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Cross-Resistance of Japanese Foxtail (Alopecurus japonicus) to ACCase
Inhibitors in China

Hailan Cui, Cangyue Wang, Yujiao Han, Liang Chen, and Xiangju Li*

The increasing use of ACCase-inhibiting herbicides has resulted in evolved resistance in key grass
weeds infesting cereal cropping systems worldwide. Japanese foxtail is one of the most important grass
weed species in wheat in China. Most populations have evolved resistance to fenoxaprop-p-ethyl,
which is one of the most common ACCase-inhibiting herbicides in wheat. The seeds of two Japanese
foxtail populations were collected from wheat fields where farmers complained that control could not
be effectively obtained with fenoxaprop-p-ethyl. Seeds from one susceptible population were collected
from an area along a roadside where ACCase inhibitors had not been used to be used for validating
cross-resistance and elucidating the mechanism of resistance. The experimental results showed that the
two populations, Aloja-JS10-R1 and Aloja-JS10-R2, expressed high resistance to fenoxaprop-p-ethyl,
with resistance indexes (RIs) of 29.2 and 27.9. These populations also expressed high cross-resistance
to clodinafop-propargyl with RIs of 12.8 and 14.7, and moderate cross-resistance to clethodim and
pinoxaden with RIs ranging from 2.6 to 11.4. Comparison of the ACCase carboxyl-transferase (CT)
domain sequences of the susceptible and resistant populations with blackgrass revealed that tryptophan
at position 2027 of the ACCase gene was substituted by cysteine in population Aloja-JS10-R1, and
isoleucine at position 1781 of the ACCase gene was substituted by leucine in populations Aloja-JS10-
R2. The study confirmed Japanese foxtail resistance to the ACCase inhibitor fenoxafop-p-ethyl, cross-
resistance to other ACCase inhibitors, and the resistance mechanism being conferred by specific
ACCase point mutations at amino acid position 1781 and 2027.
Nomenclature: Clethodim; clodinafop-propargyl; fenoxaprop-p-ethyl; pinoxaden; blackgrass,
Alopecurus myosuroides; Japanese foxtail, Alopecurus japonicus; wheat, Triticum aestivum L.
Key words: ACCase-inhibiting herbicides, ACCase gene, herbicide resistance, mutation detection.

El creciente uso de herbicidas inhibidores de ACCase ha resultado en la evolución de resistencia en especies de malezas
gramı́neas clave en sistemas de cultivos de cereales en todo el mundo. Alopecurus japonicus es una de las malezas gramı́neas
más importantes en trigo en China. La mayorı́a de sus poblaciones han evolucionado resistencia a fenoxaprop-p-ethyl, el
cual es uno de los herbicidas inhibidores de ACCase más comunes en trigo. Semillas de dos poblaciones de A. japonicus
fueron colectadas en campos de trigo donde los productores se habı́an quejado que no se habı́a podido alcanzar un control
efectivo con fenoxaprop-p-ethyl. También se colectaron semillas de una población susceptible en un área a la orilla de la
carretera donde no se habı́a usado inhibidores de ACCase, para validar la resistencia cruzada y elucidar el mecanismo de
resistencia. Los resultados experimentales mostraron que las dos poblaciones, Aloja-JS10-R1 y Aloja-JS10-R2, expresaron
un alto nivel de resistencia a fenoxaprop-p-ethyl, con ı́ndices de resistencia (RIs) de 29.2 y 27.9. Estas poblaciones también
expresaron una alta resistencia cruzada a clodinafop-propargyl con RIs de 12.8 y 14.7, y resistencia cruzada moderada a
clethodim y pinoxaden con RIs que variaron entre 2.6 y 11.4. La comparación de la secuencia del dominio carboxyl-
transferase (CT) de ACCase de las poblaciones susceptibles y resistentes con Alopecurus myosuroides reveló que tryptophan
en la posición 2027 del gen ACCase fue sustituido por cysteine en la poblacón Aloja-JS10R1, y isoleucine en la posición
1781 del gene ACCase fue sustituido por leucine en la población Aloja-JS10-R2. Este estudio confirmó la resistencia de A.
japonicus al inhibidor de ACCase fenoxaprop-p-ethyl, la resistencia cruzada a otros inhibidores de ACCase, y el mecanismo
de resistencia, el cual se debe a mutaciones puntuales en las posiciones de los amino ácidos 1781 y 2027 del gen ACCase.

Japanese foxtail, a member of the Poaceae family,
is a strong competitor and a prolific seed producer
as one of the most troublesome grass weeds in major
wheat-producing areas of China (Yang et al.
2007a,b). Japanese foxtail can substantially reduce
crop yield in many crops, such as winter wheat,
barley (Hordeum vulgare L.), oilseed rape (Brassica
napus L.), and some vegetables (Li et al. 1996).
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Selective, acetyl-coenzyme A carboxylase (AC-
Case, EC.6.4.1.2) –inhibiting herbicides are widely
used to control grass weeds in many crops in China.
ACCase is a key enzyme in lipid biosynthesis that
catalyzes the formation of malonyl-CoA from the
carboxylation of acetyl-CoA (Nikolau et al. 2003).
Two types of ACCase have been recognized. The
heteromeric prokaryotic ACCase is composed of
multiple subunits, whereas the homomeric eukary-
otic ACCase is a large multidomain protein. In
grasses the plastidic ACCase is homomeric and the
target site for the ACCase-inhibiting herbicides
(Alban et al. 1994; Gornicki et al. 1997; Incledon
and Hall 1997; Price et al. 2003). ACCase-
inhibiting herbicides have different chemical classes.
Fenoxaprop-p-ethyl and clodinafop-propargyl be-
long to aryloxyphenoxypropionate (APP), cletho-
dim belongs to cyclohexanedione (CHD), and
pinoxaden belongs to phenylpyrazoline (PPZ)
classes, respectively (Hofer et al. 2006). Fenoxap-
rop-p-ethyl inhibits chloroplastic ACCase, causing
plant death (Burton et al. 1989), and has been
widely used to control grass weed species since its
introduction in the 1970s (Délye et al. 2005).

Resistance to ACCase-inhibiting herbicides has
been found in some grass weed species, including
blackgrass (Cummins et al. 1999; Délye 2005;
Délye et al. 2008; Délye and Matéjicek 2002;
Menchari et al. 2008; Moss et al. 2003), Italian
ryegrass (Lolium multiflorum) (Kusk et al. 2008),
downy brome (Bromus tectorum) (Daniel et al.
2007), wild oat (Avena fatua) (Heap 2014),
barnyardgrass (Echinochloa crus-galli) (Bagava-
thiannan et al. 2014), and Asia minor bluegrass
(Polypogon fugax) (Tang et al. 2014). Currently, 46
weed species have been identified with resistance to
ACCase inhibitors, mostly in North America and
Australia (Délye et al. 2004; Heap 2014; Hochberg
et al. 2009; Stephen and Yu 2010).

Fenoxaprop-p-ethyl was registered to control
grasses in China in 1992 (Institute for Control of
Agrichemicals [ICAMA] 1992). After over 20 yr of
use, this herbicide could not control Japanese foxtail
as effectively as before in China. Populations from
Jurong city of Jiangsu Province were determined to
be resistant to haloxyfop, and four nucleotide
mutations of Japanese foxtail were detected (Tang
et al. 2012). The objectives of this research were to
evaluate the resistance of Japanese foxtail to
fenoxaprop-p-ethyl and the cross-resistance to other

ACCase inhibitors, as well as elucidate the mech-
anism of resistance in Japanese foxtail by comparing
the ACCase gene sequences between resistant and
susceptible populations.

Materials and Methods

Seed Source. Seeds of two resistant Japanese foxtail
populations, Aloja-JS10-R1 and Aloja-JS10-R2,
were collected in 2010 from wheat fields in Hongze
county and Yixing city of Jiangsu province,
respectively. Fenoxaprop-p-ethyl had been applied
to these fields for more than 10 years. The
susceptible population, Aloja-JS10-S1, was collected
from a roadside in Jiangsu province of China where
no ACCase-inhibiting herbicides had been used.

Evaluation of Cross-Resistance to ACCase In-
hibitors. Dose–response experiments were per-
formed in the greenhouse to evaluate the cross-
resistance of the resistant populations to ACCase
inhibitors belonging to different chemical classes.
Forty seeds of Japanese foxtail were sown into 12-
cm-diam pots containing moist loam soil. Pots were
placed in the greenhouse (temperature was main-
tained at 15 to 25 C, relative humidity maintained
at 60 to 85%, in natural sunlight condition),
watered and fertilized as required. The greenhouse
was located on the site of the Institute of Plant
Protection, Chinese Academy of Agricultural Sci-
ences, in Beijing. The seedlings were thinned to 10
evenly sized plants per pot before herbicide
application.

Four ACCase inhibitors representing three dif-
ferent chemical classes were applied respectively at
the three-leaf stage. Fenoxaprop-p-ethyl, 69 g ai L�1

emulsion oil in water, supplied by the Bayer
(China) Company in Shanghai, was applied at 0,
20, 40, 80, 160, 320, 640, 1,280, and 2,560 g ai
ha�1. Clodinafop-propargyl, 15% wettable powder,
supplied by the Syngenta (China) Company in
Shanghai, was applied at 0, 15, 30, 60, 120, 240,
480, 960, and 1920 g ai ha�1. Clethodim, 240 g ai
L�1 emulsifiable concentration, supplied by the
Xianda Chemical (China) Company in Shandong,
was applied at 0, 6.75, 13.5, 27, 54, 108, and 216 g
ai ha�1. Pinoxaden, 50 g ai L�1 emulsifiable
concentration, supplied by the Syngenta (China)
Company in Shanghai, was applied at 0, 11.25,
22.5, 45, 90, 180, and 360 g ai ha�1. The herbicides
were applied with a compressed air, moving nozzle
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cabinet sprayer (compressed air cabinet sprayer
3WPSH-500D, Beijing Research Center for Infor-
mation Technology in Agriculture, Beijing, China)
equipped with one TeeJet XR8003 flat-fan nozzle
(TeeJet Spraying Systems Co., Springfield, IL) and
calibrated to deliver 367.5 L ha�1 at 0.3 MPa.
Treatments were organized as a completely ran-
domized design with four replications. The exper-
iment was conducted twice to check its
reproducibility. Japanese foxtail was harvested from
ground level 21 d after treatment, dried at 80 C for
48 h, and dry weights were determined.

The dry weight for each dose was expressed as a
percentage of the nontreated control. A four-
parameter log-logistic model was fitted to the data
by the software Sigmaplot version 10.0:

Y ¼ C þ ðD � C Þ= 1þ ðX =GR50Þb
h i

;

where Y is the dry weight (percentage of non-
treated), X is the herbicide dose (g ai ha�1), C is the
lower limit of the response curve at high herbicide
doses, D is the upper limit or mean response when
herbicide doses are zero, b is the slope of the curve
around GR50, and GR50 is the dose that reduced
dry weight by 50% (Seefeldt et al. 1995). GR50 of
the resistant population and GR50 of the susceptible
population were used to calculate the RI , where RI
¼ GR50 of the resistant population/GR50 of the
susceptible population.

DNA Extraction and Plastidic ACCase Carboxyl-
Transferase (CT) Domain Cloning. The popula-
tions were grown in the greenhouse and treated with
fenoxaprop-p-ethyl at 160 g ha�1 at the three-leaf
growth stage, except for the susceptible population
Aloja-JS10-S1. Young shoot tissue from 20 surviv-
ing plants from each resistant populations and 5
untreated plants from the susceptible population
were harvested and stored at �70 C, respectively.
DNA was extracted from 100 mg young shoot

tissue of each plant using the Plant Genomic DNA
Rapid Extraction kit (Plant Genomic DNA Rapid
Extraction kit (Spin-column), Bio Teke Corpora-
tion, Beijing, China).

Two pairs of forward and reverse overlapping
primers (Table 1) were designed based on the
ACCase gene sequences of Japanese foxtail (Acces-
sion No. JQ068820) and blackgrass (AJ310767)
from the GenBank database to amplify a highly
conserved region of the ACCase gene, which is
1,270 bp long and contains seven confirmed point
mutations for ACCase-inhibiting herbicides resis-
tance (Kaundun 2010; Kaundun and Windass
2006; Neff et al. 1998; 2002; Scarabel et al.
2011). A thermocycler (DNA engine, Bio-RAD,
Hercules, CA) was used to amplify ACCase gene
fragments from Japanese foxtail genomic DNA.
Each polymerase chain reaction (PCR) contained 1
ll of genomic DNA (about 25 ng ll�1 ), 0.5 ll of
each primer (20 lM), 2.5 ll of 103 PCR buffer,
1.5 ll of 2.5 mM deoxynucleotide triphosphates
(dNTPs) mixture, and 0.5 ll Taq DNA polymerase
(5 U ll�1) in a final volume of 25 ll. PCR reactions
were subjected to a 4-min denaturation at 94 C; 25
cycles of 0.5 min at 94 C, 0.5 min at X C, and 1
min at 72 C, then 3 min at 72 C, where X is the
annealing temperature for each primer pair used.
Annealing temperatures were 55 and 56 C for
primer sets 1 and 2, respectively (Table 1). The
desired PCR products were cloned with the
competent cell (JM109) and plasmid (pMD19-T)
for sequencing. Each desired fragment was se-
quenced in forward and reverse directions, to
minimize sequencing errors, by a commercial
sequencing company (Sequencing Service Depart-
ment, Beijing AuGCT Biotechnology Co., Ltd.,
Beijing, China). The sequences of five plants of
susceptible population were analyzed first and then
compared with sequences from resistant populations
to determine whether a nucleotide substitution

Table 1. Primers utilized for amplification of key regions of the ACCase gene along with necessary polymerase chain reaction
conditions and resistance target site.

Primer Sequence (50-30)
Amplicon
size (bp)

Annealing
temperature (C)

Containing the confirmed
amino acids mutationsa

Forward 1 AAACTCTGGTGCTCGGATTG 615 bp 55 Ile-1781
Reverse 1 GCAACGGGTCTGTCTATTGG
Forward 2 TGTTGTCCATCTGACTGTTCCA 829 bp 56 Trp-1999, Trp-2027, Ile-2041,

Asp-2078, Cys-2088, Gly-2096Reverse 2 TAGGCTTCCATTTGCTCCC

a Amino acid positions correspond to the full-length plastidic ACCase in blackgrass.
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occurred. A minimum of 20 plants were sequenced
for each population examined. DNA Analyzer (ABI
3730xl 96-capillary DNA Analyzer, Applied Bio-
systems, Los Angeles, CA) with the common
primers M13F (�47) (50-CGCCAGGGTTTTCC-
CAGTCACGAC-3 0) was used to obtain the
complementary strand of the sequenced ACCase
gene fragments. Sequences of Japanese foxtail and
blackgrass (Alopecurus myosuroides) were assembled
and compared with the use of DNAMAN software
package (Version 5.2.2, Lynnon Biosoft, Canada).

Results and Discussions

Evaluation of Cross-Resistance to ACCase In-
hibitors. Dose–response studies in the greenhouse

showed that population Aloja-JS10-S1 was suscep-
tible to fenoxaprop-p-ethyl, and was also susceptible
to other ACCase inhibitors. The GR50 values of the
susceptible population Aloja-JS10-S1 to ACCase
inhibitor fenoxaprop-p-ethyl, clodinafop-propargyl,
clethodim, and pinoxaden were 14.8, 15.9, 8.2, and
13.0 g ha�1, respectively (Table 2). Populations
Aloja-JS10-R1 and Aloja-JS10-R2 expressed high
resistance to fenoxaprop-p-ethyl and their RI values
were 29.2 and 27.9, respectively. These populations
also expressed high cross-resistance to the same
chemical class APP herbicide clodinafop-propargyl
with a RI of 12.8 and 14.7, moderate cross-
resistance to CHD class clethodim (RI of 2.6 and
7.4) and to the PPZ class pinoxaden (RI of 4.4 and
11.4) (Table 2). Aloja-JS10-R1 and Aloja-JS10-R2

Figure 1. Dry weight above the ground of Japanese foxtail susceptible population and resistant populations with four ACCase
inhibiting herbicides.
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were collected from fields where farmers com-
plained about no effective control from the
herbicide, correlating with high resistance to this
herbicide in our study. In China, farmers would like
to increase the dosage of inexpensive fenoxaprop-p-
ethyl to provide higher efficacy if the herbicide
could not control the weed effectively at lower
doses, and do not want to apply other high-priced
herbicides. Fenoxaprop-p-ethyl has become a very
popular herbicide in wheat fields of China since
1993, and the consumption of the product in wheat
in China reached 1,298 tons in 2010.

Clodinafop-propargyl was introduced into China
in 2006, and it belongs to the same APP chemical
class as fenoxaprop-p-ethyl. The occurrence of APP-
resistant Japanese foxtail may be because of
continuous application and high dose pressure of
ACCase inhibitors in wheat. Even though the
populations Aloja-JS10-R1 and Aloja-JS10-R2 had
no history of clethodim and pinoxaden being used
in these fields, they showed moderate cross-
resistance to clethodim and pinoxaden (Figure 1
and Table 2). It is very helpful for weed
management to find that the populations Aloja-
JS10-R2 with Ile-1781-Leu showed much higher
resistance to the APP, CHD, and PPZ chemical
classes compared to the Aloja-JS10-R1 with Trp-
2027-Cys.

Molecular Basis of Resistance. The gene fragment
encompassing the CT domain of the ACCase gene
for the two resistant populations and one suscep-
tible population of Japanese foxtail were sequenced.
Comparison of the ACCase gene sequences of the
susceptible and resistant populations with blackgrass
revealed that tryptophan at position 2027 of the
ACCase gene was substituted by cysteine in
population Aloja-JS10-R1 (GenBank KR061657)
and isoleucine at position 1781 of the ACCase gene

substituted by leucine in populations Aloja-JS10-R2
(GenBank accession No. KR061656). The results
indicated that the resistance of Japanese foxtail to
ACCase inhibitors was due to specific ACCase
point mutations at amino acid positions 1781 and
2027. These findings provide additional under-
standing of the molecular basis of resistance to
ACCase inhibitor herbicides in Japanese foxtail.

Target site–based ACCase-inhibitor resistance is
conferred by single amino acid substitutions of the
ACCase gene, which occur at multiple sites within
the ACCase gene such as Ile-1781-Leu in blackgrass
(Petit et al. 2010), wild oat (Christopher and
Holtum 2000), green foxtail (Yu et al. 2007; Zhang
and Powles 2006), ryegrass sp.; Trp-2027-Cys in
blackgrass; Ile-2041-Asn in blackgrass and ryegrass
species; and Ile-2041-Val in ryegrass sp. (Kotoula-
Syka et al. 2000; Prado et al. 2005; Preston et al.
1996; Tal and Rubin 2004; White et al. 2005).
Seven different mutant ACCase alleles (Ile-1781-
Leu, Trp-1999-Cys, Ile-2041-Asn, Ile-2041-Val,
Asp-2078-Gly, Cys-2088-Arg, and Gly-2096-Ala)
were detected in the pinoxaden-resistant ryegrass sp.
(Scarabel et al. 2011), Asp-2078-Gly in blackgrass
and Gly-2096-Ala in blackgrass (Kaundun and
Windass 2006; Kaundun 2010). Scarabel et al.
(2011) reported that the Ile-2041-Asn and Ile-
2041-Val alleles in ryegrass spp. were associated
with dominant or partially dominant resistance to
APP, no substantial resistance to CHD and a
moderate resistance to pinoxaden. The Cys-2088-
Arg allele endowed a partially dominant resistance
to clodinafop, sethoxydim and most likely to
pinoxaden. Délye et al. (2008) found that Ile-
1781-Leu, Trp-2027-Cys, Ile-2041-Asn, Gly-2096-
Ala conferred the resistance to fenoxaprop, clodi-
nafop and haloxyfop at field rates, and Trp-2027-
Cys could not confer the resistance to clethodim
and cycloxydim. Four nucleotide mutations in

Table 2. Dose–response parameters of three Japanese foxtail populations to select ACCase-inhibiting herbicides.a

Population

APP CHD PPZ

Fenoxaprop-p-ethyl Clodinafop-propargyl Clethodim Pinoxaden

GR50 (g ha�1) (SE) RI GR50 (g ha�1) (SE) RI GR50 (g ha�1) (SE) RI GR50 (g ha�1) (SE) RI

Aloja-JS10-S1 14.8 (1.8) – 15.9 (1.6) – 8.2 (0.2) – 13.0 (0.3) –
Aloja-JS10-R1 431.5 (83.4) 29.2 204.2 (35.7) 12.8 21.3 (0.8) 2.6 56.9 (1.8) 4.4
Aloja-JS10-R2 412.5 (63.1) 27.9 234.0 (32.1) 14.7 60.8 (7.4) 7.4 148.7 (20.3) 11.4

a Abbreviations: APP, aryloxyphenoxypropionates; CHD, cyclohexanediones; PPZ, phenylpyrazolines; GR50, herbicide dose that
reduces dry weight by 50%; SE, standard error; RI, GR50 of the resistant population/GR50 of the susceptible population.
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Jurong city of Japanese foxtail were detected, and
the point mutations were replaced by Arg-1734
with Gly, Met-1738 with Leu, Thr-1739 with Ser
and Ile-2041 with Asn in the resistant population
respectively (Tang et al. 2012). For the Japanese
foxtail, the mutation at position 2041 was reported
first (Tang et al. 2012), and the mutation at
position 1781 was first reported in this research.

From this research, the Trp-2027-Cys in popu-
lation Aloja-JS10-R1 and Ile-1781-Leu in popula-
tions Aloja-JS10-R2 might be also associated with
dominant resistance to APP fenoxaprop-p-ethyl.
These two populations showed high cross-resistance
to APP clodinafop-propargyl and moderate cross-
resistance to CHD clethodim and PPZ pinoxadem.
The populations Aloja-JS10-R2 with Ile-1781-Leu
showed much higher resistance to APP, CHD, and
PPZ chemical class herbicides, comparing to the
Aloja-JS10-R1 with Trp-2027-Cys. The mecha-
nisms of cross-resistance will be the subject of future
studies, and will be very important for the
understanding of appropriate long-term weed
management in wheat.
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