
Mathematical Structures in Computer Science (2020), 30, pp. 752–832
doi:10.1017/S0960129520000195

PAPER

Forward analysis for WSTS, part I: completions
Alain Finkel1 and Jean Goubault-Larrecq2,∗,†

1Université Paris-Saclay, ENS Paris-Saclay, CNRS, LSV, Institut Universitaire de France, 91190 Gif-sur-Yvette, France and
2Université Paris-Saclay, ENS Paris-Saclay, CNRS, LSV, 91190 Gif-sur-Yvette, France
∗Corresponding author. Email: goubault@ens-paris-saclay.fr

(Received 29 November 2016; revised 13 July 2020; accepted 18 August 2020; first published online 19 October 2020)

Abstract
We define representations for downward-closed subsets of a rich family of well-quasi-orders, and more
generally for closed subsets of an even richer family of Noetherian topological spaces. This includes the
cases of finite words, of multisets, of finite trees, notably. Those representations are given as finite unions
of ideals, or more generally of irreducible closed subsets. All the representations we explore are com-
putable, in the sense that we exhibit algorithms that decide inclusion, and compute finite unions and finite
intersections. The origin of this work lies in the need for computing finite representations of sets of suc-
cessors of the downward closure of one state, or more generally of a downward-closed set of states, in a
well-structured transition system, and this is where we start: we define adequate notions of completions
of well-quasi-orders, and more generally, of Noetherian spaces. For verification purposes, we argue that
the required completions must be ideal completions, or more generally sobrifications, that is, spaces of
irreducible closed subsets.

Keywords: Well-structured transition systems, well-quasi-orderings, downwards-closed subsets, Noetherian topological
spaces, finite computable representations, ideal completions.

1. Introduction
Well-structured transition systems (WSTSs) are a paradigmatic class of infinite-state transition
systems on which many properties of interest in verification are decidable (Abdulla et al. 1996;
Finkel 1987; Finkel and Schnoebelen 2001). They include Petri nets, affine counter systems, lossy
channel systems, data nets, and many more.

Briefly put, a WSTS is a triple (X,→,≤) where ≤ is a well-quasi-order on the (possibly infi-
nite) state spaceX, and→ is a monotonic transition relation onX. (We define well-quasi-orders in
Section 3.1.) To simplify things slightly, bymonotonicwemean stronglymonotonic, namely that if
x→ x′ and x≤ y, then there is a state y′ such that x′≤ y′ and y→ y′. The set of one-step predeces-
sors Pre(E)= {x ∈ X | ∃x′ ∈ E, x→ x′} of any upward-closed subset E is then upward-closed again,
where E is upward-closed if and only if x ∈ E and x≤ y imply y ∈ E. Similarly, the sets Prek(E) of
k-step predecessors, Pre≤k(E) of at-most-k-step predecessors, and Pre∗(E)=⋃

k∈N Pre≤k(E) of
iterated predecessors of the upward-closed set E are upward-closed. The fact that ≤ is a well-
quasi-order implies (see Section 3.1 again) that every upward-closed subset is the upward closure
↑A of a finite set of points A (a basis of the set). This implies that Pre∗(E)= Pre≤k(E) for some
k ∈N: write Pre∗(E) as ↑A with A= {x1, . . . , xn}, realize that for each i, xi must be in Pre≤k(E)

†An extended abstract already appeared in Proc. 26th International Symposium on Theoretical Aspects of Computer
Science (STACS’09).
© The Author(s), 2020. Published by Cambridge University Press

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195
https://orcid.org/0000-0003-0702-3232
https://orcid.org/0000-0001-5879-3304
mailto:goubault@ens-paris-saclay.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129520000195&domain=pdf
https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 753

for some k, and take the largest of these ks. In particular, there is a simple algorithm that decides
coverability in WSTS, namely, which decides whether, given x ∈ X and a basis for an upward-
closed subset E, whether one can reach an element of E in finitely many→ steps starting from x
(Abdulla et al. 2000): compute Pre≤0(E)= E, iterate using Pre≤k+1(E)= E∪ Pre(Pre≤k(E)) until
Pre≤k+1(E)⊆ Pre≤k(E), at which point Pre≤k(E)= Pre∗(E), then test whether x ∈ Pre∗(E). For
this to work, we need the WSTS to be effective, which means that we can compute Pre(E) for E
upward-closed, and we can test inclusion.

This was generalized to topological WSTS by the second author (Goubault-Larrecq 2010); the
algorithm is the same, but X must now be a Noetherian space (see Section 3.3), the sets E are
required to be open, and → is a lower semi-continuous relation. Topological WSTS include
WSTS, but also some other infinite-state systems, among which the class of lossy concurrent poly-
nomial games is probably the most interesting new instance – see Section 6 of Goubault-Larrecq
(2010).

The algorithm described above works backward, but sometimes we would prefer a forward
algorithm that would compute ↓ Post∗({x}), where ↓ denotes downward closure, Post(E)= {x′ ∈
X | ∃x ∈ E, x→ x′} is the set of one-step successors of E and Post∗(E)=⋃

k∈N Postk(E). The set
↓ Post∗({x}) is called the cover of x and can be used to decide coverability as well: one can reach
↑ E from x if and only if ↓ Post∗({x}) intersects E.

However, although the backward procedure always terminates, it is often slow. Forward proce-
dures, when they exist, may fail to terminate: on lossy channel systems, any terminating forward
procedure would enable us to decided boundedness, which is undecidable (Mayr 2003). But they
often give results faster in practice. For this reason, only the non-terminating forward procedure
is implemented in the tool TREX (Abdulla et al. 1998).

The cover also provides more useful information than the set computed by the backward algo-
rithm. For example, the cover is a good first approximation of the reachability set Post∗({x}),
and the original reachability algorithms for Petri nets rely on the computation of covers (Kosaraju
1982; Lambert 1992; Mayr 1981). This can also serve as a first step toward model checking liveness
properties, as in Emerson and Namjoshi (1998) and more recently in Blondin et al. (2017a,b).

For Petri nets, the cover can be computed by the so-called coverability tree algorithm of
Karp and Miller (1969). Part II of this paper generalizes this to a large class of WSTS (Finkel
and Goubault-Larrecq 2012). Part III of this paper defines and studies very-WSTS, a subclass of
WSTS, for which the cover is computable and for which linear temporal logic (introduced in
Pnueli 1977) model checking is decidable. The present part I deals with an important preparatory
step: characterizing downward-closed subsets of well-quasi-ordered sets X. We shall see that such
downward-closed subsets can always be written as the downward closure of finitelymany points in
a completion X̂ ofX. In fact, we start by defining the possible relevant completions from a verifica-
tion perspective and realize that the smallest possible one is the ideal completion or equivalently
(in the more general, Noetherian case) the sobrification of X. We shall then explore concrete
computer representations for elements of X̂, for a large class of Noetherian spaces X (in particular,
well-quasi-orders) that includes most of the spaces needed in the verification of WSTS today.

This paper is an extended version of Finkel and Goubault-Larrecq (2009). Before this paper,
and except for some partial results (Emerson and Namjoshi 1998; Finkel 1990; Geeraerts et al.
2006), a general theory of downward-closed sets was missing. This may explain the scarcity of
forward algorithms for WSTS. Quoting Abdulla et al. (2004b): “Finally, we aim at developing
generic methods for building downward-closed languages, in a similar manner to the methods
we have developed for building upward-closed languages in Abdulla et al. (2000). This would
give a general theory for forward analysis of infinite-state systems, in the same way the work in
Abdulla et al. (2000) is for backward analysis.” Our contribution is to provide such a theory of
downward-closed sets.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

754 A. Finkel and J. Goubault-Larrecq

2. Related Work
The coverability for general WSTS was shown decidable using a backward algorithm presented in
1996 (Abdulla et al. 1996); this algorithm was an abstraction of the coverability algorithm for lossy
channel systems (Abdulla and Jonsson 1993). Coverability for vector addition systems with resets
had been shown decidable by Arnold and Latteux (1978, Theorem 5, p. 391). Interestingly, the
latter algorithm is an early instance of the backward algorithm presented in Abdulla et al. (1996)
and applied to Nn.

While this paper is not about algorithms, it is worth recalling that the inspiration for our line
of work, which culminates in part III (Blondin et al. 2017a,b), comes from Karp and Miller’s
celebrated finite coverability tree algorithm (Karp and Miller 1969) for Petri nets. This arguably
computes a finite representation of the cover ↓ Post∗({x}), and we expand on that in Finkel and
Goubault-Larrecq (2012, Section 4.1) and in Blondin et al. (2017a,b). Further related work on this
issue can be found in that paper. What matters to us here is that, while the state space of a Petri
net isNk, Karp and Miller’s finite representation is given by finitely many points in the completion
Nk

ω, where Nω is N plus a fresh, infinite element ω.
The focus of this paper is on finite representations of downward-closed subsets of well-quasi-

ordered sets and more generally of closed subsets of Noetherian spaces. In computer speak, we
focus on data structures rather than algorithms. Mathematically, we shall need to define the right
notion of completion X̂ for well-quasi-ordered sets, resp., Noetherian spaces X – these will be the
familiar constructions of ideal completion, resp. sobrification – and to study finite representations
of their (downward-)closed subsets.

Data structures are a prerequisite to define algorithms. In our context, one may argue that
what we need is the so-called adequate domain of limits (ADLs), as defined by Ganty, Geeraerts,
Raskin, and van Begin (Ganty et al. 2006; Geeraerts et al. 2006). An ADL is an axiomatization of
a data structure on which the authors’ expand, enlarge, and check procedure, which computes the
cover, works. Alternatively, an ADL is an axiomatization for a relevant completion X̂. We shall see
that these completions have strong ties with the ideal completion, resp., sobrification, mentioned
above.

In the special case of finite words, such finite representations were developed by Abdulla et al.
(1998) as specific regular expressions called SREs (simple regular expressions) and word-products.
In their case, the alphabet is finite, with equality as well-quasi-order. Similar representations also
apply to certain more complex well-quasi-ordered sets of letters, as demonstrated in Abdulla et al.
(2004b) for example. More generally, it had been shown by Kabil and Pouzet that this represen-
tation is in fact valid for any arbitrary well-quasi-ordered set of letters (Kabil and Pouzet 1992).
We improve on this slightly by showing that this even works for all Noetherian sets of letters
(Section 7). Interestingly, one of the key notions we use in the proof is that of an irreducible
(closed) subset, which comes from topology. This is also a central concept in Kabil and Pouzet’s
proof, narrowed down to well-quasi-orders.

We define finite representations for (downward-)closed subsets of a large class of Noetherian
data types, including tuples of natural numbers or finite words, as mentioned above, but alsomany
more. Some of them are representations of (downward-)closed subsets in well-known well-quasi-
orders, as in the case of finite multisets (Section 8), or of finite labeled trees (Section 11, by far the
most technical part of this paper. The fact that the right completion for languages of trees can be
described as certain regular tree languages was also observed by Wies, Zufferey, and Henzinger,
for finite sets of labels (Wies et al. 2010). They did not characterize what kind of regular tree
language is required precisely, which we do). Some others are representations of closed subsets of
Noetherian spaces that do not arise fromwell-quasi-orders. For instance, we deal with polynomial
ideals in Section 6, with finite words again but with a different topology, the prefix topology, in
Section 9.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 755

3. Preliminaries
We shall borrow from theories of well-quasi-orderings (wqos), as used classically in WSTSs
(Abdulla et al. 2000; Finkel and Schnoebelen 2001), from domain theory (Abramsky and Jung
1994; Gierz et al. 2003) and from topology (Goubault-Larrecq 2013). We recap most of what we
need. The purpose is not to give a crash course on these three fields, rather to fix notations and
notions.

3.1 Order
A quasi-ordering ≤ is a reflexive and transitive relation on a set X. It is a (partial) ordering iff it is
antisymmetric. A set X equipped with a partial ordering is a poset.

We write ≥ for the opposite quasi-ordering, ≈ for the equivalence relation ≤∩≥, < for the
associated strict ordering (≤�≈), and > for the converse (≥�≈) of <. The upward closure ↑ E
of a set E is {y ∈ X | ∃x ∈ E, x≤ y}. The downward closure ↓ E is {y ∈ X | ∃x ∈ E, y≤ x}. A subset
E of X is upward-closed if and only if E=↑ E, that is, any element greater than or equal to some
element in E is again in E, which was the definition we gave in the introduction. The notion of
downward-closed sets is defined similarly. When the ambient space X is not clear from context, we
shall write ↓X E, ↑X E instead of ↓ E, ↑ E. We also write ↑ x instead of ↑{x} and ↓ x instead of ↓{x}.

A quasi-ordering is well-founded iff it has no infinite strictly descending chain, that is, x0 >

x1 > · · ·> xi > · · · . An antichain is a set of pairwise incomparable elements. A quasi-ordering is
well if and only it is well founded and has no infinite antichain.

There are a number of equivalent definitions for wqos. One is that, from any infinite sequence
x0, x1, . . . , xi, . . ., one can extract an infinite ascending chain xi0 ≤ xi1 ≤ · · · ≤ xik ≤ · · · , with i0 <

i1 < · · ·< ik < · · · . Another one is that any upward-closed subset can be written ↑ E, with E finite.
Such a finite E is called a finite basis for the upward-closed set. In a wqo, every upward-closed set
has a minimal finite basis, composed of the subset of its pairwise incomparable, minimal elements.
We shall see another, topological, characterization of wqos below.

There is a rich supply of wqos. First, for any k ∈N, Nk is a wqo in the product ordering
((x1, . . . , xk)≤ (y1, . . . , yk) iff xi ≤ yi for every i, 1≤ i≤ k): this is Dickson’s Lemma (Dickson
1913). Nk is the set of configurations of Petri nets, or more generally, of counter machines.

For every well-quasi-ordered alphabet �, �∗ with the embedding (a.k.a. scattered subword,
a.k.a. divisibility) quasi-ordering is wqo: this is Higman’s Lemma (Higman 1952). This is instru-
mental in the backward analysis of lossy channel systems (Abdulla and Jonsson 1993). Under
the same assumptions, the collection of finite trees labeled with elements from �, with the tree
embedding quasi-ordering, is wqo: this is Kruskal’s tree theorem (Kruskal 1960).

A map f from a quasi-ordered set X to a quasi-ordered set Y is monotonic if and only if x≤ x′
implies f (x)≤ f (x′), for all x, x′ ∈ X. (We write ≤ for the underlying ordering of any poset, unless
mentioned otherwise.) We call it a quasi-order embedding if and only if x≤ x′ is equivalent to
f (x)≤ f (x′). The order embeddings are the injective quasi-order embeddings; there is no difference
between the two notions when X is a poset. An order isomorphism is a surjective (hence bijective)
order embedding. Hence, f : X→ Y is an order embedding if and only f is an order isomorphism
onto its image.

Given any quasi-ordered setX, the order quotient ofX is defined as the set of equivalence classes
[x] of elements x ∈ X under ≈, quasi-ordered by letting [x] be below [y] iff x≤ y. (We then write
[x]≤ [y].) This is well defined and a partial order.

We shall say that a set iswell ordered by≤ iff it is well-quasi-ordered by≤ and≤ is an ordering.
The well-ordered posets are exactly the order quotients of wqos.

In a quasi-ordered set X, an upper bound of a family (xi)i∈I of points of X is an element x ∈ X
such that xi ≤ x for every i ∈ I. A least upper bound is one that is less than or equal to all other
upper bounds of the same family. If X is a poset, then the least upper bound of a family is unique
if it exists at all.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

756 A. Finkel and J. Goubault-Larrecq

3.2 Domain theory
Domain theory is, prima facie, concerned with certain posets, called directed-complete partial
orders (dcpos), where certain least upper bounds exist, and so-called Scott-continuous maps,
which are not just monotonic but also preserve these least upper bounds. Over the years, domain
theory has revealed itself as having firm grounds in general topology as well. Let us start with the
order-theoretic view.

A directed family in a poset X is any non-empty family (xi)i∈I such that, for all i, j ∈ I, there is a
k ∈ I with xi, xj ≤ xk. A dcpo is a poset X in which every directed family (xi)i∈I of points of X has a
least upper bound supi∈I xi.

A map f from a poset X to a poset Y is Scott-continuous if and only if it is monotonic and pre-
serves least upper bounds of directed families, that is, if (xi)i∈I is a directed family in X with least
upper bound x, then f (x) is the least upper bound of the (necessarily directed) family (f (xi))i∈I .

An element x ∈ X is finite iff, for every directed family (zi)i∈I that has a least upper bound
z≥ x, then zi ≥ x for some i ∈ I already. The poset X is algebraic iff the family of finite elements
below any given element x is directed and admits x as least upper bound. The finite elements
are often much simpler to describe than arbitrary elements and act as approximants to the
latter.

Let us give a few examples. The power P(X) of a set X is a dcpo, in fact a complete lattice, under
inclusion ⊆. Its finite elements, in the sense above, are the finite subsets of X, in the usual sense
of the word, and P(X) is algebraic. We write Pfin(X) for the set of finite subsets of X, ordered by
inclusion.

Neither P(X) nor Pfin(X) is wqo under inclusion, unless X is finite.N, with its natural ordering,
is an algebraic poset, which is also a wqo.N is not a dcpo, sinceN itself is a directed family without
a least upper bound. However, Nω, obtained by adjoining a new top element ω to N, is a dcpo. Its
finite elements are the elements of N, and Nω is algebraic.

Some dcpos fail to be algebraic, for example, the only finite element of [0, 1], with its natural
ordering, is 0. However, [0, 1] is continuous, in the following sense.

Define the way below relation � on a poset X by x� y iff, for every directed family (zi)i∈I
that has a least upper bound z≥ y, then zi ≥ x for some i ∈ I already. So, in particular, the finite
elements are those that are way below themselves.

Note that x� y implies x≤ y, and that x′≤ x� y≤ y′ implies x′ � y′. However, � is not
reflexive or irreflexive in general. Write ↑↑E= {y ∈ X | ∃x ∈ E, x� y}, ↓↓E= {y ∈ X | ∃x ∈ E, y� x}.

The poset X is continuous iff, for every x ∈ X, ↓↓x is a directed family, and has x as least upper
bound. More finely, call a basis (not to be confused with the finite bases of upward-closed subsets
of wqos) any subset B of X such that any element x ∈ X is the least upper bound of a directed
family of elements way below x in B. Then, X is continuous if and only if it has a basis, and in this
case X itself is the largest basis. On the other hand, every algebraic poset is continuous and has a
least basis, namely its set of finite elements.

An essential property of continuous posets is interpolation (Mislove 1998, Lemma 4.16): if
x� y, then x� z� y for some z ∈ X. We may even choose z to be in any prescribed basis B.
For example, in [0, 1], x� y iff x< y or x= 0, and we may choose B to be, say, the set of rational
points in [0, 1]. Interpolation fails in general, non-continuous posets, even non-continuous dcpos.

Any finite product of dcpos is a dcpo, where product is taken in the order-theoretic sense, that
is, with the product ordering. Then, any finite product of algebraic (resp., continuous) posets is
again algebraic (resp., continuous).

Given a poset X, which might fail to be a dcpo, there is a canonical way to obtain a comple-
tion, called the ideal completion I(X) of X. An ideal I of X is any downward-closed set that is also
directed. I(X) is defined as the poset of all ideals of X, ordered by inclusion. I(X) is then a dcpo,
where directed suprema are computed as unions, andX order-embeds into I(X) through the func-
tion ηI : X→ I(X) that maps x to ↓ x. For example, I(N) consists of all the ideals ↓ n, n ∈N, plus

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 757

Figure 1. Informal, order versus topology glossary.

a fresh element above all others, which we write ω and, as an ideal, is just the whole of N. In this
sense, I(N) is the completion Nω we have already mentioned in the context of the Karp–Miller
algorithm.

I(X) is the free dcpo over X, meaning that for every monotonic map f from X to a dcpo Y
extends to a unique Scott-continuous map g from I(X) to Y – namely, f = g ◦ ηI, see Goubault-
Larrecq (2013, Exercise 5.5.3, or comment pages 175–176). I(X) is also an algebraic dcpo
(Goubault-Larrecq 2013, Proposition 5.1.46), with the elements of X forming a basis.

3.3 Topology
A topology O on a set X is a collection of subsets (the opens) of X that is closed under arbitrary
unions and finite intersections. In particular, considering empty unions and empty intersections,
both ∅ and X itself are open. We say that X itself is a topological space, leaving O implicit. The
complements of opens are the closed sets. The largest open contained in A is its interior and the
smallest closed subset cl(A) containing it is its closure.

A famous topology in domain theory is the Scott topology on a poset X. Its opens, the Scott
opens, are all upward-closed subsetsU such that every directed family (xi)i∈I that has a least upper
bound x in U intersects U, that is, xi ∈U for some i ∈ I. In other words, the closed subsets of
the topology, namely the Scott closed subsets, are the downward-closed subsets F that are stable
under taking least upper bounds of directed families of elements of F. The non-empty Scott closed
subsets of [0, 1] are the intervals [0, t], 0≤ t≤ 1, and its Scott-open subsets are the half-open
intervals (t, 1], 0≤ t≤ 1, plus [0, 1] itself.

A topology is coarser than another iff it contains less opens. Conversely, a topology if finer than
another iff it contains more opens.

For example, consider the Alexandroff topology of a quasi-order X whose opens are all upward-
closed subsets. This is finer than the Scott topology and in general strictly finer: on [0, 1], [1/2, 1]
is Alexandroff open but not Scott-open. OnN, the Scott and Alexandroff topologies agree, and the
non-empty opens are of the form ↑ n, n ∈N. The discrete topology is the finest possible topology,
where all subsets are open. Note that this is also the Alexandroff topology of the equality ordering.

The Alexandroff topology converts a quasi-order into a topological space and suggests a glos-
sary of generalizations of order-theoretic notions as topological notions, see Figure 1. We have
just explained the first row: the upward-closed subsets of a quasi-order are the opens in the
Alexandroff topology. We shall explain the other rows below.

We shall write Xσ for X with its Scott topology, and Xa for X with its Alexandroff topology. It
is easy to see that the downward-closed subsets of X are exactly the closed subsets of Xa, and we
shall use this fact several times. This is the second row of Figure 1.

A map f from a topological space X to a topological space Y is continuous if and only if f−1(V)
is open in X for every open subset V of Y . When both X and Y are posets equipped with the
Alexandroff topology, a map f : X→ Y is continuous if and only if it is monotonic. This is the
third row of Figure 1. When X and Y are posets equipped with their Scott topology, then f is
continuous if and only if it is Scott-continuous.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

758 A. Finkel and J. Goubault-Larrecq

A homeomorphism is a topological isomorphism, that is, a continuous, bijective map whose
inverse is also continuous.

Given any collection C of subsets of a set X, there is a smallest (coarsest) topology containing all
elements of C. This is the topology generated by C, C is then called a subbase for the topology, and
the elements of C are subbasic opens. Their complements are the subbasic closed subsets. Any open
in the topology is then a (possibly infinite) union of finite intersections of subbasic opens. If any
open can be written as a union of elements of C, then one says that C is a base of the topology,
and the elements of C are basic opens. This occurs typically when C contains X and is closed under
binary intersections.

In a continuous poset, ↑↑x is Scott-open for all x, and every Scott-open set U is a union of such
sets, viz.U =⋃

x∈U ↑↑x (Abramsky and Jung 1994), that is , the subsets ↑↑x form a base of the Scott
topology. Note that the subsets ↑ x form a base of the Alexandroff topology instead.

Every topology comes with a specialization quasi-ordering ≤, defined as x≤ y iff every open that
contains x also contains y; equivalently, iff x ∈ cl{y}. It is easy to see that every open is upward-
closed with respect to≤. The converse need not hold. A subset A of X is saturated iff A equals the
intersection of all opensU containingA, equivalently iff it is upward-closed with respect to≤. The
specialization quasi-ordering of both the Scott and Alexandroff topologies of a poset X ordered
by ≤ is ≤ again.

In fact, the Alexandroff topology is the finest having this property. The coarsest is called the
upper topology; its opens are arbitrary unions of complements of sets of the form ↓ E, E finite. And
the Scott topology is somewhere inbetween. The sets ↓ E, with E finite, will play an important role
and we call them the finitary closed subsets. These are closed in the upper, Scott, and Alexandroff
topologies.

Paralleling the notations Xσ , Xa, we write Xu for X with its upper topology.
A topological space X is T0 iff for any two distinct points x, y ∈ X, there is an open subset

containing x but not y, or conversely. X is T0 if and only if its specialization quasi-ordering ≤ is a
partial ordering, that is, x≤ y and y≤ x imply x= y.

A subspace of a topological space X is a subset A of X with the so-called subspace topology,
whose opens are A∩U, U open in X.

The product
∏

i∈I Xi of a family (Xi)i∈I of topological spaces is the space of tuples �x= (xi)i∈I
where each xi is in Xi, and with the product topology. The latter is the coarsest that makes the
projection maps πi : �x �→ xi continuous. In other words, the sets π−1i (U), i ∈ I,U open in Xi, form
a subbase of the product topology. The binary product of X and Y is written X× Y , and the open
subsets of the product topology on the latter are the unions

⋃
i∈I Ui ×Vi, where I is an arbitrary

index set, Ui is open in X, and Vi is open in Y .
A topological embedding f of X into Y is a map from X to Y that is a homeomorphism of X

onto the image f [X]= {f (x) | x ∈ X} of f , seen as a subspace of Y . Equivalently, f is a topologi-
cal embedding if and only if it is injective, continuous, and almost open in the sense that every
open subset U of X is the inverse image f−1(V) of some open subset V of Y . A trivial example
is the canonical injection i : A→ X of a subspace A of X into X. Up to homeomorphism, these
are the only topological embeddings: any topological embedding f : X→ Y is by definition the
composition of the canonical injection of f [X] into Y with the homeomorphism f : X→ f [X].

Given an equivalence relation ≡ on a topological space X, we can form the quotient space
X/≡. Its elements are the equivalence classes of elements of X modulo ≡. The map q : X→ X/≡
sending every element to its equivalence class is called the quotient map, and X/≡ is then given
the quotient topology, defined as the finest topology on X/≡ that makes q continuous. Explicitly,
the opens of the quotient topology are exactly the subsets V of X/≡ such that q−1(V) is open in X.

A crucial notion in topology is compactness. A subset K of X is compact iff every open cover
(Ui)i∈I (a family of opens Ui whose union contains K) contains a finite subcover. Alternatively, K
is compact iff, for every directed family (Ui)i∈I of opens (directed with respect to inclusion) such
that K ⊆⋃

i∈I Ui, then K ⊆Ui for some i ∈ I already.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 759

A topological space X is Noetherian iff every open subset of X is compact (Grothendieck 1960,
chapitre 0, § 2). A less intimidating definition is thatX is Noetherian if and only if its lattice of open
subsets has the ascending chain condition: every properly ascending chain U0 �U1 � · · ·�Un �
of opens must be finite (Goubault-Larrecq 2013, Proposition 9.7.6).

There is a strong link between Noetherian spaces and wqos: a poset X is wqo if and only if X
is Noetherian in its Alexandroff topology (Goubault-Larrecq 2013, Proposition 9.7.17). So wqos
are a special case of Noetherian spaces, yielding the fourth row of Figure 1. But there are more
Noetherian spaces. We shall see a few of them in this paper, and we only mention two examples
for now.

One of the simplest examples, although somehow artificial, is N with the cofinite topology,
whose closed subsets are N plus all finite subsets of N. This is Noetherian, because every properly
descending chain of closed sets must be finite; by taking complements, every properly ascending
chain of open sets is finite. If that were a wqo with the Alexandroff topology of some quasi-
ordering, that quasi-ordering would have to be the specialization quasi-ordering of the space,
which is equality. However, equality on N is not wqo, since N itself is an infinite antichain. In
fact, the Alexandroff topology of = is the discrete topology, which is much finer than the cofinite
topology.

The primary example of a Noetherian space, Ck with its Zariski topology (Goubault-Larrecq
2013, Exercise 9.7.53), is far from arising from a wqo as well: its specialization quasi-ordering is
equality = again, and the whole space is an infinite antichain. This is one of the ingredients used
in the study of the lossy concurrent polynomial games mentioned in the introduction.

3.4 Sobriety
For this section, we refer to Abramsky and Jung (1994, Section 7.2.1) or to Chapter 8 of Goubault-
Larrecq (2013).

A closed subset C of a topological space is irreducible if and only if C is non-empty, and when-
ever C⊆ F1 ∪ F2 with F1, F2 closed, then C⊆ F1 or C⊆ F2. Equivalently, if C is included in a finite
union of closed subsets F1, . . . , Fn (whatever n ∈N), then C⊆ Fi for some i, 1≤ i≤ n.

The finitary closed subset ↓ x= cl({x}) (x ∈ X) is always irreducible. (When we write ↓ x in a
topological space, this is relative to its specialization quasi-ordering.) A space X is sober iff every
irreducible closed subset C is the closure of a unique point, that is, C=↓ x for some unique x.
Every sober space is T0, and every continuous dcpo is sober in its Scott topology, see Abramsky
and Jung (1994, Proposition 7.2.27) or Goubault-Larrecq (2013, Proposition 8.2.12 (b)).

Much as we could complete a poset X to a dcpo I(X), we can complete a topological space to
its sobrification S(X). The elements of S(X) are the irreducible closed subsets of X. Its opens are
the subsets of the form �U = {C ∈ S(X) | C ∩U �= ∅}, U open in X. (This is a topology, not just a
subbase.)

As an example, in a poset X with its Alexandroff topology, not only all sets of the form ↓ x are
irreducible closed, but every ideal is irreducible closed, too. We let the reader check this, and also
that the converse holds: the ideals of a posetX are exactly the irreducible closed subsets ofXa, lead-
ing to the fifth row of Figure 1. This goesmuch further: byHoffmann’s theorem (Hoffmann 1979b),
for a poset X, the sobrification S(Xa) coincides with the ideal completion I(X) exactly (Goubault-
Larrecq 2013, Fact 8.2.49). This means that the points are the same, but also the topologies, that
is, the topology of S(Xa) is the Scott topology of I(X). This justifies the sixth row of Figure 1.

S(X) is always sober, and the map ηSX : x �→ ↓ x is a topological embedding of X inside S(X)
as soon as X is T0, that is , up to isomorphism, any T0 space can be seen as a subspace of its
sobrification S(X), equating x ∈ X with ↓ x in S(X).

The sobrification S(X) of X can be thought of as X together with all missing limits from X.
Note in particular that a sober space is always a dcpo in its specialization ordering, see Abramsky
and Jung (1994, Proposition 7.2.13) or Goubault-Larrecq (2013, Corollary 8.2.23).

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

760 A. Finkel and J. Goubault-Larrecq

A topological space X is Noetherian if and only if S(X) is Noetherian (Goubault-Larrecq 2013,
Lemma 9.7.9). This is clear from the fact that, up to natural order isomorphism, X and S(X)
have the same opens, see Gierz et al. (2003, Proposition V-4.7(i)) or Goubault-Larrecq (2013,
Lemma 8.2.26). Actually, S(X) is the free sober space above the topological space X, meaning
that every continuous map f from X to a sober space Y extends to a unique continuous map g
from S(X) to Y , in the sense that f = g ◦ ηSX , see Gierz et al. (2003, Exercise V-4.9) or Goubault-
Larrecq (2013, Theorem 8.2.44). This is a form of extension by continuity theorem and is the
proper categorical way of saying that S(X) is X plus all missing limits.

S(X), as a space of specific closed subsets of X, embeds into the Hoare powerdomain HV(X),
namely the space of all non-empty closed subsets of X. Let also HV(X)⊥ be the lifted Hoare pow-
erdomain of X, which one can see either asHV(X) plus a fresh bottom element⊥ added, or as the
set of all closed subsets of X, including the empty set. The topology of both HV(X) and HV(X)⊥
is the so-called lower Vietoris topology whose subbasic opens are ♦U = {F ∈HV(X) | F ∩U �= ∅},
U open in X. With this topology, S(X) can be considered a subspace ofHV(X) and the latter as a
subspace of HV(X)⊥. We use a slightly different symbol ♦U here, compared to the open subsets
�U of S(X): although they denote very similar sets (and �U =♦U ∩ S(X)), the sets ♦U only form
a subbase of the lower Vietoris topology on HV(X) and HV(X)⊥, while the sets �U are exactly all
the open subsets of S(X).

Remarkably, HV(X) and HV(X)⊥ are Noetherian for every Noetherian space X (Goubault-
Larrecq 2013, Exercise 9.7.14), even though their specialization quasi-ordering, which is inclusion,
is in general not wqo.

4. Completions of wqos
We have announced that the proper completion X̂ of a wqo, or more generally of a Noetherian
space X, would be its ideal completion, or more generally its sobrification. Before we compute
finite representations, it is in order to vindicate this choice.

A rational way to define a completion is to state the properties we need for it first and then
derive what it should be. In our case, there are various properties we might want for a comple-
tion, depending on the point of view we take. In the conference version of this paper (Finkel and
Goubault-Larrecq 2009), we had explored several of these points of view.

Let us concentrate on just one: Geeraerts et al.’s axiomatization of so-called ADLs for well-
quasi-ordered sets X, used in their expand, enlarge, and check forward procedure (Geeraerts et al.
2006). We stress that this notion is independent of their algorithm, and of any particular algo-
rithm: adequate domains of limits are merely an axiomatization of some basic requirements on
the representability of downward-closed subsets. These requirements are also needed in our own
approach (Finkel and Goubault-Larrecq 2012).

An ADL (Geeraerts et al. 2006) for a well-ordered set X is a triple (L,�, γ) where L is a set
disjoint from X (the set of limits); (L1) the map γ : L∪ X→ P(X) is such that γ (z) is downward-
closed for all z ∈ L∪ X, and γ (x)=↓X x for all non-limit points x ∈ X; (L2) there is a limit point
�∈ L such that γ (�)= X; (L3) for all z, z′ ∈ L∪ X, z� z′ if and only if γ (z)⊆ γ (z′); and (L4) for
any downward-closed subset D of X, there is a finite subset E⊆ L∪ X such that γ̂ (E)=D. Here
γ̂ (E)=⋃

z∈E γ (z).
No explicit construction for such adequate domains of limits is given by Geeraerts et al., and

they have to be found by trial and error. Our first result, below, is that there is a unique least (weak)
ADL of X, and this is I(X)= S(Xa) minus X. This not only gives a concrete construction of such
an ADL but also shows that we do not have much freedom in defining one: any other one must
contain S(Xa).

The definition of ADLs above is slightly awkward. Let us simplify it.
Requirement (L2) in Geeraerts et al. (2006) only serves to ensure that all closed subsets of L∪ X

can be represented as ↓L∪X E for some finite subset E: the closed subset L∪ X itself is then exactly

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 761

↓L∪X{�}. However, (L2) is unnecessary for this, since L∪ X already equals↓L∪X E by (L3), where E
is the finite subset of L∪ X such that γ̂ (E)= L∪ X as ensured by (L4). We will not need (L2) either
in our own subsequent work (Finkel and Goubault-Larrecq 2012) and shall call weak adequate
domain of limits (WADLs) any triple (L,�, γ) satisfying (L1), (L3), and (L4).

Even so, this definition remains awkward. First, the real space of interest is not L, but Z= L∪ X;
L can always be recovered as Z� X. Then γ (z) should be downward-closed for every z ∈ Z, that
is, it should be closed in Xa. The space of downward-closed subsets is the Hoare powerdomain
HV(Xa)⊥. As a consequence, (L1) can be expressed more succinctly by requiring that γ be a
map from Z to HV(Xa)⊥, and that every subset of the form ↓X x, x ∈ X, is obtained as γ (x).
Requirement (L3) means that γ is a quasi-order embedding. In other words, the elements z of
Z can be thought as syntax for particular elements γ (z) ofHV(Xa)⊥, and we define� on syntax by
z� z′ iff γ (z)⊆ γ (z′). So we may safely omit� from the definition and remove requirement (L3).

The only important requirement is (L4), which states that every downward-closed subset of X
should be describable as a finite union of representable subsets, that is, of elements of the form
γ (z), z ∈ Z. (L1) also requires all elements of the form ↓X x, x ∈ X, to be representable. However,
this is a consequence of (L4): ↓X x is a finite union of representable subsets γ (z1), . . . , γ (zn); then
x ∈ γ (zi) for some i, 1≤ i≤ n, from which we deduce that γ (zi)=↓X x.

We therefore arrive at the following definition.

Definition 4.1 (ADL,WADL). Let X be a quasi-ordered set. AWADL, on X is a pair (Z, γ) of a set
Z and a map γ : Z→HV(Xa)⊥ (the representation map) such that every downward-closed subset
of X is a finite union of representables. A representable subset of X is by definition one of the form
γ (z) for some z ∈ Z.

(Z, γ) is an ADL iff, additionally, the whole set X is representable.
In any case, the limit points of Z are those z ∈ Z such that γ (z) is not of the form ↓X x, x ∈ X.

We check the formal relationship with Geeraerts et al.’s conditions. The easy proof is left to the
reader.

Lemma 4.2. Let X be a quasi-ordered set.
If (L,�, γ) satisfies (L1), (L3), and (L4), then (L∪ X, γ) is a WADL.
If (L,�, γ) satisfies (L1), (L2), (L3), and (L4), then (L∪ X, γ) is an ADL.
Conversely, if (Z, γ) is a WADL (resp., ADL) on X, then (L,�, γ ′) satisfies (L1), (resp., and (L2)),

(L3), and (L4) where L is the set of limit points of Z, � is defined by z� z′ iff γ ′(z)⊆ γ ′(z′), and γ ′
is defined by γ ′(z)= γ (z) if z ∈ L, γ ′(x)=↓X x if x ∈ X.

Definition 4.1 displays a tension between mathematical practice and computer science needs.
That every downward-closed subset of X be a finite union of representables γ (z1), . . . , γ (zn)
means that we can represent any downward-closed set by finitely many pieces of information z1,
. . . , zn. However, from a computer science perspective, we have not (yet) put any computability
conditions on WADL. We repair this now.

Definition 4.3 (Effective WADL). A WADL (Z, γ) on X is an effective WADL iff the relation �
on Z, defined by z� z′ iff γ (z)⊆ γ (z′), is decidable.

This naturally assumes that Z is a domain of objects representable on a computer, for example, a
word, or a natural number.

From a mathematical standpoint, on the other hand, one usually reasons up to order quotients
and order isomorphisms. Then γ and Z are useless in Definition 4.1, and the only relevant part of a
WADL is the collection of representable subsets, that is, aWADL is, up to these details, a collection

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

762 A. Finkel and J. Goubault-Larrecq

of downward-closed subsets, the representable subsets, such that every downward-closed subset
is a finite union of representables.

We can then bound precisely all WADLs between two well-known spaces of downward-closed
subsets (i.e., closed in Xa).

Lemma 4.4. Let X be a poset and (Z, γ) be a WADL on X. The set γ [Z] of representable subsets is
such that:

S(Xa)⊆ γ [Z]⊆HV(Xa)⊥

Proof. We must show that S(Xa)⊆ γ [Z], the other inclusion being by definition. Let C ∈ S(Xa),
that is, assume C is irreducible closed. Cmust be a finite union of representables

⋃n
i=1 γ (zi) by the

definition of WADLs. So C⊆ γ (zi) for some i, 1≤ i≤ n, by irreducibility (and since each γ (zi) is
closed in Xa). It follows that C= γ (zi), hence C ∈ γ [Z].

So, up to order quotients and order isomorphisms, there cannot be any WADL smaller than
the sobrification S(Xa). We shall see later that the latter is effective in a large number of practical
cases.

Naturally, the statement of Lemma 4.4 does not require any topology. Purely order-
theoretically, Lemma 4.4 states that the collection of representable subsets must lie between the
collection of ideals (I(X)= S(Xa)) and the collection of all downward-closed subsets (HV(Xa)⊥).

The interest in using topology is in the proof of Lemma 4.4: the point is that the key notion
is irreducibility, a topological notion. In turn, these notions and proofs will generalize to the
topological, Noetherian case with no effort later.

When X is a wqo, the ideal completion I(X)= S(Xa) is not just a lower bound below any
WADL, it is itself a WADL. This follows from the following more general topological statement.

Proposition 4.5. Let X be a Noetherian space. Then S(X) is the least collection C of closed subsets
of X such that every closed subset of X can be expressed as a finite union of elements of C.

Proof. First, if C is as above, then S(X)⊆ C. The proof is as in Lemma 4.4, which is in fact a
topological proof: every element C of S(Xa) must be written as a finite union of elements of C, and
by irreducibility it must equal one of them.

Conversely, we need to show that every closed subset of X is a finite union of irreducible closed
subsets, provided that X is Noetherian. This is a well-known fundamental result and occurs as
part of Goubault-Larrecq (2013, Theorem 9.7.12).We give an elementary proof of it in Lemma 4.6
below, for the sake of completeness.

Lemma 4.6. In a Noetherian space, every closed subset is a finite union of irreducibles.

Proof. By taking complements, in a Noetherian space X every properly descending chain F0 �
F1 � · · ·� Fn � · · · of closed subsets must be finite, in other wordsHV(Xa), ordered by inclusion,
is well founded. Imagine there were a closed subset C that cannot be written as a finite union of
irreducibles. By well-foundedness, we can choose C minimal. C is not empty, since the empty set
can be written as a finite union of irreducibles, namely none. C cannot be irreducible either, so
there are two closed subsets F1 and F2 such that C⊆ F1 ∪ F2, but C �⊆ F1 and C �⊆ F2. Because of
the latter, C ∩ F1 and C ∩ F2 are strictly smaller than C. By the minimality of C, C ∩ F1 and C ∩ F2
can be written as finite unions of irreducibles, so C= (C ∩ F1)∪ (C ∩ F2) is also a finite union of
irreducibles: contradiction.

As a special case, we obtain that every downward-closed subset of a wqo X is a finite union of
ideals. This can also be deduced from the observation by Erdős and Tarski (1943) that a poset has
no infinite antichain if and only if every downward-closed subset is a finite union of ideals.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 763

Remark 4.7. Generalizing the above cited result of Erdős and Tarski to the topological setting, we
have the following: a topological space has no infinite discrete subspace if and only if every closed
subset is a finite union of irreducibles (Goubault-Larrecq 2019).

Proposition 4.5, once toned down to wqos, translates to the following.

Corollary 4.8 (Least WADL). Let X be a wqo. The ideal completion I(X)= S(Xa) is the least
WADL, in the sense that:

(1) for any WADL (Z, γ) on X, every element of S(Xa) is representable;
(2) (S(Xa), i) is itself a WADL, where i is the canonical injection of S(Xa) intoHV(Xa)⊥.

In other words, up to the coding function γ , there is a unique minimal WADL on any given
wqo X. We contend that S(Xa) is, in all practical cases, the soleWADL worth considering and will
in particular be effective.

Our treatment so far uses topology for no particular good reason apart from mathematical
elegance. Our presentation, however, lends itself to the following natural topological extension of
WADLs. We have claimed that the additional generality obtained by shifting focus from wqos to
the larger class of Noetherian spaces was useful in Goubault-Larrecq (2010). Notably, the class
of polynomial concurrent programs introduced there is naturally seen as a topological WSTS,
that is, as a pair (X,→) where X is Noetherian space (instead of a wqo) and→ is a lower semi-
continuous binary relation – this is the natural generalization of WSTS to a topological setting.
Using Noetherianness, and algorithms and proof arguments that are variants ofWSTS arguments,
it was shown in that same paper that the reachability of sets of states defined by so-called forbidden
patterns is decidable for polynomial concurrent programs. Note that the latter are not WSTS. In
that context, studying topological WADLs instead of WADLs is the logical next step.

Definition 4.9. Let X be a topological space. A topological WADL on X is a pair (Z, γ) of a set Z
and a map γ : Z→HV(X)⊥ (the representation map) such that every closed subset of X is a finite
union of representables. A representable subset of X is by definition one of the form γ (z) for some
z ∈ Z.

SoWADLs are topologicalWADLs, in the special case whereX comes with the Alexandroff topol-
ogy of some quasi-ordering. We have just seen (Proposition 4.5) that, when X is Noetherian, S(X)
is the least topological WADL. We state it as follows.

Proposition 4.10 (Least topological WADL). Let X be a Noetherian space. The sobrification S(X)
is the least topological WADL, in the sense that:

(1) for any topological WADL (Z, γ) on X, every element of S(X) is representable;
(2) (S(X), i) is itself a topologicalWADL, where i is the canonical injection of S(X) intoHV(X)⊥.

5. S-representations
We shall devote the rest of this paper to describe completions D̂= S(D) for those datatypes of
Figure 2. As we shall see, these datatypes include most of the datatypes encountered in the litera-
ture on WSTS (e.g., Petri nets and more generally counter machines, lossy channel systems, data
nets) and contain several new ones.

All the datatypes in this figure are Noetherian spaces, as can be gathered from Section 9.7
of Goubault-Larrecq (2013). We also state the relevant theorem is in each case. Stars indicate
constructs that, while preserving Noetherianness, do not preserve well-quasi-orderedness. What

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

764 A. Finkel and J. Goubault-Larrecq

D ::= A (finite poset; Theorem 5.3)
| N (natural numbers; Theorem 5.4)
| D1 ×D2 × · · · ×Dn (product; Theorem 5.5)
| D1 +D2 + · · · +Dn (coproduct; Theorem 5.6)
| S(D) (sobrification; Theorem 5.7) ∗
| P(D) (powerset; Theorem 5.11) ∗
| P∗(D) (non-empty powerset; Theorem 5.11) ∗
| HV(D) (Hoare powerdomain; Theorem 5.8) ∗
| HV(D)⊥ (lifted Hoare powerdomain; Theorem 5.8) ∗
| Spec(R) (spectrum of ring R; Proposition 6.1) ∗
| D∗ (finite words; Theorem 7.15)
| D� (finite multisets; Theorem 8.7)
| �+∞n=1 Dn (words, prefix; Theorem 9.10) ∗
| T (D) (finite trees; Theorem 11.36)

Figure 2. An algebra of Noetherian datatypes.

the values of these types are and what their topologies are (and associated specialization quasi-
orderings) will also be made precise in each corresponding section.

The completion process is modular: the completion D̂ of a type D, built from D1, . . . , Dn, will
be defined as a function of D̂1, . . . , D̂n. In each case, we shall show that if D̂1, . . . , D̂n are effective,
then so is D̂.

As a result, all the datatypes defined in Figure 2 will be effective. This is important:
Definition 4.3, applied to the WADL X̂= S(Xa) (when X is wqo), requires us to decide the order-
ing (i.e., inclusion) on S(X). We shall require – and obtain – more: we shall be able to compute
finite intersections of closed subsets (i.e., downward-closed subsets in wqos) as well.

We consider topological WADLs – for example, the starred rows in Figure 2 – for added gener-
ality, but also because the topological approach, relying on the notion of irreducibility, provides a
unifying perspective on the matter. This leads to the following notion of an effective, finite repres-
entation of irreducible closed subsets. The closed, not necessarily irreducible, subsets are all finite
unions of irreducibles (Lemma 4.6) and can therefore be represented as finite sets of codes. Below,
this is how we represent the closed sets X (item D) and �a�∩ �b� (item E).

Definition 5.1 (S-representation). Let X be a topological space. An S-representation of X is a tuple
(S, �_�,�, τ ,∧) where:

(A) S is a recursively enumerable set of so-called codes (of irreducible closed subsets);
(B) �_� is a surjective map from S to S(X);
(C) � is a decidable relation such that, for all codes a, b ∈ S, a� b iff �a�≤ �b�;
(D) τ is a finite subset of S, such that X=⋃

a∈τ �a�;
(E) ∧ is a computable map from S× S to the collection Pfin(S) of finite subsets of S (and we write

a∧ b for ∧ (a, b)) such that �a�∩ �b�=⋃
c∈a∧b �c�.

We call ∧ the intersection map.

The idea is that codes represent irreducible closed subsets, through the semantic function �_�, that
� implements inclusion, τ denotes the whole set X, and ∧ implements intersection.

We justify this now, in a more precise way. We represent closed subsets F through finite sets
{a1, . . . , am} of codes. The denotation of such a finite set is the union

⋃m
i=1 �ai�. Since �_� is

surjective, and using Lemma 4.6, every closed subset of a Noetherian space X can be represented

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 765

this way. This is in particular true for the whole set X (item D) and the intersection �a�∩ �b� in
item E.

While� allows us to test two (codes of) irreducible closed subsets for inclusion, one can extend
the inclusion test to arbitrary closed subsets: this is what we show now.

Lemma 5.2. Given irreducible closed subsets C1, . . . , Cm, C′1, . . . , C′n of a topological space X, the
following are equivalent:

— C1 ∪ · · · ∪ Cm ⊆ C′1 ∪ · · · ∪ C′n;
— {C1, . . . , Cm} ⊆	 {C′1, . . . , C′n}, that is, for every i (1≤ i≤m), there is a j (1≤ j≤ n) with

Ci ⊆ C′j .

Proof. C1 ∪ · · · ∪ Cm ⊆ C′1 ∪ · · · ∪ C′n if and only if for every i, Ci is included in C′1 ∪ · · · ∪ C′n.
Since Ci is irreducible, the latter is equivalent to the existence of j such that Ci ⊆ C′j .

In general, ≤	 is the Hoare quasi-ordering on subsets, also called the domination quasi-ordering:
A≤	 B iff for every a ∈A, there is a b ∈ B such that a≤ b. We will use ≤	 for various quasi-
orderings ≤ and will accordingly use the notations⊆	 as above, or�	 later.

Given an S-representation, we can then test two closed sets for inclusion: given two finite sets
{a1, . . . , am} and {b1, . . . , bn} of codes, ⋃m

i=1 �ai� is included in
⋃n

j=1
�
bj

�
iff for every i, there is

a j such that ai � bj.
Finite intersections are computable, too, using∧: the intersection of two closed sets represented

by finite sets {a1, . . . , am} and {b1, . . . , bn} of codes is ⋃m
i=1 �ai�∩⋃n

j=1
�
bj

�=⋃
i,j �ai�∩ �

bj
�

and is therefore represented by the finite set
⋃

i,j ai ∧ bj. Finite unions are, of course, easily
computable as well.

Our purpose is to show that every space X that occurs as the space of values of some type D
in Figure 2 has an S-representation. In each case, we will actually define an S-representation of
D as a function of given S-representation of its constituent datatypes, and we shall use a uniform
presentation: each result will be given in the form of a proposition of the following shape.

“Proposition XXX (S-representation, datatype D) Let Xi be Noetherian spaces, and (Si, �_�i ,�i,
τi,∧i) be an S-representation of Di for each i. Then (S′, �_�′ ,�′, τ ′,∧′) is an S-representation of
D, where:

(A) S′ is . . .
(B) �· · ·�′ is defined as . . .
(C) �′ is defined as . . .
(D) τ ′ is defined as . . .
(E) ∧′ is defined by a′ ∧′ b′ = . . .”

We start with the easiest cases. The more difficult cases will be dealt with in separate sections.
Our first instance is trivial: in a finite quasi-ordered set A, irreducible closed subsets, that is, ideals,
are all of the form ↓ x, x ∈A, so Â= S(Xa)= I(X) is isomorphic to A.

Theorem 5.3 (S-representation, finite quasi-orders). Let A be any finite quasi-ordered set. An
S-representation of A is (S, �_�,�, τ ,∧) where:

(A) S is A itself,
(B) �_� is the identity map,
(C) � is the given ordering on A,
(D) τ is the set of maximal elements of A,
(E) a∧ b is the set of maximal lower bounds of a and b.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

766 A. Finkel and J. Goubault-Larrecq

All this is computable, by just maintaining all needed information in tables. As a particular case,
one finds the finite sets: these are the posets whose ordering is equality. In particular, the above
provides an S-representation for finite sets Q of control states of various kinds of machines. In
this case, τ =Q, a∧ b= {a} if a= b, and a∧ b=∅ otherwise.

The next case is an easy exercise.

Theorem 5.4 (S-representation, N). An S-representation of N is (S, �_�,�, τ ,∧) where:
(A) S=Nω,
(B) �_� maps n to ↓ n and ω to N,
(C) � is the usual ordering on Nω,
(D) τ = {ω},
(E) m∧ n= {min (m, n)}.

Theorem5.5 (S-representation, products). Let X1, . . . , Xn be nNoetherian spaces, X= X1 × · · · ×
Xn, and (Si, �_�i ,�i, τi,∧i) an S-representation of Xi for each i, 1≤ i≤ n. Then (S, �_�,�, τ ,∧) is
an S-representation of X, where:

(A) S= S1 × · · · × Sn;
(B) �(a1, . . . , an)�= �a1�× · · · × �an�;
(C) (a1, . . . , an)� (b1, . . . , bn) iff a1 �1 b1 and . . . and an �n bn;
(D) τ = τ1 × · · · × τn;
(E) (a1, . . . , an)∧ (b1, . . . , bn)= (a1 ∧1 b1)× · · · × (an ∧n bn).

Proof. The elements of S(X) are the products C1 × · · · × Cn of irreducible closed subsets C1 of
X1, . . . , Cn of Xn (see Lemma A.2 in the Appendix), which justifies items A and B: we represent
C1 × · · · × Cn as the n-tuple of codes for C1, C2, . . . , Cn. The if direction of item C follows from
the fact that product is monotonic with respect to inclusion. Conversely, if

∏n
i=1 �ai�⊆∏n

i=1 �bi�,
then �ai�⊆ �bi� for every i: since

�
aj

�
is non-empty, we can pick an element xj from

�
aj

�
for

every j �= i; then, for every x ∈ �ai�, the tuple (x1, . . . , xi−1, x, xi+1, . . . , xn) is in ∏n
i=1 �ai�, hence

in
∏n

i=1 �bi�, showing that x is in �bi�. Items D and E are clear.

So, for example, an S-representation for Nk, the datatype of configurations of Petri nets,
and more generally, of counter machines, is as expected: S=Nk

ω, (m1, . . . ,mk)� (n1, . . . , nk) iff
mi ≤ ni for every i, 1≤ i≤ k, τ = {(ω, . . . ,ω)}, and (m1, . . . ,mk)∧ (n1, . . . , nk)= {min (m1, n1),
. . . , min (mk, nk))}.

Theorem 5.6 (S-representation, coproducts). Let X1, . . . , Xn be n Noetherian spaces, and X=
X1 + · · · + Xn. Then S(X) is homeomorphic to S(X1)+ · · · + S(Xn).

Let (Si, �_�i ,�i, τi,∧i) be an S-representation of Xi for each i, 1≤ i≤ n. Then (S, �_�,�, τ ,∧) is
an S-representation of X= X1 + · · · + Xn, where:

(A) S= {(i, a) | 1≤ i≤ n, a ∈ Si};
(B) �(i, a)�= �a�i (up to the homeomorphism between S(X) and S(X1)+ · · · + S(Xn));
(C) (i, a)� (j, b) iff i= j and a�i b;
(D) τ =⋃n

i=1{i} × τi;
(E) (i, a)∧ (j, b)=∅ if i �= j, (i, a)∧ (i, b)= {(i, c) | c ∈ a∧i b}.

Proof. For the first part, see Goubault-Larrecq (2013, Fact 8.4.3), which states that S commutes
with coproducts (in fact with all colimits, since S is a left adjoint). The rest is clear.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 767

A trivial case of S-representation is provided by sobrifications themselves, because S(S(X)) is
canonically isomorphic to S(X). Indeed, Y = S(X) is sober, and for every sober space Y , ηS is
an isomorphism between Y and S(Y) (Goubault-Larrecq 2013, Fact 8.2.5). It follows that any S-
representation (S, �_�,�, τ ,∧) for X yields an S-representation for S(X) with the same set S of
codes and the same operations�, τ , and ∧, namely (S, ηSX ◦ �_�,�, τ ,∧):

Theorem 5.7 (S-representation, sobrifications). Let X be a Noetherian space, and X′ = S(X). Let
(S, �_�,�, τ ,∧) be an S-representation of X. Then (S′, �_�′ ,�′, τ ′,∧′) is an S-representation of X′
where:

(A) S′ = S;
(B) for every a ∈ S, �a�′ = ↓X′ �a�;
(C) a�′ b iff a� b;
(D) τ ′ = τ ;
(E) a∧′ b= a∧ b.

Let us deal with the Hoare powerdomainHV(X) of X and its lifted version.

Theorem 5.8 (S-representation, Hoare powerdomains). Let X be a Noetherian space, and
X′ =HV(X)⊥ (resp., X′ =HV(X)). Let (S, �_�,�, τ ,∧) be an S-representation of X. Then (S′, �_�′ ,
�′, τ ′,∧′) is an S-representation of X′ where:

(A) S′ = Pfin(S) (resp., S′ = P∗fin(S));
(B) for every a′ ∈ S′, �a′�′ = ↓X′ {⋃a∈a′ �a�};
(C) a′ �′ b′ iff a′ �	 b′, where a′ �	 b′ iff for every a ∈ a′, there is a b ∈ b′ such that a� b

(compare Lemma 5.2);
(D) τ ′ = {τ };
(E) a′ ∧′ b′ = {⋃a∈a′,b∈b′ (a∧ b)}.

Proof. By Lemma 4.6, every element F of HV(X)⊥ is a finite union of irreducible closed sub-
sets, which are each of the form �a� with a ∈ S by assumption, since �_� is surjective. So �_�′ is
surjective.

Next, a′ �′ b′ iff �a′�′ ⊆ �b′�′ , iff ⋃a∈a′ �a�⊆⋃
b∈b′ �b�, iff a′ �	 b′, by Lemma 5.2.

We must check that X′ =⋃
a′∈τ ′ �a′�′. The right-hand side is �τ �′ = ↓X′ {⋃a∈τ �a�} =

↓X′ {X} = X′.
Finally, let us compute �a′�′ ∩ �b′�′. This is↓X′ {⋃a∈a′ �a�} ∩ ↓X′ {⋃b∈b′ �b�} = ↓X′ {⋃a∈a′ �a�∩⋃
b∈b′�b�} = ↓X′ {⋃a∈a′,b∈b′(�a�∩ �b�)} = ↓X′ {⋃a∈a′,b∈b′

⋃
c∈a∧b �c�} = ↓X′ {⋃c∈⋃

a∈a′ ,b∈b′ (a∧b)�c�}
= �⋃

a∈a′,b∈b′ (a∧ b)
�′.

Let P∗(X) be the set of non-empty subsets ofX. We topologizeX′ = P(X) (resp.,X′ = P∗(X)) by
the lower Vietoris topology, generated by the subbasic opens ♦U = {A ∈ X′ |A∩U �= ∅}, where
U ranges over the open subsets of X. (Although there is a risk of confusion with the lower Vietoris
topology onHV(X)⊥, we shall see that the two are strongly tied.)

It is worth to point out that A is below B in the specialization quasi-ordering of those spaces if
and only if cl(A)⊆ cl(B). This is well known and appears for example as part of Proposition 7.3 of
Goubault-Larrecq (2007). We include the proof for completeness.

Lemma 5.9. The specialization quasi-ordering of P(X), resp. P∗(X), is inclusion of closures.

Proof. Let us temporarily write � for that specialization quasi-ordering.
If A� B in P(X) (resp., P∗(X)), then consider the (open) complement U of cl(B). Since A� B,

if A ∈♦U then B ∈♦U. However, B does not intersect U, since U is the complement of cl(B), so

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

768 A. Finkel and J. Goubault-Larrecq

B is not in ♦U. It follows that A is not in ♦U either. This means that A does not intersect U, and
therefore that it is included in its complement, cl(B). Since cl(B) is closed, contains A, and cl(A) is
by definition the smallest closed subset of X containing A, cl(A) is included in cl(B).

In the converse direction, we use the standard fact that, for an open subset U of X, cl(A) inter-
sects U if and only if A intersects U. Let us assume that cl(A)⊆ cl(B). Let U =⋃

i∈I
⋂

j∈Ji ♦Uij
(where each Ji is finite) be any open subset of P(X) (resp., P∗(X)) containing A. Then, for some
i ∈ I, A intersects Uij for every j ∈ Ji. The larger set cl(B) must then intersect each Uij as well.
Hence, (see standard fact) B also intersects each Uij. It follows that B is in U . Since U is arbitrary,
A� B.

When X is equipped with the Alexandroff topology of a quasi-ordering ≤, cl(A)=↓A and
cl(B)=↓ B, and therefore the specialization quasi-ordering of P(X) and P∗(X) is the familiar
Hoare quasi-ordering ≤	 in that case.

Even when ≤ is wqo, ≤	 fails to be wqo in general. However, P(X) and P∗(X) are Noetherian
for X Noetherian, as first remarked in Goubault-Larrecq (2007). This stems from the following
result, and the fact that sobrifications of Noetherian spaces are Noetherian.

Lemma 5.10. For a topological space X, HV(X)⊥ is the sobrification of P(X), and HV(X) is the
sobrification of P∗(X), up to homeomorphism.

Proof. We deal with the first claim, by exhibiting a homeomorphism � between HV(X)⊥ and
S(P(X)). To distinguish closure in X and closure in P(X), let us write clX for the former and clP(X)
for the latter.

For every closed subset C of X, clP(X)({C}) is the closure of the point C in P(X), and that is
equal to the downward closure of {C}with respect to the specialization quasi-ordering of P(X). By
Lemma 5.9, this is the set of subsets A of X such that clX(A)⊆ clX(C). Since clX(C)= C, and since
clX(A)⊆ C is equivalent to A⊆ C (since C is closed in X), clP(X)(C) is therefore just the set �C of
subsets of C.

The notation �C is justified by the fact that it is the complement of ♦U where U is the com-
plement of C. (Admittedly, we could also have written it as ↓ C.) Since�C is equal to clP(X)({C}),
it is in particular irreducible closed. This defines a map� : HV(X)⊥→ S(P(X)).

Conversely, let I be an irreducible closed subset of P(X). As a closed set, we can write it as⋂
i∈I

⋃
j∈Ji �Cij, where each Ji is finite and each Cij is closed. For each i ∈ I, I ⊆⋃

j∈Ji �Cij, and
since I is irreducible, there is a ji ∈ Ji such that I ⊆�Ciji . Therefore I ⊆

⋂
i∈I �Ciji , and as the

right-hand side is clearly included in I , this inequality is in fact an equality. It is easy to see that
� commutes with arbitrary intersections. As a consequence, I is of the form �C, where C=⋂

i∈I Ciji . It follows that� is surjective.
Note furthermore that C is unique: if I =�C, then C is necessarily the largest closed set that is

an element of I . Hence, the map� : HV(X)⊥→ S(P(X)) is bijective.
To show that a map is continuous, it is enough to show that the inverse image of a subbasic

open is open. A subbase of opens of S(P(X)) consists of the sets of the form �♦U, U open in X,
because the outer � commutes with all unions and finite intersections. (Both � and ♦ commute
with unions; we let the reader check that the outer � also commutes with finite intersections, as a
consequence of irreducibility.)

To show that � is continuous, it therefore suffices to show that �−1(�♦U) is open for every
open subsetU of X. For every C inHV(X)⊥, C ∈�−1(�♦U) if and only if�C intersects♦U, if and
only if some closed subset C′ of C intersectsU, if and only if C itself intersectsU. So�−1(�♦U)=
♦U, showing that� is continuous.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 769

Conversely, the inverse image of ♦U by the inverse map �−1 is �♦U, showing that �−1, too,
is continuous. Therefore� is a homeomorphism.

This not only shows that P(X) and P∗(X) are Noetherian for X Noetherian, but also that they
have the same sobrifications as HV(X)⊥ and HV(X), respectively, hence can be given the same
S-representations:

Theorem 5.11 (S-representation, powersets). Let X be a Noetherian space, and X′ = P(X) (resp.,
X′ = P∗(X)). Let (S, �_�,�, τ ,∧) be an S-representation of X. Then, (S′, �_�′ ,�′, τ ′,∧′) is an
S-representation of X′ where:

(A) S′ = Pfin(S) (resp., S′ = P∗fin(S));
(B) for every a′ ∈ S′, �a′�′ = ↓X′ {⋃a∈a′ �a�};
(C) a′ �′ b′ iff a′ �	 b′;
(D) τ ′ = {τ };
(E) a′ ∧′ b′ = {⋃a∈a′,b∈b′ (a∧ b)}.

6. Completing Ring Ideals
The primary example of Noetherian spaces, historically, are the spectra of Noetherian rings.
Mentioning them is therefore mandatory. The non-algebraically inclined reader is invited to
proceed to finite words (Section 7).

Let R be a commutative ring (with unit). Recall that an ideal I is any additive subgroup of R such
that for any r ∈ I, r′ ∈ R, the product rr′ is in I. A prime ideal p is an ideal that does not contain
the multiplicative unit 1 of R (equivalently, which is different from the whole of R), and such that
whenever rr′ ∈ p, then r or r′ is in p. The spectrum Spec(R) of R is the set of all prime ideals of R. It
is equipped with the Zariski topology, whose closed subsets are FI = {p ∈ Spec(R) | I ⊆ p}, where I
ranges over the ideals of R.

Union and intersection is computed on such sets by FI ∩ FI′ = FI+I′ , where I + I′ = {r+ r′ | r ∈
I, r′ ∈ I′}, and FI ∪ FI′ = FI∩I′ .

A ring R is Noetherian iff every ⊆-increasing sequence of ideals I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ · · · in
R is stationary: for some n ∈N, all the ideals In, In+1, . . . , are equal. For example, the ring
K[X1, . . . , Xk] of all polynomials over the variables X1, . . . , Xk with coefficients in K is Noetherian
for any field K, in fact even for any Noetherian ring K. For any Noetherian ring R, Spec(R)
is a Noetherian topological space (Grothendieck 1960, corollaire 1.1.6, p. 81). The specializa-
tion ordering of Spec(R) is reverse inclusion ⊇ (Grothendieck 1960, corollaire 1.1.7, p.81). By
Grothendieck (1960, proposition 1.1.10, (i), p. 82), the sets Spec(R)� ↓ (r) form a base of the
Zariski topology, where (r) is the (prime) ideal generated by r ∈ R, so that ↓ (r)= {p | p⊇ (r)} =
{p | r ∈ p}. In particular, the Zariski topology coincides with the upper topology of ⊇ (even when
R is not Noetherian).

There are in general several ideals I that yield the same closed set FI . In fact, two ideals yield
the same closed set if and only if they have the same radical; the radical

√
I is defined as {r ∈ R |

∃k≥ 1, rk ∈ I}.
Whatever the ring R, Spec(R) is always sober (Grothendieck 1960, corollaire 1.1.14, (ii), p. 82).

It follows that its irreducible closed subsets are exactly its subsets of the form Fp, p a prime ideal,
which are exactly the downward closure (with respect to⊇) of p. When Spec(R) is also Noetherian,
it follows from Lemma 4.6 that every closed subset FI of Spec(R) is a finite union of irreducible
closed subsets Fp1 ∪ · · · ∪ Fpn . Since the latter is equal to Fp1∩···∩pn ,

√
I =√p1 ∩ · · · ∩ pn, and the

latter equals p1 ∩ · · · ∩ pn since radical commutes with intersections and since √p= p for every

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

770 A. Finkel and J. Goubault-Larrecq

prime ideal p. So, every radical ideal I in a Noetherian ring is the intersection of finitely many
prime ideals: this is Kaplansky’s theorem (Faith 1999, Theorem 14.34). Applying this to the closed
subset Fp ∩ Fp′ , where p and p′ are prime ideals, we obtain that Fp ∩ Fp′ = Fp+p′ is a finite union
of irreducible closed subsets Fp1 ∪ · · · ∪ Fpn by Lemma 4.6. So

√
p+ p′ = p1 ∩ · · · ∩ pn. Applying

this to the whole space Spec(R)= F{0}, we obtain that
√{0} = {0} = p1 ∩ · · · ∩ pn for finitely many

prime ideals p1, . . . , pn.
We therefore obtain an S-representation for Spec(R), with enough computability assump-

tions on the ring R. The following proposition is almost vacuous and only reflects our needs for
S-representations at the level of rings.

Proposition 6.1 (Spec(R)). Let R be a Noetherian ring and assume that the set Spec(R) of prime
ideals of R is recursively enumerable that the relation � defined by p� p′ iff Fp ⊆ Fp′ iff

√p⊇√
p′ is decidable, and that given p, p′ ∈ Spec(R) one can compute a finite set p∧ p′ of elements

p1, . . . , pn ∈ Spec(R) such that
√
p+ p′ = p1 ∩ · · · ∩ pn. Let also τ be a finite set of prime ideals

whose intersection is {0}.
Then (Spec(R), idSpec(R),�, τ ,∧) is an S-representation of Spec(R).

An important special case is given by taking the polynomial ring K[X1, . . . , Xk] for R,
where K is a Noetherian ring. For the purpose of computability, we shall even concentrate on
Q[X1, . . . , Xk]. The latter is an interesting space as far as verification of so-called polynomial
programs is concerned (Müller-Olm and Seidl 2002): such programs have k rational-valued vari-
ables, and the only allowed operations are +, −, ×, assigning an arbitrary value to a variable
non-deterministically, and testing for non-equality. The natural state space for such programs is
Qk. However, Qk embeds into Spec(Q[X1, . . . , Xk]), by mapping every tuple (v1, . . . , vk) of val-
ues to the prime ideal generated by the polynomials X1 − v1, . . . , Xk − vk. While Müller-Olm and
Seidl computed with polynomial ideals directly (Müller-Olm and Seidl 2002), one can alterna-
tively notice that polynomial programs form a topological WSTS, where the state space Qk has
the subspace topology from Spec(Q[X1, . . . , Xk]) (Goubault-Larrecq 2010).1

To satisfy the requirements of Proposition 6.1 for Spec(Q[X1, . . . , Xk]), we represent poly-
nomial ideals using Gröbner bases (Buchberger and Loos 1983, Section 11), which are certain
finite sets of polynomials u= {P1, . . . , Pn} representing the ideal (u)= {Q1P1 + · · · +QnPn |
Q1, . . . ,Qn ∈Q[X1, . . . , Xk]}. Given a Gröbner basis u, one can decide whether (u) is a prime
ideal: see Adams and Loustaunau (1994, Algorithm 4.4.1, p. 244) or Grieco and Zucchetti (1989,
Section 5, end). So the set S of all Gröbner bases u such that (u) is prime is recursively enumerable.

We can now define �u� as F(u).
Given two Gröbner bases u and v, it is easy to check whether (u)⊇ (v). It suffices to check

whether P ∈ (u) for every P ∈ v, and this proceeds using the polynomials of u as rewriting rules
and checking whether P rewrites to 0 (Buchberger and Loos 1983, Section 11). However, one needs
to decide whether

√
(u)⊇√(v), equivalently,

√
(u)⊇ (v), that is, to decide whether P ∈√(u) for

every P ∈ v. The easiest way to decide this is to use the Rabinowitch trick (Rabinowitch 1929):
P ∈√(u) iff 1 ∈ (u∪ {1− YP}), where Y is a fresh variable.

It is clear that one can take τ = {{0}}, the ideal generated by 0, or equivalently by the empty
family of polynomials, since {0} is a prime ideal in Q[X1, . . . , Xk], and in fact the minimal prime
ideal, so F{0} is the unique largest element of Spec(Q[X1, . . . , Xk]).

The really tricky part is in defining the intersection map ∧, that is, to give an effective version
of Kaplansky’s theorem. The algorithms that allow us to do this are too complicated to even give a
glimpse of here. One may consult Laplagne (2006).

Theorem 6.2 (S-representation, spectrum of a polynomial ring). An S-representation
(S, �_�,�, τ ,∧) of Spec(Q[X1, . . . , Xk]) in its Zariski topology is given by:

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 771

(A) S is the collection of Gröbner bases u onQ[X1, . . . , Xk] such that (u) is a prime ideal.
(B) �u�= F(u).
(C) u� v iff 1 ∈ (u∪ {1− YP}), where Y is a fresh variable, for every P ∈ v.
(D) τ = {{0}}.
(E) u∧ v is a finite collection of Gröbner bases u1, . . . , un such that (u1), . . . , (un) are prime

ideals and
√
u+ v= (u1)∩ · · · ∩ (un), computed by Laplagne’s algorithm (Laplagne 2006).

An alternative S-representation of Spec(R) is given using for S the set of all those finite sets u of
polynomials such that (u) is a primary ideal, instead of a prime ideal. A primary ideal p is such that
whenever rr′ is in p, then r ∈ p or some power of r′ is in p. Every prime ideal is primary, but the
converse fails. The radical√p of a primary ideal is always prime. Given a set u of polynomials, one
can decide whether (u) is primary (Grieco and Zucchetti 1989, Theorem 3.2), and in fact one can
compute a Gröbner basis for

√
(u) in this case. So S is again, in particular, recursively enumerable.

We define again �u� as F(u). Since F(u) = F√(u) and
√
(u) is prime, F(u) is certainly an irreducible

closed subset. Next, � and τ are defined as above, while ∧ is now based on a computable vari-
ant of the Lasker–Noether theorem, instead of Kaplansky’s theorem. This states that every ideal I
in a Noetherian ring R can be written as the intersection of finitely many primary ideals. When
R=Q[X1, . . . , Xk], then one can even compute a finite collection of Gröbner bases w1, . . . , wm
such that (u+ v)= (w1)∩ · · · ∩ (wm) and (w1), . . . , (wm) are primary ideals, see Sturmfels (2002,
Chapter 5). Now given u, v ∈ S, �u�∩ �v�= F(u) ∩ F(v) = F(u+v) = F√(u+v). One can compute a
finite collection of Gröbner bases w1, . . . , wk such that

√
(u+ v)=√(w1)∩ · · · ∩

√
(wk) and

(w1), . . . , (wk) are primary ideals. Then, �u�∩ �v�= F√(w1) ∪ · · · ∪ F√(wk)
= F(w1) ∪ · · · ∪ F(wk) =⋃k

i=1 �wi�: define u∧ v as {w1, . . . ,wk}.
To sum up

Theorem 6.3 (S-representation, spectrum of a polynomial ring, alternate). An S-representation
(S, �_�,�, τ ,∧) of Spec(Q[X1, . . . , Xk]) in its Zariski topology is given by:

(A) S is the collection of Gröbner bases u onQ[X1, . . . , Xk] such that (u) is a primary ideal.
(B) �u�= F(u).
(C) u� v iff 1 ∈ (u∪ {1− YP}), where Y is a fresh variable, for every P ∈ v.
(D) τ = {1}.
(E) u∧ v is a finite collection of Gröbner bases u1, . . . , un such that (u1), . . . , (un) are primary

ideals and
√
u+ v= (u1)∩ · · · ∩ (un), computed as in Sturmfels (2002, Chapter 5).

We finish this section bymentioning an issue with our polynomial program example.We really
think of the state space as Qk, not the larger space Spec(Q[X1, . . . , Xk]). To make things formal,
this means equipping Qk with the subspace topology, whose closed subsets are exactly those sets
of the form Z(u)= {�x ∈Qk | ∀P ∈ u, P(�x)= 0}, for u an ideal in Q[X1, . . . , Xk]. That topology
is usually called the Zariski topology on Qk and makes polynomial programs topological WSTS.
Whether we use Qk or Spec(Q[X1, . . . , Xk]) is of little consequence if we use the backward algo-
rithm mentioned in the introduction, because the only thing it cares about is open subsets, which
can be encoded as complements of sets Z(u), namely as ideals u.

The situation is different with S-representations, since S-representations do not encode closed
sets, but irreducible closed subsets, and Spec(Q[X1, . . . , Xk]) contains many more irreducible
closed subsets than Qk. This boils down to the fact that we do not know an S-representation
for Qk with its Zariski topology: the situation for the apparently more complex space
Spec(Q[X1, . . . , Xk]) is simpler.

The situation is the following: we have two spaces X=Qk and Y = Spec(Q[X1, . . . , Xk]), and
X is a subspace of Y ; we know of an S-representation for Y , can we infer one for X?

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

772 A. Finkel and J. Goubault-Larrecq

Proposition 6.4. Let X be a subspace of a topological space Y. Then, S(X) embeds into S(Y), that
is, every irreducible closed subset of X can be equated, in a canonical way, with some irreducible
closed subset of Y.

Proof. Let m : X→ Y be the inclusion map. Then, S(m) is a topological embedding (Goubault-
Larrecq 2013, Lemma 8.4.11). In other words, every irreducible closed subset C of X can be
equated with S(m)(C), namely the closure of C in Y , and that is irreducible closed in Y .

In our case, this means that an S-representation for Qk consists in a subset of either set of codes
considered in Proposition 6.2 or in Proposition 6.3. Characterizing those codes remains to be
elucidated.

7. Completing Words
If X is a wqo, then X∗ is a wqo again under the embedding quasi-ordering by Higman’s Lemma.
This is often used when X is a finite alphabet �, with equality as quasi-ordering, but more general
wqos are sometimes needed. For instance, Abdulla et al. (2004b) need to use X∗ where X=��,
the set of finite multisets on a finite alphabet �. (We will deal with multisets in Section 8.) In that
case, X itself is infinite. That paper is also one where a suitable theory of downward-closed subsets
was first developed, on (��)∗, and our constructions will generalize theirs. Data nets (Lazič et al.
2008) are transition systems on a state space of the form X∗ with X=Nk, for some k ∈N, and
again X is infinite in this case. More recently, Leroux and Schmitz have analyzed the question of
reachability in Petri nets (Leroux and Schmitz 2015) and required to work on ideals in the space
of runs of Petri nets, which is a subspace of (Nk)∗.

We work at the more general level of Noetherian spaces. In that context, the analog of
Higman’s Lemma reads: for every Noetherian space X, the set X∗ of finite words over X taken
as alphabet is Noetherian again, with the so-called word topology (Goubault-Larrecq 2013,
Theorem 9.7.33). (The converse also holds.) The latter topology is generated by basic open sub-
sets X∗U1X∗U2X∗ · · · X∗UnX∗, where n ∈N and U1, . . . , Un are open subsets of X. We write AB
for the sets of concatenations ww′ of words w ∈A and w′ ∈ B and equate subsets of X such as Ui
with the set of one-letter words whose letter is in Ui. So X∗U1X∗U2X∗ · · · X∗UnX∗ is the (open)
subset of words containing a not necessarily contiguous word a1a2 · · · an with a1 ∈U1, a2 ∈U2,
. . . , an ∈Un. We stress that such subsets form a base, not just a subbase:

Lemma 7.1. Let X be a topological space. Call elementary open of X∗ any subset of the form X∗U1
X∗U2X∗ · · · X∗UnX∗, with all Ui open in X. Every finite intersection of elementary opens can be
expressed as a finite union of elementary opens. In particular, the elementary opens form a base of
the word topology.

Proof. This is Exercise 9.7.28 of Goubault-Larrecq (2013). An empty intersection is just X∗,
and the intersection of X∗U1X∗U2X∗ . . . X∗UmX∗ and X∗V1X∗V2X∗ . . . X∗VnX∗ is computed
by induction on m+ n using the auxiliary formulae X∗ ∩ V = V , U ∩ X∗ = U , and X∗U1U ∩
X∗V1V = X∗U1(U ∩ X∗V1V)∪ X∗V1(X∗U1U ∩ V)∪ X∗(U1 ∩V1)(U ∩ V).

If ≤ is the specialization quasi-ordering of X, then the specialization quasi-ordering of X∗ is
the standard embedding quasi-ordering ≤∗, a.k.a. Higman’s divisibility quasi-ordering (Higman
1952): w≤∗ w′ iff, writing w as the sequence of m letters a1a2 · · · am, one can write w′ as w0a′1w1
a′2w2 · · ·wm−1a′mw′m with a1 ≤ a′1, a2 ≤ a′2, . . . , am ≤ a′m. Higman’s Lemma states that if X is well-
quasi-ordered by ≤, then X∗ is well-quasi-ordered by ≤∗ (Higman 1952). The fact that X∗ is
Noetherian if and only if X is Noetherian is a natural generalization of Higman’s Lemma: the

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 773

latter can be obtained as a special case by considering Alexandroff topologies (Goubault-Larrecq
2013, Exercise 9.7.34).

The completion S(X∗) is well known in case X is wqo. As mentioned in the introduction, this
is due to Kabil and Pouzet (1992). Kabil and Pouzet also look at the (ideal) completion of spaces
of finite words over more general ordered sets X. We explore another direction, that where X
is Noetherian. This will include the result by Kabil and Pouzet in the wqo case as a by-product.
Additionally, we give a simple, dynamic programming algorithm for deciding inclusion between
irreducible closed subsets, and computing intersections, retrieving formulae that were known in
the case where X is finite (Abdulla et al. 1998).

To study the completion S(X∗), we start by examining the shape of closed subsets of X∗. For
any subset A of X, let A∗ denote the set of all words a1a2 · · · an with a1, a2, . . . , an ∈A, n ∈N
(n is possibly equal to 0). Let A? be A∪ {ε}. We delegate the proof of the following Lemma to
Appendix B, and similarly for a certain number of other results of this section. Our aim is to avoid
disrupting the flow of arguments and to proceed as fast as we can to the final result.

Lemma 7.2. Let X be a topological space. The complement of X∗U1X∗U2X∗ · · · X∗UnX∗ (n ∈N,
U1,U2, . . . ,Un open in X) in X∗ is ∅ when n= 0, and F∗1X?F∗2X? · · · X?F∗n−1X?F∗n otherwise, where
F1 = X �U1, . . . , Fn = X�Un.

If X is Noetherian, then this complement can be expressed as a finite union of sets of the form
F∗1C?

1F
∗
2C

?
2 · · · C?

n−1F∗n, where C1, C2, . . . , Cn−1 range over irreducible closed subsets of X.

Definition 7.3 (Word-product, word-SRE). Let X be a topological space. Call a word-product P
on X any expression of the form e1e2 · · · en, where n≥ 0, and each ei is an atomic expression, that
is, either F∗i with Fi closed in X, or F?i with Fi irreducible closed in X. The components of P are the
closed sets F1, . . . , Fn. Word-products are interpreted as the obvious subsets of X∗. When n= 0, this
notation is abbreviated as ε and denotes the one-element set {ε}.

Call word-SRE any finite sum of word-products, where sum is interpreted as union.

There is no harm in requiring Fi non-empty in addition, in atomic expressions F∗i : indeed∅∗ = {ε}, so such atomic expressions can simply be erased.
This definition is inspired from the products and SREs of Abdulla et al. (2004a). Indeed, we

get back the latter from Definition 7.3 in the case where X is a finite alphabet �, with the discrete
topology (hence its specialization quasi-ordering is =). Then each closed subset Fi is just a finite
subset, and each irreducible closed subset Ci is just a singleton.

Lemma 7.4. Let X be a topological space. For every closed subset F of X, for every closed subset F
of X∗, F?F is closed in X∗.

Lemma 7.5. Let X be a topological space. For every closed subset F of X, for every closed subset F
of X∗, F∗F is closed in X∗.

Corollary 7.6. Let X be a topological space. For every word-product, every word-SRE is closed in X∗.

We can in fact say more:

Lemma 7.7. Let X be a topological space. Every word-product is irreducible closed in X∗.

It is instructive to see howX∗ embeds in its completion S(X). Recall that the topological closure
ηSX (x) of a point x ∈ X is also its downward closure ↓ x, for the specialization quasi-ordering of X.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

774 A. Finkel and J. Goubault-Larrecq

Lemma 7.8 (Embedding). Let X be a topological space. The closure ηSX∗(x1x2 · · · xn) of the word
x1x2 · · · xn in X∗ is the word-product ηSX (x1)?ηSX (x2)? · · · ηSX (xn)?.

Proof. The latter is easily seen to be the downward closure of x1x2 · · · xn with respect to≤∗, which
is the specialization quasi-ordering of X∗.

We shall see that the converse of Lemma 7.7 holds the irreducible closed subsets of X∗, that is,
the elements of S(X∗) are exactly the word-products whenX is Noetherian. The following lemmas
will serve to show this, as well as to give some ways of computing on word-products. We do not
make an explicit distinction between syntax and semantics, on purpose, so as to avoid excessively
formal notation.

Lemma 7.9. Let X be a topological space. Inclusion between word-products can be checked in poly-
nomial time (precisely in time proportional to the product of the lengths of the two word-products),
modulo an oracle testing inclusion of closed subsets of X.

Explicitly, we have ε ⊆ P for any word-product P, P �⊆ ε unless all the atomic expressions in P are
syntactically equal to ∅∗, and for all C, C′ ∈ S(X), for all F, F′ ∈HV(X), and for all word-products
P, P′:

— C?P⊆ C′?P′ if and only if C⊆ C′ and P⊆ P′, or C �⊆ C′ and C?P⊆ P′.
— C?P⊆ F′∗P′ if and only if C⊆ F′ and P⊆ F′∗P′, or C �⊆ F′ and C?P⊆ P′.
— F∗P⊆ C′?P′ if and only if F is empty and P⊆ C′?P′, or F is non-empty and F∗P⊆ P′.
— F∗P⊆ F′∗P′ if and only if F⊆ F′ and P⊆ F′∗P′, or F �⊆ F′ and F∗P⊆ P′.

The above formulae lend themselves immediately to a dynamic programming algorithm, mod-
ulo an oracle O testing inclusion of closed subsets of X. Assume that we wish to test whether
P⊆ P′, where P= e1e2 · · · em and P′ = e1e2 · · · en. We create an (m+ 1)× (n+ 1) array A=
(aij)0≤i≤m,0≤j≤n. At the end of the algorithm, aij will be true if and only if ei+1 · · · em ⊆ ej+1 · · · en.
We initialize A by letting amj be true for every j, 0≤ j≤ n. For every i, 0≤ i<m, we set ain to
false, unless ei+1, . . . , em are all equal to ∅∗, in which case ain is set to true; explicitly, we initialize
a flag b to true, and enumerating i from m− 1 to 0, we do the following: if ei+1 is not of the form
F∗, or is of the form F∗ with F �⊆ ∅ (which we can decide using the oracle O), then set b to false,
otherwise leave b unchanged, then set ain to b. This completes the initialization phase. Then, using
two nested loops on i and j, one enumerating i fromm− 1 to 0, the other one enumerating j from
n− 1 to 0 (for each value of i), we set aij to true if and only if:

— ei+1 is of the form C?, ej+1 is of the form C′?, and either C⊆ C′ (which we decide using the
oracle O) and a(i+1)(j+1) is true, or C �⊆ C′ and ai(j+1) is true;

— or ei+1 is of the formC?, ej+1 is of the form F′∗, and eitherC⊆ F′ and a(i+1)j is true orC �⊆ F′
and ai(j+1) is true;

— or ei+1 is of the form F∗, ej+1 is of the form C′?, and either F is empty (which we decide
using O on F and ∅, as in the second part of the initialization phase) and a(i+1)j is true, or F
is non-empty and ai(j+1) is true;

— or ei+1 is of the form F∗, ej+1 is of the form F′∗, and either F⊆ F′ and a(i+1)j is true, or
F �⊆ F′ and ai(j+1) is true.

Otherwise, we set aij to false. At the end of the nested loops, we return a00, which is true if
and only if P⊆ P′. Alternatively to dynamic programming, we may use a directed recursive
implementation, with memoization (Michie 1968).

We can rephrase the equations of Lemma 7.9 in the slightly more synthetic, following form.
This happens to be the inclusion of products as specified in Abdulla et al. (2004a), in the case

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 775

where X is a finite set. The fourth case is not needed if we first remove all atomic expressions ∅∗.
We will refer to this specific formulation in the proof of Lemma 11.22, and in Definition 11.31.

Lemma 7.10. Let X be a topological space. Given two atomic expressions e1 and e′1, and two word-
products P1 and P′1, letting P= e1P1 and P′ = e′1P′1, then P P′ if and only if:

(1) e1 � e′1 and P⊆ P′1,
(2) or e1 = C?, e′1 = C′?, C⊆ C′ and P1 ⊆ P′1,
(3) or e′1 = F′∗, e1 e′1 and P1 ⊆ P′,
(4) or e1 =∅∗ and P1 ⊆ P′.

The relation on atomic expressions is defined by: C? C′? if and only if C⊆ C′; F∗ F′∗ if and
only if F⊆ F′; C? F′∗ if and only if C⊆ F′; and F∗ C′? if and only if F is empty.

Corollary 7.11. Let X be a topological space. Inclusion between word-SREs can be checked in
polynomial time, modulo an oracle testing inclusion of closed subsets of X.

Proof. By Lemma 5.2, and since word-products are irreducible closed (Lemma 7.7), inclusion
of word-SREs P1 ∪ · · · ∪ Pm and P′1 ∪ · · · ∪ P′n reduces to mn inclusion tests Pi ⊆ P′j between
word-products, which we decide using the dynamic programming algorithm mentioned after
Lemma 7.9.

We can also compute intersections of word-products.

Lemma 7.12. Let X be a topological space. Any finite intersection of word-products is expressible
as a finite union of word-products. Specifically, the intersection of two word-products is given by:
ε ∩ P= ε for every word-product P, and by the recursive formulae:

— C?P ∩ C′?P′ = (C?P ∩ P′)∪ (P ∩ C′?P′)∪ (C ∩ C′)?(P ∩ P′);
— C?P ∩ F′∗P′ = (C ∩ F′)?(P ∩ F′∗P′)∪ (C?P ∩ P′);
— F∗P ∩ F′∗P′ = (F ∩ F′)∗(P ∩ F′∗P′)∪ (F ∩ F′)∗(F∗P ∩ P′).

Recall that the components of a word-product P= e1e2 · · · en are the components of each ei,
where the component of C? is C, and the component of F∗ is F. Lemma 7.12 yields the follow-
ing, more computation-oriented description of the intersection algorithm for word-products. Our
particular way of presenting it will be helpful in Theorem 7.15, in Lemma 11.26, and in the proof
of Lemma 11.34.

Lemma 7.13. Let X be a Noetherian space. Define the finite set MeetE (P, P′) of word-products as
follows, where P and P′ are word-products, and the oracle E maps pairs (F, F′) of a component F of
P and a component F′ of P′ to a finite set of irreducible closed subsets of X.

First, let MeetE (ε, P′)= {ε}, MeetE (P, ε)= {ε}. Then, let
MeetE (C?P, C′?P′)= {C′′?P′′ | C′′ ∈ E(C, C′), P′′ ∈MeetE (P, P′)}

∪MeetE (C?P, P′)∪MeetE (P, C′?P′)

MeetE (C?P, F′∗P′)=

⎧⎪⎪⎨
⎪⎪⎩
{C′′?P′′ | C′′ ∈ E(C, F′),

P′′ ∈MeetE (P, F′∗P′)} ∪MeetE (C?P, P′) if E(C, F′) �= ∅,
MeetE (P, F′∗P′)∪MeetE (C?P, P′) otherwise

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

776 A. Finkel and J. Goubault-Larrecq

MeetE (F∗P, C′?P′)=

⎧⎪⎪⎨
⎪⎪⎩
{C′′?P′′ | C′′ ∈ E(F, C′),

P′′ ∈MeetE (F∗P, P′)} ∪MeetE (P, C′?P′) if E(F, C′) �= ∅,
MeetE (F∗P, P′)∪MeetE (P, C′?P′) otherwise

MeetE (F∗P, F′∗P′)= {(
⋃

C′′∈E(F,F′)
C′′)∗P′′ | P′′ ∈MeetE (F∗P, P′)∪MeetE (P, F′∗P′)}.

If E computes intersections of closed subsets of X, that is, is such that for any component F of P and
any component F′ of P′, E(F, F′) is a finite family of irreducible closed subsets of X whose union is
F ∩ F′, then MeetE (P, P′) is a finite family of word-products whose union is P ∩ P′.

Note that the map (F, F′) �→ E(F, F′) is well defined, by Lemma 4.6.We will later require to be able
to compute it.

Proof. The lemma is a simple consequence of Lemma 7.12.
In the first case, if C ∩ C′ is non-empty, we conclude since (C ∩ C′)?(P ∩ P′)=⋃

C′′∈E(C,C′)
C′′?(P ∩ P′), P ∩ P′ is the union of the word-products inMeetE (P, P′), and unions distribute over
concatenation. There is a subtle issue when C ∩ C′ is empty. In that subcase, (C ∩ C′)?(P ∩ P′)
is equal to P ∩ P′, and that is different from

⋃
C′′∈E(C,C′)C′′

?(P ∩ P′), which is empty; however,
(C ∩ C′)?(P ∩ P′) is equal to (P ∩ P′)∪ (C?P ∩ P′)∪ (P ∩ C′?P′), hence also to (C?P ∩ P′)∪ (P ∩
C′?P′), because P ∩ P′ is included in C?P ∩ P′ (or in P ∩ C′?P′), and that justifies the indicated
formula again. In the second case (and symmetrically, the third case), we rely on (C ∩ F′)?
(P ∩ F′∗P′)=⋃

C′′∈E(C,F′)C′′
?(P ∩ F′∗P′), which is valid if E(C, F′) is non-empty. If E(C, F′) is

empty, then C ∩ F′ is empty, and then (C ∩ F′)? is not equal to
⋃

C′′∈E(C,F′) C′′
?, rather to {ε}; so

(C ∩ F′)?(P ∩ F′∗P′)= P ∩ F′∗P′ in that (sub)case. In the final case, we use the fact that F ∩ F′ =⋃
C′′∈E(F,F′) C′′.
Finally, the definition of MeetE (P, P′) is well founded, by induction on the number of atomic

expressions in P and P′.

Proposition 7.14. Let X be a Noetherian space. The closed subsets of X∗ are the (languages of)
word-SREs, and the irreducible closed subsets of X∗ are the (languages of) word-products.

Proof. Lemma 7.7 states that every word-product is irreducible closed.
Conversely, we observe that, in a Noetherian space Y with a base B of opens, every open is a

finite union of elements of B. This is an easy consequence of the fact that every open, which is a
union of elements of B, is also compact.

Consider Y = X∗, B consisting of the subsets of the form X∗U1X∗U2X∗ · · · X∗UnX∗, where
each Ui is open in X (Lemma 7.1). Taking the complements of finite unions of such basic opens,
and using Lemma 7.2, one obtains that every closed subset of X∗ is a finite intersection of finite
unions of word-products. Distributing unions over intersections, and using Lemma 7.12, we
conclude that every closed subset F is expressible as a word-SRE, that is, as a finite union of
word-products.

If F is also irreducible, it follows immediately that F is one of these word-products.

We now state the final S-representation we obtain, in a way that we hope will be readable. The
pedantic, formal statement is given in the Appendix (Proposition B.2).

Theorem 7.15 (S-representation, words). Let X be a Noetherian space, X′ = X∗, and (S, �_�,
�, τ ,∧) be an S-representation of X. Then, (S′, �_�′ ,�′, τ ′,∧′) is an S-representation of X′, where:

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 777

(A) S′ is the collection of all word-products over the alphabet S, and �_�′ is defined in the obvious
way.

(B) �′ is defined using the procedure of Lemma 7.9, where inclusion of finite sets of elements
of S is tested by: u is included in u′ iff for every a ∈ u, there is an a′ ∈ u′ such that a� a′
(Lemma 5.2).

(C) τ ′ is {τ ∗}.
(D) ∧′ is implemented by the procedure MeetE of Lemma 7.13, where the oracle E is defined by

E(u, u′)=⋃
a∈u,a′∈u′ (a∧ a′).

Note that �_�′ is surjective, as required: the irreducible closed subsets of X′ are the word-products
by Proposition 7.14.

8. Completing Multisets
If X is a wqo, then the space of finite multisets X� of elements of X, with a quasi-ordering ≤�
to be defined below, is a wqo again. This is again typically used when X is a finite alphabet �: the
multiset language generators of Abdulla et al. (2004b) are the ideals of such a wqo ��.

Beyond finite alphabets, branching vector addition systems with states (BVASS) are a gen-
eralization of Petri nets with a form of branching, with applications in security (Verma and
Goubault-Larrecq 2005), in linear logic (de Groote et al. 2004), in structured databases (Bojańczyk
et al. 2009; Jacquemard et al. 2016), and are a rediscovery of Rambow’s multiset-valued linear
indexed grammars (Rambow 1994) in computational linguistics, see Schmitz (2010). BVASS, and
some of their extensions, can be conveniently represented as transition systems on the space (Nk)�

of finite multisets of k-tuples of natural numbers (Jacobé de Naurois 2014). Note that the alphabet
(Nk) is infinite in this case.

As a final example, the synchronous polyadic π-calculus processes investigated in Acciai and
Boreale (2012) are encoded as trees, which can be seen as nested multisets, with bounded nest-
ing depth. Encoding processes by trees of this form was pioneered by Meyer (2008). Precisely,
for a finite set �, which consists of channel names and so-called unit processes in that case, let
T �
0 (�) be defined recursively as the set of finite trees f (m) where f ∈� and m is a finite multi-

set of elements of T �
0 (�), quasi-ordered by the universal relation (s≤0 t is always true). Define

T �
k+1(�), for every k ∈N, as the set of finite trees f (m) where f ∈� and m is a finite multiset

of elements of T �
k (�), quasi-ordered by ≤k+1, defined by f (m)≤k+1 f ′(m′) if and only if f = f ′

and m(≤k)�m′. All processes are encoded as elements of T �
k (�) for some k ∈N. Equivalently,

T �
k (�) is � × (� × (� × · · · × (� × Y�)� · · ·)�, where there are k nested uses of _�, and

Y = T �
0 (�).

We again turn to a more general topological setting. Given any topological space, let X� be the
set of all finite multisets on X. We shall write {|x1, . . . , xn|} for the multiset containing exactly the
elements x1, . . . , xn. We write ∅ for the empty multiset, and m!m′ for the multiset union of m
andm′.

On the order-theoretic side, we quasi-order X�, not with the multiset extension ≤mul of the
specialization quasi-ordering≤ of X, rather with the following quasi-ordering.

Definition 8.1 (Sub-multiset). The sub-multiset quasi-ordering ≤� is defined by: {|x1, x2, . . . ,
xm|} ≤� {|y1, y2, . . . , yn|} if and only if there is an injective map r : {1, 2, . . . ,m}→ {1, 2, . . . , n}
such that xi ≤ yr(i) for every i, 1≤ i≤m.

When ≤ is just equality, this quasi-ordering makes m≤� m′ if and only if every element of m
occurs at least as many times inm′ as it occurs inm: this is the ≤m quasi-ordering considered, on
finite sets X, by Abdulla et al. (2004b, Section 2).

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

778 A. Finkel and J. Goubault-Larrecq

Themultiset extension≤mul of≤ is more mainstream than≤�. One usually definesm≤mul m′
if and only if one can obtain m from m′ in finitely many steps, repeatedly replacing one element
by finitely many strictly smaller ones.

Clearly,m≤� m′ impliesm≤mul m′. It turns out that≤� is wqo for every wqo≤. This implies
that ≤mul is wqo, too: any infinite sequence of multisets mn, n ∈N, is such that there are indices
i< j such thatmi ≤� mj, and thereforemi ≤mul mj.

On the topological side, we simply observe that multisets are equivalence classes of finite words
up to permutation. Accordingly, we topologize X� with the quotient topology (Goubault-Larrecq
2013, Exercise 9.7.35). The quotient map � : X∗ → X� sends every word x1x2 · · · xn to the mul-
tiset {|x1, x2, . . . , xn|} and is sometimes called the Parikh mapping (Parikh 1966). We have the
following results.

Proposition 8.2. For every Noetherian space X, X� is Noetherian.
A base of the topology on X� is given by the sets 〈U1,U2, . . . ,Un〉 with U1, U2, . . . , Un open

in X. The set 〈U1,U2, . . . ,Un〉 is defined as containing all multisets that contain one element from
U1, another one from U2, . . . , another one from Un, or more precisely all multisets of the form
{|x1, x2, . . . , xn|} !m with x1 ∈U1, x2 ∈U2, . . . , xn ∈Un.

The specialization quasi-ordering of X� is≤�, where≤ is the specialization quasi-ordering of X.
If X has the Alexandroff topology of ≤, then X� has the Alexandroff topology of ≤�.
If ≤ is wqo, then ≤� is wqo.

Proof. IfX is Noetherian, thenX� is, too, since every quotient of a Noetherian space is Noetherian
(Goubault-Larrecq 2013, Proposition 9.7.18 (v)).

The inverse image �−1(〈U1,U2, . . . ,Un〉) is equal to the union over all permutations π of
{1, 2, . . . , n} of the opens X∗Uπ(1)X∗ · · · X∗Uπ(n)X∗, hence is open in X∗ (see Section 7). For
every subset V of X�, V is open (in the quotient topology) if and only if �−1(V) is open,
so 〈U1,U2, . . . ,Un〉 is open in X�. To show that these sets form a base, take a multiset m
and an open neighborhood V of m in X�. Write m as �(w) for some word w ∈ X∗. Since
w ∈�−1(V), and we know of a base of the topology of X∗ (Lemma 7.1), we can find open sub-
sets U1, U2, . . . , Un of X such that w ∈ X∗U1X∗U2X∗ · · · X∗UnX∗ ⊆�−1(V). Then m=�(w) is
in �[X∗U1X∗U2X∗ · · · X∗UnX∗]= 〈U1,U2, . . . ,Un〉, which is included in V .

Ifm≤� m′, then every basic open subset 〈U1,U2, . . . ,Un〉 that containsm also containsm′, so
m is below m′ in the specialization quasi-ordering. Conversely, we shall show that the downward
closure ↓� m′ of m′ with respect to ≤� is closed: if m is below m′ in the specialization quasi-
ordering, then m will be in the closure of m′, hence in ↓� m′, and this will imply that m≤� m′.
To show that ↓� m′ is closed, it is enough to show that �−1(↓� m′) is closed in X∗, since � is
quotient. Write m′ as �(w′), where w′ is the word x1x2 · · · xn. Then �−1(↓� m′) is the union
over all permutations π of {1, 2, . . . , n} of the sets (↓ xπ(1))?(↓ xπ(2))? · · · (↓ xπ(n))?, which are
closed by Lemma 7.7.

Assume now that X has the Alexandroff topology of ≤. The upward closure of a multiset
m= {|x1, x2, . . . , xn|} in X� is equal to the open subset 〈↑ x1, ↑ x2, . . . ↑ xn〉. Every upward-closed
subset is the union of the upward closures of its points, hence is open, too, so X� has the
Alexandroff topology of ≤�.

In particular, if ≤ is wqo, then X with the Alexandroff topology of ≤ is Noetherian, so X� is
Noetherian, too. Since X� has the Alexandroff topology of≤�, the latter is wqo.

Our candidates for (irreducible) closed subsets of X� are the Parikh images of word-products
and word-SREs. Write F | C1, C2, . . . , Cn for the family of all multisets that one can obtain by
picking at most one element from C1 (possibly zero), at most one from C2, . . . , at most one from
Cn, and as many as we wish from F. We think of the enumeration C1, C2, . . . , Cn as a multiset
itself, hence invariant under permutation. Formally, m ∈ F | C1, C2, . . . , Cn if and only if one can

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 779

writem asm0 ! {|xi | i ∈ I|}, where all the elements ofm0 are in F, I is a subset of {1, 2, . . . , n} and
for each i ∈ I, xi is in Ci (implicitly, up to permutation of the xi, or equivalently of the Ci).

Definition 8.3 (m-product, m-SRE). Let X be a topological space. Call an m-product on X any
subset of the form F | C1, C2, . . . , Cn, where n ∈N, F is a closed subset of X, and C1, C2, . . . , Cn
range over irreducible closed subsets of X.

When F is empty, we shall also write this as simply | C1, C2, . . . , Cn. When n= 0, we just write
F |, and when n= 0 and F=∅, we write this |.

Anm-SRE is any finite union of m-products.

The proof of the following Proposition, as well as for most other results of this Section, are to
be found in Appendix C.

Proposition 8.4. Let X be a topological space. Then, the m-SREs are closed in X�, and the
m-products are irreducible closed.

If X is Noetherian, then every irreducible closed subset of X� is an m-product, and every closed
subset of X� is an m-SRE.

Again, it is instructive to see how X� embeds in its completion S(X�).

Lemma 8.5 (Embedding). Let X be a topological space. The closure ηSX�{|x1, x2, . . . , xn|} of the
multiset {|x1, x2, . . . , xn|} in X� is the m-product | ηSX (x1), ηSX (x2), . . . , ηSX (xn).

Proof. By Proposition 8.4, | ηSX (x1), ηSX (x2), . . . , ηSX (xn) is (irreducible) closed and is clearly the
downward closure of {|x1, x2, . . . , xn|} with respect to ≤�.

One can decide inclusion between m-products using � again. This leads to the following
algorithm.

Lemma 8.6. Let X be a topological space. Inclusion between m-products can be checked in
polynomial time, modulo an oracle testing inclusion of closed subsets of X.

Explicitly, let P= F | C1, C2, . . . , Cm and P′ = F′ | C′1, C′2, . . . , C′n be two m-products. Let
I = {i1, i2, . . . , ik} be the subset of those indices i, 1≤ i≤m, such that Ci �⊆ F′.

Then, P⊆ P′ if and only if F⊆ F′ and there is an injective map r : I→{1, 2, . . . , n} such that
Ci ⊆ C′r(i) for every i ∈ I – in other words, {|Ci1 , Ci2 , . . . , Cik |} ⊆� {|C′1, C′2, . . . , C′n|}.

It may not be immediately obvious why this leads to a polynomial time algorithm. The reason
is the following observation, due to Simon Halfon (Halfon 2018, Corollary 7.14). Let G be the
bipartite graph whose vertex set is the disjoint union of I and of {1, 2, . . . , n}, and such that there
is an edge from i ∈ I to j ∈ {1, 2, . . . , n} if and only if Ci ⊆ C′j . Finding r means finding a matching
of G that covers all the vertices in I. Let N(G) be the number of edges in any maximum matching
of G. N(G) can be computed in polynomial time, say by the Ford–Fulkerson algorithm (Cormen
et al. 2001, Section 26.2), and r exists if and only if N(G)≥ k, where k is the cardinality of I.

We now turn to S-representations.

Theorem 8.7 (S-representation, multisets). Let X be a Noetherian space, X′ = X�, and (S, �_�,
�, τ ,∧) be an S-representation of X. Then, (S′, �_�′ ,�′, τ ′,∧′) is an S-representation of X′, where:

(A) S′ is the collection of all m-product notations, that is, of all expressions of the form A | u,
where A is a finite subset of S, and u is a multiset of elements of S. When u= {|b1, . . . , bn|},
we also write A | b1, . . . , bn for A | u.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

780 A. Finkel and J. Goubault-Larrecq

(B) �A | b1, . . . , bn�′ = (
⋃

a∈A �a�) | �b1� , . . . , �bn�.
(C) A | u�′ A′ | u′ if and only if A�	 A′ and u1 �� u′ where u1 is the subset of those elements

a ∈ u such that a� a′ for no a′ ∈A′.
(D) τ ′ is {τ | ∅}.
(E) ∧′ is defined as follows. Amatching f : {1, . . . ,m}→ {1, . . . , n} is any bijection from some

subset of {1, . . . ,m} (the domain dom f) to some subset of {1, . . . , n} (the codomain cod f).
Then, (A | a1, . . . , am)∧′ (A′ | a′1, . . . , a′n) is the collection of all m-product notations of the
form A′′ |m1f !m2f !m3f , where:
— A′′ =⋃

a∈A
a′∈A′

(a∧ a′);
— f ranges over all matchings from {1, . . . ,m} to {1, . . . , n};
— m1f ranges over all multisets of the form {|ci | i ∈ dom f |} where ci ∈ ai ∧ a′f (i) for every

i ∈ dom f ;
— m2f ranges over all multisets of the form {|ci | 1≤ i≤m, i �∈ dom f |}, where ci ∈⋃

a′∈A′ (ai ∧ a′) for each i, 1≤ i≤m, i �∈ dom f ;
— m3f ranges over all multisets of the form {|c′j | 1≤ j≤ n, j �∈ cod f |}, where c′j ∈

⋃
a∈A (a∧

a′j) for each j, 1≤ j≤ n, j �∈ cod f .

As a final note to this section, Abdulla et al. (2004b) required a completion of (A�)∗, for some
finite set A. We note that the elements of S((A�)∗a) are exactly their word language generators,
which we retrieve here in a principled way.

9. Completing Words, Prefix Topology
The word topology is not the only interesting topology on X∗ that makes it Noetherian, assuming
X Noetherian. The prefix topology is another (Goubault-Larrecq 2013, Exercise 9.7.36), and its
specialization quasi-ordering is a form of the prefix ordering. We mention that topology because
its specialization quasi-ordering is never a wqo, unless X is trivial. Also, this is the topology needed
to decide reachability of sets defined by forbidden patterns in the so-called oblivious k-stack
system model of Goubault-Larrecq (2010, Section 5).

The prefix topology is defined not just on X∗, but more generally on sets of heterogeneous
words, that is, words whose letters are taken from possibly distinct spaces, depending on their
position. This of course includes the case of words in X∗, but heterogeneous words are a natural
generalization to consider, and incur no additional difficulty.

Let X1, X2, . . . , Xn, . . . be countably many topological spaces. A heterogeneous word over these
spaces is any tuple (x1, x2, . . . , xm) in X1 × X2 × · · · × Xm, m ∈N. We write it as x1x2 · · · xm and
callm= |w| the length of the form w= x1x2 · · · xm.

A telescope on (Xn)n≥1 is a sequence U =U0,U1, . . . ,Un, . . . of opens, where Un is open in∏n
i=1 Xi for each n ∈N, and such thatUnXn+1 ⊆Un+1 for every n ∈N. (We writeUnXn+1 instead

of Un × Xn+1. When n= 0,
∏n

i=1 Xi just contains the empty word ε, so that
∏n

i=1 Xi is just {ε} in
that case, with the only possible topology. U0 must be open in that, and that means that U0 must
be empty or equal to {ε} itself.)

A telescope is a wide telescope iff Un =∏n
i=1 Xi for some n ∈N – equivalently, for all suffi-

ciently large n ∈N. Given any telescope U =U0,U1, . . . ,Un, . . . on (Xn)n≥1, let $U〉 be the set of
heterogeneous words w over X1, X2, . . . , Xk, . . . , such that w ∈U|w|.

We write �+∞n=1 Xn for the space of all heterogeneous words over (Xn)n≥1, that is, the disjoint
union of all spaces

∏n
i=1 Xi, n ∈N, with the prefix topology, which is given by the trivial open ∅,

plus all subsets of the form $U〉, U a wide telescope on (Xn)n≥1. One checks easily that those form
a topology, and we shall say so explicitly in Proposition 9.1 below.

The point of the definition of the prefix topology is that its specialization quasi-ordering is the
prefix quasi-ordering, defined by a1a2 · · · am ≤� b1b2 · · · bn, where ai, bi ∈ Xi for all i, iff m≤ n,
a1 ≤ b1, a2 ≤ b2, . . . , and am ≤ bm. (Here, ai ≤ bi means that ai is less than or equal to bi in

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 781

the specialization quasi-ordering of Xi.) This is part of the following result, which appears as
Goubault-Larrecq (2013, Exercise 9.7.36).

Proposition 9.1. Let X1, X2, . . . , Xn, . . . be countably many topological spaces. The prefix topology
on�+∞n=1 Xn is indeed a topology. Its specialization quasi-ordering is the prefix quasi-ordering ≤�.

If X1, X2, . . . , Xn, . . . are all Noetherian, then�+∞n=1 Xn is Noetherian.

Proof. Let us abbreviate X1X2 · · · Xn as Alln, for each n ∈N. When n= 0, All0 = {ε}.
It is easy to see that given wide telescopes Ui =Ui0,Ui1, . . . ,Uin, . . ., i ∈ I, the sequence

⋃
i∈I Ui

defined as
⋃

i∈I Ui0,
⋃

i∈I Ui1, . . . ,
⋃

i∈I Uin, . . . is an infinite sequence of empty sets (if I is
empty), or a wide telescope (if I �= ∅) and $⋃i∈I Ui〉 =⋃

i∈I$Ui〉; moreover, if I is finite, then the
sequence

⋂
i∈I Ui defined as

⋂
i∈I Ui0,

⋂
i∈I Ui1, . . . ,

⋂
i∈I Uin, . . . is also a wide telescope (when

I =∅, this is the wide telescope All0,All1, . . . ,Alln, , . . .), and $⋂i∈I Ui〉 =⋂
i∈I$Ui〉. Therefore,

the prefix topology, as we have defined it, is indeed a topology.
Write temporarily for the specialization quasi-ordering of �+∞n=1 Xn. For every telescope

U =U0,U1, . . . ,Un, . . ., if a1a2 · · · am ∈ $U〉, and a1a2 · · · am ≤� b1b2 · · · bn, then b1b2 · · · bm is
inUm, sinceUm is open hence upward-closed in≤m. SinceUmX⊆Um+1 by the definition of tele-
scopes, b1b2 · · · bmbm+1 is in Um+1, and by an easy induction, b1b2 · · · bmbm+1 · · · bn is in Un. So
U is upward-closed in ≤�: w≤� w′ implies w w′.

Conversely, assumew w′, wherew= a1a2 · · · am andw′ = b1b2 · · · bn.We shall examine var-
ious wide telescopes U such that w ∈ $U〉 and draw consequences from the fact that w′ ∈ $U〉.
Considering the telescope ∅, . . . , ∅,Allm,Allm+1, . . ., one sees that m≤ n. Considering the tele-
scopes ∅, . . . , ∅,Um,Allm+1,Allm+2, . . ., where Um is an arbitrary open set of Xm of which w is a
member, one sees that b1b2 · · · bm is inUm, so a1a2 · · · am is less than or equal to b1b2 · · · bm in the
specialization quasi-ordering≤1 ×≤2 × · · · ×≤m of X1X2 · · · Xm. As a consequence, w≤� w′.

Let us show that X=�+∞n=1 Xn is Noetherian, assuming that X1, X2, . . . , Xn, . . . , all are. For
every non-empty wide telescope U =U0,U1, . . . ,Un, . . ., there is a least number m such that
Um is non-empty, and a least number n such that Un =Alln. Moreover, m≤ n. Call m the
small end m(U) of U , n its big end n(U). If $U〉 ⊆ $V〉, then m(U)≥m(V) (consider any word
of length m(U) in $U〉), and n(U)≥ n(V) (otherwise, consider any word of length n(U) that is
not in $V〉). It follows that, in any infinite ascending chain $U1〉 ⊆ $U2〉 ⊆ · · · ⊆ $Uk〉 ⊆ · · · , all
small ends coincide, and all big ends coincide, for all k large enough, say k≥ p. Let m be this
common small end, n be the common big end. Then, for each k≥ p, Uk is a telescope of the
form ∅, . . . , ∅,Ukm,Uk(m+1), . . . ,Uk(n−1),Alln,Alln+1, . . . In addition, for each j with m≤ j< n,
Upj ⊆U(p+1)j ⊆ · · · ⊆ · · ·Ukj ⊆ · · · is an infinite ascending chain of opens in X1X2 · · · Xj. The lat-
ter is Noetherian, so the chain stabilizes, say at kj ≥ p. Therefore, $U1〉 ⊆ $U2〉 ⊆ · · · ⊆ $Uk〉 ⊆ · · ·
stabilizes at max (p, km, km+1, . . . , kn−1). This holds for ascending chains of opens that exclude
the empty open subset; the general case is easy. It follows that�+∞n=1 Xn is Noetherian.

When X1 = X2 = · · · = Xn = · · · are the same space X, we write X� for the space �+∞n=1 Xn.
Although it has the same elements as X∗, it has a definitely distinct topology, for example, while
≤∗ is wqo when the specialization ordering≤ of X is,≤� is well founded but not well, as soon as X
contains two incomparable elements a and b. Indeed, in this case a, ba, bba, bbba, . . . is an infinite
antichain.

In order to characterize the completion S(�+∞n=1 Xn), we define the subset %F1F2 · · · Fk〉 of�+∞n=1 Xn, where k ∈N and each Fi is closed in Xi, as the set of all heterogeneous words a1a2 · · · am
of

∏m
i=1 Xi such that m≤ k, a1 ∈ F1, a2 ∈ F2, . . . , am ∈ Fm. (When k= 0, %F1F2 · · · Fk〉 is just {ε}.)

The following, as well as other results of this Section, are proved in Appendix D.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

782 A. Finkel and J. Goubault-Larrecq

Proposition 9.2. Let X1, X2, . . . , Xn, . . . be countably many topological spaces. The sets of the form
%F1F2 · · · Fn〉, where each Fi is closed in Xi, form a subbase of closed sets for�+∞n=1 Xn: these sets are
closed, and every closed subset is an intersection of finite unions of such sets.

Lemma 9.3. Let X1, X2, . . . , Xn, . . . , be countably many topological spaces. The subsets of the form
%C1C2 · · · Cn〉, where Ci is irreducible closed in Xi for each i, 1≤ i≤ n, are irreducible closed in�+∞n=1 Xn.

This is enough to state how�+∞n=1 Xn embeds in its completion.

Lemma 9.4 (Embedding). Let X1, X2, . . . , Xn, . . . , be countably many topological spaces,
and Y =�+∞n=1 Xn. The closure ηSY (x1x2 · · · xn) of the word x1x2 · · · xn in X=�+∞n=1 Xn is
%ηSX (x1)ηSX (x2) · · · ηSX (xn)〉.

Proof. By Lemma 9.3, %ηSX (x1)ηSX (x2) · · · ηSX (xn)〉 is irreducible closed and contains x1x2 · · · xn, so
must contain ηSY (x1x2 · · · xn). Conversely, every element of %ηSX (x1)ηSX (x2) · · · ηSX (xn)〉 is a (≤�-)
prefix of x1x2 · · · xn, and must therefore be in ηSY (x1x2 · · · xn).

There is just one extra irreducible closed subset in�+∞n=1 Xn, unless some Xn is empty:

Lemma 9.5. Let X1, X2, . . . , Xn, . . . , be countably many non-empty topological spaces. The whole
space�+∞n=1 Xn is irreducible closed in itself.

So we obtain the following description of all irreducible closed subsets.

Lemma 9.6. Let X1, X2, . . . , Xn, . . . , be countably many non-empty topological spaces. The only
irreducible closed subsets of�+∞n=1 Xn are�+∞n=1 Xn itself, and the subsets of the form %C1C2 · · · Cn〉,
where Ci is irreducible closed in Xi for each i, 1≤ i≤ n.

This suggests that S(�+∞n=1 Xn) coincides with�+∞n=1 S(Xn), with a new top element � added,
at least up to isomorphism. For any space Y , let Y� be the space obtained by adding a fresh
element � to Y , and whose closed subsets are those of Y , plus Y� itself. The specialization quasi-
ordering of Y� is given by: y�� y′ iff y, y′ ∈ Y and y� y′, or y′ = �, where� is the specialization
quasi-ordering of Y .

Proposition 9.7. Let X1, X2, . . . , Xn, . . . , be countably many non-empty topological spaces. Themap
i : (�+∞n=1 S(Xn))

�→ S(�+∞n=1 Xn) that sends � to �+∞n=1 Xn and the word C1C2 · · · Cn (where
Ci ∈ S(Xi) for each i) to %C1C2 · · · Cn〉 is an order isomorphism and a homeomorphism.

To complete the picture, we examine the case where some of the spaces Xn are empty. Taking
n to be the largest index such that X1, . . . , Xn are non-empty (and 0 if every Xi is empty), we
then write X1 � X2 � · · · � Xn, or�n

k=1 Xk, instead of�+∞k=1 Xk. Since there cannot be any (n+ 1)st
letter, this is a space of words of length at most n. Clearly as well�n

k=1 Xk then does not depend
on the actual spaces Xn+1, Xn+2, . . . , provided Xn+1 is empty, which justifies the notation.

Lemma 9.8. Let X1, X2, . . . , Xn be non-empty topological spaces. The only irreducible closed subsets
of�n

k=1 Xk are the subsets of the form %C1C2 · · · Cm〉, where Ci is irreducible closed in Xi for each i,
1≤ i≤m, and m≤ n.

We then obtain an isomorphism as in Proposition 9.7, without the need to add a top element�.
https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 783

Proposition 9.9. Let X1, X2, . . . , Xn be non-empty topological spaces. The map i : �n
k=1 S(Xk)→

S(�n
k=1 Xk) that sends the word C1C2 · · · Ck (where k≤ n and Ci ∈ S(Xi) for each i) to

%C1C2 · · · Ck〉 is an order isomorphism and a homeomorphism.

We therefore obtain

Theorem 9.10 (S-representation, prefix). Let X1, X2, . . . , Xn, . . . be countably many Noetherian
spaces, X′ =�+∞n=1 Xn, and (Si, �_�i ,�i, τi,∧i) be an S-representation of Xi for each i≥ 1. Assume
that the disjoint sum

∐+∞
i=1 Si is recursively enumerable that a�i b is decidable in a, b, i, that τi is

computable in i, and that a∧i b is computable in a, b, i.
Then (S′, �_�′ ,�′, τ ′,∧′) is an S-representation of X′, where:
(A) S′ is the set of all heterogeneous words over S1, S2, . . . , Sn, . . . , plus a fresh element ω in case

no Sn is empty (i.e., no Xn is empty).
(B) �a1a2 · · · an�′ = %�a1�1 �a2�2 · · · �an�n〉 where a1 ∈ S1, a2 ∈ S2, . . . , an ∈ Sn, and �ω�=�+∞n=1 Xn (if no Xn is empty).
(C) �′ is defined by: u�′ ω for all u ∈ S′ and ω �′ u for no word u �=ω in S′ (in case no Xn is

empty), and a1a2 · · · am �′ a′1a′2 · · · a′n iff m≤ n, a1 �1 a′1, a2 �2 a′2, . . . , and am �m a′m.
(D) τ ′ is {ω} if no Xn is empty, {a1a2 · · · an | a1 ∈ τ1, a2 ∈ τ2, . . . , an ∈ τn} otherwise, where n is

the largest index such that Xn is non-empty.
(E) ∧′ is defined by: ω ∧′ u′ = {u′}, u∧′ ω= {u} (if no Xn is empty), and a1a2 · · · am ∧′

a′1a′2 · · · a′n = {c1c2 · · · cmin (m,n) | c1 ∈ a1 ∧1 a′1, c2 ∈ a2 ∧2 a′2, . . . , cmin (m,n) ∈ amin (m,n)
∧min (m,n) a′min (m,n)}.

Proof. Follows easily from Proposition 9.7 in case no Xn is empty, or from Proposition 9.9
otherwise.

When X1 = X2 = . . .= Xn = . . . are all the same space, one can drop the subscripts to S, �, τ ,
∧. Then, u�′ u′ is decidable in polynomial time modulo an oracle for�.

Remark 9.11. We have already seen an example of spaces that are Noetherian, but not wqo in
their specialization preordering, for example, P(X) where X is Noetherian. The construction X�
is another example: while X� is Noetherian for X Noetherian, the prefix ordering ≤� is not wqo,
even if ≤ is wqo.

10. Completing Finite Trees in a Simple Case
The case of finite trees is by far the most complex one. We start with a simple case: that of ranked
trees, whose vertices are decorated by function symbols from a finite set, with equality as order-
ing. The ordering on trees is the so-called homeomorphic embedding �, a wqo by Kruskal’s tree
theorem (Kruskal 1960). In that case, the topology will be the Alexandroff topology, and irre-
ducible closed subsets will be ideals. We shall also take advantage of the assumptions to give short,
automata-theoretic proofs of some of our results.

The completions of sets of trees over a finite set of function symbols were already considered in
Wies et al. (2010), where it was used to decide coverability for depth-bounded processes without
requiring one to know the depth bound in advance, and in Goubault-Larrecq and Schmitz (2016),
where it was used to decide piecewise testable separability of regular tree languages.

The more general case of unranked trees with function symbols taken from a Noetherian space
will be dealt with in Section 11. This will definitely be more complicated but will share many
similarities with the present case – apart from the fact that we will not be able to use automata-
theoretic methods.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

784 A. Finkel and J. Goubault-Larrecq

Let� be a finite signature, namely a finite set of so-called function symbols f , g, . . . , each coming
with a natural number called its arity. Let �r be the subset of those elements of � that have arity
exactly r.

The set T (�) of terms over � (Baader and Nipkow 1998) is the smallest such that, for every
f ∈�r , for all t1, . . . , tr ∈ T (�), f (t1, . . . , tr) is in T (�). By f (t1, . . . , tn), we mean the tree whose
root is labeled f and has a list of r subtrees t1, . . . , tr , from left to right.

Our terms are ground: there is no variable involved here, although one may code variables as
specific constants, that is, as specific function symbols of arity 0.

The embedding ordering � is defined by s� t if and only if:

— either t= g(t1, . . . , tn) and s� tj for some j, 1≤ j≤ n;
— or s= f (s1, . . . , sm), t= g(t1, . . . , tn), f = g (hence,m= n) and s1 � t1, . . . , sn � tn.

Since the canonical S-representation for finite words under the word topology (or the≤∗ quasi-
ordering) consists in certain regular expressions, we shall similarly define an S-representation for
T (�) as certain tree regular expressions (Comon et al. 2004, Section 2.2).

We define simple tree regular expressions (over �), a.k.a. STREs, by the following abstract
syntax:

S ::= 0 | P | S+ S P ::= f ?(S, . . . , S) | C∗.S
C ::= 0 | A | C+ C A ::= f (S�, . . . , S�) S� ::= S |�

where f ∈�r in f ?(P1, . . . , Pr) and in f (S�1, . . . , S�r), the sum operation + is associative and
commutative (we shall sometimes write

∑m
i=1 Pi for P1 + · · · + Pm) with 0 denoting the empty

sum, and � �∈� is a placeholder called the hole. Note that � is not meant to denote a family of
placeholders, rather a single one. The extended trees over the signature � ∪ {�}, where � has
arity 0, are called contexts.

The standard notations for ? and ∗ are ? and ∗. We want to distinguish ? visually from ?, since
we will need both in Section 11, and similarly for ∗ and ∗.

The STREs of the form P are called tree pre-products. Among them, the tree-products will
be our notations for ideals. They will satisfy additional constraints, which we shall define later
(Definition 10.5).

To define the semantics of STREs, we write t ∈ S as an abbreviation for “t is in the language
of S” and define this language by structural induction on S.

Accordingly, t ∈ f ?(S1, . . . , Sn) if and only if either t is of the form f (t1, . . . , tn) with ti ∈ Si
for every i, 1≤ i≤ n, or if t ∈⋃n

i=1 Si. The latter is necessary for S to denote a downward-closed
language.

As the notation suggests, for S= P1 + · · · + Pm, t ∈ S iff t ∈ Pj for some j, 1≤ j≤m, and the
language of 0 is empty.

The productions of C, A, and S� serve to form iterators C∗.S. The language of A= f (S�1, . . . ,
S�n) consists of those contexts in T (� ∪ {�}) of the form f (c1, . . . , cn) where ci ∈ S�i for every i.
In turn, c ∈ S� if and only if either S� =� and c is the trivial context�, or S� is an STRE S, c is a
tree t in T (�), and t ∈ S. The language of C=A1 + · · · +Am is the union of the languages of Aj,
1≤ j≤m.

Intuitively, the language of C∗.S should consist of all trees obtained by applying contexts in C,
repeatedly, until one reaches a tree in S. For example, (f (�))∗.a? will recognize all trees of the form
f n(a), n ∈N. There are however two catches.

(1) The first one has to do with patterns A where � occurs more than once: as usual with
tree regular expressions, in replacing � by a tree from S, several occurrences of � can
be replaced by different trees from S. Hence, (f (�,�))∗.(a? + b?) consists of all binary-
branching trees with inner nodes labeled f and leaves labeled a or b, including f (f (a, a), a)

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 785

and f (f (b, b), b) but also f (f (a, b), a)) or f (f (b, b), a) among others. (We assume f binary,
and a and b of arity 0.) For a context c, and a set of trees S, accordingly, we shall write
c[S] for the set of trees obtained from c by replacing each occurrence of � by a (possibly
different) tree in S.

(2) The second catch has to do with downward closure. It is tempting to define the trees of C∗.S
as those in c1[· · · [ck[S]] · · ·], for some k ∈N and some c1, . . . , ck ∈ C. However, there are
cases where that language would fail to be downward-closed, for example, (f (a?,�))∗.b?
would contain f (a, b) but not a, according to that semantics.

We repair that as follows. For A= f (S�1, . . . , S�n), define argsA, the argument sup-
port of A, as the set of trees t ∈ T (�) such that some context f (· · · , t, · · ·) (i.e., with
one of its arguments equal to t) is in the language of A. Alternatively, if those S�i,
1≤ i≤ n, that are different from � define non-empty languages, then argsA is the union
of those languages; if some S�i �=� has an empty language, then argsA=∅. Hence,
for example, args f (�,�)=∅, args f (a?,�)= a? = {a}, and args f ′(a?,�, 0)=∅. For C=
A1 + · · · +Am, let args C=⋃m

j=1 argsAj.

For every c ∈ C, let us write c?[S] for c[S]∪ S. We are now ready to define the language of C∗.S, as
the language of trees in c?1[· · · [c?k[S∪ args C]] · · ·], for some k ∈N and some c1, . . . , ck ∈ C – in
writing S∪ args C, we equate the STRE S with the language it defines.

Proposition 10.1. Every STRE defines a downward-closed language of T (�) with respect to �.
Conversely, every downward-closed language of T (�) with respect to � is the language of some
STRE.

Proof. For the first part, we use induction on the size of the STRE, and the main point consists
in checking that if t ∈ C∗.S then any smaller tree s (w.r.t. �) is also in C∗.S. By induction hypoth-
esis, S is downward-closed. We use a secondary induction on the k used in the definition of the
language of C∗.S as c?1[· · · [c?k[S∪ args C]] · · ·]. If k= 0, then t ∈ S∪ args C, hence s ∈ S∪ args C
as well since both S and args C are downward-closed – args C is downward-closed by the outer
induction hypothesis. Otherwise, k≥ 1. If t is in c?2[· · · [c?k[S∪ args C]] · · ·], then we conclude
by the inner induction hypothesis directly. Otherwise, one of the summands in c1 is of the
form f (S�1, . . . , S�n), and t= f (t1, . . . , tn). If s is smaller than some ti, then either S�i =� and
ti ∈ c?2[· · · [c?k[S∪ args C]] · · ·], which allows us to conclude by the inner induction hypothesis;
or S�i is of the form P and is downward-closed by the outer induction hypothesis. If instead
s= f (s1, . . . , sn) where si is smaller than ti for each i, we conclude similarly that si ∈ C∗.S for each
position i such that S�i =�. For all other positions i, S�i is an STRE, which is downward-closed
by the outer induction hypothesis, so si ∈ S�i. Hence, s is in c1[C∗.S], and therefore in C∗.S.

For the converse direction, let L be a downward-closed language. The complement T (�)� L
of L is upward-closed, and since � is a wqo, T (�)� L can be written as the upward closure
↑{t1, t2, . . . , tn} of finitely many trees. For each i, ↑ ti is easily seen to be recognizable by a finite
(bottom-up) tree automaton. Since finite unions and complements of recognizable languages are
recognizable, L is recognized by some finite tree automatonA.

We now convert A to an STRE. In general, we describe a procedure that converts any (ε-free)
finite tree automaton A to an STRE whose language is the downward closure ↓ L(A) of the
language recognized by A. This is best explained on an example: see Figure 3(a), where there is
one transition a of arity 0 (from no state) to state q1, one binary transition f from the pair of states
q1, q2 to q3, and so on. In textual form, we write these transitions as rewrite rules (Comon et al.
2004): a→ q1, f (q1, q2)→ q3, h(q3, q4)→ q2, d→ q3, g(q4)→ q4, b→ q4. A tree t is recognized
at a state s if and only if t→∗ s, using the rewrite rules of A. There is a set of final states, marked

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

786 A. Finkel and J. Goubault-Larrecq

(a)

(b)

Figure 3. Converting tree automata to STREs. (a) Initial tree
automaton. (b) ε-strongly connected components.

with an outgoing arrow with dangling end: in our example, just q3. The language L(A) ofA is the
set of trees recognized at some final state.

We first extend our automaton with ε-transitions. An ε-transition from s to s′ will be drawn as
a dashed arrow, see Figure 3(b), and is just a rewrite rule of the new form s→ s′. This implies that
every tree recognized at s is also recognized at s′. For each transition, say f (s1, s2, . . . , sn)→ s, of
A, we add n ε-transitions s1→ s, s2→ s, . . . , sn→ s. (To make things clear, we are assuming that
A does not originally contain any ε-transition.) Call the resulting automaton ↓A. It is an easy
exercise to show that L(↓A)=↓ L(A).

There is a graph underlying ↓A, whose vertices are the states of ↓A, and whose edges are the
ε-transitions. Build its strongly connected components: on Figure 3(b), they are shown against
a gray background. By construction, any two states in the same strongly connected component
C recognize exactly the same trees, so it makes sense to talk of the language LC(↓A) of those
trees recognized at any state of C. Let C→ C′ if and only if s→ s′ for some s ∈ C, s′ ∈ C′, C �= C′.
The strict ordering < defined as the transitive closure→+ is well founded, and we shall build an
STRE SC whose language is LC(↓A), by induction along <.

If C is a trivial strongly connected component (one state s, no self-edge), then enumerate
its incoming non-ε transitions fi(si1, si2, . . . , sini)→ s, 1≤ i≤m. Let Sij be an STRE whose
language is the set of trees recognized at sij, which is given by induction hypothesis. Then
SC =∑m

i=1 f ?i (Si1, Si2, . . . , Sini) is the desired STRE. For instance, the set of trees recognized at the
leftmost state q1 is the language of a?.

If C is a non-trivial strongly connected component, then enumerate the non-ε transitions
fi(si1, si2, . . . , sini)→ si, 1≤ i≤m whose end state si is in C. For each pair i, j, if sij is in C,
then let S�ij =�; otherwise, let S�ij be an STRE whose language is the set of trees recognized
at sij, which we obtain by induction hypothesis. It is not too hard to see that SC = (

∑m
i=1

fi(S�i1, S�i2, . . . , S�ini))∗.0 is an STRE that suits our needs. For example, the rightmost strongly
connected component {q4} yields the STRE S4 = (b+ g(�))∗.0. Onemight have expected an STRE
of the more intuitive form (g(�))∗.b?; however, note that they define exactly the same language.

Finally, ↓ L(A) is the union of the languages of the strongly connected components containing
a final state; in our example, the strongly connected component in the middle yields the final
STRE (d+ f (a?,�)+ h(�, S4))∗.0.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 787

Figure 4. The rewrite relation→1.

We characterize the STREs that define ideals of T (�) with respect to�. Let us define a rewrite
relation→1 on STREs that moves all + signs to the outside: for a→1-normal STRE S= P1 +
· · · + Pm, each Pi will be irreducible, hence S will be an ideal, that is, an irreducible closed subset,
if and only ifm= 1. (Recall that S(Pa)= I(P) for every poset P.)

The rewrite relation→1 is defined in Figure 4. Recall that+ is understoodmodulo associativity
and commutativity. Letters matter, too: S, S′, S1, . . . , Sn are STREs, while P, P′ are those special
STREs of the form f ?(S1, . . . , Sn) or C∗.S, etc. In particular, rule (R6) applies provided the pattern
f (S1, . . . , Sn) does not contain� at all. Similarly, in rule (R10), S and S′ cannot contain�.

For rule (R12), we need some auxiliary definitions.

Definition 10.2. A pattern A= f (S�1, . . . , S�n) is �-linear if and only if at most one S�i is the
hole�.

Writing C as A1 + · · · +Am, we say that C is �-linear if and only if every non-empty Ai is
�-linear.

The�-linearity restriction imposed on the last rule is needed for the following to hold.

Lemma 10.3. If S→∗
1 S′ then S and S′ define the same language.

Lemma 10.4. Every STRE S has a normal form with respect to→1.

Proof. Using Bachmair and Plaisted’s associative path ordering>apo (Bachmair and Plaisted 1985)
on a precedence where + is minimal, f > f ? for each symbol f , and the (_)∗._ operator has
lexicographic status, we see that →1 is even a terminating relation: every sequence of rewrite
steps terminates. (Bachmair and Plaisted’s ordering has been improved upon many times but is
sufficient in the case of just one associative commutative symbol+.)

Definition 10.5. A tree-product is any→1-normal tree pre-product P.

Lemma 10.6. Every ideal, that is, every irreducible closed subset of T (�) is the language of some
tree-product.

Proof. By Proposition 10.1, an ideal I is the language of some STRE S. S has a→1-normal form by
Lemma 10.4, write it P1 + · · · + Pm. Since I is non-empty,m≥ 1, and since I is irreducible closed,
it is included in, hence equal to, the language of some Pi.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

788 A. Finkel and J. Goubault-Larrecq

Conversely, we check that the language of every tree-product is irreducible closed. In the special
case that we are in, it is easier to show that they are directed sets.

Let us introduce some additional notation.

Definition 10.7. A pattern A= f (S�1, . . . , S�n) is �-generated if and only if at least one S�i is
the hole�; it is empty if and only if some S�i is different from� and has an empty language.

Writing C as A1 + · · · +Am, we say that C is �-generated if and only if every non-empty Ai is
�-generated and is empty if and only if every Ai is empty.

By inspection of the rules defining→1, we see

Lemma 10.8. The tree-products are exactly the STREs of the form:

— f ?(P1, . . . , Pn) where P1, . . . , Pn are tree-products;
— or C∗.(P1 + · · · + Pn) where n ∈N, P1, . . . , Pn are pairwise incomparable tree-products,

C=∑m
i=1 fi(P�i1, . . . , P�ini), m≥ 1, each summand fi(P�i1, . . . , P�ini) is incomparable

with any other, each pattern P�ij is either a tree-product or the hole �, C is �-generated,
and one of the following conditions is satisfied: (a) C is not�-linear and n≥ 1, or (b) C is not
�-linear, n= 0, and P�ij �=� for some i, j, or (c) C is�-linear and n≤ 1.

Proof. A tree pre-product of the form f ?(S1, . . . , Sn) is→1-normal if and only if S1, . . . , Sn are
→1-normal and neither (R7) nor (R8) applies. The latter means that each Si is a tree-product Pi.

Next, consider a tree pre-product of the form C∗.S. Write C as
∑m

i=1 Ai where Ai = fi(S�i1, . . . ,
S�ini), and S as a sum of tree pre-products P1 + · · · + Pn.

If C∗.S is→1-normal, then (R5) does not apply, so m≥ 1. Since (R1) and (R3) do not apply
(and+ is understood modulo associativity and commutativity), P1, . . . , Pn are pairwise incompa-
rable (and different from 0, but that is implied). Similarly, since (R2) and (R4) do not apply, each
summand fi(P�i1, . . . , P�ini) is incomparable with any other. Additionally, (R9) and (R10) do not
apply, so each S�ij is either equal to � or equal to some tree-product. Henceforth, write S�ij as
P�ij. If C were not�-generated, then for some non-empty Ai, P�ij would be different from� for
every j, then rule (R6) would apply. We now prove that (a), (b), or (c) holds depending on the
shape of C. If C is not�-linear but (a) does not hold, then n= 0. Since (R11) does not apply, some
P�ij is different from �, or some fi has arity 0. However, if some fi has arity 0, then Ai would just
be fi(), and (R6) would apply, so (b) holds. It remains to consider the case where C is �-linear.
Since (R12) does not apply, it must be that n≤ 1, so (c) holds.

Conversely, it is easy to check that if the conditions listed in the statement of the lemma for
C∗.(P1 + · · · + Pn) are satisfied, then C∗.(P1 + · · · + Pn) is→1-normal.

Lemma 10.9. If S1, . . . , Sn are directed STREs, then so is f ?(S1, . . . , Sn).

Proof. Non-emptiness is clear, since S1, . . . , Sn are non-empty. Let t, t′ be any two trees in
f ?(S1, . . . , Sn). If t= f (t1, . . . , tn) and t′ = f (t′1, . . . , t′n) with ti, t′i ∈ Si for every i, then we can find
t′′i ≥ ti, t′i in Si, and then f (t′′1 , . . . , t′′n)≥ t, t′ is in f ?(S1, . . . , Sn).

If t is in some Sj and t′ = f (t′1, . . . , t′n) with t′i ∈ Si for every i, then build the tree
s= f (s1, . . . , sj−1, t, sj+1, . . . , sn), where si is an arbitrary tree from the non-empty set Si, i �= j.
Clearly, s is in f ?(S1, . . . , Sn), so, by reduction to the previous case, there is a tree t′′ ∈ f ?(S1, . . . , Sn)
such that s, t′ � t′′. Since t� s, we obtain that t, t′ � t′′.

Similarly if t′ is in some Sk, we build a new tree s′ = f (s′1, . . . , s′k−1, t
′, s′k+1, . . . , s

′
n) and conclude

by a similar argument that there is a tree t′′ ∈ f ?(S1, . . . , Sn) such that t′ � s′ � t′′ and t� t′′.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 789

The case of STREs of the form C∗.S is more complex. The three cases (a), (b), and (c) in the
lemma below match those of Lemma 10.8, second item.

Lemma 10.10. Let C=A1 + · · · +Am be a sum of patterns Ai = fi(S�i1, . . . , S�ini), where each
S�ij that is different from� has a non-empty language. If any of the following conditions is satisfied,
then C∗.S is directed:

(a) C is not�-linear, and S has a non-empty language, or
(b) C is not�-linear, and some S�ij is different from�, or
(c) C is�-linear and�-generated, and S is irreducible.

Proof. The fact that C∗.S is non-empty is an easy exercise: in case (a), C∗.S contains S; in case
(b), it contains S�ij; and in case (c), it contains S, which, as an irreducible subset, is necessarily
non-empty. Let t and t′ be any two trees in C∗.S.

In case (a), some non-empty Ai is of the form f (S�1, . . . , S�n), where � occurs at least twice,
say at positions j and j′, j �= j′. For every k, 1≤ k≤ n, define a tree tk as follows: if S�k =� and
k �= j′ (including the case k= j), let tk = t, if k= j′ then let tk = t′, and if S�k �=� then pick any tree
for tk from the language of S�k, which is non-empty by assumption. We check that f (t1, . . . , tn)
is in C∗.S, and t= tj, t′ = tj′ both embed into f (t1, . . . , tn).

Case (b) reduces to (a), since if S�ij �=�, then C∗.S defines the same language as C∗.(S+ S�ij).
In case (c), every non-empty Ai is of the form f (· · · ,�, · · ·) with a unique occurrence of �.

In that case, the language of C∗.S can be described more simply: it consists of those trees of the
form c1[c2[· · · ck[s] · · ·]], where k ∈N, each ck is a context in the language of C, with just one
occurrence of � each, and s is a tree in S∪ args C. For short, say that a context c is in C∗ if and
only if it is of the form c1[c2[· · · ck[�] · · ·]], where k ∈N and each ck is in C. Such contexts have
exactly one occurrence of �. Hence, the language of C∗.S consists of those trees c[s] where c is in
C∗ and s ∈ S∪ args C. Given any two such trees t= c[s] and t′ = c′[s′], we find a tree t′′ ∈ C∗.S in
which both t and t′ embed, as follows.

If both s and s′ are in S, then by directedness there is an s′′ ∈ S such that s, s′ � s′′: we define t′′
as c[c′[s′′]].

If s ∈ S and s′ ∈ args C, then there is an Ai = fi(S�i1, . . . , S�ini) and a position j′, 1≤ j′ ≤ ni,
such that S�ij′ �=� and the language of S�ij′ contains s′. The unique position j at which S�ij =�
is different from j′. Let u= fi(u1, . . . , un) where: uj = s, uj′ = s′, for every position k �= j, j′ uk is an
arbitrary tree from S�ik. By construction, u ∈ C∗.S, hence so is t′′ = c[c′[u]]. Additionally, since s
and s′ both embed in u, t and t′ both embed in t′′.

The same argument applies when s ∈ args C and s′ ∈ S. Finally, we consider the case where s
and s′ are both in args C. Then, s ∈ argsAi for some i, say Ai = fi(S�i1, . . . , S�ini), S�ij′ �=� and
s in in the language of S�ij′ . Since S is irreducible, it is non-empty, hence we can pick a tree s0
from it. Let uj′ = s, uj = s0 where j is the unique position where S�ij =� and pick uk from the
non-empty language S�ik for every k �= j, j′; define u= fi(u1, . . . , uni), a tree from C∗.S in which s
embeds. Similarly, since s′ ∈ args C, s′ is in the support of some Ai′ , say Ai′ = fi′(S�i′1, . . . , S�i′ni′),
S�i′j′′′ �=� and s′ is in the language of S�i′j′′′ . Let vj′′′ = s′ (instead of s in our previous step), vj′′ = u
(instead of s0) where j′′ is the unique position where S�i′j′′ =� and pick vk from the non-empty
language S�i′k for every k �= j′′, j′′′. The tree v= fi′(v1, . . . , vni′) is again in C∗.S, and now both s
and s′ embed into it. Finally, we define t′′ as c[c′[v]].

Theorem 10.11. The ideals, that is, the irreducible closed subsets of T (�) are exactly the languages
of tree-products.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

790 A. Finkel and J. Goubault-Larrecq

Proof. One direction is Lemma 10.6. In the other direction, we show that the language of every
tree-product P is directed by structural induction on P, using Lemma 10.9 or Lemma 10.10,
depending on its shape, as given by Lemma 10.8. In doing the proof, one needs to observe that
any→1-normal STRE S= P1 + · · · + Pm (where the language of each Pi is an ideal by induction
hypothesis) has an empty language if and only ifm= 0 – because ideals are never empty.

Exceptionally, let us dispense with the traditional shape of our S-representation theorem, and
let us just state the following.

Theorem 10.12 (S-representation, finite ranked trees). Let � be a finite signature. There is an
S-representation (S, �_�,�, τ ,∧) of T (�), where S is the collection of all tree-products over �.

Proof. Tree-products are regular tree languages. Hence, inclusion (�) is decidable (Thatcher
and Wright 1968, Section 2), see also Comon et al. (2004). Since T (�) is equal to the language
of (

∑
f∈� f (�, . . . ,�))∗.0 (where each f ∈�r is applied to a list of r boxes), we obtain τ by

normalizing with respect to →1. To compute finite intersections (∧) of two tree-products, we
first convert those tree-products to tree automata, compute their intersection, convert the result
back to an STRE by the construction of Proposition 10.1, and normalize it by→1 to obtain its
expression as a sum of tree-products.

The above procedures are not optimal, and notably the inclusion procedure takes exponential
time. As in the word case (see Lemma 7.9), there is a polynomial time inclusion test, but it is
complex, and its correctness proof is difficult. We shall study it – by necessity – in the general case
of unranked trees over a Noetherian signature. (See Corollary 11.33.) We let the interested reader
do the required modifications to adapt it to the finite, ranked case.

Anticipating on that general case, the ranked trees in T (�) embed into the set of all (unranked)
trees over the finite set � (seen as a Noetherian space, with the discrete topology). Proposition 6.4
tells us that the sobrification of the former can be be seen, up to isomorphism, as a subspace of
the sobrification of the latter. We leave it as an exercise to check that this embedding S �→ S◦ is
defined by:

— if S= P1 + · · · + Pm, then S◦ = P◦1 + · · · + P◦m;
— (f ?(P1, . . . , Pn))◦ = f ?(P◦?1 · · · P◦?n);
— ((

∑m
i=1fi(P�i1, . . . , P�ini))∗.S)◦ = (

∑m
i=1fi(P◦?�i1 · · · P◦?�ini))

∗.S◦
— �◦ =�.

Combining this with the polynomial time inclusion test we shall see in Definition 11.31, this
provides us with a polynomial time inclusion test for the tree-products and STREs over �.

11. Completing Finite Trees: the General Case
For every set X, let T (X) denote the set of all (ground, first-order) terms built using function
symbols from X. Function symbols are now unranked and may be applied to arbitrarily long lists
of arguments. Since lists can be seen as finite words, T (X)= X× T (X)∗. The leaves of such terms
are the constants f (), formed from a function symbol f ∈ X and an empty list of arguments; we
shall also simply write f instead of f (). In general, a term t will be written as f (t1, t2, . . . , tn). When
we wish to stress that the list t1, t2, . . . , tn is a word, we shall also write f (t1t2 · · · tn) or f (�t) for a
word �t ∈ T (X)∗.

Again, our terms are ground. We shall later use the notation T (X, {�}) to refer to the set of
terms with exactly one variable �. These are the terms of T (X ∪ {�}) where � is always applied
to the empty list of arguments.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 791

The subterms of a term t are defined inductively as usual: writing t as f (t1, . . . , tn), they are t
itself plus all subterms of ti, 1≤ i≤ n.

Given any quasi-ordering ≤ on X, the embedding quasi-ordering �≤ on T (X, V) is defined by
induction on the sum of the sizes of the terms s, t, by s�≤ t iff:

— either t= g(t1, . . . , tn) and s�≤ tj for some j, 1≤ j≤ n;
— or s= f (�s), t= g(�t), f ≤ g and �s�∗≤ �t;

where we recall that�∗≤ is the embedding quasi-ordering on words, understanding that the letters
(which are terms themselves here) are quasi-ordered by �≤ (this is a recursive definition). As
with several other notions here, we reuse freely some notations and some notions that we had
introduced in the special case considered in Section 10.

Kruskal’s tree theorem – in a more complete form than stated earlier – states that�≤ is wqo on
T (X) iff ≤ is wqo on X.

The latter extends to a topological setting: for a topological space X, T (X) is Noetherian iff X
is Noetherian (Goubault-Larrecq 2013, Theorem 9.7.46). For this to make sense, we need to put a
topology on T (X), and this is the tree topology (Goubault-Larrecq 2013, Definition 9.7.39), defined
as follows. For short, let Y = T (X). The simple tree expressions on X are given by the grammar
π ::=♦U(π1 | · · · | πn) where U is open in X, and n ∈N. (The base case is obtained when n= 0.)
Such a simple tree expression denotes the set of terms t that have a subterm of the form f (�t) with
f ∈U and�t ∈ Y∗π1Y∗ · · · Y∗πnY∗. The simple tree expressions generate a topology, called the tree
topology.

Here are a few basic facts about the tree topology. These can be found in Goubault-Larrecq
(2013, Exercises 9.7.40, 9.7.43). The proof of the following proposition, and of most subsequent
results, can be found in Appendix E.

Proposition 11.1. Let X be a topological space. Every finite intersection of simple tree expressions
can be rewritten as a finite union of simple tree expressions. In particular, the simple tree expressions
form a base of the tree topology.

Letting ≤ be the specialization quasi-ordering of X, the specialization quasi-ordering of T (X) is
the embedding quasi-ordering �≤.

The reader might be under the impression that the tree topology is far removed from the
embedding quasi-ordering �≤. Not so: the situation is exactly as for words (Proposition 8.2),
and when X is a poset, then the tree topology is the Alexandroff topology of �≤:

Proposition 11.2. Let X be a set quasi-ordered by ≤. The tree topology on T (Xa) is exactly the
Alexandroff topology of �≤ on T (X).

Proof. This is the first part of Exercise 9.7.48 of Goubault-Larrecq (2013). We give a proof just
before Section E.1 in Appendix E.

This means, as for most other cases studied in this paper (except the case of rings, of words
under the prefix ordering, and of powersets), that in the familiar case where X is a poset, the
completion T̂ (X) is both the sobrification of T (X) with the tree topology, and the ideal completion
of T (X) with the�≤ quasi-ordering. (Recall Hoffmann’s theorem that for a poset Y , S(Ya)= I(Y)
Hoffmann 1979b.) The present section is therefore merely an extension of Section 10 to a more
general format of trees, and more general spaces of function symbols.

11.1 Tree steps
To characterize S(X), we rely again on specific forms of regular tree expressions, this time for
terms. We start with regular expressions based on the ? operator, which we call tree steps.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

792 A. Finkel and J. Goubault-Larrecq

Definition 11.3 (Tree step). Let X be a topological space.
For every word-product �P on T (X), the support supp �P of �P is defined as the set of terms t such

that the one-element sequence t is in the language of �P. Equivalently, when �P= e1e2 · · · en, supp �P=⋃n
i=1 supp ei, where supp S∗ = S and supp P? = P.
For every closed subset F of X, let F?(�P) denote the union of supp �P with the set of all terms of the

form f (�t), f ∈ F, �t ∈ �P.
The tree steps are the expressions of the form C?(�P) where C is irreducible closed in X and �P is a

word-product on T (X).

For example, when C= {f }, �P= {a}?{b}?, then C?(�P) is the set of all terms f (a, b), f (a), f (b), f (),
but also the terms a and b from supp �P.

Lemma 11.4. Let X be a topological space. For every closed subset F of X, and every word-product
�P on T (X), supp �P and F?(�P) are closed in T (X). If moreover F= C is irreducible, then so is the tree
step C?(�P).

Proof. See Appendix E, as for most other results of this section.

11.2 Tree iterators
We turn to the needed generalization of tree regular expressions of the form C∗.S. Recall that
T (X, {�}) is the set of terms of T (X ∪ {�}) where � is always applied to the empty list of
arguments –� acts as a hole, meant to be replaced by terms.

Definition 11.5 (Context). Let X be a topological space, and � be an element called the hole, and
assumed not to be in X. A context is a term of T (X, {�}).

Given any context C, and any subset S of T (X), C[S] denotes the set of all terms in T (X) obtained
by replacing each occurrence of� in C by (possibly different) terms from S.

The hole� can be replaced by different terms, for example, when S= {a, b}, f (�,�)[S] denotes
{f (a, a), f (a, b), f (b, a), f (b, b)}. Notice that terms without the hole are also considered as contexts:
take C = f (c) for example, then C[S] contains just f (c), for any subset S.

By extension, where t is a single term, C[t] denotes the unique term obtained by replacing every
hole � in C by t. One should beware that C[S] is not in general equal to the set of all terms C[t],
t ∈ S, as the example S= {a, b}, C = f (�,�) demonstrates.

Given two contexts C and C′, the notation C[C′[S]] makes sense: this is C[S′], where S′ =
C′[S]. One can also read this as C[C′][S], where C[C′] is the context obtained by replacing each
occurrence of� in C by the (same) context C′.

Given a single hole�, we equip {�} with the only possible topology and write T (X)+ {�} for
the topological coproduct. Its open subsets are the sets of the formU orU ∪ {�}, whereU is open
in T (X), and similarly for closed subsets. Its irreducible closed subsets are the irreducible closed
subsets of T (X), and {�}.

Definition 11.6 (Tree iterators). Let X be a topological space, and � be a distinguished element
outside X, called the hole.

The tree iterators are formal expressions of the form C∗.S, where C is a closed subset of
X× (T (X)+ {�})∗, and S is a closed subset of T (X). We equate pairs (f , �u) in C with the contexts
c= f (�u) – such contexts are elementary contexts, in that� can only occur directly under f .

Call argument support args C of C the set of all terms t ∈ T (X) such that f (t) ∈ C for some f ∈ X.
(Equivalently, such that some term of the form f (. . . , t, . . .) belongs to C.) Then, C∗.S denotes the
smallest set of terms in T (X) such that:

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 793

(1) every term in S is in C∗.S;
(2) every term in args C is in C∗.S;
(3) for every elementary context c ∈ C, c[C∗.S] is included in C∗.S.

For example, let C= {f } × {�}∗. Its argument support is the set of all terms t ∈ T (X) such that
t ∈ {�}∗, that is, t=�: this is impossible since � is not a term of T (X). So args C is empty. Let
S= {a, b}. C∗.S is the following set of terms. First, there are the terms from S, namely a and b.
Then, there are the terms obtained from the latter by applying the elementary contexts c ∈ C to the
above terms. These contexts are f (), f (�), f (��), etc. So we obtain the terms f , f (a), f (b), f (a, a),
f (a, b), f (b, a), f (b, b), etc. In a third step, we find the terms obtained by applying the contexts f (),
f (�), f (��), etc., to the latter terms: we obtain f (f), f (f (a)), f (f (b)), f (f (a, a)), . . . , f (a, f (a)), etc.
Continuing this way, we realize that C∗.S is the set of terms whose non-leaf nodes are labeled with
f , and whose leaves are labeled by a or b . . . or f .

For a more complex example, take C= {f } × {c}?{�}∗. Now args C= {c} – c is the only part of
{c}?{�}∗ that does not contain the hole �. Take S= {a, b} again. Then, C∗.S is the following set
of terms. First, we find the terms from S, namely a and b. Second, we find the terms from args C,
that is, c. Third, we find the results of applying contexts of the form f (), f (c), f (�), f (c�), f (��),
f (c��), f (���), etc., to the above terms: these are the terms of the form f (t1, t2, . . . , tn) where
each ti is in {a, b, c}. Continuing this way, we obtain that C∗.S is the set of all terms built using f ,
a, b, c, where a, b, c are applied to no argument. In particular, C∗.S is the same set as C′∗.S′, where
C′ = {f } × {�}∗, and S′ = {a, b, c}.

Remark 11.7. One should beware that C∗.S can be non-empty even when S is empty, and even
when args C is empty. For example, for C= {f } × {�}∗, C∗.∅ is the set of terms whose only func-
tion symbol is f , at all positions: f (), f (f ()), f (f (), f ()), . . . This unexpected kind of non-empty
STRE will be used in case 3 of Lemma 11.11, and in the definition of τ ′ in Theorem 11.36,
notably.

The argument support args Cmimics the eponymous notion of Section 10. While we do not com-
mit yet to a specific syntax for closed subsets C of X× (T (X)+ {�})∗, the case that will be of most
interest to us – and which will be the general case when X is Noetherian – is when C is of the form⋃m

i=1 Ci ×Qi, where Ci is irreducible closed in X and each Qi is a word-product over T (X)+ {�}
for each i, 1≤ i≤m. In that case, args C simplifies:

Lemma 11.8. Let C=⋃m
i=1 Ci ×Qi, where Ci is a closed non-empty subset of X and each Qi is a

word-product over T (X)+ {�} for each i, 1≤ i≤m. Then, args C=⋃m
i=1 supp Qi ∩ T (X).

Each Qi is closed in T (X)+ {�}. In particular, args C is closed in T (X).

Proof. Let t ∈ args C. For some i, 1≤ i≤m, there is a term f (t) with f ∈ Ci and such that the one-
element word t is inQi. The lattermeans that t ∈ suppQi. Also, t ∈ T (X) by definition. Conversely,
any element of suppQi ∩ T (X) is a term (not the hole) t in suppQi, that is, such that the one-
element word t is in Qi. Since Ci is non-empty, pick f from Ci. Then f (t) is in C, so t is in args C.

For any space Y , the function i : Y→ Y∗ that maps any y ∈ Y to the one-letter word y is con-
tinuous (Lemma B.1 in the Appendix). Since suppQi = i−1(Qi), it is closed in Y = T (X)+ {�}.
It follows that suppQi ∩ T (X) is closed in T (X), hence also args C.

Lemma 11.9. Let X be a topological space, and � be a hole outside T (X). Every tree iterator C∗.S
such that args C is closed in T (X) denotes a closed subset of T (X).

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

794 A. Finkel and J. Goubault-Larrecq

The cases where tree iterators are irreducible require an analysis of the number of holes that
can occur in each context, which parallels the analysis we ran in Lemma 10.8, leading to three
cases (a), (b), and (c).

Definition 11.10. Let X be a topological space, and � be a hole outside T (X). Let C be a subset of
X× (T (X)+ {�})∗. C is�-linear iff its elements have at most one occurrence of� each, that is, for
every elementary context f (�t) ∈ C, at most one element of �t equals �. C is �-generated iff for every
f (�u) ∈ C such that � does not occur in �u, one can split �u as a concatenation �u1�u2 so that f (�u1��u2)
is in C.

The �-generated closed sets C are those such that every element in C contains the hole � or
has a larger element in C that contains the hole. So, for example, C= {f } × {�}∗ is �-generated.
Indeed, its elements are the pairs (f ,�n), n ∈N; when n≥ 1, this contains �, and when n= 0,
(f , ε) is below (f ,�), which is inside C and contains �, that is, we apply the above definition,
picking �u1 = �u2 = ε. C is not�-linear, since, say, (f ,��) is in it, and contains two holes.

On the other hand, {f } × {�}? is both�-linear and�-generated.
The tree iterators C∗.S are easier to understand when C is �-linear, just as in Section 10. Let

C�∗ be the set of all contexts of the form c1[c2[· · · [ck] · · ·]], where k ∈N, and c1, c2, . . . , ck ∈ C.
(When k= 0, this denotes�.) Whenever C is�-linear, all these contexts have at most occurrence
of �. Then C∗.S is the set of all terms obtained from a context c in C�∗ by replacing the unique
occurrence of the hole� (if any) by a term from S∪ args C.

Lemma 11.11. Let X be a topological space, and � be a hole outside T (X), C be a closed subset of
X× (T (X)+ {�})∗, S be a closed subset of T (X), and assume that args C is closed. Then, the tree
iterator C∗.S is irreducible in the following cases:

(1) if C is non-�-linear, and S is non-empty;
(2) or if C is�-generated and�-linear and S is irreducible;
(3) or if C is non-empty,�-generated, and S is empty.

In case 3, C∗.∅ is in particular non-empty. That should not be a surprise, considering
Remark 11.7.

Using these two forms of closed subsets – tree steps and tree iterators – one can express the
complements of all simple tree expressions.

Lemma 11.12. Let X be a topological space. The complement �π of the open subset denoted by the
simple tree expression π =♦U(π1 | π2 | · · · | πn) is given by structural induction on π by:

— �π = ((F× {�}∗)∪ (X× (�π∗1 {�}?�π∗2 {�}? · · · {�}?�π∗n)))∗.∅ if n≥ 1, where F is the com-
plement of U in X;

— if n= 0, then �π = (F× {�}∗)∗.∅.

Lemma 11.12 can be made explicit, especially when U = X and n= 1:

Lemma 11.13. Let X be a topological space. The complement �π of the open subset denoted by the
simple tree expression π =♦U(π1 | π2 | · · · | πn) is given by structural induction on π by:

— if U = X and n= 0, then �π is empty;
— if U = X and n= 1, then �π is X?(�π∗1);
— if U = X and n≥ 2, then �π is (X× (�π∗1 {�}?�π∗2 {�}? · · · {�}?�π∗n))∗.∅;
— if U �= X and n= 0, then �π is (F× {�}∗)∗.∅, where F is the complement of U;

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 795

— if U �= X and n= 1, then �π is ((F× {�}∗))∗.X?(�π∗1), where F is the complement of U;
— if U �= X and n≥ 2, then �π is ((F× {�}∗)∪ (X× (�π∗1 {�}?�π∗2 {�}? · · · {�}?�π∗n)))∗.∅,

where F is the complement of U.

Proof. The case U = X, n= 0 is clear. When U = X and n= 1, Lemma 11.12 tells us that �π =
(X× �π∗1)∗.∅. This is by definition the smallest set A of terms containing �π1 = supp (X× �π∗1)
and such that for every elementary context f (�u) ∈ X× �π∗1 , f (�u) (which is a term, i.e.,� does not
occur in it) is in A. Thus, A= X?(�π∗1). When U �= X and n= 1, by Lemma 11.12 �π = ((F×
{�}∗)∪ (X× (�π∗1)))∗.∅. The argument support of C= (F× {�}∗)∪ (X× (�π∗1)) is �π1, so the
elements of �π are those of �π1, those of the form f (�t) where f is arbitrary and �t ∈ �π∗1 (hence,
all the terms of X?(�π∗1)), and those obtained from the latter by applying any number of function
symbols from F. The other cases follow directly from Lemma 11.12.

11.3 Checking inclusion
We start with tree step inclusion.

Lemma 11.14. Let X be a topological space, C and C′ be two irreducible closed subsets of X, �P and �P′
be two word-products over T (X). Then C?(�P)⊆ C′?(�P′) iff C⊆ C′ and �P⊆ �P′, or C?(�P)⊆ supp �P′.

We turn to the cases where one of the closed set to compare is of the formC∗.S. For every closed
subset C of X× (T (X)+ {�})∗ and every closed subset S of T (X), we write C[S] for the set of pairs
(f , �t), where (f , �u) ranges over C and where �t is obtained from �u by replacing each occurrence of
� by possible different terms from S.

Lemma 11.15. Let X be a topological space, C be an irreducible closed subset of X, �P be a word-
product over T (X), C be a closed subset of X× (T (X)+ {�})∗ such that args C is closed in T (X),
where� is a hole outside T (X), and S be a closed subset of T (X).

Then, C?(�P)⊆ C∗.S iff C× �P⊆ C[C∗.S] and supp �P⊆ C∗.S, or C?(�P)⊆ args C∪ S.

The expression C[C∗.S] in Lemma 11.15 is arguably not syntactically smaller than C∗.S, and this
would cause some problems in designing an algorithm for inclusion testing.

We shall show below that we can replace C[C∗.S] by C[C] for any irreducible closed set C con-
taining C∗.S. The one that will suit us best is a set T �(X), which we now define. While T �(X) is
semantically very large – larger than the set of all terms! –, one can think of it denoted by some
specific piece of syntax that one would naturally call the wildcard.

Definition 11.16 (WildcardT �(X)). Let T �(X) be the disjoint union of T (X)with a fresh element
�. Its topology is described by letting the closed subsets of T �(X) be those of T (X), plus T �(X) itself.

That is, T �(X) is obtained from T (X) by adding a new top element to it. Notice that the whole of
T �(X) is then irreducible closed in T �(X).

T �(X) is different from T (X)+ {�}. While both spaces have the same elements, the topology
of T �(X) is strictly coarser than that of T (X)+ {�}: the only closed subset of T �(X) that contains
� is T �(X) itself, while any set F ∪ {�}, F closed in T (X), is closed in T (X)+ {�}. In terms of
opens, every non-empty open subset of T �(X) contains�, while any setU ∪ {�}, withU open in
T (X), is also open in T (X)+ {�}.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

796 A. Finkel and J. Goubault-Larrecq

In the following, C[T �(X)] is just what it looks like it should be the set of contexts obtained by
instantiating a context from C by replacing some (but not necessarily all) of its holes by terms.

Lemma 11.17. Let X be a topological space, C be an irreducible closed subset of X, �P be a word-
product over T (X), C be a closed subset of X× (T (X)+ {�})∗ such that args C is closed in T (X),
where� is a hole outside T (X), and S be a closed subset of T (X).

Then C?(�P)⊆ C∗.S iff C× �P⊆ C[T �(X)] and supp �P⊆ C∗.S, or C?(�P)⊆ args C∪ S.

Proof. Using Lemma 11.15, it is enough to show that if C× �P⊆ C[T �(X)] and supp �P⊆ C∗.S,
then C× �P⊆ C[C∗.S]. Indeed, let (f , �t) be any element of C× �P. By assumption, f (�t) is in
C[T �(X)]. So there is an elementary context f (�u) in C such that �t is obtained from �u by replac-
ing those uj that are equal to � by some terms tj, 1≤ j≤m. Since tj ∈ supp �P, tj ∈ C∗.S. So (f , �t)
is in C[C∗.S].

One may wonder above why we used T �(X) instead of, for example, T (X). This would work,
too. But using T �(X) will be what we shall need, in particular in the case where we need to
compare two tree iterators.

Let us refine our understanding of the construction C[S].

Lemma 11.18. Let X be a Noetherian space, and S be a closed subset of T �(X). Let C be a closed
subset of X× (T (X)+ {�})∗ of the form ⋃m

i=1 Ci ×Qi, where each Ci is irreducible closed in X and
each Qi is a word-product over T (X)+ {�}.

Then, C[S] equals
⋃m

i=1 Ci ×Qi[S], where for each word-product Q= e1e2 · · · en, Q[S]=
e1[S]e2[S] · · · en[S], and for each atomic expression e, e[S] equals S? if e= {�}?, I? if e= I? for
some irreducible closed subset I of T (X), ((F � {�})∪ S)∗ if e=F∗ and � ∈F , F∗ if e=F∗
and� �∈F .

That is, C[S] is obtained from C by literally replacing � by S throughout. In particular, when
S= T �(X): {�}?[T �(X)]= T �(X)?, I?[T �(X)]= I? when I is irreducible closed in T (X),
F∗[T �(X)]=F∗ when F is closed in T (X), and F∗[T �(X)]= T �(X)∗ when� ∈F .

This allows us to give our final characterization of inclusion between tree steps and tree
iterators, in a way that will lend itself more directly to a recursive algorithm.

Lemma 11.19. Let X be a topological space, C be an irreducible closed subset of X, �P be a word-
product over T (X), C be a closed subset of X× (T (X)+ {�})∗ of the form

⋃m
i=1 Ci ×Qi, where

each Ci is irreducible closed in X and each Qi is a word-product over T (X)+ {�}, where� is a hole
outside T (X), and S be a closed subset of T (X).

Then C?(�P)⊆ C∗.S iff either: supp �P⊆ C∗.S, C⊆ Ci and �P⊆Qi[T �(X)] for some i, 1≤ i≤m;
or C?(�P)⊆ args C∪ S.

Proof. Lemma 11.17 applies since args C=⋃n
i=1 suppQi ∩ T (X) is closed. Then �P is irre-

ducible closed (in T �(X)∗, not just in T (X)∗) by Lemma 7.7. So C× �P is irreducible closed in
X× T �(X)∗, whence C× �P⊆ C[T �(X)]=⋃n

i=1 Ci ×Qi[T �(X)] iff C× �P⊆ Ci ×Qi[T �(X)]
for some i, 1≤ i≤ n, iff C⊆ Ci and �P⊆Qi[T �(X)] for some i, 1≤ i≤ n.

Let us now turn to the third case, where we compare tree iterators and tree steps in the other
order.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 797

Lemma 11.20. Let X be a topological space, C be an irreducible closed subset of X, �P be a word-
product over T (X), C be a closed subset of X× (T (X)+ {�})∗ such that args C is closed in T (X),
where � is a hole outside T (X), and S be a closed subset of T (X). Assume also that there is an
elementary context f (�u) in C such that� occurs as some element of �u.

Then C∗.S⊆ C?(�P) iff C∗.S⊆ supp �P.

Proof. Assume C∗.S⊆ C?(�P). By assumption, there is an elementary context f (�u) in C such that�
occurs as some element of �u. To make things simpler, observe that this implies that f (�) is in C.
For every t ∈ C∗.S, f (t) is then again in C∗.S. So f (t) is in C?(�P). It follows that either f ∈ C and
t ∈ supp �P, or f (t) ∈ supp �P. Since supp �P is closed, it is downward-closed in �≤, so if f (t) ∈
supp �P, then t ∈ supp �P. In any case, t ∈ supp �P. Since t is arbitrary, C∗.S⊆ supp �P. The converse
inclusion is obvious.

Note that the condition that there is an elementary context f (�u) in C such that � occurs as
some element of �u is satisfied in all of the cases 1–3 where we proved C∗.S to be irreducible
(Lemma 11.11), since C is not�-linear in the first case and�-generated in the remaining cases.

Finally, we deal with the case where we try to compare two tree iterators. We do this in several
steps, and start, as above, with a lemma with no obvious algorithmic content, but which gives the
basic characterization we need. The proof of this heavily depends on irreducibility, as usual. Let @
be the application map from X× T (X)∗ to T (X). This sends (f , �t) to f (�t) and is continuous (see
Exercise 9.7.47 of Goubault-Larrecq 2013, or Lemma E.6 in Appendix E).

Lemma 11.21. Let X be a topological space, C and C′ be two closed subsets of X× (T (X)+ {�})∗
such that args C and args C′ are closed in T (X), where� is a hole outside T (X), and let S, S′ be two
closed subsets of T (X).

Then C∗.S⊆ C′∗.S′ iff C[C∗.S]⊆@−1(args C′ ∪ S′)∪ C′[T �(X)] and args C∪ S⊆ C′∗.S′.

Again, we need to make the above lemma clearer, in the case that is of primary interest to us.

Lemma 11.22. Let X be a topological space, C and C′ be two closed subsets of X× (T (X)+ {�})∗,
where � is a hole outside T (X), and let S, S′ be two closed subsets of T (X). Assume also that C is
of the form

⋃m
i=1 Ci ×Qi, and that C′ is of the form

⋃n
j=1 C′j ×Q′j, where each Ci and each C′j is

irreducible closed in X, and Qi and Q′j are word-products over T (X)+ {�} for each i, 1≤ i≤m,
and each j, 1≤ j≤ n. Assume finally that C∗.S is irreducible, and that� ∈Qi for every i, 1≤ i≤m.

Then C∗.S⊆ C′∗.S′ iff:

— either C∗.S⊆ args C′ ∪ S′,
— or args C∪ S⊆ C′∗.S′, and for every i, 1≤ i≤m, there is a j, 1≤ j≤ n, such that Ci ⊆ C′j and

Qi[T �(X)]⊆Q′j[T �(X)].

Note that the assumptions that C∗.S is irreducible, and that � ∈Qi for every i, 1≤ i≤m, are
satisfied as soon as any of the cases 1–3 of Lemma 11.11 hold.

11.4 Intersections of tree steps and tree iterators
We now compute intersections, and we start with tree steps. All missing proofs are in
Appendix E.6.

In the following lemma, recall that, by Lemma 7.13, the intersection of any two word-products
�P and �P′ (here, on T (X)) can be expressed as a finite union of word-products �P′′j .

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

798 A. Finkel and J. Goubault-Larrecq

Lemma 11.23. Let X be a topological space. The intersection of two tree steps P= C?(�P) and P′ =
C′?(�P′) is equal to ⋃n

j=1 (C ∩ C′)?(�P′′j)∪ (supp�P ∩ P′)∪ (P ∩ supp �P′), where �P ∩ �P′ is expressed as
a finite union

⋃n
j=1 �P′′j of word-products on T (X). If C ∩ C′ can be written as the union of finitely

many irreducible closed subsets Ci, 1≤ i≤m, then P ∩ P′ is also equal to the union of the tree steps
C?
i (�P′′j) (1≤ i≤ n, 1≤ j≤m), of supp �P ∩ P′, and of P ∩ supp �P′.

Lemma 11.24. Let X be a Noetherian space, and S be a closed subset of T (X). Let C?(�P) be a
tree step, C be a closed subset of X× (T (X)+ {�})∗ of the form

⋃n
j=1 Cj ×Qj, where each Cj is

irreducible closed in X and each Qj is a word-product over T (X)+ {�}.
The intersection of the tree step P= C?(�P) and of the tree iterator P′ = C∗.S is the union of

supp �P ∩ P′, of P ∩ (S∪ args C), and of (C ∩ Cj)?(�P ∩Qj[P′]), 1≤ j≤ n.
If, for each j, one can write C ∩ Cj as the union of finitely many irreducible subsets Cij, 1≤ i≤

mj, and if �P ∩Qj[P′] can be expressed as the union of finitely many word-products �Pj, 1≤ ≤ qj,
then P ∩ P′ is also equal to the union of supp �P ∩ P′, of P ∩ (S∪ args C), and of C?

ij(�Pj), 1≤ j≤ n,
1≤ i≤mj, 1≤ ≤ qj.

Lemma 11.26 below, which deals with intersections of tree iterators, is only valid if the word-
productsQi andQ′j on T (X)+ {�} are normalized. A normalized word-product on T (X)+ {�} is
of the form e1e2 · · · en, where each atomic expression ei is of the form P? (with P irreducible closed
in T (X)), {�}?, F∗ (with F closed in T (X)), or {�}∗. In other words, we forbid atomic expressions
of the form (F ∪ {�})∗ where F is a non-empty closed subset of T (X). Note that the components
of a normalized product are either closed subsets of T (X) (not containing�) or just {�}.

Lemma 11.25. Let X be a Noetherian space, Q and Q′ be two normalized word-products on T (X)+
{�}, and P and P′ be two closed subsets of T (X). The intersection Q[P]∩Q′[P′] can be written
as a finite union

⋃n
i=1 Qi[P ∩ P′], where each Qi is a normalized word-product over T (X)+ {�}.

Explicitly, the set {Qi | 1≤ i≤ n} is obtained as MeetE (Q,Q′), where, for all components F of Q and
F′ of Q′, E(F, F′) is a finite set of irreducible closed subsets whose union is:

— F ∩ F′ if F, F′ �= {�};
— {�} if F= F′ = {�};
— P ∩ F′ if F= {�} and F′ �= {�};
— F ∩ P′ if F �= {�} and F′ = {�}.

Moreover, for every i, supp Qi is included in (suppQ∩ supp Q′)∪ (suppQ∩ P′)∪ (P ∩
supp Q′)∪ {�}.

Proof. Since X is Noetherian, T (X) is, too. By Lemma 7.13, Q[P]∩Q′[P′] is equal to the union of
the finitely many elements ofMeet∩(Q[P],Q′[P′]).

For every set F that is either closed in T (X) or equal to {�}, and every closed subset S of T (X),
we write F[S] for F if F �= {�}, for S otherwise. We observe that for all components F of Q and
F′ of Q′, F[P]∩ F′[P′] is the union of the elements C[P ∩ P′], where C ranges over the elements
of E(F, F′): indeed both are equal to F ∩ F′ in the first case defining E , to P ∩ P′ in the second
case, to P ∩ F′ in the third case and to F ∩ P′ in the fourth case. It follows, by induction on the
definition of Meet, that Meet∩(Q[P],Q′[P′]) is equal to (the union of the finitely many elements
of) MeetE (Q,Q′)[P ∩ P′]. It is also easy to check that MeetE (Q,Q′) consists of normalized word-
products only, because E only returns (sets of irreducible) closed subsets of T (X), or {�}.

For the final part of the Lemma, suppQi consists of unions of closed sets as returned by E(F, F′)
on components F of Q and F′ of Q′, as inspection of the MeetE procedure reveals. If F, F′ �= {�},

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 799

Figure 5. STREs, tree-products (C ∈S(X), n≥ 0,m≥ 1).

then E(F, F′)= F ∩ F′ is included in suppQ∩ suppQ′. If F= F′ = {�}, then E(F, F′)= {�}. If
F= {�} and F′ �= {�}, then E(F, F′)= P ∩ F′ is included in P ∩ suppQ′. Finally, if F �= {�} and
F′ = {�}, then E(F, F′)= F ∩ P′ is included in suppQ∩ P′.

Lemma 11.26. Let X be a Noetherian space and S and S′ be closed subsets of T (X). Let also C (resp.,
C′) be a closed subset of X× (T (X)+ {�})∗ of the form ⋃m

i=1 Ci ×Qi (resp.,
⋃n

j=1 C′j ×Q′j), where
each Ci and each C′j is irreducible closed in X and each Qi and each Q′j is a normalized word-product
over T (X)+ {�}. For all i, j, write Ci ∩ Cj as

⋃pij
k=1 C

′′
ijk where each C′′ijk is irreducible closed in X,

and let Q′′ij, 1≤ ≤ qij enumerate the elements of MeetE (Qi,Q′j), where the oracle E is defined in
Lemma 11.25.

Then the intersection of the tree iterators P= C∗.S and P′ = C′∗.S′ is the tree iterator C′′∗.S′′,
where C′′ =⋃

i,j,k, C′′ijk ×Q′′ij and where S′′ is the union of P ∩ (args C′ ∪ S′) and of (args C∪
S)∩ P′.

11.5 STREs, tree-products
Assume X Noetherian. We now claim that the closed subsets of T (X) are exactly those denoted by
simple tree regular expressions (STREs), and those that are irreducible are exactly those denoted
by tree-products, which we now define.

The STREs S and the tree-products P are defined in Figure 5, with additional constraints that we
describe in Requirement 11.28 below.We understand those up to associativity and commutativity
for+, and the fact that 0 is neutral for+. Hence, for example, every STRE S can be written as a sum
of finitely many tree-products P1, . . . , Pn, and those are unique up to permutation; in particular
S= 0 if and only if n= 0.

Those expressions have the obvious semantics, once we understand 0 as the empty set, + as
union, and in productions such as Q, � as the set {�}. The semantics of A= C(Q) is the product
of the semantics of C and of Q. We have:

Lemma 11.27. The languages of S and P are closed subsets of T (X), the languages of �P are closed
subsets of T (X)∗, the languages of C and A are closed subsets of X× (T (X)+ {�})∗, and the
languages of Q are closed subsets of (T (X)+ {�})∗.

Proof. By induction on syntax. If P= C?(�P), then P is closed by Lemma 11.4. If P= C∗.S, then
P is closed by Lemma 11.9, which applies since args C is closed, due to Lemma 11.8. The case
of S follows from the fact that finite unions of closed sets are closed. The case of �P follows from
Corollary 7.6, and similarly for Q, noticing that {�} is closed in T (X)+ {�}. The case of A is
because products of closed sets are closed, and the case of C follows, again, from the fact that finite
unions of closed sets are closed.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

800 A. Finkel and J. Goubault-Larrecq

Requirement 11.28. We say that A= C(Q) is syntactically�-linear if and only if Q is of the form
�P1�?�P2�? · · ·�?�Pm with m≤ 2, and is syntactically �-generated if and only if it is of this form
withm≥ 2, or Q=�∗.

C=∑m
i=1 Ci(Qi) is syntactically �-linear (resp., generated) if and only if every Ci(Qi) is

syntactically�-linear (resp., generated).
We require every subexpression C∗.S to be such that C is syntactically�-generated, C �= 0, and

one of the following conditions hold:

(1) C is not syntactically�-linear, and S �= 0, or
(2) C is syntactically�-linear and S is a tree-product P;
(3) or S= 0.

Lemma 11.29. The language of every tree-product is an irreducible closed subset of T (X).

Proof. We first show that the language of every tree-product P is non-empty. If P is of the form
C?(�P), then its language contains f (), for any f in C. If P is of the form C∗.S, where C= C1(Q1)+
· · · + Cn(Qn), then since C �= 0, n is non-zero. (Remember that we reason up to the fact that +
is associative and commutative, and 0 is neutral for +.) In that case, pick f from C1, and we note
that f () is in the language of C∗.S.

It follows that (∗) for every STRE S such that S �= 0, the language of S is non-empty.
We now prove the claim by induction on expressions. We need to show both that the language

of every tree-product is irreducible closed, and that every expression of the form Q is an irre-
ducible closed subset of (T (X)+ {�})∗. The latter follows from Lemma 7.7 (every word-product
is irreducible closed). The fact that every expression of the form C∗.S is irreducible closed follows
from Lemma 11.11, once we observe that every non-syntactically �-linear context C has a non-
�-linear language, and using (∗) in case 1; and for the remaining cases, that every syntactically
�-linear context C has a �-linear language, and similarly for �-generatedness. Every expression
of the form C?(�P) is irreducible closed by Lemma 11.4.

We shall see below that the converse holds.
An example of tree-products is given in the following result, which also serves to state how

T (X) embeds into its completion T̂ (X)= S(T (X)).

Lemma 11.30 (Embedding). Let X be a topological space. The closure ηST (X)(t) of the term t in T (X)
is defined by structural induction on t by: if t= f (t1, t2, . . . , tm), then ηST (X)(t)= (ηSX f)?(ηST (X)(t1)

?

ηST (X)(t2)
? · · · ηST (X)(tn)

?).

Proof. By Lemma 11.4, (ηSX f)?(ηST (X)(t1)
?ηST (X)(t2)

? · · · ηST (X)(tn)
?) is closed, since ηST (X)(t1),

ηST (X)(t2), . . . , ηST (X)(tn) are closed by induction hypothesis. It also contains t, so it contains
the closure of t. Conversely, it is easy to see that whenever s ∈ (ηSX (f))?(ηST (X)(t1)

?ηST (X)(t2)
? · · ·

ηST (X)(tn)
?), then s�≤ t, so s is in ηST (X)(t).

We can define a syntactic inclusion test ≤ as follows, following Lemmas 11.14, 11.19, 11.20,
and 11.22. We write semantic inclusion as ⊆. The following notion of syntactic support is meant
to mimic the semantical notion of support of Definition 11.3 in the syntax, while the notion of
syntactic argument support mimics the argument support of Definition 11.6; accordingly, we use
the same notations supp �P and args C.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 801

Definition 11.31. Let the syntactic support of �P= e1e2 · · · en be supp �P=∑n
i=1 supp ei, where

supp P? = P, supp S∗ = S.
Let supp′ Q be 0 if Q=�∗,

∑m
i=1 supp �Pi if Q= �P1�?�P2�? · · ·�?�Pm. (This denotes the inter-

section of the support of Q with T (X).) The syntactic argument support args C of the context
C=∑n

i=1 Ci(Qi) is
∑n

i=1 supp′ Qi.
We define S≤ S′, P≤ P′, etc., by induction on the sum of the sizes of the two expressions

involved, by:
(1) for S=∑m

i=1 Pi and S′ =∑n
j=1 P′j , S≤ S′ if and only if for every i, there is a j such that

Pi ≤ P′j ;
(2) for P= C?(�P) and P′ = C′?(�P′), P≤ P′ if and only if C⊆ C′ and �P≤ �P′, or P≤ supp �P′;
(3) for P= C?(�P) and P′ = C∗.S with C=∑m

i=1 Ci(Qi), P≤ P′ if and only if supp �P≤ P′ and
C⊆ Ci, �P≤Qi for some i, 1≤ i≤m, or P≤ args C+ S;

(4) for P= C∗.S and P′ = C?(�P), P≤ P′ if and only if P≤ supp �P;
(5) for P= C∗.S and P′ = C′∗.S′ with C=∑m

i=1 Ci(Qi) and C′ =∑n
j=1 C′j(Q′j), P≤ P′ if and only

if P≤ args C′ + S′, or args C+ S≤ P′ and for every i there is a j such that Ci ⊆ C′j and Qi ≤
Qj;

(6) Q≤Q′ if and only if Q is less than Q′ as a word-product (see Lemma 7.10), comparing letters
by ≤, recursively, and considering � as a letter above all others. (This case subsumes tests of
the form �P≤Q as well, for instance, since any �P is a Q.)

One easily sees that S≤ S′ if and only if (the language of) S is included in S′, P≤ P′ if and
only if P is included in P′, etc., by induction. One should pay attention to the fact that Q≤Q′ is
equivalent to the inclusion of Q[T �(X)] into Q′[T �(X)], as needed in cases 3 and 5 above. This
is why the comparison of expressions of the form Q assumes that � is a letter outside T (X), and
above all elements of T (X) (see Item 6): indeed,� denotes the whole set T �(X) there.

In case Item 6 of the definition is not clear enough, here is a complete explanation. This will
also help understand how the conditions �P≤Qi of Item 3 and Qi ≤Qj of Item 5 are checked. We
let ε ≤Q′ for everyQ′,Q≤ ε iffQ= ε, and, ifQ= e1Q1 andQ′ = e′1Q′1, thenQ≤Q′ if and only if:

(1) e1 � e′1 and Q≤Q′1,
(2) or e1 is of the form E?, e′1 is of the form E′?, e1 e′1 and Q1 ≤Q′1,
(3) or e′1 is of the form E′∗, e1 e′1 and Q1 ≤Q′,
(4) or e1 =∅∗ and Q1 ≤Q′.

Additionally, is defined by: P? P′? iff P≤ P′, P? �? and �? �? are always true, �? P′?
is always false; S∗ S′∗ iff S≤ S′, S∗ �∗ and �∗ �∗ are always true, �∗ S′∗ is always false;
P? S∗ iff P≤ S, P? �∗ and �? �∗ are always true, �? ⊆ S∗ is always false; S∗ P? if and
only if S=∅; similarly S∗ �? if and only if S=∅; and �∗ P?, S∗ �? (with S non-empty),
�∗ �? are always false. One should be conscious that, for instance, P? �? is always true (and
the converse inequality is false unless P=�), even when P contains further subexpressions with
occurrences of�, for example, (({f } × {�}∗)∗.S)? �?.

Lemma 11.32. Let X be a Noetherian space. Then the language of P is included in that of P′ if and
only if P≤ P′. Similarly for S≤ S′.

Corollary 11.33. Let X be a Noetherian space. Inclusion of word-products, resp. of STREs, on X,
can be checked in polynomial time modulo an oracle testing inclusion of closed subsets of X.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

802 A. Finkel and J. Goubault-Larrecq

Proof. Here memoization (Michie 1968) is easier to implement and analyze than dynamic pro-
gramming.We write a recursive program incl that takes two word-products P and P′ and returns
true if P≤ P′, false otherwise. This programmaintains a tableA, initially empty, that maps pairs of
word-products to Booleans. The program incl, applied to P and P′, first checks whether (P, P′) is
in A, and if so returns immediately the Boolean associated with it in A; otherwise, it tests whether
P≤ P′, depending on the shape of P and P′, using the corresponding case (1 through 6), as given
in Definition 11.31; once this is done, it adds (P, P′) to A, associated with the Boolean value true
if P was found to be below P′, false otherwise. Each case, 1 through 6, involves further inclusion
tests between word-products, which are evaluated by calling incl recursively.

Instead of describing all cases, we will focus on case 3 below. It will be practical to con-
sider another program Incl, defined in mutual recursion with incl by: Incl(S, S′) is true,
where S= P1 + · · · + Pm and S′ = P′1 + · · · + P′n, if and only if for every i ∈ {1, . . . ,m}, there is
a j ∈ {1, . . . , n} such that incl(Pi, P′j) returns true; Incl returns true on every pair whose second
component is�, and false on every pair (�, S′) where S′ is an STRE.

In case 3, then P is of the formC?(�P) and P′ is of the formC∗.SwithC=∑m
i=1 Ci(Qi). Following

the definition of case 3, incl does the following.

(1) First, it tests whether supp �P≤ P′. We refer to Definition 11.3 for the definition of supp �P.
Accordingly, writing �P as e1e2 · · · en, testing whether supp �P≤ P′ means testing whether, for
every i ∈ {1, . . . , n}:
— P′′ ≤ P′, in case ei is of the form P′′?;
— or P′′j ≤ P′ for every j ∈ {1, . . . ,m}, in case ei is of the form S∗, where S= P′′1 + · · · + P′′m.
All the tests P′′ ≤ P′ (in the first case), and P′′j ≤ P′ (in the second case) are done by calling
incl recursively.

(2) If item 1 succeeded, incl then tests whether C⊆ Ci and �P≤Qi for some i, 1≤ i≤m. This is
done by enumerating the indices i ∈ {1, . . . ,m}, testing whether C⊆ Ci for each one (using
the given oracle that tests inclusion of closed subsets ofX) and whether �P≤Qi. For the latter,
we use Item 6 of Definition 11.3: we need to compare �P andQi as word-products; this allows
us to use the dynamic programming procedure given after Lemma 7.9, fed with Incl as an
oracle. (You may wish to return to the explanation before Lemma 11.32 in order to better
understand where recursive calls to Incl are involved; namely in the≤ tests involved in the
definition of .)

(3) If item 1 failed, incl instead tests whether P≤ args C+ S. In other words, using the fact that
P is irreducible, it tests whether P≤ S (using Incl), or whether P≤ args C. For the latter, we
use Lemma 11.8, and therefore we test whether P≤ suppQi ∩ T (X) for some i, 1≤ i≤m.
Writing Qi as e1e2 · · · en, this means testing whether P≤ supp ej for some j, 1≤ j≤ n, such
that ej �=�?,�∗. Finally, if ej is of the form P′?, we test whether P≤ supp ej = P′ by calling
incl recursively on (P, P′), and if it is of the form S′∗, we test whether P≤ supp ej = S′ by
calling Incl on (P, S′).

All other cases are dealt with similarly. Up to a multiplicative constant, the time complexity a
memoized procedure such as incl on input (P, P′) is bounded by the product of two values: the
first one is the number of pairs on which incl can be called recursively, and this is bounded by the
product of the sizes of P and P′; the second one is the time complexity of each case (such as case 3,
explained above), including table lookups and table updates on A, but counting the complexity
of each recursive call to incl (including those obtained through an intermediate call to Incl) as
one. Analyzing each case shows that the second value is also polynomial in the sizes of P and P′,
whence the conclusion.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 803

Lemma 11.34. Let X be a Noetherian space. Given two tree-products P, P′, one can express their
intersection as a finite sum of tree-products. If (S, �_�,�, τ ,∧) is an S-representation of X, then this
intersection can be implemented as a map ∧′ modulo an oracle that implements ∧.

Proof. Let |E| denote the number of subexpressions of E that are tree-products, for every kind
of expression in Figure 5. Explicitly: |0| = 0, |S1 + S2| = |S1| + |S2|, |C?(�P)| = 1+ |�P|, |C∗.S| =
1+ |C| + |S|, |e1e2 · · · en| =∑n

i=1 |ei|, |P?| = |P|, |S∗| = |S|, |C1 + C2| = |C1| + |C2|, |C(Q)| = |Q|,
|�∗| = 0, |�P1�?�P2�? · · ·�?�Pm| =∑m

j=1 |�Pj|.
The fact that P ∩ P′ can be expressed as a finite sum of tree-products is by induction on |P| +

|P′|. When both are tree steps, say P= C?(�P) and P′ = C′?(�P′), we use Lemma 11.23, using the
subprocedure MeetE of Lemma 7.13 to compute the intersection of the word-products �P and �P′
as a finite union

⋃n
j=1 �P′′j , where E merely computes the intersection of a component of �P and of

a component of �P′, by induction.
When P is a tree step C?(�P) and P′ is a tree iterator P′ = C∗.S (or conversely), we use

Lemma 11.24 instead. Again, we use MeetE in order to compute �P ∩Qj[P′], where E is inter-
section again. Note that the components of Qj[P′] are either components of Qj, which are finite
sums of tree-products that are strictly smaller than P′ or equal to P′ (at the positions where Qj
holds a�? or a�∗). In any case, E is only ever applied to pairs of word-products (P0, P′0) such that|P0|< |P| and |P′0| ≤ |P′|, so the induction hypothesis applies and E(P0, P′0) therefore computes
P0 ∩ P′0, as desired. The fact that the induction hypothesis really applies is probably clearer with
an example. Imagine that �P= P?1S

∗
1 and Qj = P?2�?S∗2�∗P?3. Following Lemma 7.13, we compute

MeetE (�P,Qj[P′]) as follows. We use the first clause that defines it, and we are led (among other
things) to compute E(P1, P2) – since |P1|< |P| and |P2|< |P′|, the induction hypothesis applies –
andMeetE (S∗1, (�?S∗2�∗P?3)[P′]). For the latter, we use the third clause, and we are led to compute
E(S1, P′) – here |S1|< |P| and the size of the second argument is equal to |P′|, so the induction
hypothesis applies again – and thenMeetE (S∗1, (S∗2�∗P?3)[P′]) andMeetE (ε, (�?S∗2�∗P?3)[P′]). The
latter is trivial. For the former, we are led to compute E(S1, S2) (by induction hypothesis, since
|S1|< |P| and |S2|< |P′|) and thenMeetE (S∗1, (�∗P?3)[P′]) andMeetE (ε, (S∗2�∗P?3)[P′]). The latter
is again trivial, so we look at the former. This requires us to compute E(S1, P′) – and the induction
hypothesis applies again since |S1|< |P| and the size of the second argument is equal to |P′| – and
thenMeetE (S∗1, (P?3)[P′]) andMeetE (ε, (�∗P?3)[P′]). The last call to E that we need has arguments
S1 and P3, with |S1|< |P| and |P3|< |P′|.

Finally, when P is a tree iterator C∗.S and P′ is a tree iterator C′∗.S′, we use Lemma 11.26. (Note
that the syntax of Figure 5 forces all word-products Q to be normalized, so that Lemma 11.26
indeed applies.) This involves callingMeetE again, where E is now the oracle of Lemma 11.25. The
latter is only ever applied to pairs of word-products (P0, P′0) such that |P0|< |P| and |P′0| ≤ |P′|,
or such that |P0| ≤ |P| and |P′0|< |P′|, so that the induction hypothesis applies again.

However, the result C′′∗.S′′ given by Lemma 11.26 may fail to satisfy Requirement 11.28. We
repair this using a rewriting process akin to the relation →1 of Figure 4. (This is very similar,
except that (R11) does not have an equivalent here, since there is no such thing as a function of
arity 0.) First, we split C′′ into a sum C′′0 + C′′1 , where� does not occur at all in C′′0 (hence, C′′0 is of
the form

∑
a C′′a (�Pa)) and � occurs in each summand of C′′1 (so C′′1 is syntactically �-generated).

We can then rewriteC′′∗.S′′ asC′′1
∗.(S′′ +∑

a C′′a
?(�Pa)) (mimicking rule (R6)).Modulo this rewrite,

we can assume that we have expressed P ∩ P′ as C′′∗.S′′, where C′′ is syntactically �-generated. If
C′′ = 0, then we simplify that to S′′. Otherwise, ifC′′ is syntactically�-linear, thenC′′∗._ distributes

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

804 A. Finkel and J. Goubault-Larrecq

over+ (as with rule (R12)): writing S′′ as
∑

b P′′b , we return
∑

b C
′′∗.P′′b . In all other cases, we return

C′′∗.S′′. Whatever the situation, the expression we return satisfies Requirement 11.28.

Proposition 11.35. Let X be a Noetherian space. The closed subsets of T (X) are exactly the
languages of STREs, and the irreducible closed subsets of T (X) are exactly the languages of
tree-products.

Proof. One direction follows from Lemma 11.29. Conversely, we show that every closed subset of
terms is expressible as some STRE.

For every simple tree expression π , the complement of π can be expressed as an STRE,
by induction on (the syntax of) π and following Lemma 11.13. We deal with the second and
sixth items of that lemma; the other cases are similar. In the second case, the complement
of π is X?(�π∗1). Since X is Noetherian, we can express X itself as a finite union of irre-
ducible closed subsets Ci, 1≤ i≤m. By induction hypothesis, �π1 is expressible as some STRE
S. Then π is expressible as

∑m
i=1 C?

i (S∗). In the sixth case, the complement of π is equal to
((F× {�}∗)∪ (X× (�π∗1 {�}?�π∗2 {�}? · · · {�}?�π∗n)))∗.∅, where F is closed in X and n≥ 2. Write
F as a finite union of irreducible closed subsets C′k of X, 1≤ k≤ p, and each �πj, 1≤ j≤ n,
as some STRE Sj. Recall that X=⋃m

i=1 Ci. Then π is expressible as the expression C′′∗.S′′,
where C′′ =∑p

k=1 C
′
k(�

∗)+∑n
i=1 Ci(S∗1�?S∗2�? · · ·�?S∗n) and S′′ = 0. Observe that this satisfies

Requirement 11.28.
Since X is Noetherian, and simple tree expressions form a base of the tree topology

(Proposition 11.1), every open subset of T (X) is a finite union of tree expressions. Therefore every
closed subset is a finite intersection of STREs, hence itself an STRE by Lemma 11.34.

Finally, given an irreducible closed subset of T (X), expressed as an STRE S=∑n
i=1 Pi, that

irreducible closed subset must be the language of some Pi – by irreducibility.

We can now conclude.

Theorem 11.36 (S-representation, trees). Let X be a Noetherian space, X′ = T (X), and (S, �_�,
�, τ ,∧) be an S-representation of X. Then (S′, �_�′ ,�′, τ ′,∧′) is an S-representation of X′, where�_�′ is defined in terms of auxiliary maps that we write �_�◦:

(A) S′ is the collection of all tree-products over the signature S;
(B) �′ is implemented using the procedure outlined in Definition 11.31, where the inclusions

between closed subsets of X are decided using� (and Lemma 5.2);
(C) τ ′ is (

∑n
i=1Ci(�∗))∗.∅, where τ = {C1, . . . , Cn};

(D) ∧′ is defined by the procedure of Lemma 11.34.

One should not be surprised of the shape of τ ′, which is non-empty despite the mention of the
empty set: see Remark 11.7.

12. Conclusion
Wehave developed the first comprehensive theory of (downward-)closed subsets, as required for a
general understanding of forward analysis techniques ofWSTS. This generalizes previous domain
proposals on tuples of natural numbers, on words, on multisets, allowing for nested datatypes,
and infinite alphabets.

We have also done this on new domains such as trees, words under prefix, infinite powersets,
and Noetherian rings orQk.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 805

Each of these domains is effective, in the sense that each has finite presentations with a
decidable ordering.

We have also shown how the notion of sobrification S(X) was in a sense inevitable (Section 4).
In the special case of wqos, the latter coincides with the ideal completion of X, and it is important
to stress that we have, in particular, characterized the shapes of ideals in several wqos of interest
in verification (Nk, X∗, X�, T (X)). Ideals in wqos are growingly appearing to be a central concept
in verification.

The natural generalization fromwqos to Noetherian spaces was also naturally in order, not only
because it allows us to deal with extra constructions (words under prefix, rings, infinite powersets),
but also because the proofs, as well as the computations (witness Lemma 5.2) intimately rely on
irreducibility, a concept that occurs naturally from the study of sobrification.

Acknowledgements. We thank Philippe Schnoebelen, Simon Halfon, Sylvain Schmitz, Ranko Lazic, and all those who
expressed interest in this work since 2009 and encouraged us into submitting this paper again – not just out of friendship
but also because they need the results. Simon Halfon found the polynomial time decision procedure mentioned in Lemma 8.6
and is gratefully acknowledged for this. The referees have done a remarkably thorough job in rereading this paper, and we
thank them for that. Any remaining mistake is, of course, ours.

Note
1 The state space was erroneously claimed to be Ck in that paper.

References
Abdulla, P. A., Bouajjani, A. and Jonsson, B. (1998). On-the-fly analysis of systems with unbounded, lossy FIFO channels. In:

CAV’98, LNCS, vol. 1427, Vancouver, Canada, Springer Verlag, 305–318.
Abdulla, P. A., Čerans, K., Jonsson, B. and Tsay, Y.-K. (1996). General decidability theorems for infinite-state systems. In:

LICS, 313–321.
Abdulla, P. A., Čerāns, K., Jonsson, B. and Tsay, Y.-K. (2000). Algorithmic analysis of programs with well quasi-ordered

domains. Information and Computation 160 (1–2) 109–127.
Abdulla, P. A., Collomb-Annichini, A., Bouajjani, A. and Jonsson, B. (2004a). Using forward reachability analysis for

verification of lossy channel systems. Formal Methods in System Design 25 (1) 39–65.
Abdulla, P. A., Deneux, J., Mahata, P. and Nylén, A. (2004b). Forward reachability analysis of timed Petri nets. In: Lakhnech,

Y. and Yovine, S. (eds.) FORMATS/FTRTFT, LNCS, vol. 3253, Springer Verlag, 343–362.
Abdulla, P. A. and Jonsson, B. (1993). Verifying programs with unreliable channels. In: LICS’93, 160–170.
Abramsky, S. and Jung, A. (1994). Domain theory. In: Abramsky, S., Gabbay, D. M. and Maibaum, T. S. E. (eds.) Handbook

of Logic in Computer Science, vol. 3, OUP, 1–168.
Acciai, L. and Boreale, M. (2012). Deciding safety properties in infinite-state pi-calculus via behavioural types. Information

and Computation 212 92–117.
Adams, W. W. and Loustaunau, P. (1994). An Introduction to Gröbner Bases, Graduate Studies in Mathematics, vol. 3,

American Mathematical Society, 289.
Arnold, A. and Latteux, M. (1978). Récursivité et cônes rationnels fermés par intersection. CALCOLO 15 (4) 381–394. doi:

https://doi.org/10.1007/BF02576519.
Baader, F. and Nipkow, T. (eds.) (1998). Term Rewriting and All That, Cambridge University Press, 301.
Bachmair, L. and Plaisted, D. A. (1985). Termination orderings for associative-commutative rewriting systems. Journal of

Logic and Computation 1 (4) 329–349.
Blondin, M., Finkel, A. and Goubault-Larrecq, J. (2017a). Forward analysis for WSTS, part III: Karp-Miller trees. In: Lokam,

S. and Ramanujam, R. (eds.) Proceedings of the 37th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’17), Leibniz International Proceedings in Informatics, vol. 93, Kanpur, India, Leibniz-Zentrum
für Informatik, 16:1–16:15.

Blondin, M., Finkel, A. and Goubault-Larrecq, J. (2017b). Forward analysis for WSTS, Part III: Karp-Miller trees. Logical
Methods in Computer Science 16 (2), 2020. doi: 10.23638/LMCS-16(2:13)2020. Long and improved version of Blondin
et al. (2017a).

Bojańczyk, M., Muscholl, A., Schwentick, T. and Ségoufin, L. (2009). Two-variable logic on data trees and XML reasoning.
Journal of the ACM 56 (3) 13:1–13:48.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1007/BF02576519
https://doi.org/10.23638/LMCS-16(2:13)2020
https://doi.org/10.1017/S0960129520000195

806 A. Finkel and J. Goubault-Larrecq

Buchberger, B. and Loos, R. (1982–1983). Algebraic simplification. In: Buchberger, B., Collins, G. E., Loos, R. and Albrecht,
R. (eds.) Computer Algebra, Symbolic and Algebraic Computation, Springer Verlag.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S. and Tommasi, M. (2004). Tree automata
techniques and applications. www.grappa.univ-lille3.fr/tata.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001). Introduction to Algorithms, 2nd edition, MIT Press and
McGraw-Hill.

de Groote, P., Guillaume, B. and Salvati, S. (2004). Vector addition tree automata. In: LICS’04, IEEE Computer Society, 64–73.
Dickson, L. E. (1913). Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. American

Journal of Mathematics 35 (4) 413–422.
Emerson, E. A. and Namjoshi, K. S. (1998). On model checking for non-deterministic infinite-state systems. In: LICS’98,

70–80.
Erdős, P. and Tarski, A. (1943). On families of mutually exclusive sets. Annals of Mathematics 44 315–329.
Faith, C. C. (1999). Rings and Things and a Fine Array of Twentieth Century Associative Algebra, American Mathematical

Society.
Finkel, A. (1987). A generalization of the procedure of Karp and Miller to well structured transition system. In: Ottmann,

T. (ed.) Proceedings of the 14th International Colloquium on Automata, Languages and Programming (ICALP’87), Lecture
Notes in Computer Science, vol. 267, Karlsruhe, Germany, Springer-Verlag, 499–508.

Finkel, A. (1990). Reduction and covering of infinite reachability trees. Information and Computation 89 (2) 144–179.
Finkel, A. and Goubault-Larrecq, J. (2009). Forward analysis for WSTS, part I: Completions. In: Albers, S. and Marion,

J.-Y. (eds.) Proceedings of the 26th Annual Symposium on Theoretical Aspects of Computer Science (STACS’09), Leibniz
International Proceedings in Informatics, vol. 3, Freiburg, Germany, Leibniz-Zentrum für Informatik, 433–444.

Finkel, A. andGoubault-Larrecq, J. (2012). Forward analysis forWSTS, part II: CompleteWSTS. LogicalMethods in Computer
Science 8 (3:28).

Finkel, A. and Schnoebelen, P. (2001). Well-structured transition systems everywhere! Theoretical Computer Science 256
(1–2) 63–92.

Ganty, P., Raskin, J.-F. and van Begin, L. (2006). A complete abstract interpretation framework for coverability properties of
WSTS. In: VMCAI’06, LNCS, vol. 3855, Springer Verlag, 49–64.

Geeraerts, G., Raskin, J.-F. and van Begin, L. (2006). Expand, enlarge and check: New algorithms for the coverability problem
of WSTS. Journal of Computer and System Sciences 72 (1) 180–203.

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (2003). Continuous lattices and domains.
In: Encyclopedia of Mathematics and its Applications, vol. 93, CUP.

Goubault-Larrecq, J. (2007). On Noetherian spaces. In: LICS’07, 453–462.
Goubault-Larrecq, J. (2010). Noetherian spaces in verification. In: Abramsky, S., Meyer auf der Heide, F. and Spirakis, P.

(eds.) Proceedings of the 37th International Colloquium on Automata, Languages and Programming (ICALP’10) – Part II,
Lecture Notes in Computer Science, vol. 6199, Bordeaux, France, Springer, 2–21.

Goubault-Larrecq, J. (2013). Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-Set Topology, New
Mathematical Monographs, vol. 22, Cambridge University Press.

Goubault-Larrecq, J. (2019). Spaces with no infinite discrete subspace. Topology Proceedings 53 27–36.
Goubault-Larrecq, J. and Schmitz, S. (2016). Deciding piecewise testable separability for regular tree languages. In:

Calamoneri, T., Gorla, D., Rabani, Y., Sangiorgi, D. and Mitzenmacher, M. (eds.) 43rd International Colloquium
on Automata, Languages, and Programming, Leibniz-Zentrum für Informatik, Leibniz International Proceedings in
Informatics, vol. 95, 97:1–97:15.

Grieco, M. and Zucchetti, B. (1989). How to decide whether a polynomial ideal is primary or not. In: Proceedings of the 5th
International Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-5), 1987, LNCS,
vol. 356, Menorca, Spain, Springer-Verlag, 258–268.

Grothendieck, A. (1960). Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): I. Le langage des
schémas, vol. 4, Publications mathématiques de l’I.H.É.S, 5–228.

Halfon, S. (2018).On Effective Representations of Well Quasi-Orderings. Phd thesis, ENS Paris-Saclay, Université Paris-Saclay.
Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the LondonMathematical Society 2 (7) 326–336.
Hoffmann, R.-E. (1979a). On the sobrification remainder sX− X. Pacific Journal of Mathematics 83 (1), 145–156.
Hoffmann, R.-E. (1979b). Sobrification of partially ordered sets. Semigroup Forum 17 123–138.
Jacobé de Naurois, P. (2014). Coverability in a nonfunctional extension of BVASS. hal-00947136. https://hal.archives-

ouvertes.fr/hal-00947136.
Jacquemard, F., Ségoufin, L. and Dimino, J. (2016). FO2(<,+1,∼) on data trees, data tree automata and branching vector

addition systems. LMCS 12 (2) 1–28.
Kabil, M. and Pouzet, M. (1992). Une extension d’un théorème de P. Jullien sur les âges de mots. Informatique théorique et

applications 26 (5) 449–482.
Karp, R. M. and Miller, R. E. (1969). Parallel program schemata. Journal of Computer and System Sciences 3 (2) 147–195.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://www.grappa.univ-lille3.fr/tata
https://hal.archives-ouvertes.fr/hal-00947136
https://hal.archives-ouvertes.fr/hal-00947136
https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 807

Kosaraju, S. R. (1982). Decidability of reachability in vector addition systems (preliminary version). In: Proceedings of the 14th
Annual ACM Symposium on the Theory of Computing (STOC’82), San Francisco, California, USA, ACM Press, 267–281.

Kruskal, J. B. (1960). Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the American
Mathematical Society 95 (2) 210–225.

Lambert, J.-L. (1992). A structure to decide reachability in Petri nets. Theoretical Computer Science 99 (1) 79–104.
Laplagne, S. (2006). Computation of the minimal associated primes. In: Decker, W., Dewar, M., Kaltofen, E. and Watt,

S. (eds.) Challenges in Symbolic Computation Software, Dagstuhl Seminar Proceedings, vol. 06271, Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany. http://drops.dagstuhl.de/opus/
volltexte/2006/774 (date of citation: 2006-01-01).

Lazič, R., Newcomb, T., Ouaknine, J., Roscoe, A. W. and Worrell, J. (2008). Nets with tokens which carry data. Fundamenta
Informaticae 88 (3) 251–274.

Leroux, J. and Schmitz, S. (2015). Demystifying reachability in vector addition systems. In: LICS’15, 56–67.
Mayr, E. W. (1981). An algorithm for the general Petri net reachability problem. In: Proceedings of the 13th Annual ACM

Symposium on the Theory of Computing (STOC’81), Milwaukee, Wisconsin, USA, ACM Press, 238–246.
Mayr, R. (2003). Undecidable problems in unreliable computations. Theoretical Computer Science 297 (1–3) 337–354.
Meyer, R. (2008). On boundedness in depth in the pi-calculus. IFIP TCS 273 477–489.
Michie, D. (1968). Memo functions and machine learning. Nature 218 19–22.
Mislove, M. (1998). Topology, domain theory and theoretical computer science. Topology and Its Applications 89 3–59.
Müller-Olm, M. and Seidl, H. (2002). Polynomial constants are decidable. In: Hermenegildo, M. V. and Puebla, G. (eds.)

Proceedings of the 9th International Symposium on Static Analysis (SAS’02), LNCS, vol. 2477, Springer-Verlag, 4–19.
Parikh, R. (1966). On context-free languages. Journal of the ACM 13 (4) 570–581.
Pnueli, A. (1977). The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science,

Providence, RI, USA, IEEE Computer Society, 46–57.
Rabinowitch, S. (1929). Zum Hilbertschen Nullstellensatz.Mathematische Annalen 102 520.
Rambow, O. (1994). Multiset-valued linear index grammars: Imposing dominance constraints on derivations. In: ACL’94,

ACL Press, 263–270.
Schmitz, S. (2010). On the computational complexity of dominance links in grammatical formalisms. In: ACL’10, Association

for Computer Linguistics, 514–524.
Sturmfels, B. (2002). Solving Systems of Polynomial Equations, CBMS Regional Conferences Series, vol. 97, American

Mathematical Society.
Thatcher, J. W. and Wright, J. B. (1968). Generalized finite automata theory with an application to a decision problem of

second-order logic.Mathematical Systems Theory 2 (1) 57–81.
Verma, K. N. and Goubault-Larrecq, J. (2005). Karp-Miller trees for a branching extension of VASS. Discrete Mathematics &

Theoretical Computer Science 7 (1) 217–230.
Wies, T., Zufferey, D. andHenzinger, T. A. (2010). Forward analysis of depth-bounded processes. In: Ong, L. (ed.) Proceedings

of the 13th International Conference Foundations of Software Science and Computational Structures (FoSSaCS’10), LNCS,
vol. 6014, Springer Verlag, 94–108.

Appendix A. Auxiliary Proofs on Irreducible Closed Sets
The results of this section are well known. We include their proofs for convenience.

Lemma A.1. For every continuous map f : Y→ Z between topological spaces Y and Z, for every
irreducible closed subset C of Y, cl(f [C]) is irreducible closed in Z.

Proof. This is a direct consequence of the fact that S is a functor, in particular that S(f) maps every
C ∈ S(Y) to an element of S(Z), and of the fact that S(f)(C)= cl(f [C]). Here is a direct argument.
Assume that cl(f ([C])) is included in the union of two closed subsets F1 and F2 of Z. Then f [C]⊆
F1 ∪ F2, so C⊆ f−1(F1 ∪ F2)= f−1(F1)∪ f−1(F2). Since C is irreducible, C is included in f−1(F1)
or in f−1(F2). Assume without loss of generality that C⊆ f−1(F1). Then f [C] is included in F1,
and since cl(f [C]) is the smallest closed set containing f [C], and F1 is a closed set containing f [C],
cl(f [C]) is included in F1.

LemmaA.2. Let (Xi)i∈I be any family of topological spaces. The irreducible closed subsets of
∏

i∈I Xi
are exactly the products

∏
i∈I Ci where each Ci is irreducible closed in Xi.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

http://drops.dagstuhl.de/opus/volltexte/2006/774
http://drops.dagstuhl.de/opus/volltexte/2006/774
https://doi.org/10.1017/S0960129520000195

808 A. Finkel and J. Goubault-Larrecq

Proof. This is Proposition 8.4.7 of Goubault-Larrecq (2013) and leads to Hoffmann’s theorem
(Hoffmann 1979a, Theorem 1.4) that the sobrification functor preserves products. We give a
direct proof. Let X=∏

i∈I Xi. This has a base of open sets of the form
⋂

i∈J π−1i (Ui), where J
is a finite subset of I and each Ui is open in Xi.

We first note that a closed set C is irreducible if and only if it is non-empty, and whenever
it intersects two opens U1 and U2, then it also intersects their intersection U1 ∩U2. (Just take
the contrapositive of the definition of irreducibility, with the complement of U1 for F1 and the
complement of U2 for F2.)

If each Ci is closed in Xi, then
∏

i∈I Ci is closed, being the intersection
⋂

i∈I π−1i (Ci). If
additionally each Ci is irreducible, we claim that C=∏

i∈I Ci is also irreducible. It is certainly
non-empty.

Assume that C intersects two open subsets W and W′ of X. Write W as a union of basic open
subsets

⋂
j∈Jk π−1j (Ujk), k ∈K, where each Jk is a finite subset of I, and eachUjk is open in Xj. Then

C intersects
⋂

j∈Jk π−1j (Ujk) for some k ∈K, say at (xi)i∈I . Similarly, write W′ as a union of basic
open subsets

⋂
j∈J′k′ π

−1
j (Ujk′), k′ ∈K ′, where each J′k′ is a finite subset of I, and eachUjk′ is open in

Xj. Then, C intersects
⋂

j∈J′k′ π
−1
j (Ujk′) for some k′ ∈K ′, say at (x′i)i∈I . Without loss of generality,

we may assume that Jk = J′k′ : otherwise replace Jk, resp. J
′
k′ , by Jk ∪ J′k′ and define the missing sets

Ujk, resp. Ujk′ , as Xj. For every j ∈ Jk, Cj intersects Ujk (at xj) and also Ujk′ (at x′j). Since Cj is
irreducible, it therefore also intersects their intersection Ujk ∩Ujk′ , say at yj. For every j ∈ I � Jk,
define yj as some arbitrary point from Cj. Then (yj)j∈I is in C, and in

⋂
j∈Jk π−1j (Ujk ∩Ujk′), hence

inW ∩W′.
Conversely, we claim that every irreducible closed subset C of X must be a product

∏
i∈I Ci of

irreducible closed subsets Ci of Xi. We define Ci as cl(πi[C]): by Lemma A.1, Ci is irreducible
closed in Xi. Clearly, C is included in

∏
i∈I Ci. Assume for the sake of contradiction that the

inclusion were strict: there is a point �x= (xi)i∈I in
∏

i∈I Ci and not in C. Then �x is in the open
complement W of C. By definition of the product topology, W contains a basic open subset⋂

j∈J π−1j (Uj) containing �x, where J is a finite subset of I, and each Uj is open in Xj. Since it con-
tains �x, xj is inUj for every j ∈ J. Since it is included inW,

⋂
j∈J π−1j (Uj) is disjoint from C. Since C

is irreducible, if C intersected π−1j (Uj) for every j ∈ J, it would also intersect
⋂

j∈J π−1j (Uj), which
is impossible, as we have just seen. Hence, C is disjoint from π−1j (Uj) for some j ∈ J. This implies
that πj[C] is disjoint from Uj, hence that Cj = cl(πj[C]) is also disjoint from Uj. (A set intersects
an open set if and only if its closure does.) However, since �x ∈∏

i∈I Ci, xj is in Cj, and xj is also in
Uj, contradiction.

Appendix B. Proofs of Results on Words (Section 7)
Lemma 7.2 (recap). Let X be a topological space. The complement of X∗U1X∗U2X∗ · · · X∗UnX∗
(n ∈N, U1,U2, . . . ,Un open in X) in X∗ is ∅when n= 0, and F∗1X?F∗2X? · · · X?F∗n−1X?F∗n otherwise,
where F1 = X�U1, . . . , Fn = X�Un.

If X is Noetherian, then this complement can be expressed as a finite union of sets of the form
F∗1C?

1F
∗
2C

?
2 · · · C?

n−1F∗n, where C1, C2, . . . , Cn−1 range over irreducible closed subsets of X.

Proof. When n= 0, this is clear: the complement of X∗U1X∗U2X∗ · · · X∗UnX∗ is the empty set.
So let n≥ 1.

We first claim that the complement ofX∗U1X∗U2X∗ · · · X∗UnX∗ is F∗1X?F∗2X? · · · X?F∗n−1X?F∗n .
We show this by induction on n. If n= 1, then the complement of X∗U1X∗ is the set of words that
contain no letter from U1, that is, F∗1 . If n≥ 1, let w be an arbitrary element of the complement of

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 809

X∗U1X∗U2X∗ · · · X∗UnX∗. Let w1 be the longest prefix of w comprised of letters not in U1. Note
that w1 is in F∗1 . If w1 =w, then certainly w is in F∗1 ⊆ F∗1X?F∗2X? · · · X?F∗n−1X?F∗n . Otherwise, w is
of the form w1xw′, where x ∈U1 and w′ is not in X∗U2X∗ · · · X∗UnX∗. By induction hypothesis
w′ is in F∗2X? · · · X?F∗n−1X?F∗n , hence again w is in F∗1X?F∗2X? · · · X?F∗n−1X?F∗n .

Conversely, let w be any word in F∗1X?F∗2X? · · · X?F∗n−1X?F∗n . Let w1 be the longest prefix of w
that lies in F∗1 . Then either w=w1, then w ∈ F∗1 cannot be in X∗U1X∗U2X∗ · · · X∗UnX∗, since
all the words in the latter set must contain at least one letter in U1; or w=w1xw′ for some
x �∈ F1, that is, x ∈U1, and w′ ∈ F∗2X? · · · X?F∗n−1X?F∗n . By induction hypothesis, w′ cannot be
in X∗U2X∗ · · · X∗UnX∗. By construction, x would be the first occurrence of an element of U1
in w. If w=w1xw′ were in X∗U1X∗U2X∗ · · · X∗UnX∗, then, some suffix w′′ of w′ would be in
X∗U2X∗ · · · X∗UnX∗. Then w′′ ≤∗ w′, hence w′ would be in X∗U2X∗ · · · X∗UnX∗, which is open
hence upward-closed: contradiction.

By Lemma 4.6, X, as a closed subset of itself, is a finite union of irreducible closed subsets,
that is, there is a finite subset E of S(X) such that X=⋃

C∈E C. Distributing across the _? opera-
tor and concatenation in the expression F∗1X?F∗2X? · · · X?F∗n−1X?F∗n yields that the complement of
X∗U1X∗U2X∗ · · · X∗UnX∗ equals:⋃

C1,...,Cn−1∈E
F∗1C?

1F
∗
2C

?
2 · · · C?

n−2F∗n−1C?
n−1

from which the desired conclusion follows.

Lemma 7.4 (recap). Let X be a topological space. For every closed subset F of X, for every closed
subset F of X∗, F?F is closed in X∗.

This is part of Exercise 9.7.29 of Goubault-Larrecq (2013), but the argument is non-trivial.
Here is a complete proof. This requires the following construction, which we shall also require in
the next Lemma. For any open U of X∗, and any open U of X, define U/U as follows. If U = X∗,
then U/U =∅; otherwise, U is a union of basic opens of the form X∗Ui1X∗Ui2X∗ · · · X∗UiniX∗,
i ∈ I, where ni ≥ 1 for every i ∈ I, then we let U/U be the union of all basic opens X∗(Ui1 ∩
U)X∗Ui2X∗ · · · X∗UiniX∗. In all formality, U/U depends on a presentation of U as a union of
basic opens, not on U itself, but this will cause no problem in the sequel. Note that this definition
is made possible by the fact that X∗U1X∗U2X∗ · · · X∗UnX∗ form a base, not just a subbase, of the
topology (Lemma 7.1).

Proof. IfF is empty, then F?F is empty hence closed. Henceforth, we assume thatF is non-empty,
so that the complement U is different from X∗. Then, U/U is open. Also, X∗UU is open. We claim
that the complement of F?F in X∗ is X∗XU ∪ U/U, which will show the claim. We first make the
following remark. Let L1 and L2 be two subsets of X∗ that are downward-closed with respect to
≤∗. For any word w not in L1L2, we can write w as w1w′w2, where w1 is the longest prefix of w in
L1, w2 is the longest suffix of w in L2, and w′ is not empty. Indeed, any prefix of a word in L1 is
again in L1, and any suffix of a word in L2 is in L2, since both are downward-closed with respect
to ≤∗. That remark applies, notably, to L1 = F? and L2 =F fit, in the second case because ≤∗ is
the specialization quasi-ordering of X∗ and every closed subset is downward-closed.

IfF = X∗, then the complement of F?F = X∗ is empty, so the claim is proved. Otherwise, write
U as the union of basic opens X∗Ui1X∗Ui2X∗ · · · X∗UiniX∗, i ∈ I, ni ≥ 1.

Assume w is in the complement of F?F and write w as w1w′w2, as above. Since w′ is not
empty, it starts with some letter x ∈ X. Then by the maximality property of w1, w1 is in F?, but
w1x is not. Again, by the maximality property of w2, w′w2 is not in F , hence in U . If w1 �= ε,
then w1 is a single letter, so w is in XU ⊆ X∗XU . If w1 = ε, then x is not in F (otherwise w1x
would be in F?), hence is in U. So w′w2 starts with a letter in U, since w′w2 is in U , w′w2 is in
X∗Ui1X∗Ui2X∗ · · · X∗UiniX∗ for some i ∈ I. Ifw′w2 is inUi1X∗Ui2X∗ · · · X∗UiniX∗, thenw′w2 is in
(U ∩Ui1)X∗Ui2X∗ · · · X∗UiniX∗, so w=w1w′w2 is in X∗(U ∩Ui1)X∗Ui2X∗ · · · X∗UiniX∗ ⊆ U/U;

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

810 A. Finkel and J. Goubault-Larrecq

otherwise, w′w2 is in UX∗Ui1X∗Ui2X∗ · · · X∗UiniX∗, so w=w1w′w2 is in X∗UX∗Ui1X∗Ui2X∗ · · ·
X∗UiniX∗ ⊆ X∗UU ⊆ X∗XU .

Conversely, assume w is in X∗XU ∪ U/U. If w ∈ X∗XU , then w contains a subsequence of
the form a0a1a2 · · · ani , for some i ∈ I, where a0 is arbitrary, a1 ∈Ui1, a2 ∈Ui2, . . . , ani ∈Uini .
Note that a1a2 · · · ani is in Ui1Ui2 · · ·Uini ⊆ X∗Ui1X∗Ui2X∗ · · · X∗UiniX∗ ⊆ U . If w were in F?F ,
then since F?F is downward-closed with respect to ≤∗, a0a1a2 · · · ani would be in F?F ; hence,
a1a2 · · · ani would be in F : contradiction. (More slowly, from a0a1a2 · · · ani ∈ F?F , we deduce
that a0 ∈ F and a1a2 · · · ani ∈F , or a0a1a2 · · · ani ∈F , but the latter also implies a1a2 · · · ani ∈F ,
since F is downward-closed.) So w is in the complement of F?F . If, on the other hand, w ∈ U/U,
then w contains a subsequence of the form a1a2 · · · ani , for some i ∈ I, where a1 ∈U ∩Ui1, a2 ∈
Ui2, . . . , ani ∈Uini . In particular, a1a2 · · · ani is inUi1Ui2 · · ·Uini ⊆ X∗Ui1X∗Ui2X∗ · · · X∗UiniX∗ ⊆
U . If w were in F?F , then since F?F is downward-closed with respect to ≤∗, a1a2 · · · ani would
be in F?F . However, a1 is in U, so is not in F, and this implies that a1a2 · · · ani would be in F :
contradiction. So, again, w is in the complement of F?F .�

Lemma 7.5 (recap). Let X be a topological space. For every closed subset F of X, for every closed
subset F of X∗, F∗F is closed in X∗.

More specifically, in the case where F is non-empty, let U be the open complement of F in X
and U be the open complement of F in X∗. Then, the complement of F∗F is X∗UU ∪ U/U and is
therefore open.

Proof. Write U is a union of basic opens of the form X∗Ui1X∗Ui2X∗ · · · X∗UiniX∗, i ∈ I, as above.
Assume w is in the complement of F∗F and write w as w1w′w2, where w1 is the longest prefix

of w in F∗, w2 is the longest suffix of w in F , and w′ is not empty. Let x be the first letter of w′
and note that w1 ∈ F∗ but w1x is not in F∗: so x is in U; and that w′w2 is in U , so w′w2 is in some
basic open set X∗Ui1X∗Ui2X∗ · · · X∗UiniX∗, i ∈ I. Depending on whether the first letter x of w′w2
is in Ui1 or not, w′w2 is in (U ∩Ui1)X∗Ui2X∗ · · · X∗UiniX∗ or in UX∗Ui1X∗Ui2X∗ · · · X∗UiniX∗,
so that w is in X∗UU or in U/U.

Conversely, if w ∈ X∗UU , then w contains a subword a0a1a2 · · · ani for some i ∈ I, a0 ∈U,
a1 ∈Ui1, a2 ∈Ui2, . . . , ani ∈Uini . If w were in F∗F , then a0a1a2 · · · ani would be, too: it is indeed
clear that F∗F is downward-closed, since F∗ is and F is closed. Since a0 ∈U, a0 is not in
F, so a0a1a2 · · · ani is in F . Again by downward closure, a1a2 · · · ani is in F : contradiction.
So w is in the complement of F∗F . And if w ∈ U/U, then w contains a subword of the form
a1a2 · · · ani , for some i ∈ I, where a1 ∈U ∩Ui1, a2 ∈Ui2, . . . , ani ∈Uini . In particular, a1a2 · · · ani
is in Ui1Ui2 · · ·Uini ⊆ X∗Ui1X∗Ui2X∗ · · · X∗UiniX∗ ⊆ U . If w were in F∗F , then so would be this
subword, and as a1 ∈U is not in F, a1a2 · · · ani would be in F : contradiction. So w is in the
complement of F∗F .

Lemma B.1. The concatenation function cat : X∗ × X∗ → X∗ is continuous. The function i : X→
X∗ that maps the letter x to x as a word is also continuous.

Proof. This is Exercise 9.7.27 of Goubault-Larrecq (2013). To show that i is continuous,
observe that i−1(X∗U1X∗U2X∗ · · · X∗UnX∗)=U1 if n= 1, X if n= 0, and ∅ otherwise. As
far as cat is concerned, cat−1(X∗U1X∗U2X∗ · · · X∗UnX∗)=⋃n

i=0 (X∗U1X∗U2X∗ · · · X∗UiX∗)×
(X∗Ui+1X∗U2X∗ · · · X∗UnX∗).

Lemma 7.7 (recap). Let X be a topological space. Every word-product is irreducible closed in X∗.

Proof. By induction on syntax, starting with the fact that the base case ε denotes a one-element
downward-closed set, hence, is trivially irreducible closed. It suffices to show that sets of the form
F∗ and C? are irreducible closed, where F is closed and C is irreducible closed, and that if C1 and
C2 are irreducible closed and C1C2 is closed, then C1C2 is irreducible closed.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 811

1. Let us show that F∗ is irreducible closed in X∗, for any closed subset F of X. Assume F∗ ⊆
F1 ∪F2, whereF1 andF2 are closed inX∗. If F∗ was not contained inF1 or inF2, then there
would be a word w1 ∈ F∗ �F1 and a word w2 ∈ F∗ �F2. Then, w1w2 would again be in F∗,
hence either inF1 or inF2. Assume by symmetry thatw1w2 is inF1. Sincew1 ≤∗ w1w2, and
closed sets such as F1 are downward-closed, we would have w1 ∈F1: contradiction. So F∗ is
irreducible.

2. We claim that C? is irreducible closed in X∗ whenever C is irreducible closed in X. It is
enough to observe that C? = cl(i[C]) – recall that i is continuous by Lemma B.1 – and to use
Lemma A.1. The inclusion cl(i[C])⊆ C? stems for the fact that C? is closed, and i[C]⊆ C?,
which is clear. The converse inclusion is obvious.

3. Finally, we show that whenever C1 and C2 are irreducible closed inX∗, and C1C2 is closed, it is
irreducible. Indeed, C1 × C2 is irreducible closed by Lemma A.2, and since cat is continuous
by Lemma B.1, cl(cat[C1 × C2]) is irreducible by Lemma A.1. Then, cat[C1 × C2]= C1C2,
and since the latter is closed by assumption, it is equal to cl(cat[C1 × C2]), hence irreducible
closed.

Lemma 7.9 (recap). Let X be a topological space. Inclusion between word-products can be checked
in polynomial time (precisely in time proportional to the product of the lengths of the two word-
products), modulo an oracle testing inclusion of closed subsets of X.

Explicitly, we have ε ⊆ P for any word-product P, P �⊆ ε unless all the atomic expressions in P are
syntactically equal to ∅∗, and for all C, C′ ∈ S(X), for all F, F′ ∈HV(X), and for all word-products
P, P′:

— C?P⊆ C′?P′ if and only if C⊆ C′ and P⊆ P′, or C �⊆ C′ and C?P⊆ P′.
— C?P⊆ F′∗P′ if and only if C⊆ F′ and P⊆ F′∗P′, or C �⊆ F′ and C?P⊆ P′.
— F∗P⊆ C′?P′ if and only if F is empty and P⊆ C′?P′, or F is non-empty and F∗P⊆ P′.
— F∗P⊆ F′∗P′ if and only if F⊆ F′ and P⊆ F′∗P′, or F �⊆ F′ and F∗P⊆ P′.

Proof. The cases ε ⊆ P and P �⊆ ε are obvious.
We first examine when C?P⊆ C′?P′ holds. The if direction is easy. Conversely, assume C?P⊆

C′?P′. For every x ∈ C, either x ∈ C′ or xw is in P′ for every w ∈ P: indeed, when w ∈ P, then xw ∈
C?P⊆ C′?P′, and if x �∈ C′ this can only happen if xw ∈ P′. This means that C is contained in
C′ ∪ F, where F= {x ∈ X | ∀w ∈ P · xw ∈ P′} =⋂

w∈P f−1w (P′), and fw is the map x �→ xw. Note that
fw(x)= cat(i(x),w), hence fw is continuous. Using the fact that P′ is closed (Corollary 7.6), F is
closed. Since C⊆ C′ ∪ F and C is irreducible, we have proved (∗) either C⊆ C′ or C⊆ F. We also
note that (∗∗) P⊆ P′, in any case, fixing some element x ∈ C (recall that C is non-empty), for every
w ∈ P, xw is in C?P, hence in C′?P′, so w or xw is in P′; since P′ is closed and w≤∗ xw, wmust be in
P′ in any case. Using (∗) and (∗∗), we now have two cases: eitherC⊆ C′ and P⊆ P′, orC �⊆ C′,C⊆
F, and P⊆ P′. In the latter case, C⊆ F entails CP⊆ P′ by definition of F, so C?P= P ∪ CP⊆ P′.

We now examine when C?P⊆ F′∗P′ holds. This is similar. The if direction is obvious.
Conversely, if C?P⊆ F′∗P′, then for every x ∈ C, either x ∈ F′ or xw ∈ P′ for every w ∈ P. So C⊆
F′ ∪ F, where F is the closed set {x ∈ X | ∀w ∈ P · xw ∈ P′}. Since C is irreducible, (∗) either C⊆ F′
or C⊆ F. Also, (∗∗) P⊆ F′∗P′, because P⊆ C?P⊆ F′∗P′. If C �⊆ F′, then C⊆ F, hence CP⊆ P′ by
the definition of F; since P′ is downward-closed, P is also included in P′, so C?P= P ∪ CP⊆ P′.

Let us proceed to the case F∗P⊆ C′?P′. When F is empty, since F∗P= P, the equivalence
between F∗P⊆ C′?P′ and P⊆ C′?P′ is obvious. Otherwise, since F is non-empty, let x be some
element in F. For any w ∈ F∗P, xw is also in F∗P, so is in C′?P′. This implies that xw or w is in P′.
But, as P′ is downward-closed, w ∈ P′ in any case. So F∗P⊆ P′. The converse is again easy.

Finally, assume F∗P⊆ F′∗P′. If F⊆ F′, then P⊆ F′∗P′, since P⊆ F∗P. Otherwise, let x be in F
but not in F′. For any word w ∈ F∗P, xw is again in F∗P, hence in F′∗P′. Since x �∈ F′, xw must be
in P′, hence also w ∈ P′. So F∗P⊆ P′.

We obtain the desired algorithm (up to an oracle) by dynamic programming.
https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

812 A. Finkel and J. Goubault-Larrecq

Lemma 7.12 (recap). Let X be a topological space. Any finite intersection of word-products is
expressible as a finite union of word-products. Specifically, the intersection of two word-products
is given by: ε ∩ P= ε for every word-product P, and by the recursive formulae:

— C?P ∩ C′?P′ = (C?P ∩ P′)∪ (P ∩ C′?P′)∪ (C ∩ C′)?(P ∩ P′);
— C?P ∩ F′∗P′ = (C ∩ F′)?(P ∩ F′∗P′)∪ (C?P ∩ P′);
— F∗P ∩ F′∗P′ = (F ∩ F′)∗(P ∩ F′∗P′)∪ (F ∩ F′)∗(F∗P ∩ P′).

Proof. Let us deal with the first case. Any word w in C?P ∩ C′?P′ is either in P ∩ P′, or is in
CP and in P′, or in P and in C′P′, or is of the form xw′, with x ∈ C ∩ C′ and w′∈P ∩ P′. So
C?P ∩ C′?P′ ⊆ (P ∩ P′)∪ (C?P ∩ P′)∪ (P ∩ C′?P′)∪ (C ∩ C′)?(P ∩ P′)=(C?P ∩ P′)∪(P ∩ C′?P′)∪
(C ∩ C′)?(P ∩ P′). It is easy to see that conversely, (C?P ∩ P′)∪ (P ∩ C′?P′)∪ (C ∩ C′)?(P ∩ P′) is
included in C?P ∩ C′?P′.

Next, any word w in C?P ∩ F′∗P′ is either in P ∩ F′∗P′, or is of the form xw′ with x ∈ C, w′ ∈ P,
and xw′ ∈ F′∗P′. In the latter case, either x ∈ C ∩ F′ andw′ ∈ P ∩ F′∗P′, sow ∈ (C ∩ F′)?(P ∩ F′∗P′)
or x ∈ C, x is not in F′ so w= xw′ is in P′, hence w is in C?P ∩ P′. In any case, C?P ∩ F′∗P′ ⊆
(P ∩ F′∗P′)∪ (C ∩ F′)(P ∩ F′∗P′)∪ (C?P ∩ P′)= (C ∩ F′)?(P ∩ F′∗P′)∪ (C?P ∩ P′). The converse
inclusion is clear.

Finally, for every word w in F∗P ∩ F′∗P′, write w as w1w2 where w1 is the longest prefix of w in
F∗, andw2 ∈ P; also, asw′1w′2 wherew′1 is the longest prefix ofw in F′∗, andw′2 ∈ P′. Ifw1 is shorter
than w′1, then w2 is also in F′∗P′, so w ∈ (F ∩ F′)∗(P ∩ F′∗P′), otherwise w ∈ (F ∩ F′)∗(F∗P ∩ P′).
So F∗P ∩ F′∗P′ ⊆ (F ∩ F′)∗(P ∩ F′∗P′)∪ (F ∩ F′)∗(F∗P ∩ P′). The converse inclusion is obvious.

These formulae define the intersection of two word-products, by induction on the sum of the
number of atomic formulae in each of them. So the intersection of two word-products is a finite
union of word-products. The empty intersection, the space X∗ itself, is clearly a word-product. By
induction on the number of word-products, any finite intersection of word-products can then be
rewritten as a finite union of word-products.

Proposition B.2. Let X be a Noetherian space, X′ = X∗, and (S, �_�,�, τ ,∧) be an S-representation
of X. Then (S′, �_�′ ,�′, τ ′,∧′) is an S-representation of X′, where:

— S′ is the collection of all word-product notations, that is, of all expressions of the form
e1e2 · · · en where each ei is either of the form u∗ where u is a finite subset of S, or of the
form a? where a ∈ S. We write ε for the empty word-product notation.

— �e1e2 · · · en�′ = �e1�′ �e2�′ · · · �en�′ = {x1x2 · · · xn | x1 ∈ �e1�′ , x2 ∈ �e2�′ , . . . , xn ∈ �en�′},
where �u∗�′ is the set of all finite words whose letters are in ⋃

a∈u �a�, and �
a?

�′ is the set of
words containing at most one letter, and this letter is in �a�;

— �′ is the relation star[�], defined recursively from � by: ε �′ w for every word-product
notation w, w�′ ε iff w= ε, and for all a, a′ ∈ S, for all non-empty finite subsets u, u′ of
S:
– a?w�′ a′?w′ iff a� a′ and w�′ w′, or a ��a′ and a?w�′ w′;
– a?w�′ u′∗w′ iff a� a′ for some a′ ∈ u′ and w�′ u′∗w′, or a� a′ for no a′ ∈ u′ and a?w�′
w′;

– u∗w�′ a′?w′ iff u is empty and w�′ a′?w′, or u is non-empty and u∗w�′ w′;
– u∗w�′ u′∗w′ iff either for every a ∈ u, there is an a′ ∈ u′ such that a� a′ and w�′ u′∗w′,
or there is an a ∈ u such that a� a′ for no a′ ∈ u′, and u∗w�′ w′.

— τ ′ is {τ ∗}.
— ∧′ is the map meet[∧], parametrized by �, and defined recursively by: ε ∧′ w′ = {ε}, w∧′

ε = {ε}, and for all a, a′ ∈ S, for all non-empty finite subsets u, u′ of S:
– a?w∧′ a′?w′ = {a′′?w′′ | a′′ ∈ a∧ a′,w′′ ∈w∧′ w′} ∪ (a?w∧′ w′)∪ (w∧′ a′?w′);

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 813

– a?w∧′ u′∗w′ = {a′′?w′′ | a′ ∈ u′, a′′ ∈ a∧ a′,w′′ ∈w∧′ u′∗w′} ∪ (a?w∧′ w′) if there is an
a′ ∈ u′ such that a∧ a′ �= ∅, a?w∧′ u′∗w′ = (w∧′ u′∗w′)∪ (a?w∧′ w′) otherwise; and
similarly for u∗w∧′ a′?w′;

– u∗w∧′ u′∗w′ =
{(⋃

a∈u
a′∈u′

a∧ a′
)∗

w′′ |w′′ ∈ (u∗w∧′ w′)∪ (w∧′ u′∗w′)
}
.

Proof. �_�′ is surjective: the irreducible closed subsets of X′ are the word-products by
Proposition 7.14, that is, of the form �w� for some word-product notation w ∈ X′.

The formulae defining star[�] are obtained from Lemma 7.9. The formula defining τ ′ is justi-
fied by the fact that

⋃
w∈τ ′ �w�′ = �τ ∗�′ is the set of all words whose letters are all in⋃

a∈τ �a�= X,
this is, the whole set X∗. The formulae defining ∧′ are obtained from Lemma 7.13.

Appendix C. Proofs of Results on Multisets (Section 8)
Proposition 8.4 (recap). Let X be a topological space. Then, the m-SREs are closed in X�, and the
m-products are irreducible closed.

If X is Noetherian, then every irreducible closed subset of X� is an m-product, and every closed
subset of X� is an m-SRE.

Proof. Consider any m-product P= F | C1, C2, . . . , Cn. We observe that�−1(P) is the union over
all permutations π of {1, 2, . . . , n} of the word-products F∗C?

π(1)F
∗C?

π(2)F
∗ · · · F∗C?

π(n)F
∗. This

means that the words whose multiset of letters can be split as at most one letter from each of C1,
C2, . . . , Cn, plus remaining letters from F, are just the words that are comprised of letters from F,
except for zero or one letter from Ci, i ∈ {1, 2, . . . , n}, sprinkled here and there in some order. So
�−1(P) is closed in X∗. Because � is quotient, P is closed in X�.

It also follows that any m-SRE is closed in X�.
Next we show that the m-products F | C1, C2, . . . , Cn are indeed irreducible. By Lemma 7.7,

F∗C?
1C

?
2 · · · C?

n is irreducible closed in X∗. So the closure of its image by � is irreducible closed by
Lemma A.1. However, the image of F∗C?

1C
?
2 · · · C?

n by � is F | C1, C2, . . . , Cn. We have seen that
it is closed, hence equal to its closure. Therefore, it is irreducible closed.

Now assume X Noetherian. Let F be any closed subset of X�. Since � is continuous, �−1(F)
is closed in X∗, hence a finite union of word-products, by Proposition 7.14. Since � is surjective,
F is equal to the image �[�−1(F)] of �−1(F) by � . So F is a finite union of subsets �[Pi],
i ∈ I, where each Pi is a word-product. We calculate �[Pi] as follows. Write Pi as e1e2 · · · en, and
since it will not change its image by � , reorder the atomic expressions ei in e1e2 · · · en so that the
starred ones come first. Doing so allows us to write our word-product as F∗1F∗2 · · · F∗mC?

1C
?
2 · · · C?

p,
up to permutation of factors. Its image by � is the set of multisets obtained by picking at most
one element from C1, at most one from C2, . . . , at most one Cp, then arbitrarily many from F1,
arbitrarily many from F2, . . . , arbitrarily many from Fm. It follows that�[e1e2 · · · en]= (F1 ∪ F2 ∪
· · · ∪ Fm) | C1, C2, . . . , Cp. In particular, �[Pi] is an m-product. Therefore, F is a finite union of
m-products, hence an m-SRE.

If F is also irreducible, then this finite union must be the union of a single m-product, hence is
an m-product.

Lemma 8.6 (recap). Let X be a topological space. Inclusion between m-products can be checked in
polynomial time, modulo an oracle testing inclusion of closed subsets of X.

Explicitly, let P= F | C1, C2, . . . , Cm and P′ = F′ | C′1, C′2, . . . , C′n be two m-products. Let
I = {i1, i2, . . . , ik} be the subset of those indices i, 1≤ i≤m, such that Ci �⊆ F′.

Then, P⊆ P′ if and only if F⊆ F′ and there is an injective map r : I→{1, 2, . . . , n} such that
Ci ⊆ C′r(i) for every i ∈ I – in other words, {|Ci1 , Ci2 , . . . , Cik |} ⊆� {|C′1, C′2, . . . , C′n|}.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

814 A. Finkel and J. Goubault-Larrecq

Proof. Assume P⊆ P′. If F �⊆ F′, then pick x ∈ F� F′: the multiset consisting of n+ 1 copies of x
is in P but not in P′: contradiction. So F⊆ F′.

Let now I = {i1, i2, . . . , ik} be as above. Let D1 = Ci1 , D2 = Ci2 , . . . , Dk = Cik . Let also
E1, E2, . . . , Em−k be an enumeration of those Ci, 1≤ i≤ n, with i �∈ I. Consider the word-
product P1 defined as E?1E

?
2 · · · E?m−kF∗D?

1D
?
2 · · ·D?

k. Note that P1 ⊆�−1(P), so P1 ⊆�−1(P′). On
the other hand, �−1(P′) is the union over all permutations π of {1, 2, . . . , n} of F′∗C′

π(1)
?F′∗

C′
π(2)

?F′∗ · · · F′∗C′
π(n)

?F′∗. Since P1 is irreducible (Lemma 7.7), there a permutation π of {1,
2, . . . , n} such that P1 ⊆ F′∗C′

π(1)
?F′∗C′

π(2)
?F′∗ · · · F′∗C′

π(n)
?F′∗. Using Lemma 7.9, and the fact

that E1, E2, . . . , Em−k are contained in F′, and F⊆ F′, and recalling the definition of P1, we obtain
that D?

1D
?
2 · · ·D?

k is included in F′∗C′
π(1)

?F′∗C′
π(2)

?F′∗ · · · F′∗C′
π(n)

?F′∗.
We show that there is an injective map r : I→{π(1), π(2), . . . , π(n)} such that Ci ⊆ C′r(i)

for every i ∈ I, by induction on k+ n. If k= 0, the empty map fits. Otherwise, since D1 �⊆ F′,
using Lemma 7.9, we must have D?

1D
?
2 · · ·D?

k ⊆ C′
π(1)

?F′∗C′
π(2)

?F′∗ · · · F′∗C′
π(n)

?F′∗. Now we
have two cases, again following Lemma 7.9. In the first case D1 = Ci1 ⊆ C′

π(1) and D?
2 · · ·D?

k ⊆
F′∗C′

π(2)
?F′∗ · · · F′∗C′

π(n)
?F′∗, so there is an injective map r′ : {i2, . . . , ik}→ {π(2), . . . , π(n)}

such that Ci ⊆ C′r′(i) for every i ∈ {i2, . . . , ik}, by induction hypothesis. Then taking r(i1)= π(1)
and r(i)= r′(i) for every i ∈ {i2, . . . , ik} fits. In the second case, D?

1D
?
2 · · ·D?

k ⊆ F′∗C′
π(2)

?F′∗

· · · F′∗C′
π(n)

?F′∗, and we conclude directly by the induction hypothesis.
Conversely, if there is an injective map r : I→{1, 2, . . . , n} such that Ci ⊆ C′r(i) for every i ∈ I,

it is clear that P⊆ P′.
Theorem 8.7 (recap). Let X be a Noetherian space, X′ = X�, and (S, �_�,�, τ ,∧) be an
S-representation of X. Then, (S′, �_�′ ,�′, τ ′,∧′) is an S-representation of X′, where:

(A) S′ is the collection of all m-product notations, that is, of all expressions of the form A | u,
where A is a finite subset of S, and u is a multiset of elements of S. When u= {|b1, . . . , bn|},
we also write A | b1, . . . , bn for A | u.

(B) �A | b1, . . . , bn�′ = (
⋃

a∈A �a�) | �b1� , . . . , �bn�.
(C) A | u�′ A′ | u′ if and only if A�	 A′ and u1 �� u′ where u1 is the subset of those elements

a ∈ u such that a� a′ for no a′ ∈A′.
(D) τ ′ is {τ | ∅}.
(E) ∧′ is defined as follows. Amatching f : {1, . . . ,m}→ {1, . . . , n} is any bijection from some

subset of {1, . . . ,m} (the domain dom f) to some subset of {1, . . . , n} (the codomain cod f).
Then, (A | a1, . . . , am)∧′ (A′ | a′1, . . . , a′n) is the collection of all m-product notations of the
form A′′ |m1f !m2f !m3f , where:
— A′′ =⋃

a∈A
a′∈A′

(a∧ a′);
— f ranges over all matchings from {1, . . . ,m} to {1, . . . , n};
— m1f ranges over all multisets of the form {|ci | i ∈ dom f |} where ci ∈ ai ∧ a′f (i) for every

i ∈ dom f ;
— m2f ranges over all multisets of the form {|ci | 1≤ i≤m, i �∈ dom f |}, where ci ∈⋃

a′∈A′ (ai ∧ a′) for each i, 1≤ i≤m, i �∈ dom f ;
— m3f ranges over all multisets of the form {|c′j | 1≤ j≤ n, j �∈ cod f |}, where c′j ∈

⋃
a∈A (a∧

a′j) for each j, 1≤ j≤ n, j �∈ cod f .

Proof. First, �_�′ is surjective by Proposition 8.4. The formula for �′ is justified by Lemma 8.6.
The fact that X� =⋃

A|u∈τ ′ �A | u�′ is clear: the union on the right-hand side is �τ | ∅�′, which is
by definition the set of multisets whose elements are all in

⋃
a∈τ �a�= X.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 815

To justify the formula for ∧′, finally, compute the intersection of �A | a1, . . . , am�′ = F |
�a1� , . . . , �am� (where F=⋃

a∈A �a�) and of �A′ | a′1, . . . , a′n�′ = F′ | �a′1� , . . . , �a′n� (where F′ =⋃
a′∈A′ �a′�). Any multiset m in the intersection can be split into four parts: first, the multiset

m0 of those elements that are in F ∩ F′; then, among the remaining elements, the multiset m1 of
those elements that are both in some �ai� and in some

�
a′j

�
: reasoning on indices, there must

be a matching f : {1, . . . ,m}→ {1, . . . , n} such that m1 is a multiset of elements xi, i ∈ dom f ,
where xi is in �ai�∩

�
a′f (i)

�
; then, the remaining elements are obtained by taking at most one

element from each �ai�, i �∈ dom f , provided they are in F′, and at most one element from each�
a′j

�
, j �∈ cod f , provided they are in F. Let Ef be the set (F ∩ F′) | �ai�∩

�
a′f (i)

�
︸ ︷︷ ︸

i∈dom f

, �ai�∩ F′︸ ︷︷ ︸
1≤i≤m
i�∈dom f

, F ∩
�
a′j

�
︸ ︷︷ ︸
1≤j≤n
j�∈cod f

.

We have just shown that �A | a1, . . . , am�′ ∩ �
A′ | a′1, . . . , a′n

�′ was contained in the union of all
Ef , when f ranges over the matchings from {1, . . . ,m} to {1, . . . , n}. The converse inclusion is
obvious.

We then observe that:

— F ∩ F′ =⋃
a∈A
a′∈A′

(�a�∩ �a′�)=⋃
a∈A
a′∈A′
c∈a∧a′

�c�=⋃
c∈A′′ �c�;

— for each i ∈ dom f , �ai�∩
�
a′f (i)

�
=⋃

ci∈ai∧a′f (i) �ci�;
— for each i, 1≤ i≤m, i �∈ dom f , �ai�∩ F′ = �ai�∩⋃

a′∈A′ �a′�=⋃
a′∈A′ (�ai�∩ �a′�)=⋃

a′∈A′
ci∈ai∧a′

�ci�;
— and similarly, for each j, 1≤ j≤ n, j �∈ cod f , F ∩

�
a′j

�
=⋃

a∈A
c′j∈a∧a′j

�
c′j
�
.

Finally, we notice that unions distribute over the | construction, meaning that F |A∪ B,
C2, . . . , Cn is equal to the union of F |A, C2, . . . , Cn and F | B, C2, . . . , Cn. By distributing all
unions across the | construction, we obtain the indicated formula for ∧′.

Appendix D. Proofs of Results on Words with the Prefix Topology (Section 9)
Proposition 9.2 (recap). Let X1, X2, . . . , Xn, . . . be countably many topological spaces. The sets of
the form %F1F2 · · · Fn〉, where each Fi is closed in Xi, form a subbase of closed sets for�+∞n=1 Xn: these
sets are closed, and every closed subset is an intersection of finite unions of such sets.

Proof. We first observe that the complement of %F1F2 · · · Fn〉 is the open set $∅, X1 � F1, X1X2 �
F1F2, . . . , X1X2 · · · Xm � F1F2 · · · Fm, · · ·, X1X2 · · · Xn � F1F2 · · · Fn, X1X2 · · · XnXn+1, · · ·, X1X2
· · · Xk, · · · 〉=$∅,U1,U1X2 ∪ X1U2, · · ·,⋃m

i=1 X1· · ·Xi−1UiXi+1· · ·Xm, · · ·,⋃n
i=1 X1· · ·Xi−1UiXi+1

· · · Xn, X1X2 · · · XnXn+1, · · ·, X1X2 · · · Xk, · · · 〉, where Ui is the complement of Fi, 1≤ i≤ n.
Conversely, we claim that every open in the prefix topology is a union of subsets of the form

m$V1V2 · · ·Vm〉n (0≤m≤ n, Vi open in Xi for every i), where the latter denotes the set of all
words w of length at leastm such that either |w| ≥ n or them-letter prefix of w is in V1V2 · · ·Vm.
Indeed, consider any wide telescope U =U0,U1, . . . ,Un, . . ., where Uk =

∏k
i=1 Xi for all k≥ n.

U certainly contains m$V1V2 · · ·Vm〉n for any open rectangle V1V2 · · ·Vm contained in Um:
for any w ∈ m$V1V2 · · ·Vm〉n, either |w| ≥ n, then w ∈∏|w|

i=1 Xi =U|w|, or m≤ |w|< n, in which
case w is in V1V2 · · ·VmXm+1 · · · X|w|, hence in UmXm+1 · · · X|w|, and therefore in U|w| by the

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

816 A. Finkel and J. Goubault-Larrecq

definition of telescopes. We claim that U is equal to the union of all m$V1V2 · · ·Vm〉n, where
0≤m≤ n, and V1V2 · · ·Vm ranges over the open rectangles contained in Um. Indeed, given any
word w ∈ $U〉, either |w| ≥ n and we can takem= n, V1 = X1, . . . , Vm = Xm; or |w| =m< n, then
w is in some open rectangle V1V2 · · ·Vm contained in Um, by definition of the product topology
on

∏m
i=1 Ui, whence w ∈ m$V1V2 · · ·Vm〉n.

Finally, we observe that the complement of m$V1V2 · · ·Vm〉n is the set of words w such that
either |w|<m, or m≤ |w|< n and for some i, 1≤ i≤m, the ith letter of w is not in Vi. When
m= 0, this is empty. When m= n, the condition m≤ |w|< n is always false, so the complement
of m$V1V2 · · ·Vm〉n is equal to %Xm−1〉. Finally, when m �= 0 and m< n, write Fi for the comple-
ment of Vi, then the complement of m$V1V2 · · ·Vm〉n is equal to %Xm−1〉 ∪⋃m

i=1%Xi−1FiXn−i−1〉
ifm≥ 1.

So the complement of any open of the prefix topology is an intersection of finite unions of the
claimed subbasic closed sets, and we conclude.

We need the following, which also appears in Goubault-Larrecq (2013, Exercise 9.7.36).

Lemma D.1. Let X1, X2, . . . , Xn, . . . be countably many topological spaces. The map in : X1 ×
· · · × Xn→�+∞n=1 Xn that sends each n-tuple (a1, a2, . . . , an) to the word a1a2 · · · an, and the map
cons : X1 ×�+∞n=2 Xn→�+∞n=1 Xn that sends a1, a2a3 · · · an to a1a2a3 · · · an are both continuous.

Proof. To show that in is continuous, we note that the inverse image of the open subset $U〉, where
U is any telescope U0,U1, . . . ,Un, . . ., is the open subset Un. To show that cons is continuous, it
is easier to show that the inverse image of a subbasic closed set %F1F2 · · · Fn〉 (see Proposition 9.2)
is closed. Indeed, this inverse image is empty if n= 0 and equal to F1 × %F2 · · · Fn〉 otherwise.
Lemma 9.3 (recap). Let X1, X2, . . . , Xn, . . . , be countably many topological spaces. The subsets
of the form %C1C2 · · · Cn〉, where Ci is irreducible closed in Xi for each i, 1≤ i≤ n, are irreducible
closed in�+∞n=1 Xn.

Proof. C1 × C2 × · · · × Cn is irreducible closed in X1 × · · · × Xn by Lemma A.2. The map in is
continuous, so cl(in[C1 × C2 × · · · × Cn]) is irreducible closed by Lemma A.1. We claim that the
latter is exactly %C1C2 · · · Cn〉, and this will prove the lemma. Indeed, in[C1 × C2 × · · · × Cn] is
contained in %C1C2 · · · Cn〉, hence so does its closure. Conversely, any word in %C1C2 · · · Cn〉 is
also in the downward closure of in[C1 × C2 × · · · × Cn] (with respect to ≤�), hence in the set
cl(in[C1 × C2 × · · · × Cn]), since the latter is closed hence downward-closed.

Lemma 9.5 (recap). Let X1, X2, . . . , Xn, . . . , be countably many non-empty topological spaces. The
whole space�+∞n=1 Xn is irreducible closed in itself.

Proof. Passing to complements, it is equivalent to show that the intersection of two non-empty
opens is again non-empty. Any two non-empty open subsets of �+∞n=1 Xn are of the form $U〉
and $U ′〉 for two wide telescopes U = (Un)n∈N and U ′ = (U ′n)n∈N. For n large enough, Un =U ′n =∏n

i=1 Xi, so any length n heterogeneous word is in $U〉 ∩ $U ′〉.
To show that there is no other irreducible closed subset, we rest on the following general-

purpose lemma.

Lemma D.2. Let Y be a topological space and B be a subbase of closed sets of Y. Assume that
any (possibly infinite) non-empty intersection of elements of B can be written as a finite union of
elements of B. Then every irreducible closed subset of Y is a member of B or equals Y itself.

Proof. Let C be an arbitrary irreducible closed subset of Y . As a closed set, C can be written as⋂
i∈I

⋃
j∈Ji Fij, where I is some index set, Ji is finite for every i ∈ I, and Fij ∈ B for all i, j. If I is

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 817

empty, then C= Y . Otherwise, for each i ∈ I, C is contained in
⋃

j∈Ji Fij, so C is contained in Fiji
for some ji ∈ Ji, since C is irreducible. Since Fiji is clearly contained in

⋃
j∈Ji Fij, C=

⋂
i∈I Fiji . By

assumption, C can be written as a finite union
⋃n

k=1 Bk of elements of B. Since C is irreducible,
again, Cmust equal some Bk, 1≤ k≤ n, whence C ∈ B.

Lemma 9.6 (recap). Let X1, X2, . . . , Xn, . . . , be countably many non-empty topological spaces.
The only irreducible closed subsets of �+∞n=1 Xn are �+∞n=1 Xn itself, and the subsets of the form
%C1C2 · · · Cn〉, where Ci is irreducible closed in Xi for each i, 1≤ i≤ n.

Proof. Let B be the subbase of closed sets of the form %F1F2 · · · Fn〉. Any non-empty inter-
section of such sets is again of this form. In fact, whenever I is non-empty, the intersection⋂

i∈I%Fi1Fi2 · · · Fini〉 equals %
⋂

i∈I Fi1
⋂

i∈I Fi2 · · ·
⋂

i∈I Fiminj∈I nj〉. So LemmaD.2 applies the only
irreducible closed subsets of�+∞n=1 Xn other than�+∞n=1 Xn itself are in B.

Now assume %F1F2 · · · Fn〉 is irreducible. Without loss of generality, no Fi is empty: other-
wise, letting k be the smallest index such that Fk is empty, one can rewrite %F1F2 · · · Fn〉 as
%F1F2 · · · Fk−1〉.

For each i, 1≤ i≤ n, since Fi is non-empty, fix an element xi of Fi. We claim that Fi must
be irreducible for each i, 1≤ i≤ n. Otherwise, there would be two closed subsets F′ and F′′ such
that Fi ⊆ F′ ∪ F′′, but Fi is contained neither in F′ nor in F′′. In this case, let x′ be an element of
Fi outside F′, and x′′ an element of Fi outside F′′. Then x1x2 · · · xi−1x′ is in %F1F2 · · · Fi · · · Fn〉
but not in %F1F2 · · · F′ · · · Fn〉 (where F′ replaces Fi at position i), and x1x2 · · · xi−1x′′ is in
%F1F2 · · · Fi · · · Fn〉 but not in %F1F2 · · · F′′ · · · Fn〉 (where F′′ replaces Fi at position i), although
%F1F2 · · · Fi · · · Fn〉 is contained in the union %F1F2 · · · F′ · · · Fn〉 ∪ %F1F2 · · · F′′ · · · Fn〉. This
would contradict the fact that %F1F2 · · · Fi · · · Fn〉 is irreducible. So each Fi is irreducible.

Proposition 9.7 (recap). Let X1, X2, . . . , Xn, . . . , be countably many non-empty topological spaces.
The map i : (�+∞n=1 S(Xn))

�→ S(�+∞n=1 Xn) that sends � to �+∞n=1 Xn and the word C1C2 · · · Cn
(where Ci ∈ S(Xi) for each i) to %C1C2 · · · Cn〉 is an order isomorphism and a homeomorphism.

Proof. First, i is well defined, by Lemmas 9.5 and 9.3. It is surjective by Lemma 9.6.
The specialization quasi-ordering on (�+∞n=1 S(Xn))

� is⊆��.
Notice that C1 · · · Cm ⊆�� C′1 · · · C′n iff C1 · · · Cm ⊆� C′1 · · · C′n iff m≤ n and C1 ⊆ C′1, . . . ,

Cm ⊆ C′m. We claim that this is equivalent to %C1 · · · Cm〉 ⊆ %C′1 · · · C′n〉. The only if direction
is clear. In the if direction, pick x1 ∈ C1, . . . , xm ∈ Cm: the word x1 · · · xm is in %C1 · · · Cm〉 ⊆
%C′1 · · · C′n〉, so x1 ∈ C′1, . . . , xm ∈ C′m. In particular, m≤ n; also, letting x1, . . . , xi−1, xi+1, . . . , xm
remain fixed, but varying xi in Ci, we obtain that Ci ⊆ C′i.

Notice also that �⊆�� C′1 · · · C′n never holds, and that �+∞n=1 Xn ⊆ %C′1 · · · C′n〉 never holds
either, since�+∞n=1 Xn contains words of arbitrary lengths.

Notice finally that C1 · · · Cm ⊆�� � always holds, and correspondingly %C1 · · · Cm〉 ⊆�+∞n=1 Xn always holds.
It follows that for everyw,w′ ∈ (�+∞n=1 S(Xn))

�,w⊆�� w′ iff i(w)⊆ i(w′). In particular, i(w)=
i(w′) entails w=w′, so that i is injective. Since i is surjective, it is bijective. This also shows that i
and its inverse are monotonic, so that i is an order isomorphism.

For each closed subset F of a space X, write �F for the family of all irreducible closed sub-
sets C of X such that C⊆ F. Alternatively, �F is the complement of the open subset �U of S(X),
for U the complement of F in X. In particular, �F is closed in S(X), and all closed subsets of
S(X) are of this form. Since � commutes with arbitrary unions and finite intersections, � com-
mutes with arbitrary intersections and finite unions, so given a subbase B of closed subsets of
X, the sets �F with F ∈ B form a subbase of the closed subsets of S(X). In particular, the sets
�%F1, F2, . . . , Fn〉 with each Fi closed in Xi form a subbase of closed sets of S(�+∞n=1 Xn). Their

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

818 A. Finkel and J. Goubault-Larrecq

inverse image by i is the set of words C1C2 · · · Cm in �+∞n=1 S(Xn) such that %C1, C2, . . . , Cm〉 ⊆
%F1, F2, . . . , Fn〉. This is equivalent to C1 · · · Cm ⊆�� F1F2 · · · Fn, by an argument similar to one
we have already seen at the beginning of the present proof. (The difference is that F1, F2, . . . , Fn are
no longer irreducible, contrarily to C′1, . . . , C′n – but we never used irreducibility there.) Therefore,
i−1(�%F1, F2, . . . , Fn〉)= %�F1,�F2, . . . ,�Fn〉. This shows that i is continuous.

Since i is bijective, let j be its inverse. We have just shown that j−1(%�F1,�F2, . . . ,�Fn〉)=
�%F1, F2, . . . , Fn〉. The sets�Fi, for Fi closed in Xi, span all the closed subsets of S(Xi), since their
complements �U for U open span all the open subsets of S(Xi). Using Proposition 9.2, the sets
%�F1,�F2, . . . ,�Fn〉 with all Fi closed form a subbase of closed subsets of�+∞n=1 S(Xn). Together
with the whole set (�+∞n=1 S(Xn))

�, they form a subbase of closed subsets of (�+∞n=1 S(Xn))
�,

whose inverse images by j are closed: either the closed set �%F1, F2, . . . , Fn〉 or the whole space
S(�+∞n=1 Xn). Therefore, j= i−1 is also continuous, hence i is a homeomorphism.

Lemma 9.8 (recap). Let X1, X2, . . . , Xn be non-empty topological spaces. The only irreducible closed
subsets of�n

k=1 Xk are the subsets of the form %C1C2 · · · Cm〉, where Ci is irreducible closed in Xi for
each i, 1≤ i≤m, and m≤ n.

Proof. The proof of Lemma 9.6, with minor changes shows that all irreducible closed subsets are
of this form, except possibly for the whole space �n

k=1 Xk. We show that the latter cannot be
irreducible, unless it is itself of one of the above form.

Assume that �n
k=1 Xk is irreducible, that is, any two non-empty opens have a non-empty

intersection. In particular, given any two non-empty open subsets Uk and Vk of Xk, the
open subset $∅, . . . , ∅, X1 · · · Xk−1Uk, X1 · · · Xk−1UkXk+1, . . . , X1 · · · Xk−1UkXk+1 · · · Xn, · · · 〉
and the open subset $∅, . . . , ∅, X1 · · · Xk−1Vk, X1 · · · Xk−1VkXk+1, . . . , X1 · · · Xk−1VkXk+1 · · ·
Xn, · · · 〉 are both non-empty and must have non-empty intersection. Any word in this intersec-
tion must be of length at least k, and its kth letter must be both in Uk and in Vk. So any two
non-empty open subsets Uk and Vk of Xk must have non-empty intersection: Xk is irreducible.
Then,�n

k=1 Xk = %X1X2 · · · Xn〉 is irreducible closed by Lemma 9.3, and we are done.

Proposition 9.9 (recap). Let X1, X2, . . . , Xn be non-empty topological spaces. The map
i : �n

k=1 S(Xk)→ S(�n
k=1 Xk) that sends the word C1C2 · · · Ck (where k≤ n and Ci ∈ S(Xi) for

each i) to %C1C2 · · · Ck〉 is an order isomorphism and a homeomorphism.

Proof. The proof is as for Proposition 9.7, using now Lemma 9.8 instead of Lemma 9.6.

Appendix E. Proofs of Results on Trees (Section 11)
It is sometimes convenient to be able to talk about subterms and positions p, together with the
subterm t|p of t at position p. A position is a finite word over N. The empty word ε is always a
position in any term t, and t|ε = t. Whenever t|p is defined, and, t|p is of the form f (t1, . . . , tn),
then p i is a position in t for every i, 1≤ i≤ n, and t|pi = ti. The size of a term is the number of its
positions.Wewrite t[s]p for the term t, except that the subterm at position p has been replaced by s.

The following generalizes the notion of simple tree expression: for U open in X and U open in
T (X)∗, let ♦U · U be the set of all terms that have a subterm of the form f (�t) with f ∈U and �t ∈ U .
We use them in proving the first part of Proposition 11.1:

Lemma E.1. Let X be a topological space. Every finite intersection of simple tree expressions can be
rewritten as a finite union of simple tree expressions. In particular, the simple tree expressions form
a base of the tree topology.

Proof. Let Y = T (X). The empty intersection is ♦X(), and it remains to compute binary inter-
sections. We do this in two steps. First, for all opens U and U ′ of X, for all opens U and U ′ of

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 819

Y∗, we show that the intersection of ♦U · U and ♦U ′ · U ′ can be expressed as the union of sim-
pler expressions of the form ♦U ′′ · U ′′. Next, in the special case where ♦U · U is a simple tree
expression ♦U(π1 | · · · | πn), namely when U is of the form Y∗π1Y∗ · · · Y∗πnY∗, and similarly for
♦U ′ · U ′, we show that each of the simpler expressions♦U ′′ · U ′′ obtained in Step 1 can themselves
be expressed as finite unions of simple tree expressions.

Step 1. The intersection of ♦U · U and ♦U ′ · U ′ is the union of:

1. ♦U · (U ∩ (Y∗(♦U ′ · U ′)Y∗),
2. ♦U ′ · (U ′ ∩ (Y∗(♦U · U)Y∗),
3. ♦(U ∩U ′) · (U ∩ U ′),
4. ♦X · (♦U · U |♦U ′ · U ′)
5. ♦X · (♦U ′ · U ′ |♦U · U).

Indeed, the terms t of ♦U · U ∩♦U ′ · U ′ are those that have a subterm t|p = f (�t) with f ∈U and
�t ∈ U and that have a subterm t|p′ = f ′(�t′) with f ′ ∈U ′ and �t′ ∈ U ′, for some positions p and p′. If p
is a proper prefix of p′ (we say that f (�t) is above f ′(�t′)), then t is in ♦U · (U ∩ (Y∗(♦U ′ · U ′)Y∗)
(case 1 above); if p′ instead is a proper prefix of p, then t is in case 2; if p= p′, then t is in case 3; if
p and p′ are incomparable, then t is in case 4 if f (�t) is to the left of f ′(�t′) (i.e., the first element that
differs in p and p′ is less in p than in p′), and in case 5 if f (�t) is to the right of f ′(�t′). Conversely,
each of the opens 1–5 are clearly contained both in ♦U · U and in ♦U ′ · U ′.

Note. The operator ♦V· commutes with finite unions, that is, ♦V ·⋃m
i=1 Vi =⋃m

i=1 ♦V · Vi.
This is easy: both sides are the set of terms such that there is a subterm f (�t) with f ∈V and there
is an i, 1≤ i≤m, such that �t ∈ Vi. We will use that freely below.

Step 2. Call an elementary open any open subset of Y∗ of the form Y∗π1Y∗ · · · Y∗πnY∗,
where π1, . . . , πn are simple tree expressions. We claim that, for all open subsets U and
U ′ of X, for all elementary opens U and U ′, ♦U · U ∩♦U ′ · U ′ is a finite union of (denota-
tions of) simple tree expressions. We show this by induction over the size of the expressions
♦U · U and ♦U ′ · U ′. Write U as Y∗π1Y∗ · · · Y∗πmY∗, and U ′ as Y∗π ′1Y∗ · · · Y∗π ′nY∗. Then
U ∩ (Y∗(♦U ′ · U ′)Y∗) (case 1) is the union of all elementary opens of the form Y∗π1Y∗ · · · Y∗πi−1
Y∗(♦U ′ · U ′)Y∗πiY∗ · · · Y∗πmY∗, 1≤ i≤m+ 1, plus all opens of the form Y∗π1Y∗ · · · Y∗(πi ∩
♦U ′ · U ′)Y∗ · · · Y∗πmY∗, 1≤ i≤m. For each i, the latter is the (finite) union of the elemen-
tary opens Y∗π1Y∗ · · · Y∗π ′′Y∗ · · · Y∗πmY∗, where π ′′ ranges over the (finitely many) simple
tree expressions given by the induction hypothesis, and whose union equals πi ∩♦U ′ · U ′.
So U ∩ (Y∗(♦U ′ · U ′)Y∗) is a (finite) union of elementary opens, say U1, . . . , Uk: then the open
♦U · (U ∩ (Y∗(♦U ′ · U ′)Y∗) of case 1 is the (finite) union ⋃k

i=1 ♦U · Ui. Case 2 is symmetric.
Cases 4 and 5 are already in the form of simple tree expressions.
For case 3, we show that U ∩ U ′ is a finite union of elementary opens, by induction on m+ n,

using the formulae that we have already used in the proof of Lemma 7.1.Whenm= 0 or n= 0, this
is clear. Otherwise, write U = Y∗π1V , U ′ = Y∗π ′1V ′, so U ∩ U ′ is the union of Y∗π1(V ∩ Y∗π ′1V ′),
of Y∗π ′1(Y∗π1V ∩ V ′), and of Y∗(π1 ∩ π ′1)(V ∩ V ′). By induction hypothesis, V ∩ Y∗π ′1V ′ is a
finite union of elementary opens, so Y∗π1(V ∩ Y∗π ′1V ′) is, too, since unions distribute over con-
catenations. Similarly for Y∗π ′1(Y∗π1V ∩ V ′). For Y∗(π1 ∩ π ′1)(V ∩ V ′), π1 ∩ π ′1 is a finite union
of simple tree expressions by induction hypothesis (the first one, on π and π ′), and V ∩ V ′ is a
finite union of elementary opens by induction hypothesis (the second one, on U and U ′). We then
distribute unions over concatenations again to conclude.

Lemma E.2. For every open subset U of X, for every open subset U of T (X)∗, ♦U · U is open in
T (X).

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

820 A. Finkel and J. Goubault-Larrecq

Proof. Let Y = T (X). Notice that U can be written as a union of opens of the form Y∗U1
Y∗ · · · Y∗UnY∗, where each Ui is open in Y , because those form a base of the word topology
on Y∗ (Lemma 7.1). By Lemma E.1, U1, . . . , Un can all be written as unions of simple tree expres-
sions. Distributing unions over concatenations, U is then a union of elementary opens Ui of Y∗,
i ∈ I (in the sense already used in Lemma E.1). Then, ♦U · U =⋃

i∈I ♦U · Ui is a union of simple
tree expressions, hence is open.

Lemma E.3. Letting ≤ be the specialization quasi-ordering of X, every open subset of T (X) is
upward-closed with respect to �≤.

Proof. This is Exercise 9.7.43 of Goubault-Larrecq (2013). For short, let Y denote T (X). We show
that whenever s�≤ t and s ∈ π , then t ∈ π . This is by induction on the structure of π . Write π as
♦U(π1 | . . . | πn). There must be a subterm, say at position p, of s, of the form f ′(�s′), with f ′ ∈U
and �s′ ∈ Y∗π1Y∗ . . . Y∗πnY∗. Let (∗) be our induction hypothesis: whenever u�≤ v and u ∈ πi
for some i, 1≤ i≤ n, then v ∈ πi.

We show that t ∈ π for any term t such that s�≤ t, whenever s contains a subterm at some
position p of the form f ′(�s′), with f ′ ∈U and �s′ ∈ Y∗π1Y∗ . . . Y∗πnY∗, by a secondary induction
on the size of t. If s�≤ t by the first case of the definition, that is, if t= g(t1, . . . , tp) and s�≤ tj for
some j, 1≤ j≤ p, then by induction hypothesis tj ∈ π , from which t ∈ π follows immediately, by
definition of (the denotation of) π .

So assume that s�≤ t by the second case of the definition, that is, s= f (�s), t= g(�t), f ≤ g,
and �s�∗≤ �t. Write �s as s1s2 . . . sm, �t as t1t2 . . . tn, so that there is an (injective) increasing map
h : {1, 2, . . . ,m}→ {1, 2, . . . , n} with s1 �≤ th(1), s2 �≤ th(2), . . . , sm �≤ th(m).

If p= ε, then f ′ = f and �s′ =�s, so �s ∈ Y∗π1Y∗ . . . Y∗πnY∗. Let si1 . . . sin be a subword of �s
satisfying si1 ∈ π1, . . . , sin ∈ πn. Then th(i1) ∈ π1, . . . , th(in) ∈ πn by (∗), and th(i1) . . . th(in) forms a
subword of �t. So �t ∈ Y∗π1Y∗ . . . Y∗πnY∗; since U is upward-closed, g ∈U; so t ∈ π .

Finally, if p �= ε, then f ′(�s′) must be a subterm of some si, 1≤ i≤m. Since si �≤ th(i), by
induction hypothesis, th(i) is in π , from which t ∈ π follows immediately.

Lemma E.4. For every open subset U of X, every open subset U of T (X)∗, and every open subset V
of T (X), let ♦U · U //V be the set of all terms containing a subterm f (�t) ∈V with f ∈U and �t ∈ U .
Then ♦U · U //V is open in T (X).

Proof. This is the first part of Exercise 9.7.44 of Goubault-Larrecq (2013). Let Y = T (X). We first
note that ♦U · U //V is open if V is (the denotation of) a simple tree expression π =♦U ′(π ′1 |
. . . | π ′n): in that case ♦U · U // π =♦(U ∩U ′) · (U ∩ Y∗π ′1Y∗ . . . Y∗π ′nY∗)∪♦U · (U ∩ Y∗πY∗).
This is open by Lemma E.2. In the general case, by Lemma E.1, we can writeV as a union of simple
tree expressions πi, i ∈ I. We conclude that ♦U · U //V =⋃

i∈I ♦U · U // πi is indeed open.

Lemma E.5. For every closed subset F of X, and all closed subsets F1, F2, . . . , Fn of Y = T (X),
let F?(F ?

1F ?
2 · · ·F ?

n) denote the union of F1, F2, . . . , Fn with the set of those terms f (�t) such that
f ∈ F and �t ∈F ?

1F ?
2 · · ·F ?

n. (Recall the word-products of Section 7.) Then F?(F ?
1F ?

2 · · ·F ?
n) is closed

in Y: let U = X � F, V be the complement of F1 ∪F2 ∪ · · · ∪Fn in Y, U be the complement of
F ?
1F ?

2 . . .F ?
n in Y∗, then F?(F ?

1F ?
2 · · ·F ?

n) is the complement of (♦X · U //V)∪ (♦U · Y∗ //V).

Proof. This is the second part of Exercise 9.7.44 of Goubault-Larrecq (2013). Let us characterize
the complement of F?(F ?

1F ?
2 . . .F ?

n). Note that U and V are open by definition, while U is open
by Corollary 7.6. Then ♦X · U //V and ♦U · Y∗ //V are open, as we have seen in Lemma E.4.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 821

Let t be a term outside F?(F ?
1F ?

2 . . .F ?
n). Since t is not in F?(F ?

1F ?
2 . . .F ?

n), we first observe that
t is in V , otherwise it would be in F1 ∪F2 ∪ . . .∪Fn. Write t as f (�t). If f ∈ F, then �t cannot be in
F ?
1F ?

2 . . .F ?
n. Recall that U is the complement of F ?

1F ?
2 . . .F ?

n. So, if f ∈ F, then t is in ♦X · U //V .
If on the other hand f �∈ F, then t is in ♦U · Y∗ //V .

Conversely, consider any element t of (♦X · U //V)∪ (♦U · Y∗ //V). We claim that t can-
not be in F?(F ?

1F ?
2 . . .F ?

n). Notice first that any subterm of a term in F?(F ?
1F ?

2 . . .F ?
n) is again

in F?(F ?
1F ?

2 . . .F ?
n): this follows easily from the definition, and the fact that F1 ∪F2 ∪ . . .∪Fn,

being closed, is downward-closed with respect to �≤ (as a consequence of Lemma E.3), hence
is closed under taking subterms. Now let t be both in (♦X · U //V)∪ (♦U · Y∗ //V) and in
F?(F ?

1F ?
2 . . .F ?

n). If t is in ♦X · U //V , then t has a subterm f (�t) ∈V with �t ∈ U . Since t is in
F?(F ?

1F ?
2 . . .F ?

n), its subterm f (�t) is in F?(F ?
1F ?

2 . . .F ?
n), too. But since �t ∈ U , �t �∈F ?

1F ?
2 . . .F ?

n,
so f (�t) must be in F1 ∪F2 ∪ . . .∪Fn; but this would contradict the fact that f (�t) ∈V . If t is
instead in ♦U · Y∗ //V , then t has a subterm f (�t) ∈V with f ∈U, that is, f �∈ F. Again f (�t) is in
F?(F ?

1F ?
2 . . .F ?

n) and f �∈ F entails that f (�t) must be in F1 ∪F2 ∪ . . .∪Fn, again contradicting
f (�t) ∈V .

So F?(F ?
1F ?

2 . . .F ?
n) is the complement of (♦X · U //V)∪ (♦U · Y∗ //V). Since the latter is

open, the former is closed.

Proposition 11.1 (recap). Let X be a topological space. Every finite intersection of simple tree
expressions can be rewritten as a finite union of simple tree expressions. In particular, the simple tree
expressions form a base of the tree topology.

Letting ≤ be the specialization quasi-ordering of X, the specialization quasi-ordering of T (X) is
the embedding quasi-ordering �≤.
Proof. The first part is Lemma E.1. For the second part, let� denote temporarily the specialization
quasi-ordering of T (X). Using Lemma E.3, t�≤ t′ implies t� t′. Conversely, we show by struc-
tural induction on t′ that its downward closure ↓�≤ t′ in �≤ is closed: write t′ as f (t′1, t′2, . . . , t′n),
then ↓�≤ t′ is equal to (↓X f)?((↓�≤ t′1)?(↓�≤ t′2)? . . . (↓�≤ t′n)?), which is closed by Lemma E.5
and the induction hypothesis. So, if t� t′ then t is in the closure of {t′}, hence in the closed set
↓�≤ t′, whence t�≤ t′.

Proposition 11.2 (recap). Let X be a set quasi-ordered by≤. The tree topology on T (Xa) is exactly
the Alexandroff topology of �≤ on T (X).

Proof. Any upward-closed subset A of Y = T (X) is the union of ↑Y s, s ∈A, where upward clo-
sure is taken relative to�≤. We claim that ↑Y s is obtained recursively by ↑Y s=♦(↑X f)(↑Y s1 |
. . . | ↑Y sm), where s= f (s1, . . . , sm). Indeed, let t= g(t1, . . . , tn) be any term. We first show
that if t ∈ ↑Y s, that is, if s�≤ t, then t ∈♦(↑X f)(↑Y s1 | . . . | ↑Y sm): s clearly belongs to
♦(↑X f)(↑Y s1 | . . . | ↑Y sm), and since open sets are upward-closed in the specialization quasi-
ordering, which is�≤ by Proposition 11.1, t is also in ♦(↑X f)(↑Y s1 | . . . | ↑Y sm). Conversely, if
t ∈♦(↑X f)(↑Y s1 | . . . | ↑Y sm), then either t= g(�t) is itself the subterm such that g ∈ ↑X f and�t ∈
Y∗(↑Y s1)Y∗ . . . Y∗(↑Y sm)Y∗, so f ≤ g and �s�∗≤ �t, in particular s�≤ t; or tj is in♦(↑X f)(↑Y s1 |
. . . | ↑Y sm) for some j, 1≤ j≤ n, so s�≤ tj by induction hypothesis, therefore s�≤ t.

It follows that ↑Y s is open in the tree topology for every s ∈A, so ↑Y A is also open in the tree
topology. Conversely, every open subset if upward-closed in �≤ by Proposition 11.1. So the tree
topology is the Alexandroff topology of �≤.

E.1 Tree steps
Lemma E.6. The application map@ : X× T (X)∗ → T (X), which sends (f , �t) to f (�t), is continuous.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

822 A. Finkel and J. Goubault-Larrecq

Proof. This is the first part of Exercise 9.7.47 of Goubault-Larrecq (2013). Let Y = T (X), and
π =♦U(π1, . . . , πn) be a simple tree expression. We show that @−1(π) is open: @−1(π) is the
union of the open U × (Y∗π1Y∗ . . . Y∗πnY∗) with X× (Y∗πY∗); indeed, f (�t) ∈ π iff either f ∈U
and�t ∈ Y∗π1Y∗ . . . Y∗πnY∗ (case where the needed subterm of f (�t) that witnesses the fact that f (�t)
is in π is f (�t) itself), or some element of the sequence �t is in π . So @−1(π) is open, and therefore
@ is continuous.

Lemma 11.4 (recap). Let X be a topological space. For every closed subset F of X, and every word-
product �P on T (X), supp �P and F?(�P) are closed in T (X). If moreover F= C is irreducible, then so
is the tree step C?(�P).
Proof. Let Y = T (X). The first part of the Lemma is a slight extension of Lemma E.5.

First, supp �P is just i−1(�P), where i : Y→ Y∗ is the continuous map such that i(t) is the word
with just one letter, t. By Corollary 7.6, �P is closed, so supp �P is closed too.

Let t be a term outside F?(�P). Let V be the complement of supp �P. We have just seen that V
is open. Moreover, since t is not in F?(�P), t is not in supp �P, so t is in V . Write t as f (�t). If f ∈ F,
then �t cannot be in �P. Let U be the complement of �P in T (X)∗. This is open. So, if f ∈ F, then t is
in ♦X · U //V , which is open by Lemma E.4. If on the other hand f �∈ F, then t is in ♦U · Y∗ //V ,
where U is the complement of F in X; therefore, t ∈ (♦X · U //V)∪ (♦U · Y∗ //V).

Conversely, consider any element t of (♦X · U //V)∪ (♦U · Y∗ //V). We claim that t cannot
be in F?(�P). Notice that any subterm of a term in F?(�P) is again in F?(�P): this follows easily from the
definition, and the fact that supp �P, being closed, is downward-closed with respect to�≤, hence is
closed under taking subterms. So let t be both in (♦X · U //V)∪ (♦U · Y∗ //V) and in F?(�P). If t
is in ♦X · U //V , then t has a subterm f (�t) ∈V with �t ∈ U . Since t is in F?(�P), its subterm f (�t) is in
F?(�P), too. But since �t ∈ U , �t �∈ �P, so f (�t) must be in supp �P; this contradicts the fact that f (�t) ∈V .
If t is instead in ♦U · Y∗ //V , then t has a subterm f (�t) ∈V with f ∈U, that is, f �∈ F. Again f (�t) is
in F?(�P), and f �∈ F entails that f (�t) must be in supp �P, again contradicting f (�t) ∈V .

So F?(�P) is the complement of (♦X · U //V)∪ (♦U · Y∗ //V). Since the latter is open, the
former is closed.

Let us now assume that F= C is irreducible.
By Lemma 7.7, the word-product �P over T (X) is irreducible closed in T (X)∗. So C× �P is irre-

ducible closed in X× T (X)∗, since the product of two irreducible closed subsets is irreducible
closed (Lemma A.2). Since @ is continuous (Lemma E.6), one concludes that cl(@[C× �P]) is
irreducible closed in T (X) (Lemma A.1). Since C?(�P) is closed and clearly contains @[C× �P], it
contains cl(@[C× �P]). Conversely, the latter contains {f (�t) | f ∈ C, �t ∈ �P} and is downward-closed
in �≤, so is closed under taking subterms, whence cl(@[C× �P]) contains C?(�P). Therefore, the
latter is the closure cl(@[C× �P]) and must then be irreducible.

E.2 Tree iterators
We need the following lemma to show that tree iterators define closed sets. A relation R from
a space X to a space Y is a subset of X× Y . It is lower semi-continuous iff Pre∃R(V)= {x ∈ X |
∃y ∈V · x R y} is open for every open subset V of Y . It is upper semi-continuous iff Pre∀R(V)=
{x ∈ X | ∀y · x R y⇒ y ∈V} is open for every open subset V of Y . It is continuous if and only if it is
both lower semi-continuous and upper semi-continuous.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 823

Lemma E.7. Let Z be a topological space,� be a hole outside Z, and inst-of be the relation from Z∗
to (Z+ {�})∗ defined by w inst-ofw′ iff w is obtained from w′ by replacing each occurrence of� by
(possibly distinct) elements from Z. Formally, iff w and w′ have the same length and for every index
i, the ith letter of w′ is either� or equal to the ith letter of w.

Then inst-of is continuous.

Proof. For short, let Y be Z+ {�}.
Lower semi-continuity. Consider any basic open V = Y∗V1Y∗ · · · Y∗VnY∗ of Y . LetUi =Vi ⊆

Z if � �∈Vi, Ui = Z otherwise. Then, Pre∃ inst-of (V)= Z∗U1Z∗ · · · Z∗UnZ∗ is open. Since every
open subset of Y is a union of basic open sets, and since Pre∃ inst-of commutes with unions,
Pre∃ inst-of (V) is open for every open subset V of Y∗.

Upper semi-continuity. We first observe that, for every word-product P= e1e2 · · · en on Y ,
Pre∃ inst-of (P) is a word-product on Z. Indeed, Pre∃ inst-of (P) is equal to Pre∃ inst-of (e1)
Pre∃ inst-of (e2) · · · Pre∃ inst-of (en), while Pre∃ inst-of (F?) equals Z? if � ∈ F and F? otherwise,
and Pre∃ inst-of (F∗) equals Z∗ if � ∈ F and F∗ otherwise. Call a monotone Boolean combination
of word-products any finite union of finite intersections of word-products. Lemma 7.12 shows
that any finite intersection of word-products can be rewritten as a finite union of word-products.
So the monotone Boolean combinations of word-products are the finite unions of word-products⋃m

i=1 Pi. Now Pre∃ inst-of commutes with unions, so Pre∃ inst-of (F) is a finite union of word-
products on Z (hence closed in Z∗ by Corollary 7.6) for every monotone Boolean combination F
of word-products on Y .

Using Lemma 7.2, the complement of any monotone Boolean combination U of basic opens
of Y∗ is a monotone Boolean combination of word-products. So Pre∀ inst-of (U), which is the
complement of Pre∃ inst-of (F), assuming that F is the complement of U, is open in Z∗.

Consider now any open subset U of Y∗. U is a union of basic opens, hence a directed union⋃
i∈I Ui, where each Ui is a finite union (in particular, a monotone Boolean combination) of basic

opens. We observe that Pre∀ inst-of commutes with directed unions. This is because each word
w (say of length m) in Z∗ only has finitely many images w1, w2, . . . , w2m , namely the 2m words
obtained from w by replacing each letter by�, or not: ifw ∈ Pre∀ inst-of (

⋃
i∈I Ui), then for every

j, 1≤ j≤ 2m, there is an i ∈ I such that wj ∈Ui; we may take the same i for every j, by directedness,
whence w ∈ Pre∀ inst-of (Ui); the converse direction is obvious. So Pre∀ inst-of (U) is the directed
union

⋃
i∈I Pre∀ inst-of (Ui) and is therefore open: inst-of is upper semi-continuous.

Lemma E.8. Let X an Z be topological spaces. The relation idX × inst-of that relates (f , �t) ∈ X× Z∗
with (f , �u) ∈ X× (Z+ {�})∗ if and only if �t inst-of �u is continuous.

Proof. Let Y = Z+ {�}, and fix an arbitrary open subset V of X× (Z+ {�})∗. Write V as a union
of open rectangles

⋃
i∈I Ui ×Wi (where everyUi and everyWi is open; this is the definition of the

product topology).
Lower semi-continuity. Pre∃(idX × inst-of)(V) is equal to ⋃

i∈I Ui × Pre∃ inst-of (Wi), hence
is open.

Upper semi-continuity. We must show that U = Pre∀(idX × inst-of)(V) is open. For that, fix
(f , �t): it is enough to find an open rectangle containing (f , �t) and included in U . As in Lemma E.8,
note that there are only finitely many elements �u such that �t inst-of �u. List them as �u1, . . . , �um. For
each one, (f , �uj) is in some Ui ×Wi: pick one such i and call it ij. Our desired open rectangle is
U ×V where U =⋂m

j=1 Uij and V = Pre∀ inst-of (
⋃m

j=1 Wij). By construction, (f , �t) is in U ×V .
For every element (g, �s) of U ×V , by definition every element (g, �u) that is related to (g, �s) by
idX × inst-of is such that g ∈U and �u ∈⋃m

j=1 Wij . Let j be such �u ∈Wij . Since g ∈U, g is in Uij , so
(g, �u) is in Uij ×Wij ⊆ U .

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

824 A. Finkel and J. Goubault-Larrecq

Lemma E.9. Let C∗.S be a tree iterator such that args C is closed. Any subterm s of a term t in C∗.S
is again in C∗.S.

Proof. This is proved by structural induction on t. If t is in S, then any subterm s of t is such
that s�≤ t, hence s ∈ S. If t ∈ args C, we argue similarly, since C is closed (this is the first place
where we need this assumption). Otherwise, either s= t and the claim is obvious, or s is a proper
subterm of t. In the latter case, there is an elementary context c= f (u1u2 · · · um) ∈ C such that t
is obtained from c by replacing those uj, 1≤ j≤m, that equal � by terms from C∗.S, that is, t can
be written f (t1, t2, . . . , tm), where tj = uj if uj �=�, tj ∈ C∗.S otherwise. For some j, s is a subterm
of tj. If uj =�, then tj ∈ C∗.S, so that s ∈ C∗.S by induction hypothesis. Otherwise, we claim that
tj is in args C. Indeed, c= f (u1u2 · · · um) ∈ C, so the smaller f (uj) is in C, too, since C is closed in
X× (T (X)+ {�})∗, hence downward-closed. Since uj = tj, f (tj) is in C, so tj ∈ args C. It follows
that tj ∈ C∗.S. Since s is a subterm of tj, by induction hypothesis s ∈ C∗.S.
Lemma 11.9 (recap). Let X be a topological space, and� be a hole outside T (X). Every tree iterator
C∗.S such that args C is closed in T (X) denotes a closed subset of T (X).

Proof. Let V be the complement of S∪ args C in T (X); this is open, since both S and args C
are closed. Let also V be the open complement of C∩ (X× (args C+ {�})∗) in X× Y∗, where
we let Y abbreviate T (X)+ {�}. Using Lemma E.8, the binary relation idX × inst-of between
X× T (X)∗ and X× Y∗ is continuous, hence upper semi-continuous. Therefore, U = Pre∀(idX ×
inst-of)(V)= {(f , �t) | ∀�u.�t inst-of �u⇒ (f , �u) ∈ V} is open.

Write U as a union of open rectangles
⋃

i∈I Ui ×Wi. We claim that the complement of C∗.S is⋃
i∈I ♦Ui ·Wi //V . It will follow that C∗.S is closed.
Let t be any term not in C∗.S. Consider a minimal subterm f (�t) of t that is not in C∗.S. By

minimal, wemean that all its proper subterms are inC∗.S. Since f (�t) is not inC∗.S, it is in particular
not in S∪ args C, hence it is in V . For any tuple �u ∈ Y∗ of which �t is an instance, that is, such that
�t inst-of �u, and such that the components of �u that are different from � are in args C (i.e., �u ∈
(args C+ {�})∗), (f , �u) cannot be in C: otherwise f (�t) would be obtained from f (�u) by replacing
each occurrence of� by some components of the tuple �t, which are all in C∗.S, so f (�t) would again
be in C∗.S, which is impossible. Another way of stating this is that whenever (f , �t) (idX × inst-of)
(f , �u), then either �u is not in (args C+ {�})∗ or (f , �u) is not in C. That is, (f , �t) is in U . It follows
that, for some i ∈ I, f ∈Ui, and �t ∈Wi. Recall that f (�t) ∈V . So t is in ♦Ui ·Wi //V .

Conversely, assume that t ∈♦Ui ·Wi //V , for some i ∈ I. That is, t has a subterm f (�t) inV , with
f ∈Ui and�t ∈Wi. Assume, for the sake of contradiction, that t is inC∗.S. By Lemma E.9, f (�t) is also
in C∗.S. Since f (�t) ∈V , f (�t) is neither in S nor in args C, so there is an elementary context f (�u) in C
such that �t is obtained from �u by replacing the � elements in �u by some terms in C∗.S. Since f (�u)
is in C, the components of �u that are different from� are in args C, by definition of the argument
support. So �u is in (args C+ {�})∗, hence (f , �u) ∈ C∩ (X× (args C+ {�})∗), the complement of
V . However, (f , �t) (idX × inst-of) (f , �u), so (f , �t) cannot be in U = Pre∀(idX × inst-of)(V). This
contradicts the fact that (f , �t) is in Ui ×Wi.

This concludes our proof that the complement of C∗.S is
⋃

i∈I′ ♦Ui ·Wi //V , so that C∗.S is
closed.

Lemma 11.11 (recap). Let X be a topological space, and � be a hole outside T (X), C be a closed
subset of X× (T (X)+ {�})∗, S be a closed subset of T (X), and assume that args C is closed. Then,
the tree iterator C∗.S is irreducible in the following cases:

(1) if C is non-�-linear, and S is non-empty;
(2) or if C is�-generated and�-linear and S is irreducible;
(3) or if C is non-empty,�-generated, and S is empty.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 825

Proof. (1) C is non-�-linear, and S is non-empty. Since S⊆ C∗.S, C∗.S is non-empty. Since C is
non-�-linear, in particular there is an elementary context f (�u) ∈ C such that �u has at least two
occurrences of �. More precisely, there is an element of the form f (�u1��u2��u3) in C, that is, one
where � occurs at least twice. If C∗.S is included in the union of two closed subsets S′ and S′′, but
not in S′ or S′′, then pick t′ in C∗.S outside S′, and t′′ in C∗.S outside S′′. Pick some term t in C∗.S
(e.g., t′ or t′′), and let�t1,�t2,�t3 be obtained from �u1, �u2, �u3, respectively, by replacing all occurrences
of � by t. Clearly f (�t1t′�t2t′′�t3) is in C∗.S, hence in S′ or in S′′. Assume without loss of generality
that it is in S′. Then its subterm t′ is in S′, contradiction. So C∗.S is irreducible.

(2) C is �-generated and �-linear, and S is irreducible. Assume that C∗.S is included in the
union of two closed subsets S′ and S′′, but not in S′ or in S′′. We claim that there is a context
c′ ∈ C�∗, with exactly one occurrence of �, and a term t′ ∈ S∪ args C, such that c′[t′] is not in S′.
Indeed, since C is �-linear, there is a context c= c1[c2[· · · [ck] · · ·]], k ∈N, where each ci is in
C, and such that one obtains a term outside S′ by replacing the unique occurrence of � (if any)
in c by a term from S∪ args C. If � actually occurs (once) in c, let c′ = c, and the term outside S′
obtained above can be written c′[t′] for some t′ ∈ S∪ args C. Otherwise, some ci does not contain
an occurrence of�. Pick iminimal: so� occurs (once) in c1, c2, . . . , ci−1, but not in ci; moreover,
c= c1[c2[· · · [ci−1[ci]] · · ·]] is a term (i.e., where � does not occur) outside S′. Write ci as f (�u).
Since C is �-generated, one can split �u as �u1�u2 so that f (�u1��u2) ∈ C. Pick any term t′ from S:
this is easy since irreducible sets are non-empty. Let c′ = c1[c2[· · · [ci−1[f (�u1��u2)]] · · ·]]. Then
ci = f (�u1�u2)�≤ f (�u1��u2)[t′]= f (�u1t′�u2), so c�≤ c′[t′]. Since c is not in S′, c′[t′] is not in S′ either.

In any case, there is a context c′ ∈ C�∗, with exactly one occurrence of �, and a term t′ ∈
S∪ args C, such that c′[t′] is not in S′. Similarly, there is a context c′′ ∈ C�∗, with exactly one
occurrence of�, and a term t′′ ∈ S∪ args C, such that c′′[t′′] is not in S′′. Note that both c′[t′] and
c′′[t′′] are in C∗.S.

Examine the case where t′ or t′′ is in args C, say t′ by symmetry. So f (t′) ∈ C and � does not
occur in t′, for some f ∈ X. Since C is �-generated, f (t′�) or f (�t′) is in C, too, say f (t′�). The
term c′[f (t′�)[c′′[t′′]]] is then in C∗.S, hence in S′ or in S′′, say S′. However, the terms c′[t′] and
c′′[t′′] are below the latter term in the �≤ ordering, since � occurs in c′. So they are both in S′,
since S′ is closed hence downward-closed. But precisely, c′[t′] is not in S′, contradiction.

Then examine the case where t′ and t′′ are both in S. We recall from Lemma E.6 that @ is
continuous, and from Lemma B.1 that i : Y→ Y∗ and cat : Y∗ × Y∗ → Y∗ are continuous. By a
simple induction on c′, the function that maps each term t to c′[t] is then continuous. Similarly,
the function that maps t to c′′[t] is continuous. Consider the map f that sends each term t ∈ T (X)
to c′[c′′[t]]= c′[c′′][t]: f is continuous. Since c′[c′′] is in C�∗, every t ∈ S is such that c′[c′′][t] is in
C∗.S, hence in S′ ∪ S′′. So S is included in f−1(S′ ∪ S′′)= f−1(S′)∪ f−1(S′′). The latter is a union of
two closed sets, since f is continuous. Since S is irreducible, S is included in f−1(S′) or in f−1(S′′). If
S⊆ f−1(S′), then in particular t′ ∈ f−1(S′), that is, c′[c′′[t′]] ∈ S′. However, c′[t′]�≤ c′[c′′[t′]], since
� occurs in c′′. So c′[t′] is in S′, a contradiction. Similarly, S⊆ f−1(S′′) also leads to a contradiction.

So C∗.S is in fact included in S′ or in S′′. We conclude that C∗.S is irreducible.
(3) C is non-empty,�-generated, and S is empty. Since C is non-empty, it contains an elemen-

tary context f (�u). Since C is closed, hence downward-closed in ≤×�≤, f () is also in C, so f is in
C∗.S. Let S′ be the closure of f in T (X). SinceC∗.S is closed, it contains S′. SoC∗.S⊇ C∗.S′. The con-
verse inclusion follows since S=∅, whence C∗.S= C∗.S′. By construction, S′ is irreducible closed.
If C is �-linear, then C∗.S= C∗.S′ is irreducible by case (2). If C is not �-linear, then C∗.S= C∗.S′
is irreducible by case (1).

Lemma 11.12 (recap). Let X be a topological space. The complement �π of the open subset denoted
by the simple tree expression π =♦U(π1 | π2 | · · · | πn) is given by structural induction on π by:

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

826 A. Finkel and J. Goubault-Larrecq

— �π = ((F× {�}∗)∪ (X× (�π∗1 {�}?�π∗2 {�}? · · · {�}?�π∗n)))∗.∅ if n≥ 1, where F is the com-
plement of U in X;

— if n= 0, then �π = (F× {�}∗)∗.∅.
Proof. We first deal with the case n= 0. The terms t that are not in ♦U() are those such that no
function symbol occurring in t is in U. So they are the terms whose function symbols are all in F,
that is, the terms in (F× {�}∗)∗.∅.

Next, we deal with the case n≥ 1. Let π =♦U(π1 | π2 | · · · | πn). Let us explain the nota-
tion first. Notice that {�} is irreducible closed in T (X)+ {�}. So {�}∗ and �π∗1 {�}?�π∗2 {�}? · · ·
{�}?�π∗n are word-products on T (X)+ {�}, hence are closed in (T (X)+ {�})∗, by Corollary 7.6.
Write C= (F× {�}∗)∪ (X× (�π∗1 {�}?�π∗2 {�}? · · · {�}?�π∗n)). We must show that �π = C∗.∅.
Notice that args C= �π1 ∪ �π2 ∪ · · · ∪ �πn, so args C is closed.

For every term t ∈ T (X), we show, in one direction, that if t is not in π , then t is in C∗.∅, by
structural induction on t. Write t as f (�t), where �t= t1t2 · · · tm. Necessarily, t1, t2, . . . , tm are out-
side π as well. So t1, t2, . . . , tm are in C∗.∅. Moreover, f �∈U or �t �∈ Y∗π1Y∗ · · · Y∗πnY∗, where
Y = T (X). If f �∈U, then f ∈ F, so t= f (�t) is obtained from the context f (�m), in F× {�}∗,
by replacing the holes by terms from C∗.∅. Therefore, t is itself in C∗.∅. Otherwise, �t is in
�π∗1Y?�π∗2Y? · · · Y?�π∗n , by Lemma 7.2. (Recall that n≥ 1.) So one can write �t as a sequence
�t1 ∈ �π∗1 , followed by zero or one term s1, followed by a sequence �t2 ∈ �π∗2 , followed by zero or
one term s2, . . . , followed by zero or one term sn−1, followed by a sequence �tn ∈ �π∗n . When there
is indeed a term si between �ti and �ti+1, say that si exists. Note that those terms among s1, s2, . . . ,
sn−1 that do exist are in C∗.∅, since they form a subsequence of �t (use the induction hypothesis).
Let �u be the sequence obtained by concatenating �t1, � if s1 exists (and nothing otherwise), �t2, �
if s2 exists, �t3, . . . , � if sn−1 exists, and �tn. One obtains t by replacing the occurrences of � in f (�u)
by terms in C∗.∅, and f (�u) is in X× (�π∗1 {�}?�π∗2 {�}? · · · {�}?�π∗n) by construction, so t ∈ C∗.∅
again.

Conversely, we claim that no term in C∗.∅ can be in (the language of) π . We start by proving
the following claim (a): for every j, 1≤ j≤ n, no term in �πj can be in π . Indeed, if t ∈ �πj is
in π =♦U(π1 | π2 | · · · | πn), then t has a subterm s ∈ πj. Then s�≤ t, to t ∈ πj since opens are
upward-closed: contradiction.

We then show that whenever t ∈ C∗.∅, then t cannot be in π =♦U(π1 | π2 | · · · | πn), by struc-
tural induction on t, following the definition of C∗.∅. Assume that t ∈ π : there is a subterm s= g(�s)
of t such that g ∈U and�s is inY∗π1Y∗ · · · Y∗πnY∗. (Again,Y = T (X).) Note that s itself is in π . By
Claim (a), t cannot be in �π1 ∪ �π2 ∪ · · · ∪ �πn = args C. It follows that t= f (�t) must be obtained
from some elementary context f (�u) in C by replacing the occurrences of the hole � by terms,
themselves from C∗.∅. Write �t as t1t2 · · · tm, �u as u1u2 · · · um. There are two cases, corresponding
to the definition of C. If (f , �u) ∈ F× {�}∗, then f �∈U, so s= g(�s) must be different from t (since
g ∈U), hence smust be a subterm of some tj, 1≤ j≤m. Moreover, uj is a hole, so tj is in C∗.∅. By
induction hypothesis tj cannot be in π , hence its subterm s�≤ tj is not in π either. This is impos-
sible since s is in π . The other case is when (f , �u) is in X× (�π∗1 {�}?�π∗2 {�}? · · · {�}?�π∗n). Then�t is in �π∗1Y?�π∗2Y? · · · Y?�π∗n , that is, not in T (X)∗π1T (X)∗ · · · T (X)∗πnT (X)∗, by Lemma 7.2
(recall that n≥ 1). So again s must be different from t, hence be a subterm of some tj, 1≤ j≤m.
Either tj is in some �πi, 1≤ i≤ n (when uj �=�), or uj =� and tj is in C∗.∅. However, �πi is
included in args C, hence in C∗.∅. So in any case tj is in C∗.∅. Since tj contains s= g(�s) as a sub-
term, s�≤ tj and therefore tj is also in π =♦U(π1 | π2 | · · · | πn). This is impossible by induction
hypothesis. Having reached a contradiction in each case, we conclude.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 827

E.3 Checking inclusion between tree steps
Lemma 11.14 (recap). Let X be a topological space, C and C′ be two irreducible closed subsets
of X, �P and �P′ be two word-products over T (X). Then C?(�P)⊆ C′?(�P′) iff C⊆ C′ and �P⊆ �P′, or
C?(�P)⊆ supp �P′.
Proof. The if direction is obvious, noting that supp �P′ ⊆ C′?(�P′). Conversely, assume C?(�P)⊆
C′?(�P′).

For every pair (f , �t) ∈ C× �P, since f (�t) ∈ C?(�P)⊆ C′?(�P′), either (f , �t) ∈ C′ × �P′, or (f , �t) is in
S= {(f , �t) ∈ X× T (X)∗ | f (�t) ∈ supp �P′}. So C× �P is included in (C′ × �P′)∪ S. Since @ is continu-
ous (Lemma E.6) and supp �P′ is closed (Lemma 11.4), S is closed. By Lemma 7.7, �P is irreducible,
so C× �P is irreducible. Also, C′ × �P′ is closed, since �P′ is closed by Corollary 7.6. So C× �P is
included in C′ × �P′ or in S.

IfC× �P⊆ S, thenC?(�P)⊆ supp �P′. Indeed, all the terms f (�t) with f ∈ C and�t ∈ �P are in supp �P′,
by the definition of S. And for every t ∈ supp �P, fix an arbitrary f ∈ C (since C, being irreducible,
is non-empty) to obtain that f (t) ∈ C?(�P) hence f (t) ∈ supp �P′; since supp �P′ is closed, hence
downward-closed in �≤, t ∈ supp �P′.

If C× �P⊆ C′ × �P′ on the other hand, then clearly C⊆ C′ and �P⊆ �P′, since neither C nor �P is
empty.

E.4 Checking inclusion between tree steps and tree iterators
Lemma E.10. Let Z be a topological space, � a hole outside Z, and F a closed subset of Z. Let
inst-ofF be the relation from Z∗ to (Z+ {�})∗ defined by w inst-ofF w′ iff w is obtained from w′ by
replacing each occurrence of� by (possibly distinct) elements from F.

Then inst-ofF is upper semi-continuous.

Proof. For short, let Y be Z+ {�}. For every word-product P= e1e2 · · · en on Y , Pre∃inst-ofF(P)
is equal to Pre∃inst-ofF(e1)Pre∃inst-ofF(e2) · · · Pre∃inst-ofF(en), and for each atomic expression
ej, Pre∃inst-ofF(ej) is computed as follows: Pre∃inst-ofF(F′?) is ((F′ � {�})∪ F)? if � ∈ F′ and F′?

otherwise, Pre∃inst-ofF(F′∗) is ((F′ � {�})∪ F)∗ if � ∈ F′ and F′∗ otherwise. (Notice that F′ �
{�} = F′ ∩ Z is closed in Z.) The rest of the proof is as in Lemma E.7.

Lemma E.11. Let X and Z be topological spaces, F be a closed subset of Z. The relation idX ×
inst-ofF that relates (f , �t) ∈ X× Z∗ with (f , �u) ∈ X× (Z+ {�})∗ if and only if �t inst-ofF �u is upper
semi-continuous.

Proof. As for Lemma E.8, using Lemma E.10 instead of Lemma E.7.

Lemma E.12. X be a topological space, � a hole outside T (X), C be a closed subset of X×
(T (X)+ {�})∗, and S be a closed subset of T (X). The set C[S], defined as the set of all pairs (f , �t)
where �t is obtained from �u by replacing each occurrence of � by possibly different terms from S, for
some �u such that (f , �u) ∈ C, is closed in X× T (X)∗.

Proof. C[S] is just Pre∃(idX × inst-ofS)(C), then use Lemma E.11.

Lemma 11.15 (recap). Let X be a topological space, C be an irreducible closed subset of X, �P be
a word-product over T (X), C be a closed subset of X× (T (X)+ {�})∗ such that args C is closed in
T (X), where� is a hole outside T (X), and S be a closed subset of T (X).

Then, C?(�P)⊆ C∗.S iff C× �P⊆ C[C∗.S] and supp �P⊆ C∗.S, or C?(�P)⊆ args C∪ S.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

828 A. Finkel and J. Goubault-Larrecq

Proof. If C× �P⊆ C[C∗.S] and supp �P⊆ C∗.S, then we claim that every term t= f (�t) in C?(�P) is in
C∗.S. Indeed, either f ∈ C and �t ∈ �P, or t ∈ supp �P. In the first case, (f , �t) is obtained from some
(f , �u) ∈ C by replacing each occurrence of � in �u by terms from C∗.S, so f (�t) is again in C∗.S. In
the second case, where t ∈ supp �P, then t ∈ C∗.S by assumption.

If C?(�P)⊆ args C∪ S, then C?(�P) is trivially included in C∗.S.
Conversely, assume C?(�P)⊆ C∗.S. For every f ∈ C and �t ∈ �P, f (�t) is in C?(�P), hence in C∗.S. So

either f (�t) ∈ args C∪ S, or there is an elementary context f (�u) in C such that �t is obtained from �u
by replacing the occurrences of� by terms from C∗.S. That is, f (�t) is in args C∪ S or in C[C∗.S]. So
C× �P is contained in the union of the set @−1(args C∪ S), which is closed since @ is continuous,
and the set C[C∗.S], which is closed by Lemmas E.12 and 11.9. On the other hand, by Lemma 7.7,
�P is irreducible, so C× �P is irreducible. So C× �P is included in @−1(args C∪ S) or in C[C∗.S]. If
C× �P⊆@−1(args C∪ S), then every term f (�t) with f ∈ C and�t ∈ �P is in args∪S; since args C∪ S is
closed hence downward-closed, supp �P is also included in args C∪ S, and therefore C?(�P) as well.
Otherwise, C× �P⊆ C[C∗.S]. Moreover, supp �P⊆ C?(�P)⊆ C∗.S.

E.5 Checking inclusion between tree iterators
Lemma 11.21 (recap). Let X be a topological space, C and C′ be two closed subsets of X×
(T (X)+ {�})∗ such that args C and args C′ are closed in T (X), where � is a hole outside T (X),
and let S, S′ be two closed subsets of T (X).

Then C∗.S⊆ C′∗.S′ iff C[C∗.S]⊆@−1(args C′ ∪ S′)∪ C′[T �(X)] and args C∪ S⊆ C′∗.S′.

Proof. Awarning, first. Although we have used the notation f (�u) for elementary contexts, wemust
recall that this is an abbreviation for a pair (f , �u). One obtains the term (or context) f (�u) from (f , �u)
by applying @, hence the use of @ in the statement of the lemma.

If C∗.S⊆ C′∗.S′, then in particular args C∪ S⊆ C∗.S⊆ C′∗.S′. Moreover, for every (f , �t) ∈
C[C∗.S], f (�t) is in C∗.S. If f (�t) is not in args C′ ∪ S′, then (f , �t) is obtained from some elemen-
tary context f (�u)= (f , �u) in C′ by replacing all occurrences of the hole � by terms (in C∗.S, but
this is irrelevant). In any case (f , �t) ∈@−1(args C′ ∪ S′)∪ C′[T (X)], hence in @−1(args C′ ∪ S′)∪
C′[T �(X)]. It follows that C[C∗.S]⊆@−1(args C′ ∪ S′)∪ C′[T �(X)].

Conversely, assume that C[C∗.S]⊆@−1(args C′ ∪ S′)∪ C′[T �(X)] and args C∪ S⊆ C′∗.S′.
Consider any term t= f (�t) in C∗.S. We show by induction on the definition of C∗.S that t is in
C′∗.S′. If t ∈ args C∪ S (base case), then t ∈ C′∗.S′ by assumption. Otherwise, (f , �t) is obtained
from some (f , �u) ∈ C by replacing each occurrence of � in �u by elements of C∗.S. Let us make
this clear. Write �t as t1t2 · · · tn, �u as u1u2 · · · un. For each j, 1≤ j≤ n, either tj = uj or uj =� and
tj ∈ C∗.S. When uj �=�, observe that tj = uj is in args C⊆ C∗.S. Therefore, in any case, tj ∈ C∗.S
for every j, 1≤ j≤ n. By induction hypothesis, tj ∈ C′∗.S′ for every j, 1≤ j≤ n. On the other hand,
the existence of (f , �u), as specified, means that (f , �t) is in C[C∗.S]. By assumption, (f , �t) is then
in @−1(args C′ ∪ S′), or in C′[T �(X)]. In the first case, f (�t) ∈ args C′ ∪ S′ ⊆ C′∗.S′. In the second
case, there is a pair (f , �v) ∈ C′ such that �t is obtained from �v= v1v2 · · · vn by replacing each vj that
equals� by the element tj from �t. We have noticed that all such elements were in C′∗.S′. So f (�t) is
in C′∗.S′.

Lemma 11.22 (recap). Let X be a topological space, C and C′ be two closed subsets of X×
(T (X)+ {�})∗, where� is a hole outside T (X), and let S, S′ be two closed subsets of T (X). Assume
also that C is of the form

⋃m
i=1 Ci ×Qi, and that C′ is of the form

⋃n
j=1 C′j ×Q′j, where each Ci and

each C′j is irreducible closed in X, and Qi and Q′j are word-products over T (X)+ {�} for each i,

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 829

1≤ i≤m, and each j, 1≤ j≤ n. Assume finally that C∗.S is irreducible, and that� ∈Qi for every i,
1≤ i≤m.

Then C∗.S⊆ C′∗.S′ iff:

— either C∗.S⊆ args C′ ∪ S′,
— or args C∪ S⊆ C′∗.S′, and for every i, 1≤ i≤m, there is a j, 1≤ j≤ n, such that Ci ⊆ C′j and

Qi[T �(X)]⊆Q′j[T �(X)].

Proof. Consider the following statements:

(i) C∗.S⊆ C′∗.S′;
(ii) args C∪ S⊆ C′∗.S′, and for every i, 1≤ i≤m, either C?

i (Qi[C∗.S])⊆ args C′ ∪ S′ or for some
j, 1≤ j≤ n, Ci ⊆ C′j and Qi[C∗.S]⊆Q′j[T �(X)].

(iii) either C∗.S⊆ args C′ ∪ S′, or args C∪ S⊆ C′∗.S′ and for every i, 1≤ i≤m, there is a j, 1≤ j≤
n, such that Ci ⊆ C′j and Qi[T �(X)]⊆Q′j[T �(X)].

The Lemma claims that (i) is equivalent to (iii). We shall show this by proving that (i) implies (ii)
implies (iii) implies (i).

The differences between (ii) and (iii) are: first, there is an additional disjunct C∗.S⊆ args C′ ∪
S′ in (iii); second, (iii) dispenses with the disjunct C?

i (Qi[C∗.S])⊆ args C′ ∪ S′ that occurs in (ii);
finally, we use Qi[C∗.S] versus Qi[T �(X)] in the last inclusion.

Before we start, note that, using Lemma 11.8, args C=⋃m
i=1 suppQi ∩ T (X) is closed, and

similarly, args C′ =⋃n
j=1 suppQ′j ∩ T (X) is closed: so Lemma 11.21 applies.

(i)⇒ (ii). By Lemma 11.21, args C∪ S⊆ C′∗.S′ and C[C∗.S]=⋃m
i=1 Ci ×Qi[C∗.S]⊆

@−1(args C′ ∪ S′)∪ C′[T �(X)]=@−1(args C′ ∪ S′)∪⋃n
j=1 (C′j ×Q′j[T �(X)]). Therefore, for

every i, 1≤ i≤m, Ci ×Qi[C∗.S]⊆@−1(args C′ ∪ S′)∪⋃n
j=1 (C′j ×Q′j[T �(X)]). Since C∗.S is

irreducible, and because Qi[C∗.S] is obtained by syntactically replacing occurrences of � by
C∗.S (Lemma 11.18), Qi[C∗.S] is a word-product. So Qi[C∗.S] is irreducible by Lemma 7.7.
It follows that Ci ×Qi[C∗.S] is irreducible. So Ci ×Qi[C∗.S]⊆@−1(args C′ ∪ S′) or, for some
1≤ j≤ n, Ci ×Qi[C∗.S]⊆ C′j ×Q′j[T �(X)]. In the first case, C?

i (Qi[C∗.S])⊆ args C′ ∪ S′, and we
conclude.

(iii)⇒ (i). If C∗.S⊆ args C′ ∪ S′, then (i) holds trivially. Otherwise, since Qi[C∗.S]⊆
Qi[T �(X)], we obtain that for every i, there is a j such that Ci ×Qi[C∗.S]⊆ C′j ×Q′j[T �(X)].
Therefore, C[C∗.S]=⋃m

i=1 Ci ×Qi[C∗.S]⊆⋃n
j=1 (C′j ×Q′j[T �(X)])= C′[T �(X)]. Also, args C∪

S⊆ C′∗.S′ by assumption, so by Lemma 11.21 C∗.S⊆ C′∗.S′.
(ii)⇒ (iii). If C∗.S⊆ args C′ ∪ S′, then (iii) is clear. So let us also assume C∗.S �⊆ args C′ ∪ S′.
To show (iii) under these assumptions, and in the view of what (ii) states, it is enough to show

that C?
i (Qi[C∗.S])⊆ args C′ ∪ S′ is impossible, and that for every i and j, if Qi[C∗.S]⊆Q′j[T �(X)],

then the stronger inclusion Qi[T �(X)]⊆Q′j[T �(X)] holds.
We start with the former. Since � ∈Qi, C∗.S is included in C?

i (Qi[C∗.S]): indeed, for every
t ∈ C∗.S, f (t) ∈ C?

i (Qi[C∗.S]) for some (arbitrary) f ∈ Ci, so t�≤ f (t) is also in C?
i (Qi[C∗.S]), which

is closed hence downward-closed. Therefore,C?
i (Qi[C∗.S]) cannot be included in args C′ ∪ S′, since

we assumed that C∗.S �⊆ args C′ ∪ S′.

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

830 A. Finkel and J. Goubault-Larrecq

We proceed with the other claim. Write Qi as the product of atomic expressions e1e2 · · · em
over T (X)+ {�}, and similarly Q′j as e′1e′2 · · · e′n. Let ei be written as F∗i or F?i , 1≤ i≤m, where Fi
is closed in T (X)+ {�}, and also irreducible in case ei is written F?i . Similarly, write e′j as F′j

∗ or F′j
?.

The core of the argument is that: (∗) when� ∈ ei, that is, when ei is of the form {�}? or F∗i with
� ∈ Fi, then ei[C∗.S] is not included in any e′j[T �(X)], 1≤ j≤ n, unless � ∈ e′j as well. Indeed,
assume that � is not in e′j. So e′j[T �(X)]= e′j is included in args C′. If ei[C∗.S] were included in
e′j[T �(X)], then C∗.S, which is included in ei[C∗.S] since� ∈ ei, would be included in e′j, hence in
args C′. This would contradict the fact that C∗.S �⊆ args C′ ∪ S′.

It follows that (∗∗) ei[C∗.S]⊆ e′j[T �(X)] iff ei[T �(X)]⊆ e′j[T �(X)]. The if direction is obvi-
ous. In the only if direction, we distinguish four cases. If � �∈ ei, then ei[C∗.S]= ei = ei[T �(X)],
and the claim is clear. If e′j = {�}?, then the assumption that ei[C∗.S] is included in e′j[T �(X)]
means that ei[C∗.S] is a collection of sequences of terms of length at most 1; this is then certainly
also the case for ei, hence of ei[T �(X)], so ei[T �(X)]⊆ e′j[T �(X)]. If e′j = F′j

∗ where� ∈ F′j , then
e′j[T �(X)] is just T �(X)∗ (see Lemma 11.18), and the claim is obvious. Otherwise,� is in ei, and
not in e′j, so the claim follows from (∗).

The algorithmic characterization of inclusion of word-products given in Lemma 7.10 now
allows us to conclude that Qi[C∗.S]⊆Q′j[T �(X)] if and only if Qi[T �(X)]⊆Q′j[T �(X)].
Concretely, this algorithmic characterization only depends on the answers to queries of the
form ei[C∗.S]⊆ e′j[T �(X)] in the first case, and on answers to the corresponding queries
ei[T �(X)]⊆ e′j[T �(X)] in the second case. By (∗∗) these answers must be the same.

E.6 Intersections of tree-products

Lemma 11.23 (recap). Let X be a topological space. The intersection of two tree steps P= C?(�P)
and P′ = C′?(�P′) is equal to

⋃n
j=1 (C ∩ C′)?(�P′′j)∪ (supp�P ∩ P′)∪ (P ∩ supp �P′), where �P ∩ �P′ is

expressed as a finite union
⋃n

j=1 �P′′j of word-products on T (X). If C ∩ C′ can be written as the union
of finitely many irreducible closed subsets Ci, 1≤ i≤m, then P ∩ P′ is also equal to the union of the
tree steps C?

i (�P′′j) (1≤ i≤ n, 1≤ j≤m), of supp �P ∩ P′, and of P ∩ supp �P′.
Proof. Let t= f (�t) be any term in P ∩ P′. Since t ∈ P, t is in supp �P, or f ∈ C and �t ∈ �P. In the first
case, t is in supp �P ∩ P′. Similarly, the claim that t′ is in P′ splits into two cases. The first one gives
t′ ∈ P ∩ supp �P′. There remains the case where f ∈ C, �t ∈ �P, and f ∈ C′, �t ∈ �P′. Then f is in C ∩ C′
(resp., in some Ci, if C ∩ C′ can be written as a finite union of irreducible closed subsets Ci), and �t
is in some �P′′j , so t is in (C ∩ C′)?(�P′′j) (resp., in C?

i (�P′′j)).
Conversely, supp �P ∩ P′ and P ∩ supp �P′ are included in P ∩ P′. It remains to show that

(C ∩ C′)?(�P′′j) (resp., C?
i (�P′′j)) is included in P ∩ P′, namely in both P and P′. We only deal with

the first case. For every term t in (C ∩ C′)?(�P′′j) (resp., C?
i (�P′′j)), either t is in supp �P′′j or t= f (�t)

with f ∈ C ∩ C′ (resp., f ∈ Ci) and �t ∈ �P′′j . In the first case, the one-element word t is in �P′′j , hence
in �P, so t is in supp �P and therefore in P= C?(�P). In the second case, f is in C, �P is in �P, so t= f (�t)
is in P= C?(�P).

Let us write suppQ[S] for supp (Q[S]).

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

Mathematical Structures in Computer Science 831

Lemma E.13. Let X be a Noetherian space, Q be a word-product over T (X)+ {�}, and S be a
closed subset of T (X). Then supp Q[S]⊆ supp Q∪ S. (See Lemma 11.18 for Q[S].)

Proof. We first claim that for every atomic expression e, supp e[S]⊆ supp e∪ S. If e= {�}?, then
supp e[S]= supp S? = S. If e= I? where I is irreducible closed in T (X), then supp e[S]= supp I? =
I = supp e. If e=F∗ and� ∈F , then supp e[S]= supp ((F � {�})∪ S)∗ = (F � {�})∪ S⊆F ∪
S= supp e∪ S. If e=F∗ and� �∈F , then supp e[S]= suppF∗ =F = supp e.

Write Q as e1e2 · · · en, where each ei is an atomic expression. Then, suppQ[S]=⋃n
i=1 supp ei[S]⊆

⋃n
i=1 (suppei ∪ S)⊆⋃n

i=1 supp ei ∪ S= suppQ∪ S.

Lemma 11.24 (recap). Let X be a Noetherian space, and S be a closed subset of T (X). Let C?(�P) be
a tree step, C be a closed subset of X× (T (X)+ {�})∗ of the form ⋃n

j=1 Cj ×Qj, where each Cj is
irreducible closed in X and each Qj is a word-product over T (X)+ {�}.

The intersection of the tree step P= C?(�P) and of the tree iterator P′ = C∗.S is the union of
supp �P ∩ P′, of P ∩ (S∪ args C), and of (C ∩ Cj)?(�P ∩Qj[P′]), 1≤ j≤ n.

If, for each j, one can write C ∩ Cj as the union of finitely many irreducible subsets Cij, 1≤ i≤
mj, and if �P ∩Qj[P′] can be expressed as the union of finitely many word-products �Pj, 1≤ ≤ qj,
then P ∩ P′ is also equal to the union of supp �P ∩ P′, of P ∩ (S∪ args C), and of C?

ij(�Pj), 1≤ j≤ n,
1≤ i≤mj, 1≤ ≤ qj.

Proof. Let t= f (�t) be any term in P ∩ P′. Since t ∈ P, t is in supp �P, or f ∈ C and �t ∈ �P. In the first
case, t is in supp �P ∩ P′. Similarly, since t ∈ P′, t is in S∪ args C, or there is an elementary context
c ∈ C such that t is in c[P′]. In the first of these cases, t is in P ∩ (S∪ args C). There remains the case
where f ∈ C, �t ∈ �P, and t is in c[P′] for some elementary context c – necessarily of the form f (�u)
– in C. In that case, �t is obtained from �u by replacing each occurrence of � by possibly different
terms from P′, in other words, (f , �t) is in C[P′]. By Lemma 11.18, f is in Cj and �t is in Qj[P′] for
some j. It follows that f is in C ∩ Cj and �t is in �P ∩Qj[P′], so t= f (�t) is in (C ∩ Cj)?(�P ∩Qj[P′]).
(Additionally, if C ∩ Cj can be written as

⋃mj
i=1 Cij and �P ∩Qj[P′] can be written as

⋃qj
=1 �Pj, then

t is in C?
ij(�Pj) for some j, i, and , too.)

For the converse inclusions, we check that:

— supp �P ∩ P′ ⊆ P ∩ P′: every term in supp �P ∩ P′ is in supp �P hence in P= C?(�P) and is also
in P′;

— P ∩ (S∪ args C)⊆ P ∩ P′: every term in P ∩ (S∪ args C) is in S∪ args C, hence in P′ = C∗.S,
and also in P; ı

— tem (C ∩ Cj)?(�P ∩Qj[P′]) (resp., C?
ij(�Pj)) is included in P ∩ P′.

Every term t in supp (�P ∩Qj[P′]) (resp., supp �Pj) is such that the one-element word t is
in �P ∩Qj[P′] (resp., �Pj, hence also in �P ∩Qj[P′]). Since that one-element word is in �P, t
is in supp �P hence in P= C?(�P), and since it is also in Qj[P′], t is in suppQj[P′], hence in
suppQj ∪ P′ by Lemma E.13, hence in args C′ ∪ P′ ⊆ P′.
Next, let t be any term of the form f (�t) with f ∈ C ∩ Cj and �t ∈ �P ∩Qj[P′]. (If instead

f ∈ Cij and �t ∈ �Pj, then f is in C ∩ Cj and �t is in P ∩Qj[P′].) Since f is in C and �t is in �P,
t= f (�t) is in P= C?(�P). Since f is in Cj and �t is in Qj[P′], by Lemma 11.18 (f , �t) is in C[P′],
so t= f (�t) is in P′ = C∗.S.

Lemma 11.26 (recap). Let X be aNoetherian space and S and S′ be closed subsets of T (X). Let alsoC
(resp., C′) be a closed subset of X× (T (X)+ {�})∗ of the form ⋃m

i=1 Ci ×Qi (resp.,
⋃n

j=1 C′j ×Q′j),

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195

832 A. Finkel and J. Goubault-Larrecq

where each Ci and each C′j is irreducible closed in X and each Qi and each Q′j is a normalized word-
product over T (X)+ {�}. For all i, j, write Ci ∩ Cj as

⋃pij
k=1 C

′′
ijk where each C

′′
ijk is irreducible closed

in X, and let Q′′ij, 1≤ ≤ qij enumerate the elements of MeetE (Qi,Q′j), where the oracle E is defined
in Lemma 11.25.

Then the intersection of the tree iterators P= C∗.S and P′ = C′∗.S′ is the tree iterator C′′∗.S′′,
where C′′ =⋃

i,j,k, C′′ijk ×Q′′ij and where S′′ is the union of P ∩ (args C′ ∪ S′) and of (args C∪
S)∩ P′.

Proof. Let t= f (�t) be in P ∩ P′, where �t= t1 · · · tN . We show that t is in C′′∗.S′′ by induction on
the size of t. If t is in args C∪ S, then t is in (args C∪ S)∩ P′, hence in S′′, hence in C′′∗.S′′. Similarly
if t is in args C′ ∪ S′. In the remaining case, there is an elementary context (f , �u) in C such that �t is
obtained by replacing the occurrences of � in �u by possibly different terms from P. Hence, there
is an index i, 1≤ i≤m, such that f is in Ci and �u is in Qi, so �t is in Qi[P]. Similarly, there is an
index j, 1≤ j≤ n, such that f ∈ C′j and �t is in Q′j[P′]. Since f is in Ci ∩ C′j , f is in C′′ijk for some k,
1≤ k≤ pij. By Lemma 11.25, �t is in some element ofMeetE (Qi,Q′j)[P ∩ P′], hence in Q′′ij[P ∩ P′]
for some , 1≤ ≤ qij. Since every term tk in the list �t is strictly smaller than t, every tk that is
in P ∩ P′ is also in C′′∗.S′′, by induction hypothesis. It follows that �t is in Q′′ij[C′′

∗.S′′]. Therefore,
(f , �t) ∈ C′′ijk ×Q′′ij[C′′

∗.S′′]⊆ C′′[C′′∗.S′′]⊆ C′′∗.S′′.
This shows that P ∩ P′ ⊆ C′′∗.S′′. Conversely, let t= f (�t) be any term in C′′∗.S′′. We show that t

is in P ∩ P′ by induction on the size of t.
If t is in P ∩ (args C′ ∪ S′), then t is in P, and in args C′ ∪ S′ ⊆ C′∗.S′ = P′. If t is in (args C∪ S)∩

P′, then t is in P ∩ P′ by a symmetric argument. This shows that if t is in S′′, then t is in P ∩ P′.
If t is in args C′′, then by Lemma 11.8, args C′′ =⋃

i,j,k, suppQ′′ij ∩ T (X), so t is in suppQ′′ij
for some i, j and . By the last part of Lemma 11.25, t is in suppQi ∩ suppQ′j, or in suppQi ∩ P′, or
in P ∩ suppQ′j (or in {�}, but that is impossible since t ∈ T (X)). Hence, using Lemma 11.8 again,
t is in args C∩ args C′, or in args C∩ P′, or in P ∩ args C′. In any case, t is in P ∩ P′.

We have proved that if t is in args C′′ ∪ S′′, then t is in P ∩ P′. The other possibility for t to be
in C′′∗.S′′ is for f to be in C′′ijk and �t to be obtained from some elementary context �u in Q′′ij (for
some i, j, k,) by replacing the occurrences of � by possibly different terms from C′′∗.S′′ – hence
from P ∩ P′, by induction hypothesis. Then, f is in both Ci and C′j , while �t is in Q′′ij[P ∩ P′], hence
in Qi[P]∩Q′j[P′] by Lemma 11.25. This shows that t= f (�t) is both in C[P]= C[C∗.S]⊆ C∗.S= P
and in C′[P′]⊆ P′.

Cite this article: Finkel A and Goubault-Larrecq J (2020). Forward analysis for WSTS, part I: completions. Mathematical
Structures in Computer Science 30, 752–832. https://doi.org/10.1017/S0960129520000195

https://doi.org/10.1017/S0960129520000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1017/S0960129520000195

	Forward analysis for WSTS, part I: completions
	Introduction
	Related Work
	Preliminaries
	Order
	Domain theory
	Topology
	Sobriety

	Completions of wqos
	S-representations
	Completing Ring Ideals
	Completing Words
	Completing Multisets
	Completing Words, Prefix Topology
	Completing Finite Trees in a Simple Case
	Completing Finite Trees: the General Case
	Tree steps
	Tree iterators
	Checking inclusion
	Intersections of tree steps and tree iterators
	STREs, tree-products

	Conclusion
	Auxiliary Proofs on Irreducible Closed Sets
	Proofs of Results on Words (Section 7)
	Proofs of Results on Multisets (Section 8)
	Proofs of Results on Words with the Prefix Topology (Section 9)
	Proofs of Results on Trees (Section 11)
	Tree steps
	Tree iterators
	Checking inclusion between tree steps
	Checking inclusion between tree steps and tree iterators
	Checking inclusion between tree iterators
	Intersections of tree-products

