• Tree is a nonempty set. Elements of Tree are called moments.
• ≤ is a partial order on Tree for which a temporal interpretation is assumed.
• Hist(Tree, ≤) is the set of maximal chains in Tree w.r.t. ≤. Since Hist(Tree, ≤) is

completely determined by Tree and ≤, it is not included into the structure of a model
as a separate component. Elements of Hist(Tree, ≤) are called histories. The set of
histories containing a given moment m will be denoted HS

m . The following set

MH(Tree, ≤) = {(m, h) | m ∈ Tree, h ∈ HS
m },

called the set of moment–history pairs, will be used to evaluate formulas in LAg
V .

Two histories, h, g ∈ HS
m we call undivided at m ∈ Tree and write h ≈m g iff h and

g share some later moment m′. In other words, we stipulate that:

h ≈m g ⇔ (h, g ∈ HS
m )&(∃m′ > m)(h, g ∈ HS

m′).

• Choice is a function mapping Tree × Ag into 22Hist(Tree,≤)
in such a way that for any

given j ∈ Ag and m ∈ Tree we have as Choice(m, j) (to be denoted as Choicem
j

below) a partition of HS
m . For a given h ∈ HS

m we will denote by Choicem
j (h)

the element of the partition Choicem
j (otherwise called a choice cell) containing h.

Intuitively, the idea is that j cannot distinguish by her activity at m between histories
that belong to one and the same choice cell.

• V is an evaluation function, mapping the set V into 2MH(Tree,≤).

In what follows, for a given (Ag, V)-stit model S = 〈Tree, ≤, Choice, V〉, we will some-
times use Hist(S) and MH(S) to denote Hist(Tree, ≤) and MH(Tree, ≤), respectively.

Additionally, every stit model S is required to satisfy the following constraints:

1. Historical connection:

(∀m, m1 ∈ Tree)(∃m2 ∈ Tree)(m2 ≤ m & m2 ≤ m1) (HC)

2. No backward branching:

(∀m, m1, m2 ∈ Tree)((m1 ≤ m & m2 ≤ m) ⇒ (m1 ≤ m2 ∨ m2 ≤ m1)) (NBB)

3. No choice between undivided histories:

(∀m ∈ Tree)(∀h, h′ ∈ HS
m )(h ≈m h′ ⇒ Choicem

j (h) = Choicem
j (h′)) (NCUH)

for every j ∈ Ag.

4. Independence of agents:

(∀f : Ag → 2HS
m )((∀j ∈ Ag)(f (j) ∈ Choicem

j ) ⇒
⋂
j∈Ag

f (j) �= ∅) (IA)

for every m ∈ Tree.

2 In fact, propositional S5 even has the stronger Lyndon interpolation property, see e.g., [6,
Theorem 5.14, p. 140].
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We omit the motivation for these constraints, referring the reader to the existing literature
on stit logic, e.g., [2] and [8]. The inductive definition of the satisfaction relation for the
members of LAg

V is then as follows:

S, m, h |� p ⇔ (m, h) ∈ V(p);
S, m, h |� [j]A ⇔ (∀h′ ∈ Choicem

j (h))(S, m, h′ |� A);
S, m, h |� �A ⇔ (∀h′ ∈ HS

m )(S, m, h′ |� A),

with the usual clauses for the Boolean connectives. The notions of satisfaction and validity
are also defined in a standard way.

Stit logic, as given above, admits of the following strongly complete axiomatization S

which we borrow from [1].3 The axiom schemes of S are as follows:

A full set of axioms for classical propositional logic (A0)

S5 axioms for � and [j] for every j ∈ Ag (A1)

�A → [j]A for every j ∈ Ag (A2)

(�[j1]A1 ∧ · · · ∧ �[jn]An) → �([j1]A1 ∧ · · · ∧ [jn]An). (A3)

The assumption is that in (A3) j1, . . . , jn are pairwise different.
In addition to the axioms, S contains two inference rules:

From A, A → B infer B; (MP)

From A infer �A; (Nec)

Provability of A in S we will denote by � A. It is clear that the strong completeness of S
also implies compactness of stit logic for any given finite community Ag of agents and any
given set V of propositional variables.

We introduce some further useful notations related to sets of stit formulas. If � ⊆ LAg
V ,

then we let �� denote the set of all boxed formulas from �. Similarly, whenever j ∈ Ag,
we use �[j] to denote the set {[j]A ∈ LAg

V | [j]A ∈ �}.
For arbitrary Ag, V , and a set � ∪ {A} ⊆ LAg

V , we extend the notation � to contexts like

� � A to mean that � (A1 ∧ · · · ∧ Ar) → A for some A1, . . . , Ar ∈ �. Then, � ⊆ LAg
V

is called inconsistent iff � � ⊥, and consistent otherwise. Moreover, � ⊆ LAg
V is (Ag, V)-

maxiconsistent iff it is consistent and no consistent subset of LAg
V properly extends �. It

can be shown, in the usual way, that an arbitrary � ⊆ LAg
V is (Ag, V)-maxiconsistent iff

for every A ∈ LAg
V the set � ∩ {A, ¬A} is a singleton. In what follows we will need the

following classical lemma about maxiconsistent sets:

LEMMA 2.1. For any finite Ag and any set of propositional variables V, if � ⊆ LAg
V is

consistent but not maxiconsistent, then there is an A ∈ LAg
V such that {A, ¬A} ∩ � = ∅.

Proof. If � ⊆ LAg
V is consistent but not maxiconsistent, then choose a consistent � such

that � ⊂ � ⊆ LAg
V and choose any A ∈ � \�. Then, A /∈ � by choice of A, and if ¬A ∈ �,

then {A, ¬A} ⊆ � ∪ {A} ⊆ �, which contradicts the consistency of � since, of course,
� (A ∧ ¬A) → ⊥. Therefore, we must also have ¬A /∈ � so that {A, ¬A} ∩ � = ∅. �

3 The original proof, due to Ming Xu, used a somewhat more expressive language allowing also to
describe equality/inequality relations between agents, see e.g., [2, chap. 17].
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For a � ⊆ LAg
V we define that:

|�| := {p ∈ V | p occurs in �},
and:

Ag(�) := {j ∈ Ag | j occurs in �},
If � is a singleton {A}, then we use the notations |A| and Ag(A) instead of |{A}| and
Ag({A}).

In this article we will be mainly testing the applicability to stit logic of the following
property:

DEFINITION 2.2. For a positive integer n, stit logic has the Restricted n-Craig Interpolation
Property (abbreviated by (RCIP)n) iff for any set of propositional variables V, and all
A, B ∈ L{1,...,n}

V , whenever � A → B and Ag(A) ∩ Ag(B) = ∅, then there exists a C ∈
LAg(A)∪Ag(B)

|A|∩|B| such that both � A → C and � C → B.

§3. The case n ≤ 3. The main result of this section looks as follows:

THEOREM 3.1. For every n ≤ 3, stit logic has (RCIP)n.

We prepare the result by proving several technical lemmas first.

LEMMA 3.2. The following statements are true:

1. For every agent index j, [j] is an S5-modality.

2. Let A, B1, . . . Bn, C ∈ LAg
V , let i1, . . . , in, j ∈ Ag be pairwise different, and let �

(�A∧ [i1]B1 ∧· · ·∧ [in]Bn) → ¬C. Then also � (�A∧�[i1]B1 ∧· · ·∧�[in]Bn) →
¬�[j]C.

3. Let A, B, C ∈ LAg
V , let j ∈ Ag, and let � (�A ∧ [j]B) → C. Then also � (�A ∧

�[j]B) → �[j]C.

Proof. (Part 1). Immediately by (A1), (Nec), and (A2).
(Part 2). Assume the hypothesis of Part 2 and assume that we have

� (�A ∧ [i1]B1 ∧ · · · ∧ [in]Bn) → ¬C. (1)

Then we reason as follows:

� (�A ∧ (�[i1]B1 ∧ · · · ∧ �[in]Bn ∧ �[j]C)) →
→ (�A ∧ �([i1]B1 ∧ · · · ∧ [in]Bn ∧ [j]C)) (by (A3)) (2)

� (�A ∧ �([i1]B1 ∧ · · · ∧ [in]Bn ∧ [j]C)) →
→ (�A ∧ �([i1]B1 ∧ · · · ∧ [in]Bn ∧ C)) (by (A1)) (3)

� (�A ∧ �([i1]B1 ∧ · · · ∧ [in]Bn ∧ C)) →
→ �(�A ∧ [i1]B1 ∧ · · · ∧ [in]Bn ∧ C) (� is S5) (4)

� (�A ∧ (�[i1]B1 ∧ · · · ∧ �[in]Bn ∧ �[j]C)) →
→ �(�A ∧ [i1]B1 ∧ · · · ∧ [in]Bn ∧ C) (by (2)–(4)) (5)

� �((�A ∧ [i1]B1 ∧ · · · ∧ [in]Bn) → ¬C) (by (1) and (Nec)) (6)

� ¬�(�A ∧ [i1]B1 ∧ · · · ∧ [in]Bn ∧ C) (by (6) and prop. logic) (7)

� ¬(�A ∧ (�[i1]B1 ∧ · · · ∧ �[in]Bn ∧ �[j]C)) (by (5) and (7)). (8)

https://doi.org/10.1017/S1755020319000406 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000406


464 GRIGORY K. OLKHOVIKOV

From (8), it follows by propositional logic that � (�A ∧ �[i1]B1 ∧ · · · ∧ �[in]Bn) →
¬�[j]C.

(Part 3). We reason as follows:

� (�A ∧ [j]B) → C (premise) (9)

� [j]((�A ∧ [j]B) → C) (by (9) and Part 1) (10)

� ([j]�A ∧ [j]B) → [j]C (by (10) and Part 1) (11)

� �A → ��A (by (A1)) (12)

� ��A → [j]�A (by (A2)) (13)

� �A → [j]�A (by (12) and (13)) (14)

� (�A ∧ [j]B) → [j]C (by (11) and (14)) (15)

� (�A ∧ �[j]B) → �[j]C (by (15) and S5 properties of �). (16)

�
Assume that V is a set of propositional variables and Ag a finite community of

agents. A pair (�, �) of sets of (Ag, V)-stit formulas is called inseparable iff Ag(�) ∩
Ag(�) = ∅, and for no A ∈ LAg(�)∪Ag(�)

|�|∩|�| it is true that both � � A and � � ¬A. Below
we basically repeat the classical argument for the proof of the following standard lemma
about inseparability:

LEMMA 3.3. Let (�, �) be an inseparable pair, and assume that both |�| and |�| are
at most countable.4 Then,

1. There exist �′ and �′ such that � ⊆ �′ ⊆ LAg(�)
|�| , � ⊆ �′ ⊆ LAg(�)

|�| , (�′, �′) is in-
separable, �′ is (Ag(�), |�|)-maxiconsistent, and �′ is (Ag(�), |�|)-maxiconsistent.

2. If �′ ⊆ � and �′ ⊆ �, then (�′, �′) is inseparable.

Proof. (Part 1). We proceed as in the case of classical logic. We first enumerate the
formulas in LAg(�)

|�| as A0, . . . , As, . . . , and the formulas in LAg(�)
|�| as B0, . . . , Bs, . . . ,. We

then define two increasing sequences of sets of formulas:

� = �0 ⊆ · · · ⊆ �s ⊆ · · ·
and

� = �0 ⊆ · · · ⊆ �s ⊆ · · ·
in LAg(�)

|�| and LAg(�)
|�| , respectively. The definition is as follows. �0 and �0 are just � and

�, and whenever �r and �r are defined for an r ∈ ω, then we set

�r+1 =
{

�r ∪ {Ar}, if (�r ∪ {Ar}, �r) is inseparable;
�r, otherwise.

and, further:

�r+1 =
{

�r ∪ {Br}, if (�r+1, �r ∪ {Br}) is inseparable;
�r, otherwise.

Claim 1. For every r ∈ ω, the pairs (�r, �r) and (�r+1, �r) are inseparable.

4 This lemma also holds for uncountable sets of variables but we will not need this more general
version in the present article.
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The Claim is proved by induction on r. If r = 0 then (�0, �0) = (�, �) is insepa-
rable by the assumption of the lemma, and the inseparability of (�1, �0) follows by the
definition of �1. If r = s + 1, then (�s+1, �s) is inseparable by the induction hypothesis,
whence the inseparability of (�s+1, �s+1) follows by the definition of �s+1. From the
latter, the inseparability of (�s+2, �s+1) follows by the definition of �s+2. Claim 1 is
proved.

We now set:

�′ :=
⋃
s∈ω

�s; �′ :=
⋃
s∈ω

�s.

We clearly have both:

� ⊆ �1 ⊆ · · · ⊆ �s ⊆ · · · ⊆ �′ ⊆ LAg(�)
|�| (17)

and:

� ⊆ �1 ⊆ · · · ⊆ �s ⊆ · · · ⊆ �′ ⊆ LAg(�)
|�| . (18)

We now show a series of further claims:
Claim 2. The sets �′, �′ are consistent.
Indeed, if �′ is inconsistent then � At1 ∧ · · · ∧ Atr → ⊥ for some At1 , . . . , Atr in the

above enumeration of LAg(�)
|�| such that At1 , . . . , Atr ∈ �′. Then, by definition of �′, we

must also have At1 , . . . , Atr ∈ �s, where s = max(t1, . . . , tr) + 1 so that we have �s � ⊥.

Of course, we also have �s � ¬⊥, and since ⊥ ∈ LAg(�)∪Ag(�)
|�|∩|�| , it follows that (�s, �s)

is separable, a contradiction to Claim 1. Therefore, �′ is consistent, and the consistency of
�′ is established in a similar way.

Claim 3. The sets �′, �′ are (Ag(�), |�|)-maxiconsistent, and (Ag(�), |�|)-maxi-
consistent, respectively.

Indeed, if �′ is not (Ag(�), |�|)-maxiconsistent, then it follows from Claim 2 and Lemma
2.1, that there is an A ∈ LAg(�)

|�| such that {A, ¬A} ∩ �′ = ∅. Then, we will have A = Ar

and ¬A = Ar′ for some r, r′ ∈ ω in terms of our enumeration of LAg(�)
|�| . Since Ar, Ar′ /∈ �′

we will have, by definition of �′, that (�r ∪ {Ar}, �r) and (�r′ ∪ {Ar′ }, �r′) are separable.
This means that there exist some Ar

1, . . . , Ar
t1 ∈ �r, Ar′

1 , . . . , Ar′
t2 ∈ �r′ , Br

1, . . . , Br
t3 ∈ �r,

Br′
1 , . . . , Br′

t4 ∈ �r′ , and C, D ∈ LAg(�)∪Ag(�)
|�|∩|�| such that all of the following holds:

� (Ar
1 ∧ · · · ∧ Ar

t1 ∧ A) → C (19)

� (Br
1 ∧ · · · ∧ Br

t3) → ¬C (20)

� (Ar′
1 ∧ · · · ∧ Ar′

t2 ∧ ¬A) → D (21)

� (Br′
1 ∧ · · · ∧ Br′

t4) → ¬D. (22)

We then infer, by propositional logic, that

� (

t1∧
s=1

Ar
s ∧

t2∧
s=1

Ar′
s ) → (C ∨ D) (23)

� (

t3∧
s=1

Br
s ∧

t4∧
s=1

Br′
s ) → ¬(C ∨ D) (24)

Now set r′′ := max(r, r′). By (17) and (18) we know that {Ar
s | 1 ≤ s ≤ t1} ∪ {Ar′

s | 1 ≤
s ≤ t2} ⊆ �r′′ and that {Br

s | 1 ≤ s ≤ t3} ∪ {Br′
s | 1 ≤ s ≤ t4} ⊆ �r′′ . We also clearly

https://doi.org/10.1017/S1755020319000406 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000406


466 GRIGORY K. OLKHOVIKOV

have that C ∨ D ∈ LAg(�)∪Ag(�)
|�|∩|�| . Therefore, it follows from (23) and (24) that (�r′′, �r′′) is

separable, in contradiction to Claim 1. Therefore, �′ must be (Ag(�), |�|)-maxiconsistent.
Maxiconsistency of �′ is shown in a similar way.

Claim 4. (�′, �′) is inseparable.
Since �′, �′ are maxiconsistent, they are closed for finite conjunctions. Therefore, we

can assume wlog, that there are A ∈ �′, B ∈ �′ and C ∈ LAg(�)∪Ag(�)
|�|∩|�| such that all of the

following holds:

� A → C (25)

� B → ¬C. (26)

Then let r, s ∈ ω be such that A ∈ �r and B ∈ �s. Setting t := max(r, s), we know that
A ∈ �t and B ∈ �t whence it follows that (�t, �t) is separable, in contradiction to Claim
1.

Claims 2–4 then imply the first part of the Lemma.
(Part 2). Immediate from the definition of separability. �

LEMMA 3.4. If (�, �) is separable then for some finite �′ ⊆ � and �′ ⊆ � the pair
(�′, �′) is also separable.

Proof. If (�, �) is separable then for some A ∈ LAg(�)∪Ag(�)
|�|∩|�| it is true that both � � A

and � � ¬A. By definition, this means that there are A1, . . . , Ar ∈ � and B1, . . . , Bs ∈ �
such that both � (A1 ∧ · · · ∧ Ar) → A and � (B1 ∧ · · · ∧ Bs) → ¬A. Therefore, we can set
�′ := {A1, . . . , Ar} and �′ := {B1, . . . , Bs}. �

Next we prove two lemmas which sum up some important facts about inseparability that
are peculiar to stit logic:

LEMMA 3.5. Let V be a set of propositional variables, let n ≤ 3, and let �, � ⊆
L{1,...,n}

V be such that (�, �) is inseparable. Moreover, assume that � is (Ag(�), |�|)-
maxiconsistent and � is (Ag(�), |�|)-maxiconsistent. Finally, assume that there exist
�[j1]A1, . . . ,�[jr]Ar ∈ �, and �[i1]B1, . . . ,�[is]Bs ∈ � such that j1, . . . , jr ∈ Ag(�)
are pairwise different and i1, . . . , is ∈ Ag(�) are pairwise different.

Then the pair:

(�� ∪ {[j1]A1, . . . , [jr]Ar}, �� ∪ {[i1]B1, . . . , [is]Bs}) (27)

is inseparable.

Proof. Assume the hypothesis, and assume, for reductio, that (27) is separable. Then,
by compactness of stit logic and the S5 properties of �, there must be �A ∈ �, �B ∈ �,
and C ∈ LAg(�)∪Ag(�)

|�|∩|�| such that both of the following equations hold:

� (�A ∧ [j1]A1 ∧ · · · ∧ [jr]Ar) → C, (28)

and

� (�B ∧ [i1]B1 ∧ · · · ∧ [is]Bs) → ¬C. (29)

Since Ag(�) ∩ Ag(�) = ∅, all of the agent indices in the united sequence
j1, . . . , jr, i1, . . . , is must be pairwise different and we must have r + s ≤ n. Therefore,
r + s ∈ {0, 1, 2, 3} which gives us our three cases below. Although these cases show
many similarities, we consider them separately. In every case we reason by contraposition,
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showing that the separability of (27) (expressed by (28) and (29)) implies the separability
of (�, �), thus contradicting the initial assumption of the lemma.

Case 1. Let {r, s} = {1, 2}. Assume, wlog, that r = 2 and s = 1, the other subcase is
symmetric. Then, by (28) and (29), there exist i, j and k such that {i, j, k} = {1, 2, 3}, and
that both of the following hold:

� (�A ∧ [i]A1 ∧ [j]A2) → C, (30)

and

� (�B ∧ [k]B1) → ¬C. (31)

By Lemma 3.2.2, (30), and propositional logic, we get that:

� (�A ∧ �[i]A1 ∧ �[j]A2) → ¬�[k]¬C. (32)

On the other hand, by Lemma 3.2.3 and (31):

� (�B ∧ �[k]B1) → �[k]¬C. (33)

Since C, by its choice, is in LAg(�)∪Ag(�)
|�|∩|�| , we clearly have �[k]¬C ∈ LAg(�)∪Ag(�)

|�|∩|�| , and
we also have, by the initial choice of our formulas, that �A,�[i]A1,�[j]A2 ∈ � and
�B,�[k]B1 ∈ �. Therefore, it follows from (32) and (33), that (�, �) is separable.

Case 2. Let {r, s} = {1}. Then, by (28) and (29), there exist i, j ∈ {1, 2, 3} such that i �= j
and both of the following hold:

� (�A ∧ [i]A1) → C, (34)

and

� (�B ∧ [j]B1) → ¬C. (35)

By Lemma 3.2.2 and (34) we get that

� (�A ∧ �[i]A1) → ¬�[j]¬C, (36)

On the other hand, by Lemma 3.2.3 and (35):

� (�B ∧ �[j]B1) → �[j]¬C. (37)

Since C, by its choice, is in LAg(�)∪Ag(�)
|�|∩|�| , we clearly have �[j]¬C ∈ LAg(�)∪Ag(�)

|�|∩|�| , and we
also have, by the initial choice of our formulas, that �A,�[i]A1 ∈ � and �B,�[j]B1 ∈ �.
Therefore, it follows from (36) and (37), that (�, �) is again separable, contrary to our
assumptions.

Case 3. 0 ∈ {r, s}. We may assume, wlog, that s = 0, the other subcase being symmetric.
By (29), we must have then

� �B → ¬C. (38)

By S5 properties of � and (A3), we get then

� (�A ∧ �[j1]A1 ∧ · · · ∧ �[jr]Ar) → �C (from (28)) (39)

� �B → �¬C (from (38)). (40)

It follows then, by the choice of the formulas involved, that (�, �) is separable, contrary
to our assumptions.

This exhausts the list of possible cases and thus the Lemma is proved. �
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LEMMA 3.6. Let V be a set of propositional variables, Ag a finite agent community,
and let �, � ⊆ LAg

V be such that (�, �) is inseparable. Moreover, assume that � is
(Ag(�), |�|)-maxiconsistent and � is (Ag(�), |�|)-maxiconsistent. Then,

1. If ¬�A1 ∈ �, then the pair (�� ∪ {¬A1}, ��) is inseparable.

2. If ¬�B1 ∈ �, then the pair (��, �� ∪ {¬B1}) is inseparable.

3. If ¬[j]A1 ∈ �, then the pair (�� ∪ �[j] ∪ {¬A1}, ��) is inseparable.

4. If ¬[i]B1 ∈ �, then the pair (��, �� ∪ �[i] ∪ {¬B1}) is inseparable.

Proof. (Part 1). Assume the hypothesis. If the pair (�� ∪{¬A1}, ��) is separable, then,
by compactness of stit logic, maxiconsistency of � and �, and S5 properties of all the
modalities in stit logic, there must be �A ∈ �, �B ∈ �, and C ∈ LAg(�)∪Ag(�)

|�|∩|�| such that
(38) holds together with the following equation:

� (�A ∧ ¬A1) → C. (41)

From (41) we infer, using S5 properties of �:

� (�A ∧ �¬A1) → �C. (42)

On the other hand, from (38) we infer (40) arguing as in Case 3 in the proof of Lemma
3.5 above. Taken together, (40) and (42) show separability of (�, �), contrary to our
assumptions. Therefore, (41) and (38) cannot hold, whence (�� ∪ {¬A1}, ��) must be
inseparable, and we are done.

Part 2 is symmetric to Part 1.
(Part 3). Assume the hypothesis. If the pair (�� ∪ �[j] ∪ {¬A1}, ��) is separable, then,

by compactness of stit logic, maxiconsistency of � and �, and S5 properties of all the
modalities in stit logic, there must be �A, [j]A′ ∈ �, �B ∈ �, and C ∈ LAg(�)∪Ag(�)

|�|∩|�| such
that (38) holds together with the following equation:

� (�A ∧ [j]A′ ∧ ¬A1) → C. (43)

Next we infer:

� [j]((�A ∧ [j]A′ ∧ ¬C) → A1) (by (43), [j] is S5) (44)

� ([j]�A ∧ [j]A′ ∧ [j]¬C) → [j]A1 (by (44), [j] is S5) (45)

� �A → [j]�A (cf. (14) above) (46)

� (�A ∧ [j]A′ ∧ [j]¬C) → [j]A1 (by (45) and (46)) (47)

� (�A ∧ [j]A′ ∧ ¬[j]A1) → ¬[j]¬C (by (47) and prop. logic). (48)

We also infer (40) from (38), arguing as in Case 3 in the proof of Lemma 3.5 above. From
(40) and (A2) it then follows that

� �B → [j]¬C. (49)

Taken together, (48) and (49) show separability of (�, �), contrary to our assumptions.
Therefore, (43) and (38) cannot hold together, whence (�� ∪ �[j] ∪ {¬A1}, ��) must be
inseparable, and we are done.

Part 4 is symmetric to Part 3. �
We are now prepared to prove Theorem 3.1. Assume that n ≤ 3, assume for reductio,

that A, B ∈ L{1,...,n}
V , and we have � A → B, Ag(A) ∩ Ag(B) = ∅, but for no C ∈

LAg(A)∪Ag(B)
|A|∩|B| we have both � A → C and � C → B. This means that the pair ({A}, {¬B})
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is inseparable and can be extended, using Lemma 3.3, to an inseparable pair (�0, �1)
such that �0 is (Ag(A), |A|)-maxiconsistent and �1 is (Ag(B), |B|)-maxiconsistent. We
now define a (Ag(A) ∪ Ag(B), |A| ∪ |B|)-stit model S which we will show to satisfy
�0 ∪ �1.

Now we start defining components of S = 〈Tree, ≤, Choice, V〉:
• We first define the set of standard pairs as the set of all inseparable pairs (�, �)

such that � is (Ag(A), |A|)-maxiconsistent, � is (Ag(B), |B|)-maxiconsistent, and
the following condition holds:

��
0 ⊆ � & ��

1 ⊆ �.

The set of standard pairs is nonempty since (�0, �1) is clearly a standard pair.
• We then define Tree as the set of all standard pairs plus a single additional moment

†.
• ≤ is the reflexive closure of the relation {(†, (�, �)) | (�, �) is a standard pair}.

Immediately we get the following lemma:

LEMMA 3.7. If (�, �) is a standard pair then �� = ��
0 and �� = ��

1 .

Proof. We show that �� = ��
0 , the other part is similar. We have ��

0 ⊆ � by the
definition of standard pair, whence clearly ��

0 ⊆ ��. In the other direction, assume that
�C ∈ �. Since �0 is (Ag(A), |A|)-maxiconsistent, we must have either �C ∈ �0 or
¬�C ∈ �0. In the latter case, by S5 properties of � and (Ag(A), |A|)-maxiconsistency
of �0 we get that �¬�C ∈ �0. We have established, therefore, that either �C ∈ ��

0 or
�¬�C ∈ ��

0 . However, we cannot have �¬�C ∈ ��
0 , since we know that ��

0 ⊆ �, and
also �C ∈ �. It follows that we must have �C ∈ ��

0 . �
We pause to reflect on the structure of histories induced by the pair (Tree, ≤). Every

such history has the form h(�,�) = {†, (�, �)}. It is clear, moreover, that we have both
HS

† = Hist(S) and H(�,�) = {h(�,�)} for every standard pair (�, �). We then define the
choice function for our model in the following way:

• For every j ∈ Ag(A) and standard pairs (�, �) and (�0, �0), we define that
h(�0,�0) ∈ Choice†

j (h(�,�)) iff �[j] ⊆ �0.
• Similarly, for every i ∈ Ag(B) and standard pairs (�, �) and (�0, �0), we define

that h(�0,�0) ∈ Choice†
i (h(�,�)) iff �[i] ⊆ �0.

• For every j ∈ Ag(A) ∪ Ag(B) and every standard pair (�, �) we set that
Choice(�,�)

j = {H(�,�)} = {{h(�,�)}}.
• Finally, for a p ∈ |A|, we define that V(p) = {(†, (�, �)) | p ∈ �}; symmetrically,

for a q ∈ |B|, we define that V(q) = {(†, (�, �)) | q ∈ �}. It is an easy
consequence of inseparability of (�, �) that V(r) is well defined also in case r ∈
|A| ∩ |B|.

First of all, we need to show that we have in fact defined a stit model:

LEMMA 3.8. The structure S = 〈Tree, ≤, Choice, V〉, as defined above, is a (Ag(A) ∪
Ag(B), |A| ∪ |B|)-stit model.

Proof. It is obvious that ≤ is a forward-branching preorder on the nonempty set Tree.
The fact that, for all j ∈ Ag(A) ∪ Ag(B), Choicem

j is a partition of HS
m trivially follows

from definition, whenever m �= †. If, on the other hand, m = †, then this same fact follows
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from S5 properties of [j] together with the fact that, for every standard pair (�, �), Ag(�)∩
Ag(�) = Ag(A) ∩ Ag(B) = ∅.

As for the constraints, (HC) is satisfied since † is the ≤-least moment in Tree, and
(NCUH) is satisfied because there are no undivided histories in S. To verify (NBB),
assume that m1, m2, m ∈ Tree are such that both m1 ≤ m and m2 ≤ m. If these three
moments are not pairwise different, then (NBB) is trivially satisfied. Otherwise, we obtain
a contradiction as follows: we must have then m1 < m and m2 < m, and, given that † is
the ≤-least moment in Tree, m must be some standard pair. But then the definition of ≤
implies that m1 = † = m2 which contradicts our assumption.

We consider (IA) next. Let m ∈ Tree and let f be a function on Ag such that (∀j ∈ Ag(A)∪
Ag(B))(f (j) ∈ Choicem

j ). We are going to show that in this case
⋂

j∈Ag(A)∪Ag(B) f (j) �= ∅.
If m �= †, then this is obvious, since every agent will have a vacuous choice. We treat the
case when m = †.

Then, for every j ∈ Ag(A)∪Ag(B), we pick an hj ∈ f (j) so that f (j) = Choice†
j (hj). Since

Hist(Tree, ≤) = {h(�,�) | (�, �) is a standard pair}, we can choose, for every j ∈ Ag(A) ∪
Ag(B), a standard pair (�j, �j) such that hj = h(�j,�j). Together with f (j) = Choice†

j (hj),
this gives us the following equation:

(∀j ∈ Ag(A) ∪ Ag(B))(f (j) = Choice†
j (h(�j,�j))). (50)

Now consider the pair:

(��
0 ∪

⋃
{�[j]

j | j ∈ Ag(A)}, ��
1 ∪

⋃
{�[i]

i | i ∈ Ag(B)}). (51)

We will show that the pair (51) is inseparable. Indeed, suppose otherwise. Then, by Lemma
3.4, there must be �A1, . . . ,�Ar ∈ ��

0 , �B1, . . . ,�Br′ ∈ ��
1 , [j]Aj

1, . . . , [j]Aj
r(j) ∈ �j (for

every j ∈ Ag(A)), and [i]Bi
1, . . . , [i]Bi

r(i) ∈ �i (for every i ∈ Ag(B)) such that the pair:

({�A1, . . . ,�Ar} ∪
⋃

{{[j]Aj
1, . . . , [j]Aj

r(j)} | j ∈ Ag(A)},
{�B1, . . . ,�Br′ } ∪

⋃
{{[i]Bi

1, . . . , [i]Bi
r(i)} | i ∈ Ag(B)}) (52)

is separable. Now the contraposition of Lemma 3.3.2 entails that in this case also the pair:

(��
0 ∪

⋃
{{[j]Aj

1, . . . , [j]Aj
r(j)} | j ∈ Ag(A)},

��
1 ∪

⋃
{{[i]Bi

1, . . . , [i]Bi
r(i)} | i ∈ Ag(B)}) (53)

must be separable. Next, for every j ∈ Ag(A) and every i ∈ Ag(B), we set:

αj := Aj
1 ∧ · · · ∧ Aj

r(j); βi := Bi
1 ∧ · · · ∧ Bi

r(i).

By Lemma 3.2.1 and the separability of the pair (53), we know that also the following pair
must be separable:

(��
0 ∪ {[j]αj | j ∈ Ag(A)}, ��

1 ∪ {[i]βi | i ∈ Ag(B)}). (54)

For every j ∈ Ag(A), the formulas [j]Aj
1, . . . , [j]Aj

r(j) were chosen in �j, therefore, it follows
from Lemma 3.2.1 and maxiconsistency of �j that also [j]αj ∈ �j. By S5 properties of �,
this means that also �[j]αj ∈ �j so that, by consistency, �¬[j]αj /∈ �j. The latter means, by
Lemma 3.7, that �¬[j]αj /∈ �0, therefore, by maxiconsistency, �[j]αj ∈ �0. By a parallel
argument, one can also show that, for every i ∈ Ag(B), �[i]βi ∈ �1. Therefore, by Lemma
3.5, the separability of the pair (54) entails the separability of (�0, �1) which contradicts
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the choice of the latter pair. The obtained contradiction shows that the pair (51) must be
inseparable.

Therefore, by Lemma 3.3.1, the pair (51) can be extended to a pair (�0, �0) such that
�0 is (Ag(A), |A|)-maxiconsistent and �0 is (Ag(B), |B|)-maxiconsistent. By the choice
of (51), it is also clear that both ��

0 ⊆ �0 and ��
1 ⊆ �0, which means that (�0, �0)

is a standard pair. Therefore, we must have h(�0,�0) ∈ HS
† . Now, let j ∈ Ag(A). Then,

by the choice of (51), �
[j]
j ⊆ �0, whence we get, by (50) and the definition of Choice,

that h(�0,�0) ∈ Choice†
j (h(�j,�j)) = f (j). Similarly, if i ∈ Ag(B), then, by the choice of

(51), �[i]
i ⊆ �0, whence we get, by (50) and the definition of Choice, that h(�0,�0) ∈

Choice†
i (h(�i,�i)) = f (i). Summing up, we obtain that

h(�0,�0) ∈
⋂

j∈Ag(A)∪Ag(B)

f (j) �= ∅,

and (IA) is thus satisfied. �
For the defined model S, we show the following truth lemma:

LEMMA 3.9. Let S be as defined above, let (�, �) be a standard pair, let C ∈ LAg(A)
|�| ,

and let D ∈ LAg(B)
|�| . Then,

1. S, †, h(�,�) |� C ⇔ C ∈ �;

2. S, †, h(�,�) |� D ⇔ D ∈ �.

Proof. We show Part 1, the other part is similar. The proof proceeds by induction on the
construction of C.

Basis. C = p ∈ |�|. Then,

S, †, h(�,�) |� p ⇔ (†, h(�,�)) ∈ V(p) ⇔ p ∈ �,

by the definition of V above.
Induction step. The Boolean cases are straightforward. We treat the modal cases:
Case 1. C = �D. (⇐) Assume that �D ∈ � and take an arbitrary g ∈ HS

† . We will
show that S, †, g |� D. Indeed, we must have g = h(�0,�0) for an appropriate standard
pair (�0, �0). By Lemma 3.7, we must have �� = ��

0 = ��
0 , whence it follows that

�D ∈ �0. By S5 properties of � and (Ag(A), |A|)-maxiconsistency of �0, it follows further
that D ∈ �0, whence S, †, g(= h(�0,�0)) |� D by induction hypothesis. Since g was chosen
in HS

† arbitrarily, it follows that S, †, h(�,�) |� �D.
(⇒). Assume that �D /∈ �. By (Ag(A), |A|)-maxiconsistency of �, we must have

then that ¬�D ∈ �, which, by Lemma 3.6.1, means that the pair (�� ∪ {¬D}, ��)
must be inseparable. By Lemma 3.7, we know that also the pair (��

0 ∪ {¬D}, ��
1 ) must

be inseparable. We then extend the latter pair, using Lemma 3.3.1, to a standard pair
(�0, �0). It is clear that D /∈ �0, hence, by induction hypothesis, S, †, h(�0,�0) �|� D.
Since h(�0,�0) ∈ HS

† , this further means that S, †, h(�,�) �|� �D, as desired.
Case 2. C = [j]D for some j ∈ Ag(A). (⇐) Assume that [j]D ∈ � and take an arbitrary

g ∈ Choice†
j (h(�,�)). We will show that S, †, g |� D. Indeed, we must have g = h(�0,�0)

for an appropriate standard pair (�0, �0). Given that h(�0,�0) = g ∈ Choice†
j (h(�,�)), we

must also have, by the definition of Choice, that �[j] ⊆ �0. Therefore, [j]D ∈ �0, and it
follows by S5 properties of [j] and (Ag(A), |A|)-maxiconsistency of �0, that also D ∈ �0
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whence S, †, g(= h(�0,�0)) |� D by the induction hypothesis. Since g was chosen in
Choice†

j (h(�,�)) arbitrarily, we have shown that S, †, h(�,�) |� [j]D.
(⇒). Assume that [j]D /∈ �. By (Ag(A), |A|)-maxiconsistency of �, we must have then

that ¬[j]D ∈ �, which, by Lemma 3.6.3, means that the pair (�� ∪ �[j] ∪ {¬D}, ��)
must be inseparable. By Lemma 3.7, we know that also the pair (��

0 ∪ �[j] ∪ {¬D}, ��
1 )

must be inseparable. We then extend the latter pair, using Lemma 3.3.1, to a standard pair
(�0, �0). It is clear that D /∈ �0, hence, by induction hypothesis, S, †, h(�0,�0) �|� D. We
also clearly have �[j] ⊆ �0, which means that h(�0,�0) ∈ Choice†

j (h(�,�)). Therefore, we
get that S, †, h(�,�) �|� [j]D, as desired. �

We can now finish our proof of Theorem 3.1 by recalling the fact that we have, according
to the above assumption, both A ∈ �0 and ¬B ∈ �1, so that it follows from Lemma 3.9,
that:

S, †, h(�0,�1) |� A ∧ ¬B.

The latter is in contradiction with the assumption that � A → B, and this contradiction
means that there must be an interpolant for this implication.

§4. The case n > 3. The main result of this section looks as follows:

THEOREM 4.1. For every n > 3, stit logic does not have (RCIP)n.

Again, we start with some technicalities:

LEMMA 4.2. Let j1, j2, j3, j4 ∈ Ag and propositional variables p, q, r be pairwise
different. Then,

� �([j1]p ∧ [j2](p → q)) → ¬�([j3]r ∧ [j4](r → ¬q)).

Proof. We reason as follows:

�([j1]p ∧ [j2](p → q)) ∧ �([j3]r ∧ [j4](r → ¬q)) (premise) (55)

�([j1]p ∧ [j2](p → q)) → (�[j1]p ∧ �[j2](p → q)) (� is S5) (56)

�([j3]r ∧ [j4](r → ¬q)) → (�[j3]r ∧ �[j4](r → ¬q)) (� is S5) (57)

�[j1]p ∧ �[j2](p → q) ∧ �[j3]r ∧ �[j4](r → ¬q) (from (55)–(57)) (58)

�([j1]p ∧ [j2](p → q) ∧ [j3]r ∧ [j4](r → ¬q)) (from (58), (A3)) (59)

([j1]p ∧ [j2](p → q) ∧ [j3]r ∧ [j4](r → ¬q)) →
→ (p ∧ (p → q) ∧ r ∧ (r → ¬q)) ([j1]–[j4] are S5) (60)

([j1]p ∧ [j2](p → q) ∧ [j3]r ∧ [j4](r → ¬q)) → ⊥ (from (60) by prop. logic)
(61)

�([j1]p ∧ [j2](p → q) ∧ [j3]r ∧ [j4](r → ¬q)) → ⊥ (from (61) since � is S5) (62)

⊥ (from (59) and (62)). (63)

�

DEFINITION 4.3. Let S = 〈Tree, ≤, Choice, V〉 and S′ = 〈Tree′, ≤′, Choice′, V ′〉 be
(Ag, V)-stit models, and let m ∈ Tree and m′ ∈ Tree′. Relation B ∈ HS

m × HS′
m′ we will

call a bisimulation between (S, m) and (S′, m′), iff the following conditions hold for all
p ∈ V, all j ∈ Ag, all h1, h2 ∈ HS

m and all h′
1, h′

2 ∈ HS′
m′ :
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{h ∈ HS
m | ∃h′(h B h′)} = HS

m (dom)

{h′ ∈ HS′
m | ∃h(h B h′)} = HS′

m (c-dom)

h1 B h′
1 ⇒ (S, m, h1 |� p ⇔ S′, m′, h′

1 |� p) (atoms)

(h1 B h′
1&h2 ∈ Choicem

j (h1)) ⇒ (∃h′
3 ∈ (Choice′)m′

j (h′
1))(h2 B h′

3) (forth)

(h1 B h′
1&h′

2 ∈ (Choice′)m′
j (h′

1)) ⇒ (∃h3 ∈ Choicem
j (h1))(h3 B h′

2). (back)

We will sometimes refer to the satisfaction of conditions (dom) and (c-dom) in the
preceding definition by saying that the domain of B is HS

m and the counterdomain of B
is HS′

m′ , respectively.
We show that existence of a bisimulation implies the equality of theories:

LEMMA 4.4. Let S = 〈Tree, ≤, Choice, V〉 and S′ = 〈Tree′, ≤′, Choice′, V ′〉 be
(Ag, V)-stit models, and let B ∈ HS

m ×HS′
m′ be a bisimulation between (S, m) and (S′, m′).

Then, for all A ∈ LAg
V and all h1 ∈ HS

m and h′
1 ∈ HS′

m′ :

h1 B h′
1 ⇒ (S, m, h1 |� A ⇔ S′, m′, h′

1 |� A).

Proof. By induction on the construction of A. The basis follows from (atoms), and the
Boolean cases in the induction step are trivial. We consider the modal cases:

Case 1. A has the form �B. (⇒) Assume that S, m, h1 |� �B and let h′
2 ∈ HS′

m′ be arbi-

trary. Then, since the counterdomain of B is HS′
m′ , choose any h2 ∈ HS

m such that h2 B h′
2.

We have S, m, h2 |� B, whence, by induction hypothesis, it follows that S′, m′, h′
2 |� B.

Since h′
2 ∈ HS′

m′ was chosen arbitrarily, we infer that S′, m′, h′
1 |� �B = A. (⇐) Similarly

to the (⇒)-part, using this time the fact that the domain of B is HS
m .

Case 2. A has the form [j]B for some j ∈ Ag. (⇒) Assume that S, m, h1 |� [j]B and
let h′

2 ∈ Choice′m′
j (h′

1) be arbitrary. Using condition (back), choose an h3 ∈ Choicem
j (h1)

such that h3 B h′
2. We have S, m, h3 |� B, whence, by induction hypothesis, it follows

that S′, m′, h′
2 |� B. Since h′

2 ∈ Choice′m′
j (h′

1) was chosen arbitrarily, we infer that
S′, m′, h′

1 |� [j]B = A. (⇐) Similarly to the (⇒)-part, using this time condition (forth)
instead of (back). �

Now we need to define two models: a ({1, 2, 3, 4}, {p, q})-stit model S = 〈Tree, ≤,
Choice, V〉, and a ({1, 2, 3, 4}, {q, r})-stit model S′ = 〈Tree′, ≤′, Choice′, V ′〉 to be used
in the proof of Theorem 4.1. First, we define one auxiliary set:

4Tup := {(a, b, c, d)+, (a, b, c, d)− | a, b, c, d ∈ {0, 1}}.
Next, we start with the definitions of the models, beginning with their temporal substruc-
tures.

DEFINITION 4.5. We set:

1. Tree := {†} ∪ 4Tup.

2. ≤ is the reflexive closure of {(†, m) | m ∈ 4Tup}.
3. Tree′ := {‡} ∪ 4Tup.

4. ≤′ is the reflexive closure of {(‡, m) | m ∈ 4Tup}.
For an integer 1 ≤ j ≤ 4, by the j-th projection of m ∈ 4Tup = Tree ∩ Tree′ we will
mean the j-th projection of the corresponding 4-tuple, regardless of whether m is signed
by + or −. Thus, for any appropriate a, b, c, d ∈ {0, 1}, the two elements (a, b, c, d)+ and
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(a, b, c, d)− have the same j-th projection for every 1 ≤ j ≤ 4. For an m ∈ 4Tup and an
integer 1 ≤ j ≤ 4, the j-th projection of m will be denoted by prj(m). The element from
{+, −} by which m is signed, we will denote sign(m) so that, e.g., sign((a, b, c, d)+) = +.
Finally, the complete 4-tuple signed by sign(m) will be called the core of m and will be
denoted by core(m) so that core(m) = (pr1(m), pr2(m), pr3(m), pr4(m)).

The history structure induced by these definitions is as follows. For S we get that

Hist(S) = {hm = (†, m) | m ∈ 4Tup} = HS
† . (64)

Similarly, for S′ we get that

Hist(S′) = {gm = (‡, m) | m ∈ 4Tup} = HS′
‡ . (65)

Once we know the sets of histories induced by S and S′, respectively, it is immediate to
deduce the fans of histories passing through any given moment in these models. Namely,
it follows that

HS
† = Hist(S), HS

m = {hm}, for all m ∈ 4Tup (66)

and:

HS′
‡ = Hist(S′), HS′

m = {gm}, for all m ∈ 4Tup. (67)

This insight into the history structure allows for a handy definition of choice functions
and variable evaluations for the two models:

DEFINITION 4.6. We set that:

1. Choice†
j = {{hm | prj(m) = 0}, {hm | prj(m) = 1}} for all 1 ≤ j ≤ 4.

2. Choicem
j = {HS

m } = {{hm}} for all m ∈ 4Tup and 1 ≤ j ≤ 4.

3. V(p) = {(†, hm) | pr1(m) = 0}, V(q) = {(†, hm) | (pr1(m) = pr2(m) = 0) ∨
(pr3(m) = pr4(m) = 0) ∨ sign(m) = +}.

4. Choice′‡
j = {{gm | prj(m) = 0}, {gm | prj(m) = 1}} for all 1 ≤ j ≤ 4.

5. Choice′m
j = {HS′

m } = {{gm}} for all m ∈ 4Tup and 1 ≤ j ≤ 4.

6. V ′(q) = {(‡, gm) | (pr3(m) = pr4(m) = 0) ∨ (sign(m) = +&(pr3(m) �= 1 ∨
pr4(m) �= 0))}, V ′(r) = {(‡, gm) | pr3(m) = 1}.

We now establish a number of further lemmas and corollaries.

COROLLARY 4.7. Let 1 ≤ j ≤ 4. Then, Choice†
j (hm) = {hm1 | prj(m) = prj(m1)} and

Choice′‡
j (gm) = {gm1 | prj(m) = prj(m1)} for all m ∈ 4Tup.

Proof. The Corollary follows immediately from Definitions 4.6.1 and 4.6.4, and the fact
that for every m ∈ 4Tup we have either prj(m) = 0 or prj(m) = 1. �

LEMMA 4.8. S, as given in Definitions 4.5 and 4.6, is a ({1, 2, 3, 4}, {p, q})-stit model,
whereas S′, as given in the same Definitions, is a ({1, 2, 3, 4}, {q, r})-stit model.

Proof. We consider S first. Indeed, ≤ is obviously a forward-branching partial order
and † is the ≤-least element in Tree so that (HC) is satisfied. The satisfaction of (NBB)
is also easily shown, cf. the respective part of the proof of Lemma 3.8. Also, there are no
undivided histories at any moment of Tree so that (NCUH) is also satisfied trivially. Next,
for any m ∈ 4Tup and 1 ≤ j ≤ 4, Choicem

j is a trivial partition of HS
m . As for † itself,

we have, by Definition 4.6.1, that, for any 1 ≤ j ≤ 4, Choice†
j = {{hm | prj(m) = 0},
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{hm | prj(m) = 1}}, which is obviously a pair of disjoint subsets of HS
† = Hist(S) such

that their union makes up HS
† = Hist(S) itself. The nonemptiness of both sets in this

pair follows from the fact that (0, 0, 0, 0)+ and (1, 1, 1, 1)+ are in 4Tup. Finally, we tackle
(IA). Assume that f is defined on {1, 2, 3, 4} in such a way that, for a given m ∈ Tree, we
have f (j) ∈ Choicem

j for all 1 ≤ j ≤ 4. If m �= †, then clearly
⋂

1≤j≤4 f (j) = HS
m �= ∅.

On the other hand, if m = †, then, for every 1 ≤ j ≤ 4, choose an hj ∈ f (j) so that
we get f (j) = Choice†

j (hj) for all 1 ≤ j ≤ 4. Then, it follows from (64) that, for every
1 ≤ j ≤ 4, there must exist an mj ∈ 4Tup such that hj = hmj . But then, consider the 4-
tuple m0 = (pr1(m1), pr2(m2), pr3(m3), pr4(m4))

+. It is immediate from Definition 4.6.1
and Corollary 4.7 that for every 1 ≤ j ≤ 4 we have hm0 ∈ Choice†

j (hmj) = f (j) whence
hm0 ∈ ⋂

1≤j≤4 f (j) �= ∅.
The proof of the Lemma for S′ is similar. �

LEMMA 4.9. We have both

S, †, hm |� �([1]p ∧ [2](p → q))

and

S′, ‡, gm |� �([3]r ∧ [4](r → ¬q)),

for all m ∈ 4Tup.

Proof. As for the first part of the Lemma, let n := (0, 0, 0, 0)+ and consider hn. If
h ∈ Choice†

1(hn) is chosen arbitrarily, then, by (66), h = hm1 for some m1 ∈ 4Tup and,
moreover, pr1(m1) = pr1(n) = 0. But then, by Definition 4.6.3, (†, hm1) ∈ V(p) so that
S, †, hm1 |� p. Since hm1 ∈ Choice†

1(hm) was arbitrary, this means that S, †, hn |� [1]p.

Furthermore, let h ∈ Choice†
2(hn) be chosen arbitrarily. Then, again by (66), h = hm1

for some m1 ∈ 4Tup and, moreover, pr2(m1) = pr2(n) = 0. If S, †, hm1 |� p, this means
that (†, hm1) ∈ V(p) so that also pr1(m1) = 0. But in this case we will have pr1(m1) =
pr2(m1) = 0 which means that also S, †, hm1 |� q. Thus we have shown, for an arbitrary
hm1 ∈ Choice†

2(hm), that whenever S, †, hm1 |� p, it is also the case that S, †, hm1 |� q
whence it follows that S, †, hn |� [2](p → q).

Summing up, we must have S, †, hn |� [1]p∧[2](p → q) for n = (0, 0, 0, 0)+, whence,
given the semantics of � and (66), it follows that S, †, hm |� �([1]p ∧ [2](p → q)) for all
m ∈ 4Tup.

Turning now to the second part of the Lemma, we set k := (0, 0, 1, 0)+ and consider
gk. If g ∈ Choice′‡

3 (gk) is chosen arbitrarily, then, by (66), g = gm1 for some m1 ∈ 4Tup
and, moreover, pr3(m1) = pr3(k) = 1. But then, by Definition 4.6.6, (‡, gm1) ∈ V ′(r) so
that S′, ‡, gm1 |� r. Since gm1 ∈ Choice′‡

3 (gm) was arbitrary, this means that S′, ‡, gk |�
[3]r.

Furthermore, let g ∈ Choice′‡
4 (gk) be chosen arbitrarily. Then, again by (66), g = gm1

for some m1 ∈ 4Tup and, moreover, pr4(m1) = pr4(k) = 0. If S′, ‡, gm1 |� r, this means
that (‡, gm1) ∈ V ′(r) so that, in addition, pr3(m1) = 1. But in this case we will have both
pr3(m1) = 1 and pr4(m1) = 0 which means that also S′, ‡, gm1 |� ¬q. Thus we have
shown, for an arbitrary gm1 ∈ Choice′‡

4 (gm), that whenever S′, ‡, gm1 |� r, it is also the
case that S′, ‡, gm1 |� ¬q whence it follows that S′, ‡, gk |� [4](r → ¬q).
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Summing up, we must have S′, ‡, gk |� [3]r∧ [4](r → ¬q) for k = (0, 0, 1, 0)+, which
means, given the semantics of � and (67), that S′, ‡, gm |� �([3]r ∧ [4](r → ¬q)) for all
m ∈ 4Tup. �

In what follows we let Sq and S′
q stand for the reducts of S and S′ to ({1, 2, 3, 4}, {q})-

stit models.

LEMMA 4.10. The relation B := {(hm, gm1) | (m, m1 ∈ 4Tup), & ((†, hm) ∈ V(q) ⇔
(‡, gm1) ∈ V ′(q))} is a bisimulation between (Sq, †) and (S′

q, ‡).

Proof. We first note that it follows from Definition 4.6.6 that (‡, g(0,0,0,0)+) ∈ V ′(q) and
(‡, g(0,0,1,0)+) /∈ V ′(q). Now if m ∈ 4Tup then either (†, hm) ∈ V(q) or (†, hm) /∈ V(q).
In the former case, we get hm B g(0,0,0,0)+ , in the latter case we get hm B g(0,0,1,0)+ .
Therefore, by (64) and (66), the domain of B is {hm | m ∈ 4Tup} = HS

† and the condition
(dom) is satisfied. As for condition the (c-dom), we may argue in the same fashion, noting
that it follows from definition of V that (†, h(0,0,0,0)+) ∈ V(q) and (†, h(0,1,0,1)−) /∈ V(q).

Thus, we also get that the counterdomain of B is {gm | m ∈ 4Tup} = HS′
‡ .

The condition (atoms) from Definition 4.3 holds simply by definition of B. It remains to
check the other two conditions in this definition.

Condition (forth). Assume that m1, m2, m3 ∈ 4Tup and 1 ≤ j ≤ 4 are such that we have
both hm1 B gm2 and hm3 ∈ Choice†

j (hm1). We need to consider the following cases:

Case 1. We have (†, hm1) ∈ V(q) ⇔ (†, hm3) ∈ V(q). Then note that we have both
gm2 ∈ Choice′‡

j (gm2) and hm3 B gm2 , the latter by definition of B.

Case 2. We have (†, hm1) ∈ V(q), but (†, hm3) /∈ V(q).

Case 2a. We have core(m2) �= (a, b, 0, 0) for all a, b ∈ {0, 1}. Then we must have
(‡, gcore(m2)−) /∈ V ′(q) so that hm3 B gcore(m2)− . On the other hand, we have, by the identity

of cores and Corollary 4.7, that gcore(m2)− ∈ Choice′‡
j (gm2).

Case 2b. We have core(m2) = (a, b, 0, 0) for some a, b ∈ {0, 1}. Now, if j ∈ {1, 2, 4} we
note that for m4 := (a, b, 1, 0)+ we have gm4 ∈ Choice′‡

j (gm2) and also (‡, gm4) /∈ V ′(q)

so that hm3 B gm4 . On the other hand, if j = 3, then we set m4 := (a, b, 0, 1)− and, again,
get gm4 ∈ Choice′‡

j (gm2) and also (‡, gm4) /∈ V ′(q) so that hm3 B gm4 .

Case 3. We have (†, hm1) /∈ V(q), but (†, hm3) ∈ V(q). Then, by hm1 B gm2 , also
(‡, gm2) /∈ V ′(q) which means that core(m2) �= (a, b, 0, 0) for all a, b ∈ {0, 1}.

Case 3a. We have, moreover, that core(m2) �= (a, b, 1, 0) for all a, b ∈ {0, 1}. Then we
must have (‡, gcore(m2)+) ∈ V ′(q) so that hm3 B gcore(m2)+ . On the other hand, we have, by

the identity of cores and Corollary 4.7, that gcore(m2)+ ∈ Choice′‡
j (gm2).

Case 3b. We have core(m2) = (a, b, 1, 0) for some a, b ∈ {0, 1}. Now, if j ∈ {1, 2, 4} we
note that for m4 := (a, b, 0, 0)+ we have gm4 ∈ Choice′‡

j (gm2) and also (‡, gm4) ∈ V ′(q)

so that hm3 B gm4 . On the other hand, if j = 3, then we set m4 := (a, b, 1, 1)+ and, again,
get gm4 ∈ Choice′‡

j (gm2) and also (‡, gm4) ∈ V ′(q) so that hm3 B gm4 .
Condition (back). Assume that m1, m2, m3 ∈ 4Tup and 1 ≤ j ≤ 4 are such that we have

both hm1 B gm2 and gm3 ∈ Choice′‡
j (gm2). We need to consider the following cases:

Case 1. We have (‡, gm2) ∈ V ′(q) ⇔ (‡, gm3) ∈ V ′(q). Then note that we have both
hm1 ∈ Choice†

j (hm1) and hm1 B gm3 , the latter by definition of B.

Case 2. We have (‡, gm2) ∈ V ′(q), but (‡, gm3) /∈ V ′(q).
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Case 2a. For all a, b ∈ {0, 1}, we have both core(m1) �= (a, b, 0, 0) and core(m1) �=
(0, 0, a, b). Then we must have (†, hcore(m1)−) /∈ V(q) so that hcore(m1)− B gm3 . On the

other hand, we have, by the identity of cores, that hcore(m1)− ∈ Choice†
j (hm1).

Case 2b. We have core(m1) = (0, 0, 0, 0). Now, if j ∈ {1, 3}, we note that for m4 :=
(0, 1, 0, 1)− we have gm4 ∈ Choice†

j (hm1) and also (†, hm4) /∈ V(q) so that h(0,1,0,1)− B

gm3 . On the other hand, if j ∈ {2, 4}, then we set m4 := (1, 0, 1, 0)− and, again, get
h(1,0,1,0)− ∈ Choice†

j (hm1) and also (†, h(1,0,1,0)−) /∈ V(q) so that h(1,0,1,0)− B gm3 .
Case 2c. We have core(m1) = (0, 0, a, b) for some a, b ∈ {0, 1} such that (a, b) �=

(0, 0). Then we have to instantiate j:
For j = 1, we set m4 := (0, 1, a, b)−.
For j ∈ {2, 3, 4}, we set m4 := (1, 0, a, b)−.
Under these settings, we always get both hm4 ∈ Choice†

j (hm1) for the respective j, and
(†, hm4) /∈ V(q) so that hm4 B gm3 .

Case 2d. We have core(m1) = (a, b, 0, 0) for some a, b ∈ {0, 1} such that (a, b) �=
(0, 0). Then we have to instantiate j:

For j ∈ {1, 2, 3}, we set m4 := (a, b, 0, 1)−.
For j = 4, we set m4 := (a, b, 1, 0)−.
Under these settings, we always get both hm4 ∈ Choice†

j (hm1) for the respective j, and
(†, hm4) /∈ V(q) so that hm4 B gm3 .

Case 3. We have (‡, gm2) /∈ V ′(q), but (‡, gm3) ∈ V ′(q). Then we must have
(†, hcore(m1)+) ∈ V(q) so that hcore(m1)+ B gm3 . On the other hand, we have, by the identity

of cores and Corollary 4.7, that hcore(m1)+ ∈ Choice†
j (hm1). �

We are now in a position to prove Theorem 4.1.
Proof of Theorem 4.1. Assume for reductio, that stit logic has (RCIP)n for some n > 3.

Then n ≥ 4 and both A := �([1]p ∧ [2](p → q)) and B := ¬�([3]r ∧ [4](r → ¬q)) are
in L{1,...,n}

{p,q,r} . By Lemma 4.2, we have � A → B, therefore, by Definition 2.2, there must be

a C ∈ L{1,2,3,4}
{q} such that both � A → C and � C → B. We choose such a C and note

that, by Lemma 4.9, we have S, †, h(0,0,0,0)+ |� A, therefore, by � A → C and the strong
completeness of S w.r.t. stit logic, we must also have S, †, h(0,0,0,0)+ |� C. The latter

means that, moreover, Sq, †, h(0,0,0,0)+ |� C, since C ∈ L{1,2,3,4}
{q} . Note that it follows

from the definition of B as given in Lemma 4.10 that h(0,0,0,0)+ B g(0,0,0,0)+ , therefore, it
follows from Lemmas 4.10 and 4.4 that also S′

q, ‡, g(0,0,0,0)+ |� C. Again, by the fact that

C ∈ L{1,2,3,4}
{q} , we infer that S′, ‡, g(0,0,0,0)+ |� C, whence it follows by � C → B, that

we must also have S′, ‡, g(0,0,0,0)+ |� B. But the latter is in contradiction with Lemma 4.9
which says that, on the contrary, S′, ‡, g(0,0,0,0)+ �|� B. So we have got our contradiction
in place. �

§5. Further developments and ramifications. The main topic of this article is the
Restricted Interpolation Property as given by Definition 2.2. This property is much weaker
than the simple Craig Interpolation Property which has attracted much more attention in
the existing literature, and for a good reason. In the context of stit logic, we may formulate
the Craig Interpolation Property as follows:

DEFINITION 5.1. Stit logic has the n-Craig Interpolation Property (abbreviated by (CIP)n)

iff for any set of propositional variables V, and all A, B ∈ L{1,...,n}
V , whenever � A → B,

then there exists a C ∈ LAg(A)∪Ag(B)
|A|∩|B| such that both � A → C and � C → B.
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Then, the relevance of the above results to this latter much more important version of
interpolation can be summed up in two following corollaries:

COROLLARY 5.2. For all positive integers n, if stit logic does not have (RCIP)n, then
stit logic does not have (CIP)n.

Proof. Immediately from Definitions 2.2 and 5.1. �

COROLLARY 5.3. For all n > 3, stit logic does not have (CIP)n.

Proof. Immediately from Corollary 5.2 and Theorem 4.1. �
Thus we may infer from the results of the above sections that stit logic fails (CIP)n for

almost all positive integers n. Furthermore, Theorem 3.1 allows us to considerably limit
our search for counterexamples to (CIP)n for the remaining few values of n. Namely, it
follows from Theorem 3.1 that whenever � A → B does not have an interpolant in the
sense of Definition 5.1, then we must have Ag(A) ∩ Ag(B) �= ∅.

The failure of (CIP)n further entails, by the standard argument, the failure of the Robin-
son Consistency Property for the respective values of n.

More precisely, we can define the Robinson Consistency Property for the stit logic of n
agents along the lines of the classical definition (see, e.g., [4, Theorem 2.2.23] for the case
of classical first-order logic) in the following way:

DEFINITION 5.4. Stit logic has the n-Robinson Consistency Property (abbreviated by
(RCP)n) iff for any set of propositional variables V, and all consistent �, � ⊆ L{1,...,n}

V ,

whenever � ∩ �, is L{1,...,n}
|A|∩|B| -maxiconsistent then � ∪ � is consistent.

Then the observation made above about the failure of Robinson Consistency Property can
be summed up as follows:

COROLLARY 5.5. For all n > 3, stit logic does not have (RCP)n.

Proof sketch. Assume that for some n > 3, stit logic enjoys (RCP)n, and let � A → B
be an arbitrary provable implication in L{1,...,n}

V that provides a counterexample to (CIP)n.
Then � A → B does not have an interpolant and we can extend the singletons {A} and
{¬B} to consistent sets � and � such that � ∩ � is L{1,...,n}

|A|∩|B| -maxiconsistent. But then,
by (RCP)n, � ∪ � ⊇ {A, ¬B} must be consistent, which contradicts the assumption that
A → B is provable. �

Next, Definition 2.2 raises a natural question whether (RCIP)n has its accompanying
restricted version of the Robinson Consistency Property. It is a bit tricky to find such a
property since in this case we would like our two consistent sets, � and �, to have no
shared action modalities, but, at the same time, we would like their ‘intersection’ to use the
action modalities from both � and �. Therefore, we cannot use just plain set-theoretical
intersection � ∩ �.

Fortunately, it turns out that the right notion has been already defined above under the
name of inseparable pair of sets. The respective version of the Robinson Consistency
Property can then be formulated as follows:

DEFINITION 5.6. Stit logic has the Restricted n-Robinson Consistency Property
(abbreviated by (RRCP)n) iff for any set of propositional variables V, and all �, � ⊆
L{1,...,n}

V , if (�, �) is inseparable, then � ∪ � is consistent.
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On the basis of this definition and the proofs given in §3 and §4, the following theorem can
be established:

THEOREM 5.7. For every positive integer n, stit logic has (RRCP)n iff it has (RCIP)n.

Proof sketch. Assume that for some n > 3, stit logic enjoys (RRCP)n, and let �
A → B be an arbitrary provable implication in L{1,...,n}

V that provides a counterexample
to (RCIP)n. Then � A → B does not have a restricted interpolant and the pair ({A}, {¬B})
is inseparable. By (RRCP)n, the set {A, ¬B} must be consistent, which is in contradiction
with provability of A → B. Therefore, whenever stit logic fails (RCIP)n, it also fails
(RRCP)n.

In the other direction, assume that n ≤ 3 and that an inseparable pair of sets (�0, �1)
is given, and construct the stit model based on this pair repeating the construction given
in §3. Lemma 3.9 then implies that this model satisfies �0 ∪ �1 thus verifiying
(RRCP)n. �

Finally, we tackle the question of the logical status of action modalities. Definition 2.2
treats action modalities of the form [j] for a j ∈ Ag as logical symbols, and this is in
accordance with the standard view of modalities. But it is easy to see that one can also argue
in favor of nonlogical status of these modalities, since the agent indices are often treated
as proper names of respective agents, and proper names are nonlogical. If this attitude is
carried out systematically, then we get the following strengthening of Definition 2.2:

DEFINITION 5.8. Stit logic has the Strong Restricted n-Craig Interpolation Property
(abbreviated by (SRCIP)n) iff for any set of propositional variables V, and all A, B ∈
L{1,...,n}

V , whenever � A → B and Ag(A)∩Ag(B) = ∅, then there exists a C ∈ L∅
|A|∩|B| such

that both � A → C and � C → B.

One immediately sees that (SRCIP)n only differs from (RCIP)n in placing stricter require-
ments on the interpolant. Therefore, for any given positive integer n, the failure of (RCIP)n

for stit logic entails the failure of (SRCIP)n so that it follows from Theorem 4.1 that stit
logic fails (SRCIP)n for all positive integers n > 3. This result, however, can be improved
as follows:

THEOREM 5.9. For every n > 1, stit logic does not have (SRCIP)n.

In order to prove this theorem, we again need to establish a number of technical claims:

LEMMA 5.10. Let j1, j2 ∈ Ag be different and let p be a propositional variable. Then,

� �[j1]p → ¬�[j2]¬p.

Proof. We reason as follows:

(�[j1]p ∧ �[j2]¬p) → �([j1]p ∧ [j2]¬p) (by (A3)) (68)

([j1]p ∧ [j2]¬p) → ⊥ ([j1], [j2] are S5) (69)

�([j1]p ∧ [j2]¬p) → ⊥ (from (69) since � is S5) (70)

(�[j1]p ∧ �[j2]¬p) → ⊥ (from (68) and (70)). (71)

�

LEMMA 5.11. Let S = 〈Tree, ≤, Choice, V〉 and S′ = 〈Tree′, ≤′, Choice′, V ′〉 be an
(Ag, V)-stit model and an (Ag′, V)-stit model, respectively, and let m ∈ Tree and m′ ∈
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Tree′. Let relation B ⊆ HS
m × HS′

m′ be such that it satisfies conditions (dom), (c-dom), and

(atoms) from Definition 4.3. Then, whenever A ∈ L∅
V , we will have, for all h1 ∈ HS

m and

h′
1 ∈ HS′

m′ :

h1 B h′
1 ⇒ (S, m, h1 |� A ⇔ S′, m′, h′

1 |� A).

Proof. We reason in the same way as in the proof of Lemma 4.4, the only difference
being that Case 2 in the induction step can be omitted. �

We are now in a position to prove Theorem 5.9.
Proof of Theorem 5.9. Consider the following sets and structures:

• Tr = {m, m0, m1}.
• � is the reflexive closure of the relation {(m, m0), (m, m1)}.

The two histories induced by (Tr,�) are h0 = {m, m0} and h1 = {m, m1}. We now define
two further sets:

• U = {(m, h0)}.
• F = {(m, {{h0}, {h1}}), (m0, {{h0}}), (m1, {{h1}})}.

It is immediate to establish that the structure Mj,p = (Tr,�, Fj, Up), in which Fj interprets
F as the choice function for a given single agent j and Up interprets U as the evaluation for
a given single propositional variable p, is a ({j}, {p})-stit structure.

We now consider two stit models, M1,p and M2,p, and we set B as the diagonal of
Hist(Tr,�), in other words, we set B := {(h0, h0), (h1, h1)}. It is clear that B satisfies the
conditions of Lemma 5.11 so that for every C ∈ L∅

{p} which contains no action modalities,
we will have:

M1,p, m, h0 |� C ⇔ M2,p, m, h0 |� C. (72)

Now assume that (SRCIP)n holds for any n greater than one. We will show that this
assumption leads to a contradiction. Indeed, it follows then from Lemma 5.10 that there
must be a formula C ∈ L∅

{p} such that the following holds:

� �[1]p → C (73)

� C → ¬�[2]¬p. (74)

Choose any such C. We obviously have M1,p, m, h0 |� �[1]p so that it follows from (73)
and the soundness of S that M1,p, m, h0 |� C, whence, by (72), also M2,p, m, h0 |� C.
From the latter, together with (74), it follows that we should have M2,p, m, h0 |� ¬�[2]¬p,
whereas the direct check shows that we in fact have M2,p, m, h0 |� �[2]¬p. Thus we have
got our contradiction in place. �

The Strong Restricted Craig Interpolation Property admits of the following unrestricted
companion:

DEFINITION 5.12. Stit logic has the Strong n-Craig Interpolation Property (abbreviated by
(SCIP)n) iff for any set of propositional variables V, and all A, B ∈ L{1,...,n}

V , if � A → B,

then there exists a C ∈ LAg(A)∩Ag(B)
|A|∩|B| such that both � A → C and � C → B.

Of course, for a given positive integer n, (SCIP)n is at least as strong as (SRCIP)n, whence
we get the following corollary to Theorem 5.9:

THEOREM 5.13. For every n > 1, stit logic does not have (SCIP)n.
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§6. Conclusion. In the preceding text, we have looked into the question of whether
stit logic has the Restricted n-Craig Interpolation Property, showing that the answer is in
the affirmative iff n ≤ 3. We have also briefly looked into some related properties, showing
that the Restricted Craig Interpolation for stit logic has its natural accompanying version of
the Robinson Consistency Property which turns out to be equivalent to the Restricted Craig
Interpolation for every positive integer n. From these results, we have drawn the corollary
that the unrestricted n-Craig Interpolation fails for stit logic under every instantiation of
n > 3, that is to say, for almost all positive integers n. We have also shown that if one
treats action modalities as nonlogical symbols, the scope of interpolation failures extends
to include the case when n ∈ {2, 3}, and this extension occurs for the strengthened versions
of both unrestricted and restricted n-Craig Interpolation Property.

The import of this almost universal failure of Craig Interpolation for stit logic can be
seen sharper if one takes into an account that the axiomatic system S for this logic, as
given in §2 above, suggests that stit logic is an extension of propositional multi-S5. It is a
well-known fact, see, e.g., [13], that multi-S5 has the Craig Interpolation Property.5 Thus
the fact that this property fails for stit logic highlights the fact that the difference between
multi-S5 and stit logic is quite substantial. Another conclusion is that, in extending multi-
S5, stit logic upsets the delicate balance between deductive power and expressivity which
is present in multi-S5.

As the main problem for the future research remains the question whether unrestricted
n-Craig Interpolation Property holds for all or at least some n ≤ 3 and whether the
natural Robinson Consistency companions of the n-Craig Interpolation Property can be
distinguished from this property on this, rather limited, set of values.
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