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Abstract
The aim of this paper is to prove an inequality between relative entropy and the sum of average conditional
relative entropies of the following form: for a fixed probability measure q onX n, (X is a finite set), and any
probability measure p=L(Y) on X n,

D(p‖q)� C ·
n∑

i=1

EpD(pi(· |Y1, . . . , Yi−1, Yi+1, . . . , Yn)‖qi(· |Y1, . . . , Yi−1, Yi+1, . . . , Yn)), (∗)

where pi(· |y1, . . . , yi−1, yi+1, . . . , yn) and qi(· |x1, . . . , xi−1, xi+1, . . . , xn) denote the local specifications for p
resp. q, that is, the conditional distributions of the ith coordinate, given the other coordinates. The constant
C depends on (the local specifications of) q.
The inequality (∗) is meaningful in product spaces, in both the discrete and the continuous case, and can be
used to prove a logarithmic Sobolev inequality for q, provided uniform logarithmic Sobolev inequalities are
available for qi(· |x1, . . . , xi−1, xi+1, . . . , xn), for all fixed i and fixed (x1, . . . , xi−1, xi+1, . . . , xn). Inequality (∗)
directly implies that the Gibbs sampler associated with q is a contraction for relative entropy.
In this paper we derive inequality (∗), and thereby a logarithmic Sobolev inequality, in discrete product
spaces, by proving inequalities for an appropriate Wasserstein-like distance.

2010 MSC Codes: Primary 60J10; Secondary 52A40, 82C22

1. Introduction and statement of some results
Let X be a finite set, and X n the set of n-length sequences from X . Let P(X n) denote the space of
probability measures on X n. For a sequence x ∈X n we let xi denote the ith coordinate of x.

We consider a reference probability measure q ∈P(X n) which will be fixed throughout
Sections 1–3. In Section 4 we still consider a fixed reference measure denoted by q, with suitable
subscripts.

The aim of this paper is to prove logarithmic Sobolev inequalities for measures on discrete
product spaces, by proving inequalities for an appropriate Wasserstein-like distance. A log-
arithmic Sobolev inequality is, roughly speaking, a contractivity property of relative entropy
with respect to some Markov semigroup. It is much easier to prove contractivity for a distance
between measures than for relative entropy, since a distance satisfies the triangle inequality. Our
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method will be used to prove logarithmic Sobolev inequalities for measures satisfying a version of
Dobrushin’s uniqueness condition, as well as Gibbs measures satisfying a strongmixing condition.

To explain the results, we need some definitions and notation.

Notation 1.1. If r and s are two probability measures (on any measurable space) then we let |r − s|
denote their variational distance:

|r − s| = sup
A

|r(A)− s(A)|.

Definition 1.2 (W2 distance; see Theorem 8.2 of [1]). For probability measures r, s ∈P(X n), let
Z and U represent r resp. s, that is, Z and U are random sequences with distributions L(Z)= r
and L(U)= s, respectively. We define

W2(r, s)=min
π

√√√√ n∑
i=1

Pπ {Zi �=Ui}2,

where the minimum is taken over all joint distributions π =L(Z,U) with marginals r and s.

Note that W2 is a distance on P(X n), but it cannot be defined by taking the minimum
expectation of some distance on X n.

Definition 1.3 (relative entropy, conditional relative entropy). For probability measures r and s
defined on a finite set Z , we let D(r‖s) denote the relative entropy of r with respect to s:

D(r‖s)=
∑
u∈Z

r(u) log
r(u)
s(u)

.

(We use the natural logarithm, with the convention 0 log 0= 0 and a log 0= ∞ for a> 0.) If Z
and U are random variables with values in Z and distributed according to r =L(Z) resp. s=
L(U), then we also use the notation D(Z‖U) for the relative entropy D(r‖s). If, moreover, we
are given a probability measure π =L(S) on another finite set S , and conditional distributions
μ(· |s)=L(Z|S= s), ν(· |s)=L(U|S= s), then we define the conditional relative entropy:

EπD(μ(· |S)‖ν(· |S))�
∑
s∈S

π(s)D(μ(· |s)‖ν(· |s)).

For EπD(μ(· |S)‖ν(· |S)) we shall use any of the notations
ED(μ(· |S)‖ν(· |S)), ED(μ(· |S)‖U|S),
ED(Z|S)‖ν(· |S)), ED(Z|S)‖U|S)),

where expectation is taken with respect to π =L(S).

Notation 1.4. For y= (y1, y2, . . . , yn) ∈X n and I ⊂ [1, n], we write
yI = (yk:k ∈ I) and ȳI = (yk:k /∈ I).

Moreover, if p=L(Y) ∈P(X n) then

pI �L(YI), pI(· |ȳI)�L(YI | ȲI = ȳI), p̄I �L(ȲI), p̄I(· |yI)�L(ȲI|YI = yI).
If I = {i}, then we write i instead of {i}.

Definition 1.5. The conditional distributions qi(· |x̄i) are called the local specifications of the
distribution q.
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Theorem 1.6. Set

α �min qi(xi|x̄i), (1.1)

where the minimum is taken over all x ∈X n satisfying q(x)> 0 and all i ∈ [1, n]. Assume that, for
any p ∈P(X n) satisfying

q(x)= 0 =⇒ p(x)= 0, (1.2)

all the inequalities

W2
2

(
pI

(· |ȳI), qI(· |ȳI))� C ·E
{∑

i∈I
|pi

(· |Ȳi
) − qi

(· |Ȳi
)|2 ∣∣∣∣ ȲI = ȳI

}
(1.3)

are satisfied, where I ⊂ [1, n], ȳI ∈X [1,n]\I is a fixed sequence, and E{·|·} denotes conditional expec-
tation with respect to the conditional distribution L(YI|ȲI). Then, for all p ∈P(X n) satisfying
(1.2),

D(p‖q)� 2C
α

·
n∑

i=1
E|pi

(· |Ȳi
) − qi

(· |Ȳi
)|2 � C

α
·

n∑
i=1

ED
(
Yi|Ȳi‖qi

(· |Ȳi
))
. (1.4)

Note that in (1.3)–(1.4) expectation is taken with respect to p=L(Y).

Condition (1.2) is necessary, since otherwise D(p‖q) could be ∞, while the middle term is
always finite. On the other hand, for the inequality between the first and last terms (1.2) is not
necessary, since if D(p‖q)= ∞ then the last term is ∞ as well.

Remark. In [15] a bound analogous to the bound relating the first and last terms of (1.4) was
proved for measures on Euclidean spaces (under reasonable conditions). That bound was used to
derive a logarithmic Sobolev inequality, improving on an earlier result in [18]. In the present paper
we shall deduce a logarithmic Sobolev inequality from the first inequality in (1.4) (Corollary 1.11
to Theorem 1.6).

Definition 1.7 (Gibbs sampler). For i ∈ [1, n], let �i:P(X n) 	→P(X n) be the Markov kernel

�i(z|y)= δ(ȳi, z̄i) · qi(zi|ȳi), y, z ∈X n,

where δ denotes the Kronecker δ (i.e. �i leaves all but the ith coordinates unchanged, and updates
the ith coordinate according to qi(· |ȳi)). Finally, set

� = �q = 1
n

·
n∑

i=1
�i.

That is, � selects an i ∈ [1, n] at random, and applies �i. It is easy to see that � preserves, and is
reversible with respect to q. � is called the Gibbs sampler (or Glauber dynamics) governed by the
local specifications of q.

Theorem 1.6 implies that the Gibbs sampler defined by the local specifications of q is a strict
contraction for the relative entropy D(p‖q), for any measure p satisfying (1.2).

Corollary 1.8. If q ∈P(X n) satisfies the conditions of Theorem 1.6, then, for all p ∈P(X n)
satisfying (1.2),

D(p�‖q)( =D(p�q‖q)
)
�

(
1− α

nC

)
·D(p‖q). (1.5)
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Inequality (1.5) follows from Theorem 1.6 by the inequality

D(p�‖q)� 1
n

n∑
i=1

D(p�i‖q)

(a consequence of the convexity of relative entropy), together with the identity

D(p‖q)−D(p�i‖q)=ED
(
pi

(· |Ȳi
)‖qi(· |Ȳi

))
.

Theorem 1.6 also implies Gross’s logarithmic Sobolev inequality, defined as follows.

Definition 1.9 (Dirichlet form). Let (Z , π) be a finite probability space, and let G:Z 	→Z be a
Markov kernel with invariant measure π . The Dirichlet form associated with G is

EG( f , f )= 〈(I−G)f , f 〉π ,
where f :Z 	→R+.

Definition 1.10 (logarithmic Sobolev inequality for Markov kernels). We say that G satis-
fies a logarithmic Sobolev inequality with logarithmic Sobolev constant c if, for every probability
measure p on Z , we have

D( p‖π)� c · EG
(√

f ,
√
f
)
,

where f (z)= p(z)/π(z).

The property expressed by the logarithmic Sobolev inequality was defined by Leonard Gross
[11] in 1975. For an introduction to logarithmic Sobolev inequalities and their manifold interpre-
tations and uses, see [12] and [19].

A simple calculation shows that for any p ∈P(X n)

E�

(√p
q
,
√p
q

)
= 1

n
·Ep

n∑
i=1

(
1−

(∑
yi∈X

√
pi(yi|Ȳi) · qi(yi|Ȳi)

)2)
.

(Using the fact that, for fixed ȳi, the measure p�i does not depend on yi, we just calculate the
Dirichlet form for a matrix with identical rows.) For the Gibbs sampler

G= �q = 1
n

·
n∑

i=1
�i

and Eq f 2 = 1, the Dirichlet form can also be written in terms of the squared norm of the discrete
gradient of f :

E�(f , f )= 1
n
Eq

n∑
k=1

|∂k f |2,

where ∂k f = (I− �k)f . Applying this to

f (x)=
√
p(x)
q(x)

,

we obtain

E�

(√p
q
,
√p
q

)
= 1

n
Eq

n∑
k=1

∣∣∣∣∂k
√p
q

∣∣∣∣
2
.

(It is easy to verify that the above two expressions for E�(
√
p/q,

√
p/q) are equal.)

Theorem 1.6 implies Gross’s logarithmic Sobolev inequality for the Gibbs sampler �.
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Corollary 1.11. If q on X n satisfies the conditions of Theorem 1.6 then, for any p ∈P(X n),
1
n

·D(p‖q)� 2C
α

· E�

(√p
q
,
√p
q

)

= 2C
αn

·
n∑

i=1
Ep

(
1−

(∑
yi∈X

√
pi

(
yi|Ȳi

) · qi
(
yi|Ȳi

))2)

= 2C
αn

Eq

n∑
k=1

∣∣∣∣∂k
√p
q

∣∣∣∣
2
. (1.6)

This can be considered a dimension-free logarithmic Sobolev inequality, since � only updates one
coordinate.

Remark. In [21] the ‘Standard Logarithmic Sobolev Inequality’, for the Gibbs sampler, is defined
using the Dirichlet form defined in terms of the squared norm of discrete gradient (formula SLS).

Corollary 1.11 follows from the first inequality in (1.4) (Theorem 1.6) by the following lemma.

Lemma 1.12 (Proposition 1 of [19]). Let r and s be two probability measures on X . Then

|r − s|2 � 1−
(∑
y∈X

√
r(y)s(y)

)2
.

Remark. The inequality between the first and last term in (1.4) also implies an inequality of the
form (1.6), but with a slightly worse constant. This follows from Theorem A.1 of [8].

Theorem 1.6 can be applied to distributions q satisfying the following version of Dobrushin’s
uniqueness condition.

Definition 1.13 (Dobrushin’s uniqueness condition). We define the coupling matrix of q ∈
P(X n) as

A= (ak,i)nk,i=1, ak,i =max
z,s

|qi(· |z̄i)− qi(· |s̄i)|, (1.7)

where the max is taken on sequences z, s ∈X n, differing only in the kth coordinate. (Clearly ak,k =
0 for all k.) We say that q satisfies (an L2-version of) Dobrushin’s uniqueness condition if

‖A‖2 < 1.
Here ‖A‖2 denotes the matrix norm corresponding to the Euclidean norm.

This differs from Dobrushin’s original uniqueness condition where the maximum column sum
of A is assumed to be < 1.

If sequences z, s ∈X n differ in several coordinates then, by a telescoping argument and the
triangle inequality, (1.7) implies

|qi(· |z̄i)− qi(· |s̄i)|�
∑
k�=i

δ(zk, sk)ak,i, (1.7′)

where δ denotes the Kronecker δ.

Theorem 1.14. Assume that the measure q ∈P(X n) satisfies Dobrushin’s uniqueness condi-
tion with coupling matrix A, ‖A‖2 < 1. Then the conditions of Theorem 1.6 are satisfied with
C = 1/(1− ‖A‖)2. Thus, for any p ∈P(X n) satisfying (1.2),
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D(p‖q)� 2
α

· 1
(1− ‖A‖)2 ·

n∑
i=1

E|pi
(· |Ȳi

) − qi
(· |Ȳi

)|2

� 1
α

· 1
(1− ‖A‖)2 ·

n∑
i=1

ED
(
Yi|Ȳi‖qi

(· |Ȳi
))
,

and

D(p�‖q)�
(
1− 1

n
· α

2
· (1− ‖A‖)2

)
·D (p‖q). (1.8)

Remark. In [24] a logarithmic Sobolev inequality is proved for discrete spin systems, where the
title suggests that it uses Dobrushin’s uniqueness condition. However, the condition used there is
not identical to Dobrushin’s uniqueness condition, just reminiscent of it. Moreover, an inequality
of the form relating the first and last terms of (1.4) was proved in [2], assuming a condition only
slightly reminiscent of Dobrushin’s uniqueness condition.

Theorem 1.6 is proved in Section 2, and Theorem 1.14 in Section 3. In Section 4 we are going
to deduce a logarithmic Sobolev inequality from a strong mixing condition, for measures q on
XZ (under the additional condition that the local specifications qk(xk|xi, i �= k), if not equal to
0, are bounded from below). The strong mixing condition we use is the same as Dobrushin and
Shlosman’s strong mixing conditions, but we do not assume that q is a Markov field. Our strong
mixing condition can also be considered as a generalization of�-mixing for (stationary) probabil-
ity measures onXZ. For non-Markov stationary probability measures onXZ, it is more restrictive
than usual strong mixing.

The first proof for the implication that Dobrushin and Shlosman’s strong mixing conditions
imply a logarithmic Sobolev inequality for Markov fields was given by Stroock and Zegarlinski
[22, 23] in 1992. The arguments in [23] are quite hard to follow. In 2001, Cesi [3] proved that
Dobrushin and Shlosman’s strong mixing conditions imply a logarithmic Sobolev inequality; his
approach is quite different from the previous ones, and much simpler.

We feel that there is still room for alternative and perhaps simpler proofs in this important
topic. Moreover, our proof is valid without the Markovity assumption. (It may be, however, that
the proofs in [23] and [3] can also be generalized for the non-Markovian case, but it has not been
tried.)

We believe that the separate parts of our proof (Theorem 1.6 and its applicability) are
comprehensible in themselves, thus making the whole proof easier to follow.

There is another approach to strong mixing, for measures q on XZ with finite range of inter-
action, developed by Olivieri, Picco and Martinelli: see [13]. Their aim was to replace condition
(4.2) of strong mixing (see below) with a milder one, requiring (4.2) only for ‘non-pathological’
sets 	, i.e. for sets with boundary much smaller than volume. Martinelli and Olivieri [14] proved
a logarithmic Sobolev inequality under this modified condition, for measures q with finite range
of interaction. In Appendix B we briefly sketch the Olivieri–Picco–Martinelli approach, and show
how tomodify Theorem 1.6 and Lemma 4.4 (below), to get logarithmic Sobolev inequalities under
this weaker assumption.

2. Proof of Theorem 1.6
We need the following lemma.

Lemma 2.1 (see [21]). Let r and s be two probability measures on X . Set
αs = min

s(x)�=0
s(x).
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If D(r‖s)< ∞, then

D(r‖s)� 2
αs

· |r − s|2. (2.1)

Remark. Inequality (2.1) can be considered as a converse to the Pinsker–Csiszár–Kullback
inequality, which says that

|r − s|2 � 1
2
D(r‖s).

However, there is no uniform converse: the reverse inequality must depend on themeasure s. Note
also that in [21] the following stronger inequality is proved:

D(r‖s)� log
(
1+ 2

αs
· |r − s|2

)
. (2.1′)

However, this logarithmic improvement does not yield any improvement in Theorem 1.6.

We proceed to the proof of Theorem 1.6. Let π =L(Y , X) be a coupling of p=L(Y) and
q=L(X) that achievesW2(p, q).

We apply induction on n. Assume that the theorem holds for n− 1.
By the expansion formula for relative entropy, we have

D(p‖q)= 1
n

·
n∑

i=1
D(Yi‖Xi)+ 1

n
·

n∑
i=1

ED
(
Ȳi|Yi‖q̄i|Yi

)
. (2.2)

For each fixed yi, the measure q̄i(· |yi) satisfies the conditions of the theorem. By the induction
hypothesis,

1
n

·
n∑
i=1

ED
(
Ȳi|Yi‖q̄i(· |Yi)

)
� 1

n
· 2C

α
·

n∑
i=1

∑
j�=i

|pj
(· |Ȳj

) − qj
(· |Ȳj

)|2

=
(
1− 1

n

)
· 2C

α
·

n∑
j=1

|pj
(· |Ȳj

) − qj
(· |Ȳj

)|2. (2.3)

To estimate the first term on the right-hand side of (2.2), observe that by the definition of α,
P{Xi = x}� α for any i ∈ [1, n] and x ∈X . Thus, by Lemma 2.1,

D(Yi‖Xi)�
2
α

· |L(Yi)−L(Xi)|2. (2.4)

Further, condition (1.3) implies
n∑

i=1
|L(Yi)−L(Xi)|2 �

n∑
i=1

Pπ {Yi �= Xi}2 =W2
2 (p, q)

� C ·E
n∑
i=1

|pi
(· |Ȳi

) − qi
(· |Ȳi

)|2. (2.5)

Putting together (2.4) and (2.5), it follows that the first term on the right-hand side of (2.2) can be
bounded as follows:

1
n

·
n∑
i=1

D(Yi‖Xi)�
1
n

· 2C
α

·
n∑
i=1

E|pi
(· |Ȳi

) − qi
(· |Ȳi

)|2. (2.6)
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Substituting (2.3) and (2.6) into (2.2), we get the first inequality in (1.4). The second inequality
follows from the Pinsker–Csiszár–Kullback inequality.

3. Proof of Theorem 1.14
Let both p, q ∈P(X n) be fixed. We want to show that (1.3) holds with C = 1/(1− ‖A‖2)2, where
A is the coupling matrix for q. It is enough to prove this for I = [1, n], since for any I ⊂ [1, n] and
ȳI the conditional distribution qI(· |ȳI) satisfies Dobrushin’s uniqueness condition with a minor
of A as its coupling matrix. (The idea of the proof for I = [1, n] goes back to Dobrushin’s papers
[4, 5], although he worked with another matrix norm.)

We will prove that Dobrushin’s uniqueness condition implies that the Gibbs sampler � is a
contraction with respect to theW2-distance with rate 1− 1/n · (1− ‖A‖2).

To achieve this, let r and s be two probability measures on X n, and let (U, Z) be a random pair
of sequences, with marginals r and s, and achievingW2(r, s).

Select an index ν ∈ [1, n] at random, independently of (U, Z), and define
Uk

′ =Uk, Zk′ = Zk for k �= ν.
Then define L(Ui′, Zi′|ν = i, Ūi = ūi, Z̄i = z̄i} as that coupling of qi(· |ūi) and qi(· |z̄i) that achieves
|qi(· |ūi)− qi(· |z̄i)|. It is clear that L(U ′)= r�, and L(Z′)= s�. Moreover,

P{Uk
′ �= Zk′ | ν = i} = P{Uk �= Zk} for k �= i,

and, by the definition of the coupling matrix, more precisely by (1.7′):

P{Ui
′ �= Zi′ | ν = i} =

∑
ūi,z̄i

P{Ūi = ūi, Z̄i = z̄i} · |qi(· |ūi)− qi(· |z̄i)|

�
∑
ūi,z̄i

P{Ūi = ūi, Z̄i = z̄i} ·
∑
k�=i

ak,i · δ(uk, zk)=
∑
k�=i

ak,i · P{Uk �= Zk}.

Thus
P{Ui

′ �= Zi′}� (1− 1/n) · P{Ui �= Zi} + 1/n ·
∑
k�=i

ak,i · P{Uk �= Zk}.

It follows that √√√√ n∑
i=1

P{Ui′ �= Zi′}2 � ‖B‖2 ·
√√√√ n∑

i=1
P{Ui �= Zi}2,

where
B= (1− 1/n) · In + 1/n ·A

(In is the identity matrix). Thus√√√√ n∑
i=1

P{Ui′ �= Zi′}2 �
(
1− 1

n
· (1− ‖A‖2)

)
·
√√√√ n∑

i=1
P{Ui �= Zi}2.

This proves the contractivity of � with rate 1− 1/n · (1− ‖A‖2).
By the triangle inequality,

W2(p, q)�W2(p, p�)+W2(p�, q).
By contractivity of �, and since q is invariant with respect to �, it follows that

W2(p, q)�W2(p, p�)+ (1− 1/n · (1− ‖A‖2)) ·W2(p, q),
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that is,

W2(p, q)�
n

1− ‖A‖2 ·W2(p, p�).

But it is easy to see that

W2(p, p�)= 1
n

·
√√√√E

n∑
i=1

|pi
(· |Ȳi

) − qi
(· |Ȳi

)|2.
By the last two inequalities, (1.3) (for I = [1, n]), and hence Theorem 1.14, is proved.

4. Gibbs measures with the strongmixing property
4.1 Definitions, notation and statement of Theorem 4.2
In this section we work with measures on X	, where 	 is a subset of the d-dimensional cubic
lattice Z. Most of the time 	 will be finite. The notation 	 ⊂⊂Z expresses that 	 ⊂Z is finite.

The lattice points in Z will be called sites. We use the following distance on Z:

ρ(k, i)=max
ν

|kν − iν |, where k= (k1, k2, . . . , kd), i= (i1, i2, . . . , id).

The elements of X are called spins, and the elements of the set X	 (	 ⊂Z, possibly infinite)
are called spin configurations, or just configurations, over 	.

We consider an ensemble of conditional distributions q	(· |x̄	) where 	 ⊂⊂Z, and 	̄ is the
complement of 	. (We prefer to write x̄	 in place of x	̄, and, accordingly, use the notation
q	(· |x̄	).) The measure q	(· |x̄	) is considered as the conditional distribution of a random spin
configuration over 	, given the outside configuration x̄	 (i.e. the configuration outside 	). For a
site i ∈Z we use the notation qi(· |x̄i).

The conditional distribution q	(· |x̄	) (	 ⊂⊂Z) naturally defines the conditional distribu-
tions qM(· |x̄M) for any M ⊂ 	. We assume that the ensemble of the conditional distributions
q	(· |x̄	) satisfies the natural compatibility conditions. The conditional distribution q	(· |x̄	) also
defines the conditional distributions qM(· |x̄	) for all subsetsM ⊂ 	.

Under the compatibility conditions there exists at least one probability measure q=L(X) on
the space of configuration s XZ , compatible with the local specifications q	(· |x̄	):

L(X	|X̄	 = x̄	)= q	(· |x̄	).

Here X	 denotes the marginal of the random configuration X for the sites in 	, and x̄	 is
called an outside configuration for 	. The conditional distributions q	(· |x̄	) are called the
local specifications of q, and q is called a Gibbs measure compatible with the local specifications
q	(· |x̄	).

We say that the ensemble of local specifications q	(· |x̄	) has finite range of interaction R (or
is Markov of order R) if q	(· |x̄	) only depends on those coordinates xk, k ∈ 	̄, that are in the
R-neighbourhood of 	.

In general, the local specifications do not uniquely determine the Gibbs measure. The question
of uniqueness has been extensively studied in the case of local specifications with finite range of
interaction, and a sufficient condition for uniqueness was given by Dobrushin and Shlosman [6].
But the general question of uniqueness is open, even for measures with finite range of interaction.

A property stronger than uniqueness is strong mixing.
In their celebrated paper [7] in 1987, Dobrushin and Shlosman gave a characterization of

complete analyticity of Markov Gibbs measures over Z. Their characterization was formulated
in twelve conditions which were proved to be equivalent, and are referred to as Dobrushin and
Shlosman’s strong mixing conditions. The following definition is the same as one of these twelve
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(III C), except that we do not assume Markovity, and replace the function K · exp (− γ r) with a
more general function ϕ(r). In the Markov case ϕ(r) necessarily has the form K · exp (− γ r).

In order to define strong mixing, let ϕ:Z+ 	→R+ be a function satisfying∑
i∈Z

ϕ(ρ(0, i))< ∞. (4.1)

Definition 4.1 (strongmixing). The Gibbs measure q is called strongly mixing with coupling func-
tion ϕ if for any setsM ⊂ 	 ⊂⊂Z and any two outside configurations ȳ	 and z̄	 differing only at
one single site k /∈ 	:

|qM(· |ȳ	)− qM(· |z̄	)|� ϕ(ρ(k,M)). (4.2)

If two outside configurations ȳ	 and z̄	 differ at several sites then a telescoping argument,
together with the triangle inequality, shows that

|qM(· |ȳ	)− qM(· |z̄	)|�
∑
k/∈	

δ(yk, zk) · ϕ(ρ(k,M)). (4.2′)

For stationary probability measures on XZ, this definition is more restrictive than usual strong
mixing, and is equivalent to �-mixing. On Z the term strong mixing has only been used for
Markov fields; for simplicity we extend its use without adding any qualification.

Our aim in this section is to prove the following theorem.

Theorem 4.2. Assume that the ensemble {q	(· |x̄	):	 ⊂⊂Z} satisfies the strong mixing condition
with coupling function ϕ. Moreover, assume that

α � inf qi(xi|x̄i)> 0,

where the infimum is taken for all x ∈XZ and i ∈Z such that qi(xi|x̄i)> 0. Fix a 	 ⊂⊂Z

together with an outside configuration ȳ	. Then the measure q	(· |ȳ	) satisfies condition (1.3) of
Theorem 1.6, with a constant C, independent of 	 and ȳ	. Moreover, it is enough to assume (4.2)
for sets 	 of diameter at most m0, where m0 depends on the dimension d and the function ϕ. The
constant C depends on the dimension d, the function ϕ and on α.

Remark. If q has finite range of interaction then Theorem 4.2 implies that condition (4.2) is
constructive, in the sense of Dobrushin and Shlosman.

Proof of Theorem 4.2. Consider the infinite symmetric matrix

� = (
ϕ(ρ(k, i))

)
k,i∈Z .

Since the entries are non-negative, and the row-sums equal, ‖�‖2 equals the row-sum:

‖�‖2 =
∑
i∈Z

ϕ(ρ(0, i))< ∞.

Fix a measure p	 ∈P(X	) satisfying

q	(x	|ȳ	)= 0 =⇒ p	(x	)= 0 for x	 ∈X	.

It is enough to prove that

W2
2

(
p	, q	

(· |ȳ	

))
� C ·E

∑
i∈	

W2
2

(
pi

(· |Ȳi
)
, qi

(· |Ȳi
))

(4.3)
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(with C independent of 	 and ȳ	), since for any M ⊂ 	 and any fixed y	\M , the conditional
distribution qM(· |ȳM) (where ȳM = (y	\M , ȳ	)) satisfies the strong mixing condition with the
same function ϕ.

We start with a weaker version of (4.3), namely Lemma 4.4 below.

Notation 4.3. Let Im = Im(	) denote the set ofm-sided cubes in Z that intersect 	. Set


m �min
R

[
‖�‖2 · d · R

m
+ 2d ·

∞∑
r=R

(2r + 1)d−1ϕ(r)
]
. (4.4)

Note that we can achieve

m < 1 (4.5)

by selecting R large enough to make the second term in (4.4) small, and then selectingm.

Lemma 4.4. If m is so large that 
m < 1, then

W2
2

(
p	, q	

(· |ȳ	

))
� 1

md · 1
(1− 
m)2

·
∑
I∈Im

EW2
2 (pI∩	(· |ȲI∩	), qI∩	(· |ȲI∩	))

� 1
(1− 
m)2

·
∑
I∈Im

E|pI∩	

(· |ȲI∩	

) − qI∩	

(· |ȲI∩	

)|2. (4.6)

If the ensemble {q	(· |x̄	)} has finite range of interaction R then Lemma 4.4 holds with ‖�‖2 ·
(d · R)/m in place of 
m.

The second inequality in (4.6) follows from the first one by the trivial inequality

W2
2 (r, s)�md · |r − s|2 for measures r, s on X I∩	, I ∈ Im.

The proof of Lemma 4.4 follows that of Theorem 1.14, but we use amore general Gibbs sampler,
updating (the intersection of 	 with) anm-sided cube at a time, not just one site. (Here we follow
[7], where Gibbs samplers updating large sets of sites at a time were used.) Let us extend the
definition of p	 so that on 	̄ it is concentrated on the fixed ȳ	.

Definition 4.5. For I ∈ Im, let �I :P(X	) 	→P(X	) be the Markov kernel:
�I(z	|y	)= δy	\I ,z	\I · qI∩	(zI∩	|ȳI∩	)

(for k ∈ 	̄, yk is defined by the fixed ȳ	). Then set

�Im = 1
|Im| ·

∑
I∈Im

�I .

Then �Im preserves, and is reversible with respect to q	(· |ȳ	). We call �Im the Gibbs sampler for
measure q	(· |ȳ	), defined by the local specifications qI∩	(· |ȳI∩	), I ∈ Im.

Proof of Lemma 4.4. To estimate W2
2 (p	, q	(· |ȳ	)), we are going to prove that if 
m < 1 then

the Gibbs sampler �Im is a contraction with respect to the W2-distance, with rate 1−md/|Im| ·
(1− 
m).

To achieve this, let r and s be two probability measures onX	, and let L(Y , Z) be a joint distri-
bution with marginals r and s, and achievingW2(r, s). We extend the definition of L(Y , Z), letting
Ȳ	 = Z̄	 = ȳ	, where ȳ	 is the fixed outside configuration. Let Y ′ and Z′ be random variables
representing r�Im and s�Im .
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When carrying out one step of the Gibbs sampler �Im , we select a random element ν from Im,
independently of (Y , Z). Then we can assume that

P{Yi
′ �= Zi′ | ν = I} = P{Yi �= Zi} for all i ∈ 	 \ I.

Moreover, we can define L(YI∩	
′, ZI∩	

′ | ν = I) as that coupling of qI∩	(· |ȳI∩	) and qI∩	

(· |z̄I∩	) that achievesW2
2 (qI∩	(· |ȳI∩	), qI∩	(· |z̄I∩	)).

At this point we need the following lemma.

Lemma 4.6. (For a proof, see Appendix A.) Let us fix the set M ⊂⊂Z, together with two outside
configurations ȳM and z̄M, differing only at site k /∈M. Let Y and Z be random variables realizing
qM(· |ȳM) and qM(· |z̄M). Define

Ji = Jk,M,i =
{
j ∈M:ρ(k, j)� ρ(k, i)

}
. (4.7)

Then there exists a coupling L(Y , Z|ȳM , z̄M) of L(Y) and L(Z), satisfying
P{Yi �= Zi}� |qJi(· |ȳM)− qJi(· |z̄M)|, i ∈M.

If q satisfies the strong mixing condition with function ϕ then, for this coupling,
P{Yi �= Zi}� ϕ(ρ(k, i)) for all i ∈M.

By Lemma 4.6 and inequality (4.2′), for fixed I, ȳI∩	 and z̄I∩	, we can define a coupling

L(
YI∩	

′, ZI∩	
′ | ν = I, ȲI∩	 = ȳI∩	, Z̄I∩	 = z̄I∩	

)
,

satisfying

P{Yi
′ �= Zi′ | ν = I, ȲI∩	 = ȳI∩	, Z̄I∩	 = z̄I∩	}�

∑
k∈	\I

δ(yk, zk) · ϕ(ρ(k, i)), for all i ∈ I ∩ 	.

Thus

P{Yi
′ �= Zi′ | ν = I}�

∑
k∈	\I

P{Yk �= Zk} · ϕ(ρ(k, i)) for all i ∈ I ∩ 	. (4.8)

We calculate P{Yi′ �= Zi′} by averaging for I ∈ Im. Set N = |Im|. Since each i ∈ 	 is covered by
exactlymd cubes from Im, (4.8) implies

P{Yi
′ �= Zi′}�

(
1− md

N

)
· P{Yi �= Zi} + 1

N
·
∑
I�i

∑
k∈	\I

P{Yk �= Zk} · ϕ(ρ(k, i)). (4.9)

Consider the vectors

u= (
P{Yk �= Zk}

)
k∈	

and v= (
P{Yi

′ �= Zi′}
)
i∈	

,

and let D denote the matrix with entries

dk,i = ϕ(ρ(k, i)) ·
∑

I�i,	\I�k
1, k, i ∈ 	.

With this notation, (4.9) means that

v�
((

1− md

N

)
· I+ 1

N
·D

)
· u

coordinatewise, thus

‖v‖2 �
((

1− md

N

)
+ 1

N
‖D‖2

)
· ‖u‖2. (4.10)

https://doi.org/10.1017/S0963548319000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000099


Combinatorics, Probability and Computing 931

We claim that, for fixed k and i,∑
I:k/∈I,I�i

1�md−1 ·min{d · ρ(k, i), m}. (4.11)

It is clear that
∑

I:I�i 1�md. To prove the rest of (4.11), assume for simplicity that k and i differ
in all coordinates. Then we can assume that k= (0, 0, . . . , 0), and ij > 0 for all j. LetHj denote the
half-space {zd ∈Z

d:zj > 0}. Assume that for an I, i ∈ I ∈ Im, I intersects H̄j, that is, there is a z(j) ∈ I
whose jth coordinate is non-positive. Then the projection of I on the coordinate axis {zj = 0} will
contain k. It follows that if I ∩ H̄j �= ∅ for every j then k ∈ I. Consequently, if i ∈ I ∈ Im and k /∈ I
then there is at least one j such that I ⊂Hj. There are md−1 · |kj − ij|�md−1 · ρ(k, i) possible
positions for anm-sided cube containing i and contained inHj. This proves that

∑
I:k/∈I,I�i 1� d ·

md−1 · ρ(k, i), and thereby (4.11). If some coordinates of k and i are equal, then the same argument
works in a subspace.

Since the right-hand side of (4.11) is symmetric in k and i, we have

‖D‖2 �md ·
∑
i

ϕ(ρ(k, i)) ·min
{
d · ρ(k, i)

m
, 1

}
. (4.12)

Now fix anR, and divide the sum in (4.12) into two parts, for i satisfying ρ(k, i)� R and ρ(k, i)> R,
respectively. We see that

‖D‖2 �md ·
(‖�‖2 · d · R

m
+

∑
i:ρ(k,i)>R

ϕ(ρ(k, i))
)
.

Taking the minimum in R, we get

‖D‖2 �md · 
m. (4.13)

By (4.10) and the definition of the vectors u and v, (4.13) implies that√∑
i∈	

P{Yi′ �= Zi′}2 �
(
1− md

N
· (1− 
m)

)
·
√∑

k∈	

P{Yk �= Zk}2,

that is,

W2(r�Im , s�Im)�
(
1− md

N
· (1− 
m)

)
·W2(r, s). (4.14)

The stated contractivity is proved.
By the triangle inequality it follows that

W2
(
p	, q	(· |ȳ	)

)
�W2

(
p	, p	�Im

) +W2
(
p	�Im , q	(· |ȳ	)

)
�W2

(
p	, p	�Im

) +
(
1− md

N
· (1− 
m)

)
·W2

(
p	, q	

(· |ȳ	

))
,

whence

W2
(
p	, q	

(· |ȳ	

))
� N

md · 1
(1− 
m)

·W2
(
p	, p	�Im

)
. (4.15)

To complete the proof of Lemma 4.4, we have to estimate W2(p	, p	�Im) in terms of the
quantities

EW2
2

(
pI∩	

(· |ȲI∩	

)
, qI∩	

(· |ȲI∩	

))
.
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To do this, fix an I ∈ Im, together with a configuration y	\I ∈X	\I , and define a coupling πI∩	

(· |y	\I) of pI∩	(· |ȳI∩	) and qI∩	(· |ȳI∩	) that achieves W2-distance. We extend πI∩	(· |y	\I)
to a measure on X	 ×X	 concentrated on the diagonal (y	\I , y	\I), for coordinates outside I.
Finally, we define the coupling π of p	 and p	�Im by averaging the distributions πI∩	(· |y	\I)
with respect to I and y	\I .

Using this construction, an easy computation (using the Cauchy–Schwarz inequality)
shows that

W2
2
(
p	, p	�Im

)
� md

N2

∑
I∈Im

EW2
2

(
pI∩	

(· |ȲI∩	

)
, qI∩	

(· |ȲI∩	

))
. (4.16)

Substituting (4.16) into (4.15), we get the first inequality in (4.6). Understanding the proof,
one easily sees that the statement for Gibbs measures with finite range of interaction holds true.
Lemma 4.4 is proved.

To complete the proof of Theorem 4.2 we have to deduce (4.3) from Lemma 4.4. To do this we
need the following lemma.

Lemma 4.7. (The proof is in Appendix A.) Let p=L(Y) and q be two measures on X n. Let α be
defined by (1.1). Then

|p− q|2 �
(

2
(|X | · α)2

)n+log2 n
·

n∑
i=1

E|pi
(· |Ȳi

) − qi
(· |Ȳi

)|2.
Using Lemma 4.7, we estimate the terms in the last sum in (4.6). We get

W2
2

(
p	, q	

(· |ȳ	

))
� md

(1− 
m)2
·
(

2(|X | · α)2
)md+log2 (md)

·E
∑
i∈	

|pi
(· |Y	\i

) − qi
(· |Y	\i, ȳ	

)|2.
Thus (4.3) is fulfilled with

C = md

(1− 
m)2
·
(

2
(|X | · α)2

)md+log2 (md)
,

as soon asm is large enough for 
m < 1.
We used the strong mixing condition (4.2) in proving Lemma 4.6, and Lemma 4.6 was used for

subsets of m-sided cubes. It was enough to consider m-sided cubes with m so large that 
m < 1
holds, a condition depending on d and ϕ. This proves the last two statements of Theorem 4.2.

Remark. An argument similar to Lemma 4.7 was also present in [23].
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Appendix A
Proof of Lemma 4.6. Order the elements of 	 so that

ρ(k, i1)� ρ(k, i2)� · · ·� ρ(k, i|	|),
that is, the sequence of sets Ji = Jk,M,i (see (4.7)) is decreasing in i. Let YJi and ZJi denote the
marginals of Y and Z, respectively, for the sites in Ji. Then (YJ1 , . . . , YJ|M|) and (ZJ1 , . . . , ZJ|M|) are
Markov chains (in fact YJi+1 is a function of YJi). Therefore, by a theorem of Goldstein [10], there
exists a coupling π =L(Y , Z|ȳM , z̄M) of L(Y) and L(Z), satisfying

Pπ {YJi �= ZJi} = |L(YJi)−L(ZJi)| = |qJi(· |ȳM)− qJi(· |z̄M)|.
Since i ∈ Ji, and ρ(k, i)= ρ(k, Ji), the statement of Lemma 4.6 follows.

Proof of Lemma 4.7. Note first that if r and s are probability measures on X , and r(x), s(x)� α,
then

|r − s|� 1− |X | · α.
LetY andZ be finite sets, and consider two probabilitymeasures r =L(Y1, Z2) and s onY ×Z .

Denote s1(· | · ) the conditional distribution of the first coordinate given the second one, defined by
s, and define s2(· | · ) similarly. Assume that s1(y1|z2)� α1 and s2(z2|y1)� α2 for all y1, z2 ∈Y ×Z .
Then

|s2(· |y1)− s2(· |y1′)|� 1− |Z| · α2 and |s1(· |z2)− s1(· |z2′)|� 1− |Y| · α1

for all y1, y1′ ∈Y and z2, z2′ ∈Z .
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Thus in this case Dobrushin’s uniqueness condition is satisfied with a 2× 2 coupling matrix,
with entries 1− |Y| · α1 and 1− |Z| · α2 outside the diagonal. (It does not matter that Y and Z
may be different.) The coupling matrix has norm

�max{1− |Y| · α1, 1− |Z| · α2}.
By the argument proving Theorem 1.14, it follows that

W2(r, s)�max
{

1
(|Y| · α1)2

,
1

(|Z| · α2)2

}
·E(|r1(· |Y2)− s1(· |Y2)|2 + |r2(· |Y1)− s2(· |Y1)|2),

and, consequently,

|r − s|2 �max
{

2
(|Y| · α1)2

,
2

(|Z| · α2)2

}
·E(|r1(· |Y2)− s1(· |Y2)|2 + |r2(· |Y1)− s2(· |Y1)|2).

(A.1)
Lemma 4.7 follows from (A.1) by a recursive argument, dividing the index set into two possibly

equal parts of size �n/2� and �n/2�, and applying (A.1) to each part. Then

max
{

2
(|Y| · α1)2

,
2

(|Z| · α2)2

}
will be replaced by (

2
(|X | · α)2

)�n/2�
.

Repeating this step about log2 n times we get the statement of the lemma.

Appendix B
In this section we still work in the lattice Z, but think of sites as placed in the centre of the lattice
cubes.

Let Z/l (l� 1 integer) denote the sublattice in Z, consisting of points whose coordinates are all
multiples of l, and let Cl denote the set of finite unions of l-sided cubes with vertices in Z/l. The
said l-sided cubes contain ld sites each, and the set of sites in distinct cubes are disjoint. We shall
identify the sets in Cl with the set of sites contained in them.

The approach by Olivieri and Picco is based on the following definition of strong mixing.

Definition B.1 (Olivieri and Picco). The Gibbs measure q onX Zd with finite range of interaction
is called strongly mixing over Cl in the sense of Olivieri–Picco–Martinelli, if there exist numbers
γ > 0, K > 0 such that, for any sets 	 ∈ Cl,M ⊂ 	 and any two outside configurations ȳ	 and z̄	
differing only at a single site k /∈ 	, we have

|qM(· |ȳ	)− qM(· |z̄	)|�K · exp (− γ · ρ(k,M)). (B.1)

Given the following theorem, if l is sufficiently large then it is enough to require (B.1) just for
cubes in Cl, to get (B.1) for all 	 ∈ Cl, albeit with different γ and K.

Olivieri and Picco’s Effectivity Theorem [17, 13]. Assume that the Gibbs measure q on X Zd has
finite range of interaction. For any γ ,K > 0 there exists an l0 such that if, for some l� l0, (B.1)
holds for all l-sided cubes 	 ∈ Cl, allM ⊂ 	 and all k /∈ 	, then (B.1) also holds for all 	 ∈ Cl, and
M and k as above, with different γ and K.

We use a slightly more general definition, although we cannot justify it with an analogue of the
above Effectivity Theorem.
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Definition B.2 (strong mixing over Cl). Let ϕ:Z+ 	→R+ be a function satisfying (4.1). Fix an
integer l� 1. The ensemble of conditional distributions q	(· |x̄λ) on X Zd is called strongly mixing
over Cl, with coupling function ϕ if, for any sets 	 ∈ Cl, M ⊂ 	, and any two outside configura-
tions ȳ	 and z̄	 differing only at the single site k, (4.2) holds. (We do not assume finite range of
interaction.)

For measures strongly mixing over Cl one can prove a logarithmic Sobolev inequality by means
of the following modifications of Theorem 1.6 and Lemma 4.4.

Theorem 1.6′. Consider a measure q	 on X	 = ∏n
j=1 X	j , where

	 = ∪n
j=1	j, 	j ∩ 	k = ∅ for j �= k, |	j| =m.

Set
α =min{qi(xi|x̄i): q	(x	)> 0, i ∈ 	}.

Fix a p	 =L(Y	) on X	 satisfying
q	(x	)= 0 =⇒ p	(x	)= 0.

Assume that q	 satisfies all the inequalities

W2
2 (pI(· |ȳI), qI(· |ȳI))� C ·E

{∑
	j⊂I

W2(p	j(· |Ȳ	j), q	j(· |Ȳ	j))
∣∣∣∣ ȲI = ȳI

}
,

where I ⊂ 	 is the union of some of the sets 	j, and ȳI ∈X	\I is a fixed sequence. Then

D(p	‖q	)�
4Cm
αm ·

n∑
j=1

EW2
(
p	j

(· |Ȳ	j

)
, q	j

(· |Ȳ	j

))
.

This can be proved by the same argument as Theorem 1.6, using Lemma 1.12, the inequalities

|p	j

(· |Ȳ	j

) − q	j

(· |Ȳ	j

)|2 �m ·W2(p	j

(· |Ȳ	j

)
, q	j

(· |Ȳ	j

)
),

and, in each induction step, fixing a whole new block Y	j .

Lemma 4.4′ (for measures strongly mixing over Cl). Fix an integer l, and assume that the ensem-
ble of conditional distributions q	(· |x̄	) on X Zd satisfies the strong mixing condition over Cl, with
coupling function ϕ. Let 	 ∈ Cl, and fix an outside configuration ȳ	. For fixed m let Iml denote the
set of m · l-sided cubes from Cl intersecting	. Then, for large enough m and any measure p	 onX	,

W2
2

(
p	, q	

(· |ȳ	

))
� C ·

∑
I∈Iml

EW2
2

(
pI∩	

(· |ȲI∩	

)
, qI∩	

(· |ȲI∩	

))

� C ·md ·
∑
I∈Iml

E|pI∩	

(· |ȲI∩	

) − qI∩	

(· |ȲI∩	

)|2,
where C and m depend on the dimension d and the function ϕ.

The proof uses a Gibbs sampler, updating (intersections with 	 of) randomly chosen cubes of
sidem · l from Cl (for an appropriatem).
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