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ERDŐS AND SET THEORY

AKIHIRO KANAMORI

Paul Erdős (26 March 1913–20 September 1996) was a mathematician
par excellence whose results and initiatives have had a large impact and
made a strong imprint on the doing of and thinking about mathematics.
A mathematician of alacrity, detail, and collaboration, Erdős in his six
decades of work moved and thought quickly, entertained increasingly many
parameters, and wrote over 1500 articles, the majority with others. His
modus operandi was to drive mathematics through cycles of problem, proof,
and conjecture, ceaselessly progressing and ever reaching, and his modus
vivendi was to be itinerant in the world, stimulating and interacting about
mathematics at every port and capital.
Erdős’ mainmathematical incentives were to count, to estimate, to bound,
to interpolate, and to get at the extremal or delimiting, and his main
emphases were on elementary and random methods. These had a broad
reach across mathematics but was particularly synergistic with the fields
that Erdős worked in and developed. His mainstays were formerly additive
and multiplicative number theory and latterly combinatorics and graph the-
ory, but he ranged across and brought in probability and ergodic theory,
the constructive theory of functions and series, combinatorial geometry,
and set theory. He had a principal role in establishing probabilistic number
theory, extremal combinatorics, random graphs, and the partition calculus
for infinite cardinals.
Against this backdrop, this article provides an account of Erdős’ work
and initiatives in set theory with stress put on their impact on the sub-
ject. Erdős importantly contributed to set theory as it became a broad,
sophisticated field of mathematics in two dynamic ways. In the early years,
he established results and pressed themes that would figure pivotally in for-
mative advances. Later and throughout, he followed up on combinatorial
initiatives that became part and parcel of set theory. Emergent from combi-
natorial thinking, Erdős’ results and initiatives in set theory had the feel of
being simple and basic yet rich and pivotal, and so accrued into the subject
as seminal at first, then formative, and finally central. Proceeding chrono-
logically, we work to draw all this out as well as make connections with
Erdős’ larger work and thinking, to bring out how it is all of a piece.
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Paul Erdős andHisMathematics, in two volumesHalász et al. (2002a) and
Halász et al. (2002b), emanated from a 1999 celebratory conference, and it
surveys Erdős’ work, provides reminiscences, and contains research articles.
The Mathematics of Paul Erdős, in two volumes Graham et al. (2013a)
and Graham et al. (2013b), is the second edition of a 1997 compendium
brought out soon after his “leaving”, and it provides reminiscences and
extended expository articles. And Erdős Centennial, Lovász et al. (2013),
on the occasion of the 100th anniversary of his birth, provides summary
expository articles emphasizing impact and late developments. This present
account of Erdős’ work in set theory and its impact bears an evident debt
to the two previous accounts, Hajnal (1997) and Kunen (2013), as well as
to the history Larson (2012) of infinite combinatorics. The details herein
about Erdős’ life, which are not otherwise documented, can be found in the
biography by Béla Bollobás (2013).
We do proceed chronologically in general, taking up topics according
to when the main thrusts for them occurred. On the other hand, within
a section later developments and ramifications may be pursued, this to
bring out the relevance and impact of the work. Section 1 recapitulates
Erdős’ mathematical beginnings, emphasizing anticipations of his later set-
theoretic work. Section 2 describes Erdős’ pioneering work on transfinite
Ramsey theory. Section 3 sets out the Erdős–Tarski work on inaccessible
cardinals, work of considerable import for the development of set theory.
Section 4 follows through on a persistent theme in Erdős’ early work, free
sets for set mappings, a topic to become of broad reach. Section 5 takes
up Erdős’ work with Rado on the partition calculus, which will become a
large part of set theory and be Erdős’ main imprint on the subject. Section 6
focuses on Erdős’ first joint work with Hajnal and the emergent Ramsey
and Erdős cardinals. Section 7 is devoted to a basic, property B for families
of sets, and works through the details of the joint article with Hajnal on
the subject. Section 8 takes up the 1960s Erdős-Hajnal development of
the partition calculus, the most consequential topic being square-brackets
partition relations. Section 9 attends to early appeals to Erdős’ work in
model theory. Section 10 describes how close Erdős et al. came to Silver’s
Theorem on singular cardinal arithmetic. Section 11 charts out how the
compactness of chromatic number of infinite graphs becamemuch addressed
in set theory. And finally, Section 12 quickly reviews the set-theoretic work
of his later years and ventures some panoptic remarks. A list of Erdős’ 121
publications in set theory is presented at the end, not only to be able to
cite extensively from his body of work as we proceed, but also to provide a
visual, quantitative sense of its extent.
To fix some terminology, a tree is to be a partially ordered set with a min-
imum element such that the predecessors of any element are well-ordered;
the αth level of a tree is the set of elements whose predecessors have order
type α; and the height of a tree is the least α such that the αth level is empty.
A chain is a linearly ordered subset.
κ, �, . . . denote infinite cardinals and cf(κ) the cofinality of κ, so that κ
is singular iff cf(κ) < κ. In his problems and results parametrized with
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cardinals Erdős would generally proceed with the ℵα’s, this in the Cantorian
tradition of taking the infinite cardinals as autonomous numbers. With his
investigations extending to ordered sets and order types, it became fitting to
make the identification of ℵα with the initial (vonNeumann) ordinal�α.We
proceed in the modern vein of taking the ordinals as given and emphasizing
the cardinal aspect of �α with ℵα, this being coherent with Erdős’ original
intent of parametrizing counting with cardinal numbers.

§1. Salad Days. Erdős was a child prodigy in mathematics, quick at cal-
culations and enthusiastic about properties of numbers and proofs, and
notably, he learned about Cantor and set theory from his father, a high
school teacher.1

In 1930 Erdős at the age of 17 entered Pámány Péter Tudományegyetem,
the scientific university of Budapest; wrote his doctoral dissertation when
he was a second-year undergraduate; and received his Ph.D. in 1934. Dur-
ing this period, Erdős interacted with many other students; began his long
collaboration with Paul Turán; and assimilated a great deal of mathematics
from his teachers, particularly Lipót Fejér and Dénes Kőnig, and especially
from László Kalmár.2 Kőnig is now remembered for his tree, or “infin-
ity”, lemma, the first result about infinite graphs, and Kalmár was then the
Hungarianprincipal inmathematical logic, best known today for theKalmár
hierarchy of number-theoretic functions.
Erdős quickly established results and fostered approaches during this
period that would anticipate his long-standing initiatives and preoccupa-
tions. In his first year, he found a remarkably simple proof of Chebyshev’s
1850 result that between any n > 1 and 2n there is a prime, “Bertrand’s
postulate”.3 Kalmár wrote up the result for Erdős’ first publication Erdős
(1932).4 Erdős in later years would talk about The Book, in which God

1(Hajnal, 1997, p.352): “Paul told me that he learned the basics of set theory from his
father, a well educated high-school teacher, and he soon became fascinated with ‘Cantor’s
paradise’.”
(Vazsonyi, 1996, p.1), describing the first encounter with Erdős, when the author was 14

and Erdős 17:

My father had one of the top shoe shops in Budapest and I was sitting at the back
of the shop. Erdos knocked at the door and entered. “Give me a four digit number,”
he said. “2532,” I replied.
“The square of it is 6, 411, 024. Sorry, I am getting old and cannot tell you the

cube,” said he. (During his entire life, even in youth, he referred to his old age, his
old bones.)
“How many proofs of the Pythagorean Theorem do you know?” “One,” I said.

“I know 37. Did you know that the points of a straight line do not forma denumerable
set?” He proceeded to show me Cantor’s proof of using the diagonal. “I must run,”
and he left.

2Erdős said in an interview ((Sós, 2002, p.87)): “I learned a lot from Lipót Fejer and very
probably, I learned the most from László Kalmár.”
3(Turán, 2002, p.57).
4(Vazsonyi, 1996, p.2).
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keeps the perfect proofs of theorems, and this proof entered in an earthly
rendition.5 Starting with his dissertation of a year later clarifying issues
raised by Isaai Schur of Berlin, Erdős would not only come up with many
simple proofs in number theory,6 but also elementary proofs where only
analytic proofs had existed, and in the late 1940s he and Atle Selberg would
famously provide an elementary proof of the Prime Number Theorem itself,
the circumstances prompting a well-known priority dispute.
Also during his first year, Erdős observed that the recently proved
Menger’s theorem on connectivity in graphs also holds for infinite graphs.
Kőnig had raised the issue in his graph theory course, and he published
Erdős’ argument as the very last in his monograph Kőnig (1936). A few
years later, Erdős [1][2] with Tibor Gallai and Endre Vázsonyi provided a
criterion for having an Euler path for infinite graphs; this of course extended
to the infinite the original, “seven bridges of Königsberg” result of graph
theory.
In his final university year 1934, Erdős with György Szekeres proved: For
any positive n, there is a integer N (n) such that in any set of N (n) points in
the plane, no three of which are collinear, there are n points that form a convex
polygon.7 In an article Erdős–Szekeres (1935) seminal for several reasons,
they provided twoproofs, one involving the (finite)RamseyTheoremand the
other, the “ordered pigeon-hole principle”.8 For both of these propositions,
they provided paradigmatic proofs, these to spawn subjects in the emergent
field of combinatorics. With the second proof, they conjectured that the
least possibility for N (n) is

(2n−4
n−2

)
+ 1, thus initiating the study of extremal

possibilities. At the end of Erdős–Szekeres (1935), they pointed out that
Kőnig’s “infinity” lemma provides a “pure existence-proof” of the existence
of the N (n)’s—an adumbration of later compactness arguments in graph
theory.
In these early yearsCantorwasErdős’ hero, andhis letters to friends ended
with “let the spirit of Cantor be with you”, soon shortened to “Cwith you”.9

Erdős’ enthusiasm for Cantor had a substantive correlative, in that the infi-
nite for Erdős was of a piece with the finite, particularly with propositions

5cf. Aigner and Ziegler (2013).
6(Turán, 2002, p.57).
7Eszter Klein, wife-to-be of Szekeres, had originally come up with a neat argument to

show that N (4) can be taken to be 5 and conjectured the general situation.
8For positive integers i, k, any sequence of (i − 1)(k − 1) + 1 distinct integers has either

an increasing sequence of i elements or a decreasing sequence of k elements.
9See Sós (2002) with letters from Erdős to Turán, specifically p.100,109,114: “. . . only the

spirit of Cantor knows whether the theorem remains true or not”; “The spirit of Cantor
was with me for some time during the last few days, the results of our encounters are the
following:”; “. . . sad news, the spirit of Cantor took Landau . . . The spirit of Cantor avoids
me, yesterday I was thinking of number theory a lot, besides a few conjectures I had no
success”.
Nicolaas de Bruijn (2002) in reminiscences wrote: “Once, during a walk in 1954, I said

that I wondered why he [Erdős] was such an excellent discoverer and solver of problems, and
not a builder of theories. In a way it hit him, and he said that he would have liked so much
to have been the first to discover Cantor’s set theory.”
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parametrized according to cardinality to be entertained when those param-
eters are transfinite. The seamless transition from the finite to the transfinite
was very much a part of the “spirit of Cantor”,10 and Erdős was the first
prominent mathematician to engage counting and mathematical concepts
over a broad range as intrinsically involving the infinite. Set theory was thus
an inherent part of Erdős’ field of play, not only the transfinite cardinals
but infinite structures generally.11 In this operative engagement, there was
no particular difference in “ontological commitment” between the finite
and the infinite. Moreover, set theory was enriched and influenced in its
development by Erdős’ initiatives from the finite. Infinite parametrization
appeared early in Erdős’ work, starting with theMenger-theorem andEuler-
path results. Both propositions applied in the two proofs of Erdős–Szekeres
(1935) would soon be extended into the transfinite.
By 1934, Erdős was in correspondence with mathematicians in England,
the prominent LouisMordell and the youngHaroldDavenport andRichard
Rado.12 On finishing university, Erdős took up research fellowships for
four years arranged by Mordell at Manchester, where he was bringing in
many emigré mathematicians. During this period, Erdős established his
modus operandi of driving mathematics through cycles of problem, proof,
and conjecture, ever punctuating and parametrizing mathematical concepts
and procedures, and drawing in collaborators through increasing travel and
interaction.He started to generate articles, almost all onnumber theory then,
at a prodigious rate, a rate that would only double in the decades to come.
In 1938, Erdős took up a fellowship at the recently established Institute
for Advanced Study at Princeton in the United States, and with the war in
Europe he would not return for the next decade. During this period, Erdős
settled into hismodus vivendi of itinerant travel, having no fixed residence but
traveling to do mathematics with an ever increasing array of collaborators.
He continued to generate many articles in number theory, but now some in
the constructive and interpolation theory of polynomials, and soon, in set
theory.

§2. Transfinite Ramsey Theory. In the 1940s, Erdős began in earnest to
consider infinite parametrizations, this naturally in the open-ended frame-
work of graph theory. After securing initial footholds, he increasingly took

10Michael Hallett (1984) emphasized this, as Cantor’s “finitism”.
11Paul Bateman (2002) in reminiscences wrote, ingenuously: “Another early paper of mine

which owes a lot to Erdős is ‘A remark on finite groups,’ Amer. Math. Monthly, 57 (1950),
623–624; after I had obtained the assertion of the paper for a denumerable group, Erdős
pointed out to me that my proof worked for an infinite group if I merely used the concept of
a limit ordinal.”
12Rado, a student of Schur at Berlin, had emigrated to England. Erdős [110], on his joint

work with Rado, wrote: “In one of my first letters to Richard early in 1934, I posed the
following question: Let S be an infinite set of powerm. Split the countable subsets of S into
two classes. Is it true that there always exists an infinite subset S1 of S all of whose countable
subsets are in the same class? This, if true, would be a far reaching generalization of Ramsey’s
theorem. Almost by return mail, Rado found the now well-known counterexample using the
axiom of choice.” See Section 5.
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on the transfinite landscape as the setting for intrinsically interesting prob-
lems. As a result, the transfinite became newly elaborated and articulated,
infinite sets and cardinals becoming differentiated by combinatorial features.
Erdős was involved in the first avowedly transfinite result of graph theory.
Dushnik and Miller (1941) broke ground with: For an infinite cardinal κ,
every graph on κ vertices without an independent (i.e., pairwise nonadjacent)
set of vertices of cardinalityκ has a complete (i.e., all vertices adjacent) infinite
subgraph.As acknowledged (1941, n.6), Erdős provided the discerning argu-
ment for singular κ, this setting the precedent for his attention to singular
cardinals.
Soon afterwards, Erdős in a seminal 1942 article [3] established forma-
tive results for transfinite Ramsey theory. For stating coming propositions
succinctly, we affirm the “arrow” notation of the later, 1950s partition
calculus.
For a set X of ordinals, [X ]� = {y ⊆ X | y has order type �}. The
“ordinary” partition relation

� −→ (α)��
asserts that for any partitionf : [�]� → �, there is anH ∈ [�]α homogeneous
for f, i.e., |f“[H ]� | ≤ 1. Colorfully put, for any coloring of the order type
� subsets of � with � colors there is an H ⊆ � of order type α all of whose
order type � subsets are of the same color. For the case � = 2, the elaborated,
“unbalanced” relation

� −→ (α0, α1)�
asserts that for any f : [�]� → 2, there is an i < 2 and an H ∈ [�]αi such
that f“[H ]� = {i}. Negations of such relations are indicated with a −→/
replacing the −→.
The finite Ramsey Theorem asserts that for any 0 < r, k,m < �, there is
an n < � such that

n −→ (m)rk ,
with the least possibility for n, the extremal Ramsey number Rr(m; k),
still unknown in general. The infinite Ramsey Theorem asserts that for
0 < r, k < �,

ℵ0 −→ (ℵ0)rk .
Finally, the Dushnik–Miller Theorem, translated from graphs, was the
first, unbalanced extension of the infinite Ramsey Theorem: For infinite
cardinals κ,

κ −→ (κ,ℵ0)2 .
Erdős [3] newly established for infinite cardinals κ:
(a) (2κ)+ −→ (κ+)2κ, and
(b) If 2κ = κ+, then (κ++) −→ (κ++, κ+)2,
(a) decisively incorporated cardinal exponentiation, and (b) modulated
it to establish a sharpening of Dushnik–Miller. Erdős’ argument for (b)
actually showed

(2κ)+ −→ ((2κ)+, κ+)2
outright, a sharpening of (a) in the case of two colors.
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ERDŐS AND SET THEORY 455

(a) is the best possible in the sense that both 2κ−→/ (3)2κ and
2κ −→/ (κ+)22.13 Consequently, it is readily seen that in the transfinite the
extremal possibilities, what the Ramsey numbers are, for superscript 2 has
been solved with one swoop. The later “Erdős–Rado Theorem” would pro-
vide the extremal possibilities for all superscripts r; often, however, the term
is often used to refer just to (a), the case that became basic to set theory
through its many applications.
For both [3] results Erdős made inaugural use of the ramification, or tree,
argument, an argument to become the signature method for getting homo-
geneous sets in the next several decades. In brief, suppose that f : [X ]2 → �.
Choose an “anchor” a0 ∈ X ; the sets Q	 = {b | f({a0, b}) = 	} parti-
tion the rest of X into � parts. Next, for each 	 < � choose an anchor
a	1 ∈ Q	 , and again partition the rest of Q	 according to what f does. At
limit stages, take intersections of⊃-chains of sets, and if nonempty, continue
again starting with an anchor in there. By this means, one generates a tree
of sets under ⊃. Note that the anchors corresponding to any ⊃-chain form
an end-homogeneous set, in that for anchors a, b, c appearing in that order,
f({a, b}) = f({a, c}). One can check that the αth level of the tree has size
at most |�||α|, so that a sufficiently large |X | ensures a substantial ⊃-chain
through the tree. Finally, with |�| less than the size of the ⊃-chain, the cor-
responding anchors can be thinned out to get a genuinely homogeneous set
for f.
This is in the manner of a “pure existence proof”, in that cardinality
considerations alone provide for a homogeneous set which otherwise has no
particular definition. Through his results and initiatives, and especially with
his “probabilistic method” in number theory and graph theory, Erdős would
make nonconstructive existence arguments conspicuous in mathematics as a
matter of style and procedure, and this resonated in set theory through
infinite cardinality.
It is a notable historical happenstance that Duro Kurepa was one contex-
tual step away from earlier establishing the Erdős [3] results for two colors.14

As part of his penetrating work on partial orders, Kurepa (1939) had estab-
lished a pivotal cardinal inequality for partial orders, his “fundamental
relation”. In 1950, Kurepa (1953) recast this relation for graphs, showing in
effect: (
�)+ −→ (
+, �+)2 for infinite cardinals 
 and �. With 
 = 2κ and
� = κ, one has the Erdős (2κ)+ −→ ((2κ)+, κ+)2.
The deliberate appeal in (b) to 2κ = κ+ was the first of Erdős’ many
appeals to instances of theGeneralizedContinuumHypothesis (GCH) inhis
theorems. For Erdős it would be less about what is true, but what can be
proved, how enough structuring would lead to neat theorems. For GCH

132κ −→/ (3)2κ was pointed out by Erdős in [3] and actually accredited by him toKurt Gödel
in [5]; the quickly seen counterexample is F : [κ2]2 → κ given by F ({f, g}) = the least α
such that f(α) �= g(α). 2κ −→/ (κ+)22 is attributable to Sierpiński (1933); the simply put,
straightforward counterexample is G : [κ2]2 → 2 given by G({f, g}) = 0 iff for the least α
such that f(α) �= g(α), f(α) < g(α).
14cf. the commentary by Stevo Todorcevic in (Kurepa, 1996, Sect. C), from which the

following remarks are derived.
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itself, there was actually a direct antecedent at its provenance: Hausdorff
(1908) had first formulated GCH, and assumed it to establish that for every
infinite cardinal κ there is a universal linear order, a linear order of size κ into
which every linear order of size κ embeds. For CH, Wacław Sierpiński had
recently brought out a monograph Sierpiński (1934a) on the Continuum
Hypothesis (CH), and Kurt Gödel had recently established the relative
consistency of GCH. Mathematical investigation had transmuted CH from
aprimordial hypothesis about cardinality to an enumeration principle for the
reals. Continuing the conversation, Erdős readily used CH and GCH, come
what may. In this Erdős anticipated and contributed to the predisposition to
assume set-theoretic hypotheses to prove theorems, whetherMartin’s Axiom
or large cardinals.
Also in 1942, Erdős with Shizuo Kakutani [5] provided a characterization
of ℵ1 in terms of graphs, and used this to show that CH is equivalent to
the reals having a partition into countably many sets each consisting of
rationally independent reals. And extending a result of Sierpiński (1934b),
Erdős established the now well-acknowledged Erdős–Sierpiński Duality:
Assuming CH, there is a bijection of the reals into itself that interchanges
the (Lebesgue) null sets with the (Baire) meager sets. This appeared in the
1943 article “Some remarks on set theory” [6], the first of eventually eleven
articles of that title, mostly co-authored, which recorded Erdős’ ongoing
set-theoretic problems, proofs, and conjectures (Section 4). It is still open
whether having such a duality is consistent with ¬CH.

§3. Inaccessible Cardinals. Erdős’ work most salient for the early devel-
opment of set theory appeared in the concluding section of his 1943 joint
article [4] with Alfred Tarski and was later elaborated in their 1961 article
[32]. Tarski in set theory had done considerable work on cardinal numbers
vis-à-vis theAxiomofChoice; was becoming known for his set-theoretic def-
inition of truth; and in Sierpiński and Tarski (1930) and Tarski (1938) had
studied the (strongly) inaccessible cardinals. Like Erdős, with the war Tarski
had been itinerant in the United States.15 In their [4] they first brought forth
the inaccessible numbers as part of a fabric of wider set-theoretic issues,
and this would foster the integration of large cardinal hypotheses into set
theory.
A cardinal κ is weakly inaccessible iff it is a regular, uncountable limit
cardinal, and is (strongly) inaccessible iff it is a regular, uncountable cardinal
which is a strong limit: If � < κ, then 2� < κ. The concluding section of [4]
dealt with inaccessible cardinals, but most of the paper had to do with fields
of sets in which weakly inaccessible cardinals figured in a result notable for
its modern resonance.
Proceeding in present parlance, for a partially ordered set 〈P,≤〉, anA ⊆ P
is an antichain iff it consists of pairwise incompatible elements, i.e., for

15In a letter of 23 September 1940 to Turán ((Sós, 2002, p.133)), Erdős’ father wrote about
Erdős: “He travelled together with a Pole called Tarski, whose wife and children stayed still
in Warsaw.”
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distinct p, q ∈ A, there is no r such that r ≤ p and r ≤ q. The Suslin
number S(P) is the least cardinal κ such that there is no antichain of size
κ. Erdős and Tarski, in different terms, characterized the Suslin numbers
as follows: A cardinal κ is regular and uncountable iff κ = S(P) for some
partially ordered 〈P,<〉. In modern forcing, the Levy collapse of κ (to �1)
is a canonical, universal example of such a partially ordered set, and Erdős
and Tarski essentially gave this example two decades before the advent of
forcing! This would surely be the first appearance of the Levy collapse, which
in the substantive case of κ being weakly inaccessible is now standard fare
for getting relative consistency results.16 This illustrates the kind of prescient
thinking involved in asking the “right questions” that became a hallmark of
Erdős’ initiatives.
The concluding section of [4], “General Remarks on Inaccessible Num-
bers”, presented six problems involving inaccessible cardinals, some prob-
lems stating properties for the first time that would become enduring in the
theory of large cardinals. The first three problems, related to investigations
of Tarski, stated properties equivalent to either the now well-known strong
compactness or measurability of cardinals. For the latter, the now-standard
formulation emanating from the thesis of Stansław Ulam (1930) is that κ
is measurable iff κ is uncountable and there is an ultrafilter over κ which
is nonprincipal (contains no singletons) and is κ-complete (closed under
intersections of fewer than κ sets).
The last three problems, evidently arising from Erdős’ work, stated the
properties:

(a) κ −→ (κ)22.
(b) Every linearly ordered set of size κ has a subset of size κ which is
either well-ordered by the ordering or well-ordered by the converse of
the ordering.

(c) Every tree of height κ each of whose levels has size less than κ has a
chain of size κ.

These several properties hold for κ = ℵ0, and are evidently extensions to the
transfinite of propositions from Erdős’ earliest days. Erdős–Szekeres (1935)
had the Ramsey Theorem and the ordered pigeon-hole principle of which
(b) is a transfinite extension, and (c) is the direct generalization of Kőnig’s
infinity lemma. In 1934 Nathan Aronszajn had shown that there is a coun-
terexample to (c) for κ = ℵ1, and generally a counterexample at κ is now
called a κ-Aronszajn tree.
(a) quickly implies (b), and by Erdős’ ramification argument from his [3],
(c) with κ already inaccessible implies (a). Also, that ramification argument
can be effected assuming the measurability of κ, and so, the measurability
of κ implies (a) and hence also (b) and (c). One sees here how Erdős was
pursuing direct combinatorial generalizations from the finite and ℵ0, the
proofs being the engine.

16(Kanamori, 2009, p.126ff).
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Despite the various connections made, Erdős and Tarski could not ascer-
tain the extent of these properties. They all, except for (c), imply the
inaccessibility of κ, but could the inaccessibility of κ actually imply any
of them? In considering their problems Erdős and Tarski took an open-
ended, empirical approach to ostensibly strong propositions about sets and
cardinals. They wrote (p.428ff):

The difficulties which we meet in attempting to solve the problems
under consideration do not seem to depend essentially on the nature
of inaccessible numbers. In most cases the difficulties seem to arise
from lack of devices which enables us to construct maximal sets which
are closed under certain infinite operations. It is quite possible that
a complete solution of these problems would require new axioms
which would differ considerably in their character not only from the
usual axioms of set theory, but also from those hypotheses whose
inclusion among the axioms has previously been discussed in the
literature and mentioned previously in this paper (e.g., the existential
axioms which secure the existence of inaccessible numbers, or from
hypotheses like that of Cantor which establish arithmetical relations
between the cardinal numbers).

In the years hence, Tarski, ensconced at the University of California at
Berkeley, worked broadly across mathematical logic, and Erdős, ever itiner-
ant, pursued mathematics across a broad range, mostly number theory but
also the development of the partition calculus in set theory. Erdős for his
part would incorporate inaccessible cardinals andmeasure into his problems
and proofs, this in ways that stimulated important developments. In some
articles (Sections 6 and 7), he simply took on a central question of [4] as a
hypothesis (∗∗), that all inaccessible cardinals are measurable (!), to push
induction through such cardinals, and this led to significant results about
measurability. In his second “Some remarks on set theory” article [11], he
addressed a question raised by Ulam (“oral communication”) by present-
ing a joint observation with Leonidas Alaoglu: If κ is less than the least
inaccessible cardinal, then one cannot have a family of ℵ0 countably additive
{0, 1}-valued measures defined for the subsets of κ (with singletons measured
0 and κ itself measured 1) such that every subset of κ is measured by at least
one of the measures. The Erdős–Alaoglu Theorem would be seminal for a
wide range of developments in set theory about such weakenings of having
a measurable cardinal.17 In a prominent investigation of rings of continuous
functions with Leonard Gillman and Melvin Hendriksen [16], Erdős devel-
oped a useful characterization of certain real-closed fields of size less than
the least measurable cardinal.18

17With forcing, Prikry (1972) established the relative consistency of the above proposition
with both ℵ0 and κ replaced by ℵ1. See Taylor (1980) for subsequent developments under
the rubric of “Ulam’s problem”.
18For X a completely regular space, C (X ) the ring of continuous real-valued functions

on X , andM a maximal ideal over C (X ), C (X )/M is a real-closed field. For discrete X of
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Latterly in 1958–9, the issues in that concluding section of [4], set aside
for so many years, were revisited and elaborated in a seminar conducted at
Berkeley by Tarski with his first student from Poland, Andrzej Mostowski.
The propositions corresponding to the six problems were elaborated, and
implications among them, only announced in a footnote to [4], were worked
out, all this soon to appear in a new joint Erdős–Tarski article [32].
By the mid-1960s, it would become well-known that properties (a), (b),
and (c) together with inaccessibility each characterize the large cardinal
property of the weak compactness of κ, and (c) would become very well-
known as the tree property for κ, that there are no κ-Aronszajn trees, a
substantial large cardinal property that could consistently hold at accessible
cardinals. There are many weakly compact cardinals below a measurable
cardinal, and there are many inaccessible cardinals below a weakly compact
cardinal.19 It is remarkable that propositions from Erdős’ earliest days pur-
sued by him into the transfinite would become such prominent large cardinal
hypotheses.

§4. Free Sets for Set Mappings. With free sets for set mappings, Erdős
developed a particular set-theoretic theme, through cycles of problem, proof,
and conjecture, that would become substantive in itself and in connection
with the later partition calculus. His work in this direction started in 1940;
eventually continued with his set-theoretic collaborator András Hajnal, and
set the ground for later work of set theorists with and without forcing.
Free sets for set mappings have since become in and of themselves a signifi-
cant part of combinatorial set theory. In what follows, we chronicle Erdős’
work on set mappings and subsequent developments, particularly to illus-
trate his dynamic engagement with a theme through several articles and
ramifications.
A function f : X → P(X ) from some set X into its power set is a set
mapping iff x /∈ f(x) for every x ∈ X . Such a function is of order � iff
|f(x)| < � for every x ∈ X . In terms of graphs, a set mapping of order
� amounts to a loop-free directed graph having out-degrees all less than �.
Finally,S ⊆ X is free (or “independent” in the early articles) forf iff for any
x, y ∈ S, y /∈ f(x). Turán in 1935 originally asked, in interpolation theory,
whether there are infinite sets free for set mappings on the unit interval of
order ℵ0. After it was shown that there are in fact size 2ℵ0 such free sets,
Stanisław Ruziewicz in 1936 conjectured: For cardinals � < κ with κ infinite,
any set mapping : κ → P(κ) of order � has a free subset of size κ.
After several partial results by others, Erdős in 1940 established this under
GCH.20 The appeal to GCH was a typically blanket one; only the case of κ
being singular had been left, and Erdős established it with the assumption

size less than the least measurable cardinal, Erdős (p.550) characterized thoseM such that
C (X )/M properly contains the reals.
19See (Kanamori, 2009, Sects. 4 and 7) for the foregoing large cardinal theory.
20cf. (Sós, 2002, p.133f). Erdős’ father wrote to Turán that Erdős proved this on 25 August

1940, and that “[i]t won Gödel’s highest appreciation.”
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�cf(κ) < κ. Erdős mentioned his result at the end of his 1942 article [3] and
his proof was collected into his 1950, 2nd “Some remarks on set theory”
article [11].
In [11], Erdős also considered (p.137) set mappings of finite order. He
observed that if a set mapping is on a finite set X and has order k ∈ �, then
(with |X | ≥ 2k − 1) X is the disjoint union of 2k − 1 free sets. He astutely
noted that this then holds for countable X by the Kőnig infinity lemma
and that he had conjectured that it would hold for all X as a consequence
of a compactness assertion, one then proved by Nicolaas de Bruijn. A set
mapping on a set X rendering it a disjoint union of r free sets corresponds
to a graph onX having an r-coloring, i.e., a labeling of its vertices by r colors
so that no adjacent vertices get the same color. de Bruijn proved: If every
finite subgraph of a graph G has an r-coloring, then so does G itself. In their
joint [12], these various results were described.
Compactness arguments soon became common fare in graph theory as
a bridge from the finite to the infinite, very much in the spirit of Erdős’
initiatives toward the infinite. Today, the de Bruijn theorem is viewed as a
simple consequence of the Compactness Theorem for Propositional Logic.
Be that as it may, it is notable that a specific problem about set mappings
stimulated a compactness strategy, and that there seems no way to get to the
specific result about 2k − 1 free sets other than by passing from the finite
through compactness.
Erdős continued in his “Some remarks on set theory” series with free sets
for set mappings. In the 3rd “remarks” article [15], Erdős returned to the
original Turán context and initiated a new direction by considering measure
and category. Erdős showed e.g., that if f is a set mapping on the reals
such that f(x) is always nowhere dense, then there is an infinite free set, and
leadinglymentioned that he was “unable to establish a stronger conclusion.”
In the 5th “remarks” [20], with Géza Fodor, Erdős considered set-theoretic,
parametrized variations. In the 6th “remarks” [21], also with Fodor, Erdős
continued with measure and category, weaving in weakly inaccessible cardi-
nals. The last theorem therein extended Erdős’ GCH result on Ruziewicz’s
conjecture, and notably the singular case is attributed to Hajnal.
Erdős visited Hungary for the first time after the war in 1955–6, and at
the University of Szeged he met Fodor and Hajnal, the latter then a student
there of Kalmár. Hajnal would soon become Erdős’ main collaborator in
set theory, with the second largest number of joint papers with him.21 With
more tobe said about their early collaborationbelow (Section 6),wemention
here that the 8th “remarks” article [29], joint with Hajnal, continued with
set mappings involving measure and category. Soon afterwards in 1960,
Hajnal (1961) proved Ruziewicz’s conjecture outright, not conditional on
GCH, so that it is now the Hajnal Set Mapping Theorem. This theorem
would stand as a landmark and find significant applications e.g., in a proof
of the Galvin–Hajnal extension (Galvin and Hajnal, 1975, p.497) of Silver’s
Theorem on singular cardinals (Section 10).

21Hajnal had 56 joint papers with Erdős, and András Sárközy, 62.
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Over a decade later, nowhere-dense set mappings, i.e., set mappings f
on the reals such that f(x) is always nowhere dense, would again be taken
up, with Erdős’ [15] result that they have infinite free sets the benchmark.
Frederick Bagemihl (1973) showed that they have everywhere dense free
sets. The 8th “remarks” [29] had raised the question of whether they have
uncountable free sets. Stephen Hechler (1972) observed that assuming CH,
there is a set mapping f on the reals with no uncountable free sets such that
f(x) is an �-sequence converging to x (so quite nowhere dense). Later Uri
Abraham (1981) showed that Martin’s Axiom MA�1 is consistent with all
nowhere-dense set mappings having uncountable free sets.
In his ceaseless questing, Erdős himself with collaborators would take up
the motif of set mappings in the later light of forcing and large cardinals.
In the 1973 [71], with Hajnal and Attila Máté, structural restrictions are
imposed on the range of set mappings, in a way typical for Erdős, and
various results are thereby achieved, e.g., with Martin’s Axiom, as well as a
characterization of weak compactness under V = L. In the 1974, 11th and
last “remarks” article [77], with Hajnal, it is shown that for uncountable κ, κ
is weakly compact iff whenever F ⊆ [κ]<κ with |F | = κ and x �⊆ y for distinct
x, y ∈ F , there is a G ⊆ F with |G | = κ such that |κ −⋃

G | = κ.
Still later, Chris Freiling (1986) in the mid-1980s considered “axioms of
symmetry” based on intuitions “about throwing darts at the real number
line”. Whether couched in new terms and philosophical rationales, these
axioms were but propositions once again about set mappings and free sets.
For example, his first axiomAℵ0 amounts to: Every set mapping on the reals
of order ℵ1 has a free set of size two. Freiling showed that Aℵ0 is equivalent
to ¬CH, but the simple arguments had been traversed long before by Erdős
e.g., in his [15].22 One sees in Freiling’s further axioms and arguments more
opaque interplay with Erdős’ early work. Such eternal returns corroborate
the significance of astutely formulated mathematical concepts.

§5. Erdős–Rado Partition Calculus. The partition calculus, an extension
of Erdős’ initial work on transfinite Ramsey theory (Section 2), is the most
conspicuous and significant subject in set theory to result from his initiatives.
RadowasErdős’main collaborator in this direction in the 1950s, andHajnal,
in the 1960s. As in the finite, Erdős pursued increasingly parametrized prob-
lems in the direction of transfinite partitions and homogeneous sets, and this
led for quite some time to self-fueling developments. When these gained a
new significance in connection with strong hypotheses broached in the 1943
Erdős–Tarski work (Section 3), the partition calculus achieved a permanent
place of prominence in set theory. In what follows, relatively few results,

22If 〈rα | α < �1〉 well-orders the reals, then the set mapping f on the reals given by
f(rα) = {r� | � < α} has no free set of size two. (cf. [15, thm.1].) Conversely, suppose that
CH fails and f is a set mapping on the reals of order ℵ1. Let A be a set of reals of size ℵ1.
Then

⋃
f“A is a set of size at most ℵ1, so let r be a real not in this set. Since f(r) is at most

countable, there is an s ∈ A such that s /∈ f(r). Hence, {r, s} is a free set of size two (cf. [15,
thm.4]).
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details, and ramifications are given in favor of imparting the historical thrust,
and this necessarily belies the extent of the theory developed.
Already in his final university year 1934, Erdős had asked about the
possibility, in the later arrownotation, of κ −→ (ℵ0)�2 as a “far reaching gen-
eralization of Ramsey’s theorem”, andRado had responded forthwith with a
counterexample using the Axiom of Choice (AC).23This would delimit their
further work on the partition calculus. Also, as with several AC construc-
tions, much would be done getting positive such relations if one restricts to
e.g., Borel functions. Finally, strong extensions would become pivotal in the
investigation of the Axiom of Determinacy.24

Erdős and Rado started their collaborative work in earnest in 1950, when
they coincided in London.25 They would ultimately be involved in 18 joint
articles, and the first [10] was on an extension of Ramsey’s Theorem ℵ0 −→
(ℵ0)rk . Allowing the number of colors k to be infinite, they established a
self-refinement, the Canonical Ramsey Theorem, which would foreshadow
a wide range of such Ramsey-type results.26

In their 1952, broad-ranging [13], Erdős and Rado articulated and
expanded the emerging Ramsey theory with better bounds for the (finite)
Ramsey numbers, consideration of real and rational order types, and, at the
end, delimitations to possible transfinite generalizations. After presenting
the 1934 κ−→/ (ℵ0)�2 , they presciently considered the still possible relations
for partitions of all finite subsets. For a setX ofordinals, [X ]<� =

⋃
r∈�[X ]

r,
the set of finite subsets of X . The arrow notation

� −→ (α)<��
asserts that for any partition f : [�]<� → �, there is an H ∈ [�]α homoge-
neous for f, i.e., for every r ∈ �, |f“[H ]r | ≤ 1. Erdős and Rado (p.418)
asked whether for infinite κ, κ−→/ (ℵ0)<�2 , and observed (p.435f) that this
holds for κ = ℵ0 andκ = 2ℵ0 .Within a decade, partitions of all finite subsets
would figure centrally in set theory when it became infused with emerging
model-theoretic techniques.
In their succeeding [14], Erdős andRado first broached the arrow notation
that we have been using with “a −→ (b1, b2)2” as a “convenient abbrevi-
ation”, this for application to a positive result about linearly ordered sets

23See the last footnote of Section 1. Rado’s argument:
Let≺well-order [κ]� and define f : [κ]� → 2 byf(s) = 0 iff every t ∈ [s�]−{s} satisfies

s ≺ t. Then no x ∈ [κ]� can be homogeneous for f: If y is the ≺-least member of [x]� ,
then f(y) = 0. However, for any infinite ⊂-increasing chain x0 ⊂ x1 ⊂ x2 ⊂ · · · in [x]� ,
f(xn) = 0 for every n ∈ � would imply that · · · ≺ x2 ≺ x1 ≺ x0, contrary to ≺ being a
well-ordering.
24cf. (Kanamori, 2009, p.382,432ff).
25Rado was at King’s College London, and Erdős spent the year at University College

London.
26The Canonical Ramsey Theorem asserts that for any 0 < r < � andf : [�]r → k with k

possibly infinite, there is an infinite H ⊆ � and a v ⊆ r such that whenever x0 < x1 < · · · <
xr−1 and y0 < y1 < · · · < yr−1 are all in H , f({x0, x1, . . . , xr−1}) = f({y0, y1, . . . , yr−1})
iff xi = yi for i ∈ v. It is evident that if k is finite, then v must be empty so that H is
homogeneous for f, and so one does indeed have a selfrefinement.
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ERDŐS AND SET THEORY 463

having large sets well-ordered by the ordering or by the converse of the
ordering. This can be seen as an accessible version of the ordering problem
of the 1943 Erdős–Tarski article (cf. (b) of Section 3), one ultimately having
finite provenance in the seminal Erdős–Szekeres (1935).
The past to be prologue, Erdős and Rado in their 1956, 60-page “A parti-
tion calculus in set theory” [19] comprehensively set out the emergent theory
in the broad context of order types and with their arrow notation now in
full parametrization. After incorporating the previous results and establish-
ing basic connections among the elaborated partition relations, they settled
first into the study of countable order types and then of the real order type.
The investigations initiated here, especially of countable ordinals, would
stimulate a cottage industry of work to the present day.
Taking on the parameter r of “r-tuples”, they (p.467f) with ramification
established the first instance of a “positive stepping up lemma”, which shows
how a positive partition relation for r-tuples leads to one for (r + 1)-tuples.
With this, they extended the Erdős [3] result (2κ)+ −→ (κ+)2κ from 2-tuples
to r-tuples. They formulated their result with a GCH-type hypothesis, but
to proceed without, let �0(κ) = κ, and �n+1(κ) = 2�n(κ). Then we have the
Erdős–Rado Theorem:

For infinite cardinals κ and r ∈ �, �r(κ)+ −→ (κ+)r+1κ .
This is extremal, in that �r(κ)+ cannot be replaced by any smaller cardinal.
This was subsequently shown by Hajnal in 1957, using “a negative stepping
up lemma” starting from 2κ−→/ (κ+)22.27 Erdős and Rado [19, p.464ff ] had
established the first instance of such a lemma, from which one can show
the optimality of �r(κ)+, but only assuming GCH. In any case, the Erdős–
Rado Theorem, definitive in providing the exact Ramsey numbers for the
transfinite, would henceforth become a mainstay of set theory.
Erdős and Rado at the end of their [19] introduced the polarized partition
relation. In a simple case, (

α
�

)
−→

(
α0 α1
�0 �1

)

asserts that for any partition f : α×� → 2, there is an i < 2 and sets A ⊆ α
and B ⊆ � with order types αi and �i respectively such that f“[A × B] =
{i}. In terms of graphs, this is an assertion about partitions of a complete
bipartite graph of a certain sort having a complete bipartite subgraph of
specified sort in one of the parts. Erdős and Rado showed that this is a
distinctive relation of separate interest. For example, they proved that(ℵ0

ℵ1
)

−→
(ℵ0 ℵ0
ℵ1 ℵ0

)

and noted that Sierpiński had in effect established with CH that(ℵ0
ℵ1

)
−→/

(ℵ0 ℵ0
ℵ1 ℵ1

)
.

27(Hajnal, 1997, p.361).

https://doi.org/10.1017/bsl.2014.38 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2014.38


464 AKIHIRO KANAMORI

With all these various results, Erdős and Rado’s [19] established the par-
tition calculus as a new combinatorics of the transfinite, a topic that newly
informed and variegated the Cantorian terrain of infinite cardinals and
order types.

§6. Free Sets, Ramsey and Erdős Cardinals. It would be Erdős’ first joint
work with Hajnal, bearing on partitions of all finite sets, that would veer
closest to central developments of the 1960s in set theory, these being in the
investigation of large cardinal hypotheses. Erdős and Hajnal provided the
context, spurred the possibilities, and got enticingly close to a transformative
result. In what follows, we pursue an arc that begins at their first joint article,
goes through some subsequentmainstream set theory results, and then drops
back to the topic of that article, now newly seen.
As mentioned in Section 4, Hajnal collaborated with Erdős on set map-
pings. Actually, their first joint work was on set mappings of high “type”,
a topic broached by Hajnal in their first encounter.28 With [κ]<�= {y ⊆
κ | |y|<�}, a function f : [κ]
 → [κ]<� satisfying f(s) ∩ s = ∅ for every
s ∈ [κ]
 is said to be a set mapping of order � and type 
, and a set S ⊆ κ
is free for f iff f(s) ∩ S = ∅ for every s ∈ [S]
. 
 is thus a new “type”
parameter, with 
 = 1 corresponding to the former set mappings. Erdős saw
the applicability of the Erdős–Rado Theorem to finite-type set mappings,
and he and Hajnal in their [22] worked out when there would be large free
sets, freely invoking GCH to get orderly results. Notable was that, working
up to inaccessible cardinals, they invoked a hypothesis (∗∗): inaccessible car-
dinals are measurable (!). With his experience with measures, Erdős readily
pushed through inaccessibility here by using a two-valued measure as given
by measurability.
A crucial connection was soon made to the Erdős–Rado [19] problem of
whether for infinite κ, κ−→/ (ℵ0)<�2 . Set mappings of type less than � were
seen to be closely connected to partitions of all finite sets, and Erdős and
Hajnal [22] got (theorem 9a), with underlying hypothesis (∗∗), a counterex-
ample, one that translates to: If κ is measurable, then κ −→ (κ)<�2 . This
was the first new brick inserted into the edifice of “problems” erected by
the 1943 Erdős–Tarski article [4]. As a historical happenstance from this
result, cardinals satisfying κ −→ (κ)<�2 are now known as Ramsey. On the
other hand, for any ordinal α the least κ satisfying κ −→ (α)<�2 is the Erdős
cardinal κ(α), so that the solecism “κ(α) exists” amounts to asserting that
there is some � satisfying � −→ (α)<�2 . Ramsey cardinals are just the fixed
points of Erdős cardinals.
Soon after that 1958–9 Berkeley seminar on the Erdős–Tarski work (Sec-
tion 3),WilliamHanf, a student ofTarski, established a result transformative
for the theory.He showed that aweakly compact cardinal has below it, apply-
ing infinitary languages and their compactness (and hence the term), many
inaccessible cardinals in a strong hierarchical sense. At a 1960 conference,

28(Hajnal, 1997, Sects. 8 and 9) informatively discusses that encounter and their work then.
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Tarski (1962) pointed out the implications, e.g., that a fortiori the least mea-
surable cardinal has, after all, a wide class of inaccessible cardinals below it,
and H. Jerome Keisler (1962) sketched how the recently developed theory
of ultraproducts can be applied to get Hanf’s hierarchical results.
Within a year, having heard about these dramatic advances, Erdős and
Hajnal [36] themselves pointed out that the least inaccessible cardinal
not being measurable could have easily been seen by 1958, when they
were using the countervailing (∗∗): (1) measurable cardinals are Ramsey
([22], theorem 9a); (2) the least inaccessible cardinal t1 is at most κ(�) ([22],
theorem 9b); and (3) in general terms � ≤ α < � implies that κ(α) < κ(�)
by a simple argument ([36], theorem 3). Quite a missed opportunity! Had
they come to this in 1958, they would have showcased Ramsey cardinals and
contextually set out beforehand the combinatorial underpinnings of com-
ing results. As things transpired, once the large cardinals “problems” from
the 1943 Erdős–Tarski work were hierarchically systematized, Ramsey and
Erdős cardinals would nonetheless figure in central advances made concern-
ing Gödel’s constructible universe L. We summarize these, in the briefest of
terms, vis-à-vis the cardinals:29

Gödel’s construction of the inner model L through which he established
the relative consistency of GCH stood as a high watermark for set theory
for over two decades. In 1961, Dana Scott, taking an ultrapower of the
universe V , dramatically established that if there is a measurable cardinal,
then V �= L. Then Frederick Rowbottom in his 1964 thesis established that
partition properties alone provide the model-theoretic means to establish
that V and L are locally far apart. For example, if κ is Ramsey, then for
any infinite � < κ there are just � many subsets of � in L, and e.g., if κ(�1)
exists, then there are just countably many subsets of � in L. He also showed
that with Scott’s notion of a normal ultrafilter over a measurable cardinal,
measurability implies Ramseyness intrinsically in that homogeneous sets
can always found in the normal ultrafilter. This led in particular to the result
that Ramseyness is strictly weaker than measurability. In 1964, Hajnal lec-
tured at Berkeley on the partition calculus, including κ −→ (�)<�2 , with
Jack Silver in the audience.30 In his 1966 thesis, Silver got to the essence
of the transcendence over L by showing that having κ(�1) implies the exis-
tence of a closed unbounded class of indiscernibles for L, i.e., any two
increasing n-tuples from the class satisfy the same n-free-variable formulas
over L. The corresponding theory can be coded by a set of integers, the
Silver-Solovay set 0�, the existence of which is then tantamount to having
a proper class of indiscernibles with which L can be uniformly generated.
With κ(�1) thus enthroned, the Erdős cardinals gained in importance vis-
à-vis L, and Silver showed that if κ −→ (α)<�2 and α < �L1 (the least
uncountable cardinal in the sense of L), then κ has that same property
in the sense of L—so that �1 is a sharp divide for transcendence over L.
A decade later, “generalized Erdős cardinals” sensitive to the corresponding

29See Kanamori (2009), mainly chapter 2, for details and references.
30(Hajnal, 1997, p.362).
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theories of indiscernibles were developed in Baumgartner–Galvin (1978)
and contextually sharp implications provided for 0� itself.
All in all, it is remarkable that Erdős’ early speculations about parti-
tions of all finite sets as a combinatorial problem became transmuted to
central concerns of set theory with the infusion of model-theoretic tech-
niques. Notably, the higher-type set mappings of that first Erdős–Hajnal
paper themselves resurfaced in the early 1970s, in the new light. James
Baumgartner in his thesis Baumgartner (1970) showed that if V = L, then
every set mapping f : [κ]<� → κ has an infinite free set exactly when in
fact κ −→ (ℵ0)<�2 . Then Devlin and Paris (1973) showed that just having
free subsets can provide indiscernibles, and in particular that if every set
mapping f : [κ]<� → [κ]<� has an uncountable free set, then 0� exists.
A decade later, an arc was completed back to 1956. On the very first day
that they had met, Erdős and Hajnal had come up with their first joint prob-
lem, the plausibility of: Every set mapping: [ℵ�]<� → ℵ� has an infinite free
set.31 Peter Koepke in his thesis (cf. Koepke (1984)) proved that this propo-
sition is actually equi-consistent with the existence of a measurable cardinal.

§7. Property B. Erdős and Hajnal’s second major article [30] investi-
gated a property of an infinite family of sets, having a set “cut through” it,
of evident significance. Their contextualizing work established sharp results
and raised basic issues; informed on topological compactness and stim-
ulated interest in combinatorial compactness; and soon inspired a finite
counterpart.
A family F of sets has the property B iff there is a set B such that
F ∩ B �= ∅ and F �⊆ B for every F ∈ F . By happenstance, Erdős took up
an old paper of Edwin Miller (1937) on this property, and stimulated by
possibilities in the transfinite, he and Hajnal made an incisive study.32 In a
formulation essentially as in their [30], for κ ≤ �,M (�, κ, 
) −→ B asserts
that wheneverF is a family of � sets each of size κ which is 
-almost disjoint
(i.e., |X ∩ Y | < 
 for distinct X,Y ∈ F), F has the property B.
Miller had coined “Property B” in honor of Felix Bernstein, who in 1908
hadmade conspicuous use of the Axiomof Choice to show that the family of
perfect sets of reals has the Property B, thus affirming that uncountable sets
of reals do not necessarily have perfect subsets. Bernstein enumerated the 2ℵ0
perfect sets of reals and recursively chose from each both a real in and a real
out. By this argument,M (κ, κ, κ+) −→ B for any κ, the κ+ here signaling a
vacuous almost-disjointness condition. On the other hand, anyF consisting
of pairwise disjoint sets each having at least two members trivially has the
property B. Focusing on the degree of almost disjointness, Miller proved
that M (2ℵ0 ,ℵ0,ℵ0)−→/ B while for any � and n ∈ �, M (�,ℵ0, n) −→ B.
For the latter result, Miller proceeded by induction on the cardinality �,
constructing a cutting set B by what can be now be seen as an elementary
chain construction.

31(Hajnal, 1997, p.378).
32(Hajnal, 1997, p.370f).
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Erdős and Hajnal [30] generalized the Miller construction to get positive
results for families of uncountable sets, the next-level case being that under
CH,M (�,ℵ1,ℵ0) −→ B for any � ≤ ℵ� , with the inductive argument relying
on ℵℵ0

n = ℵn, which breaks down at ℵℵ0
� > ℵ�. Again, the cycle of problem,

proof, and conjecture would kick in, here with modern set theory eventually
taking up the challenge. As set out by Hajnal, István Juhász and Saharon
Shelah in their Hajnal et al. (1986, 2000), a range of results clarified the
situation and showed in particular that if V = L, thenM (�,ℵ1,ℵ0) −→ B
for every �, yet if there is a supercompact cardinal, then in a forcing extension
M (ℵ�+1,ℵ1,ℵ0)−→/ B. Very recently, Kojman (2015), in light of Shelah’s
celebrated pcf theory and revised GCH, established strong ZFC theorems
extending M (�, κ, 
) −→ B in various directions, particularly to all 
 and
sufficiently large κ relative to 
.
Ever parametrizing, Erdős further considered M (�, κ, 
) −→ B(s),
that the requisite set B moreover satisfy 0 < |F ∩ B | < s for every
F ∈ F . Surprisingly, Erdős and Hajnal [30] proved under GCH the sharp
results that for r, n ∈ �, M (ℵα+n,ℵα, r) −→ B((r − 1)(n + 1) + 2) yet
M (ℵα+n,ℵα, r)−→/ B((r−1)(n+1)+1). With this they were able to inform
on compactness in the just-developing set-theoretic topology. A topological
space is κ-compact iff every family of closed sets with empty intersection
has a subfamily of size less than κ with empty intersection. In particular,
the ℵ0-compact spaces are the compact spaces and the ℵ1-compact spaces
are the Lindelöf spaces. T (�, �) −→ κ asserts that the product of � discrete
�-compact spaces is κ-compact. In particular, Tychonoff’s Theorem, equiv-
alent to the Axiom of Choice, asserts that T (�,ℵ0) −→ ℵ0 for every �. Erdős
and Hajnal pointed out that under GCH, T (ℵα+n,ℵα+1)−→/ ℵα+n for every
α and n ∈ �. In brief, they took a family F affirmingM (ℵα+n,ℵα, r)−→/
B((r − 1)(n + 1) + 1) and used M (ℵα+n−1,ℵα, r) −→ B((r − 1)n + 2) to
show that the topological product of the members ofF construed as discrete
spaces affirms T (ℵα+n,ℵα+1)−→/ ℵα+n.
On the topic of compactness, Erdős and Hajnal next made deductions
notable for both approach and result. Invoking the hypothesis (∗∗) from
their [22], that inaccessible cardinals are measurable (!), they established
for such κ that T (κ, κ) −→ κ. Specifically, they used the inaccessibility
of κ together with the Erdős 1943 property of trees having long chains
((c) of Section 3). As with their previous appeal to the false (∗∗), one
sees the content, here that if κ is measurable then T (κ, κ) −→ κ. Jerzy
Łoś (1959) had recently shown that if � is less than the least measur-
able cardinal, then T (�+,ℵ1)−→/ �. Hence, for any � less than the least
measurable cardinal there are products of Lindelöf spaces which are not
�-compact, while if κ is measurable, then every product of κ Lindelöf spaces
is κ-compact.
Erdős and Hajnal [30] offered up a wide range of problems. One was
whetherT (ℵ�,ℵ1) −→ ℵ� , which they [34] soon showed to be false. Another
had to do with graphs of size ℵ2 and compactness of chromatic number,
which they answered in the negative (Section 11). The final problems of [30]
had to do with the possibilities for property B in the finite. Erdős himself
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would in subsequent papers Erdős (1963, 1964, 1969), initiate the finite
theory, the focus being mainly on the extremal function m(n) = the least
m such that any family of m sets each of size n does not have property B.
A lingering question is whether there is an asymptotic formula for m(n).
With a substantial theory emerging, Erdős and Lovász (1975) recorded and
extended the developments. The study of Property B is a singular instance
of one initially undertaken in infinite parametrization reverberating into the
finite.

§8. Erdős–Hajnal Partition Calculus. In the 1960s, Erdős continued with
Hajnal to advance the partition calculus, eventually to render it a full-
fledged, broad-based subject of set theory. With Hajnal having come to
negative stepping up lemmas (Section 5), it was agreed around 1957–8 that
he together with Erdős and Rado would engage in the next leap forward
for the subject, to write what Hajnal later termed the Giant Triple Paper,
or GTP.33 By 1960, the manuscript was almost complete, but the paper
[42], which amounted to 104 pages, only appeared in 1965. In what follows,
we pursue the progression of [42] while bringing in related and subsequent
developments that particularly bear on the impact of this work. As to [42]
itself, relatively few of its results and details are imparted, and this inevitably
belies its impressive extent.
After setting out several partition relations in full parametrization, [42]
focused on providing a far-reaching extremal analysis under GCH of the
unbalanced partition relation κ −→ (�, 
)r for cardinals. Positive step-
ping up lemmas secured partition relations by induction on r, and negative
stepping up lemmas provided delimitations by induction on r.
For partition relations at singular strong limit cardinals κ, canonization,
a transfinite generalization of the Erdős–Rado [10] Canonical Ramsey The-
orem, was worked out and applied. Recall (Section 2) that Erdős had
provided the singular cardinal case for the seminal Dushnik–Miller The-
orem κ −→ (κ,ℵ0)2; for the next level, from ℵ0 to ℵ1, Erdős [3, p.366] had
noted the simple ℵ� −→/ (ℵ�,ℵ1)2. Erdős first come to canonization in the
process of showing that ℵ�1 −→/ (ℵ�1 ,ℵ1)2 andℵ�2 −→ (ℵ�2 ,ℵ1)2.34 Coming
to the scene years later, Shelah (1975b, 1981) would provide a new type of
canonization from which further partition relations for singular cardinals
can be derived. What still remains is a characterization of those singular κ
such that κ −→ (κ,ℵ1)2.35
33(Hajnal, 1997, p.361, 363), [110, p.53].
34cf. (Hajnal, 1997, p.364), also for subsequent remarks on canonization below.
35Late developments illustrate the immanence of partition relations in modern set theory:

Erdős and Hajnal came to a focal question that they could not answer for a long time: With
c = 2ℵ0 , does CH together with �ℵ0 < ℵc+ for every � < ℵc+ imply ℵc+ −→ (ℵc+ ,ℵ1)? Shelah
and Stanley (1987) showed that this is consistently false. Erdős and Hajnal did show that if
ℵc+ is a strong limit cardinal, then the partition relation holds. Shelah and Stanley (1993)
eventually showed that if there are c+ measurable cardinals, then in a forcing extension there
is a canonization which entails the consistency of the partition property even though ℵc+ is
not a strong limit cardinal.
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While on the topic of such unbalanced partition relations, we describe an
incisive Erdős–Hajnal elucidation for countable linear order types. In their
[33], they provided a complete analysis of such order types. A linear order
type is scattered iff it has no densely ordered subset. Erdős and Hajnal
classified the countable scattered order types into hierarchy: O0 consists of
the empty and one-element order types; Oα consists of sums Σi∈ϕϕi (the
order type resulting from replacing each i in its place in ϕ by ϕi) where each
ϕi ∈

⋃
�<α O� and ϕ is either � or its converse �∗; and O = ⋃

α<�1
Oα,

shown to contain all the countable scattered order types. Actually, this
hierarchical analysis had appeared long ago in (Hausdorff, 1908, Sects. 10
and 11), but Erdős and Hajnal were not aware of this at the time.36 They
then used this analysis to show that every nonscattered countable order type
is a sum Σi∈ϕϕi where ϕ is densely ordered and each ϕi is nonempty and
scattered.
Freestanding as this analysis is, Erdős and Hajnal [33] applied it to char-
acterize the possibilities for countable order types with respect to a partition
relation. Erdős and Rado [13, thm.4] had established that � −→ (�,ℵ0)2
for the rational order type �. This implies forthwith that ϕ −→ (ϕ,ℵ0)2
for any countable order type ϕ having a dense subset, since � is embedded
in ϕ and ϕ is embedded in �. Also, � −→ (�,ℵ0)2 and �∗ −→ (�∗,ℵ0)2
by Ramsey’s Theorem. Erdős and Hajnal proceeded by induction up the
hierarchy of countable scattered order types to show that for any such order
type other than � or �∗, ϕ−→/ (ϕ,ℵ0)2.
[42, p.144] considered a new, “square-brackets” partition relation, the
basic case of which is

� −→ [α]��
asserting that for any partition f : [�]� → �, there is anH ∈ [�]α such that
f“[H ]� �= �. That is, f on [H ]� omits at least one value, a far weaker con-
clusion than for the ordinary partition relation. Presciently, Erdős already
in 1956 had generalized Sierpiński’s 2ℵ0 −→/ (ℵ1)22 (Section 2) under CH
to 2ℵ0 −→/ [ℵ1]23.37 With a prominent incentive being the articulation of
strong counterexamples to ordinary partition relations, [42] presented a
thorough-going analysis of the square-brackets partition relation. The sim-
plest instance of a nice result, proved with canonization, is: If κ is a strong
limit cardinal of cofinality �, then κ −→ [κ]23.38
While the earlier partition relations had figured in the formative develop-
ments of large cardinals (Sections 3 and 6), the square-brackets partition
relations would of themselves be the subject of investigation in modern set
theory. Stevo Todorcevic (1987) established in ZFC the remarkable and
unexpected κ+−→/ [κ+]2κ+ for all regular κ, developing “minimal walks” for
ordinals, which in his hands would become a much elaborated and applied
method of uncountable combinatorics.39 Building on this, Shelah (1988)

36[33, n.1].
37(Hajnal, 1997, p.365).
38[42, p.148].
39cf. the book Todorcevic (2007).

https://doi.org/10.1017/bsl.2014.38 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2014.38


470 AKIHIRO KANAMORI

established, nicely complementing Erdős’ 1956 2ℵ0 −→/ [ℵ1]23 under CH, that
if the �1-Erdős cardinal exists, then in a forcing extension 2ℵ0 −→ [ℵ1]23.
In wide-ranging work, Shelah (1992, 2000) subsequently pursued this theme
of large cardinals effecting such positive partition relations for accessible
cardinals. Venturing from exponent 2 to 3, Todorcevic (1994) established,
again surprisingly in ZFC, the best possible ℵ2−→/ [ℵ1]3ℵ1 . In terms of the
sophistication of methods brought to bear and range of results established,
the investigation of square-brackets partition relations, among all of Erdős’
initiatives in set theory, has arguably been the most broad-ranging and
consequential.
With square-brackets partition relations one also gets to the version with
partitions of infinite subsets and partitions of all finite subsets, but notably
the progression was in reverse order than for the ordinary partition relations.
When Hajnal was lecturing at Berkeley in 1964, he heard from Tarski of his
student Bjarni Jónsson’s problem: For a cardinal κ, is there a size κ algebra
with countable many finitary operations having no proper subalgebra of size
κ? Such an algebra is a Jónsson algebra, and a cardinal κ with no Jónsson
algebra of size κ is a Jónsson cardinal. Upon returning to Hungary, Hajnal
and Erdős quickly got results on Jónsson’s problem which appeared in their
[43], the first article on the subject.40 They showed that if 2κ = κ+, then
κ+ is not Jónsson, and that no ℵn is Jónsson for n < �. In the decades
to come Jónsson’s problem would gain increasing prominence, and whether
ℵ� can be Jónsson would remain a focal open problem in set theory about
possible consistency low in the cumulative hierarchy. In the 1990s, Jónsson
cardinals became a testing ground for Shelah (1994) in his development of
his celebrated pcf theory; he showed that the least regular Jónsson cardinal
is highly inaccessible.
It is straightforward that κ is Jónsson iff κ −→ [κ]<�κ , with the expected
meaning about partitions of all finite subsets. For partitions of infinite sub-
sets, the very early Rado result κ −→ (ℵ0)�2 had precluded any substantive
possibility for ordinary partition relations. Erdős and Hajnal at the end of
[43] established, building on a [22] set mapping result and making conspicu-
ous use of the Axiom of Choice, that κ−→/ [κ]�κ for any κ. Having proceeded
lastly to partitions of infinite subsets for square-brackets partition relations,
reversing the order for ordinary partition relations, Erdős and Hajnal had
actually reached a pivotal point as set theory would unfold.
In 1970, Kenneth Kunen (1971) dramatically applied κ−→/ [κ]�κ to estab-
lish in ZFC that there is no elementary embedding j : V → V of the universe
into itself. Stronger and stronger large cardinal hypotheses had been devised
approaching this possibility, and Kunen decisively delimited the emerging
hierarchy. As perhaps befits a result denying a proffered possibility, Kunen’s
argument had a simple, basic feel, and has not since been bettered in terms of
getting a sharper inconsistency. With that, the Erdős–Hajnal κ−→/ [κ]�κ has
become a conceptual landmark about the fullness of partitions of infinite
subsets even to the scrutiny of the role of the Axiom of Choice.

40(Hajnal, 1997, p.366).
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The last major topic of [42] was the polarized partition relation, which
was given a substantial airing for the first time. The focus was on the simple
case described at the end of Section 5, and using set mappings a number
of articulating results were established under GCH. What is notable here is
that one of the basic problems raised inspired the first forcing consistency
result for the partition calculus.
Karel Prikry (1972) established the consistency of(ℵ2

ℵ1
)

−→/
[ℵ0
ℵ1

]
ℵ1
,

i.e., there is a function F : �2×�1 → �1 such that for any countable S ⊆ �2
and uncountable T ⊆ �1, F “S × T = �1. He actually established with
forcing the consistency of the following, Prikry’s Principle:

There is a family {fα | α < �2} of functions �1 → �1 such that for
any countable S ⊆ �2 and � : S → �1, {	 < �1 | ∀α ∈ S(fα(	) �=
�(α))} is countable.

F : �2 × �1 → �1 defined by F (α, 	) = fα(	) gives the negative partition
relation. Prikry evidently educed his principle trying to forcing the negative
partition relation, the idea being to construct �2 functions: �1 → �1 so
that if any guesses are made at values for countably many of them, then for
sufficiently large 	 < �1 at least one guess is attained at 	. Jensen had devised
his morasses in L to get at such phenomena, and he soon established with
a morass that Prikry’s Principle holds in L. There would be several more
“morass-level” propositions to arising in combinatorial set theory, shown
consistent first by forcing, and then seen to hold in L.41 Several years later,
Richard Laver (1978, 1982) showed that if a very strong large cardinal
hypothesis holds, then in a forcing extension the positive polarized partition
holds in a strong sense. Prikry’s result was one of the first addressing a
problem from a stimulating and influential list of problems:
In the summer of 1967, a three-week conference in set theory was held
at the University of California at Los Angeles. Set theory had newly been
transformed, largely by the advent of Cohen’s method of forcing, and this
was by all accounts one those rare, exhilarating conferences that summarized
the recent progress and focused the energy of a new field opening up. Erdős
was asked to write up all the difficult problems that had emerged in his set-
theoretic work, and he andHajnal soon came up with a list of 82 problems.42

This list was distributed at the conference, and appeared four years later
in the proceedings [63]. While Erdős had taken to publishing problems
and bringing them up at conferences in ongoing fields, the 1967 list was
particularly timely both because a new generation was being drawn into set
theory and because of a mushrooming of methods becoming available.
Most of the problems had to do with partition relations in all their vari-
ety, and the rest on set mappings, the property B, transversals, and infinite
41See Kanamori (1983) for a systematic account.
42(Hajnal, 1997, p.378).

https://doi.org/10.1017/bsl.2014.38 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2014.38


472 AKIHIRO KANAMORI

graphs. For the partition relation problems, connections were soon made
with forcing, large cardinals, and V = L, and this was duly described
in a follow-up Erdős–Hajnal article [79] for a 1971 symposium commem-
orating Tarski’s 70th birthday. On the topics of the rest of the prob-
lems, increasingly regarded as in “infinite combinatorial analysis”, Erdős
described the progress in [83], for a 1973 conference commemorating his
60th birthday.
Erdős, since the Prikry consistency result and the like, became less inter-
ested and involved in problems and results that may have to do with
consistency, via forcing or large cardinals. The 1967 list did have a range of
problems on ordinal and order type partition relations that would have to
be decidable. In an 1980 article [100,104], Erdős fully followed up on results
and problems in “infinite combinatorial analysis”, this time including ordi-
nal partition relations. With such stimulations, even to the point of cash
prizes offered, the study of ordinal partition relations has continued to the
present day.43

In the fullness of time, the four-authored book [106] came out on the
partition calculus for cardinals. It presented the theory without GCH in
Byzantine detail, incorporating the later work of Shelah and others. It would
be the only monograph having Erdős as an author, this indicative of a
particular importance of the partition calculus in his corpus.

§9. In Model Theory. Two of Erdős’ results about sets were applied
in the 1960s in model theory, when it was developing into a modern,
sophisticated subject interacting with set theory, particularly in the hands
of Tarski and his students at Berkeley. Although straightforward, we
briefly describe these applications to illustrate the broad reach of Erdős’
combinatorics.
In 1962, Michael Morley famously established his Categoricity Theorem
(Morley (1965a)). A theory is κ-categorical if all models of size κ are iso-
morphic. Morley established: If a theory in a countable first-order language
is κ-categorical for some uncountable κ, then it is �-categorical for every
uncountable �. In the process, Morley drew in Ramsey’s Theorem via its role
of providing sets of indiscernibles, which actually was how Ramsey origi-
nally applied his theorem to “a problem of formal logic”. For a structureM
for a language L, a subset of the domain linearly ordered by a relation <
(not necessarily interpreting an L symbol) is a set of indiscernibles forM iff
for each n ∈ � all increasing n-tuples satisfy the same n-free-variable L for-
mulas inM. Ehenfeucht and Mostowski (1956) established, with Ramsey’s
Theorem and the Compactness Theorem, that ifT is a theory in a countable
first-order language with infinite models and 〈X,<〉 is a linearly ordered set,
then there is a model of T for which X is a set of indiscernibles. This result
was underlying Silver’s work on 0� (Section 6); while the result provides
models with indiscernibles, Silver saw that having an Erdős cardinal implies
that any model of that size already has in it a set of indiscernibles. With

43cf. (Hajnal and Larson, 2010, Sects. 9 and 10).
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Ehrenfeucht–Mostowski, Morley established, toward his theorem, that if a
theory T is κ-categorical for some uncountable κ then it is totally transcen-
dental (or equivalently, �-stable) in terms of what is now known asMorley
rank.
Morley’s next, 1963 result Morley (1965b) was an omitting types theorem
which has as a corollary that the Hanf number ofL�1� is��1 .44 Morley used
the Erdős–Rado Theorem to construct uncountable models omitting a type.
This was presumably the first use of the theorem outside of Erdős’ circle,
and it was in a basic role of generating sets of indiscernibles.
Morley’s work inspired a large subject inmodel theory, Classification The-
ory and Stability Theory, whichmeans to classifymodels up to isomorphism
according to invariants like Morley rank. See e.g., Shelah (1990a); with
set-theoretic constructions of models a primary concern, the Erdős–Rado
Theorem is a basic ingredient.
Erdős’ penultimate “remarks” article [46], withMichaelMakkai and con-
sisting of just three pages, introduced a combinatorial property of sets that
would play a significant role in the new Stability Theory. For a set A, G a
family of subsets of A, and f : � → A, G is strongly cut by f iff there are
Xn ∈ G for n ∈ � such that for every i ∈ �, f(i) ∈ Xn iff i < n. That is,
X0 has none of the f(i)s, X1 has just f(0), X2 has just f(0), f(1), and so
forth. [46] established that if A is infinite and G a set of subsets of A with
|G | > |A|, then there is anf : � → A such that eitherG or {A−X |X ∈ G}
is strongly cut by f.
Shelah (1971) settled questions from [46], which also appeared on the
1967 problem list, as well as generalized formulations. With this, he provided
characterizations of unstable theories in infinitary languages in terms their
models having n-tuples with a strongly-cut, order property contradistinctive
to being indiscernible. Shelah subsequently established (Shelah (1974)) a
generalization of Morley’s Categoricity Theorem to uncountable first-order
theories and provided (Shelah (1972)) a first broad development of stability
theory. In this work, the Erdős–Rado theorem and a strongly cut property
were part of the combinatorial underpinnings. TheErdős–Makkai [46] result
itself was used by Shelah to study the possibilities of the stability function;
Keisler (1976) used it a second time to establish that there are exactly six
possibilities for the stability function.

§10. To Silver’s Theorem. Silver’s 1974 result on singular cardinal arith-
metic veritably reoriented set theory with new incentives and goals. Remark-
ably, Erdős et al. already in 1965 were but one step away in their ongoing
combinatorial work. We describe this near miss, not only to bring out again
the general relevance of Erdős’ combinatorial work but its potency in its
relative simplicity.

44TheHanf number of a language is the least cardinal such that if a sentence of the language
has a model of that cardinality, then it has models of arbitrarily large cardinality; L�1� is like
first-order logic except that conjunctions of countably many formulas are allowed; and the
Beth numbers are defined by: �0 = ℵ0, �α+1 = 2�α , and �� = supα<� �α for limit � .
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Silver’s result is about singular cardinals of uncountable cofinality, for
which it is still substantive to consider whether or not a subset is stationary,
i.e., meets every closed unbounded subset. Silver established Silver (1975):
If ℵ0 < cf(κ) < κ and {α < κ | 2α = α+} is stationary, then 2κ = κ+. This
result starkly and unexpectedly brought on how at such cardinals there is a
strong constraint on the power set. Previously, it was presumed that one can
render 2κ large even for singular κ without disturbing power set cardinali-
ties below, and there had been some progress about countable cofinality κ
depending on large cardinals. Silver was able to illuminate the “singular car-
dinals problem” because of possibilities afforded at uncountable cofinalities,
specifically the well-ordered ranking of functions in a “generic ultrapower”.
This set in motion in the ensuing years a wide range of results about delimit-
ing power set cardinalities for singular cardinals. Shelah would latterly take
up this theme, eventually developing his pcf theory subsuming countable
cofinalities.45 Most striking in terms of alacrity with depth, Ronald Jensen
was spurred to establish, within a year, the Covering Theorem for L about
0� and the distance between V and L, easily the most prominent advance in
set theory in the 1970s and the beginning of core model theory.
Through its proof Silver’s Theorem was seen to have higher emanations,
the 2nd case being: If ℵ0 < cf(κ) < κ and {α < κ | 2α ≤ α++} is stationary,
then 2κ ≤ κ++.What is remarkable is that there was a 0th case established
a decade earlier, when the singular cardinals problem was first being enter-
tained with the advent of forcing. In 1965, Erdős and Hajnal, working with
Eric Milner on transversals of sets, established:46

Suppose that ℵ0 < cf(κ) < κ and �cf(κ) < κ+ for � < κ; S ⊆ κ is
stationary; andF is a family of functions: S → κ satisfying (a)f ∈ F
implies that f(α) < α for α ∈ S, and (b) for distinct f, g ∈ F ,
|{α ∈ S | f(α) = g(α)}| < κ. Then |F| ≤ κ.

This is indeed the 0th case! Suppose that ℵ0 < cf(κ) < κ and S ⊆ κ is
stationary with �α : P(α) → α+ a bijection for every α ∈ S. Then for any
X ⊆ κ, fX : S → κ given by fX (α) = �α(X ∩ α) < α+ satisfies that
for distinct X,Y ⊆ κ, |{α ∈ S | fX (α) = fY (α)}| < κ. So one has the
hypotheses of Erdős–Hajnal–Milnerwithα in its (a) replaced byα+, and the
Silver conclusion will be that 2κ = |{fX | X ⊆ κ}| ≤ κ+. Just as the Silver
argument can proceed from the 1st to the 2nd case, so also from the 0th to the
1st case. As soon as Silver’s result appeared, Baumgartner and Prikry (1976)
contextualized it in just this manner, providing a direct combinatorial proof.
With their focus on transversals, Erdős, Hajnal, and Milner did not take
the straightforward step from α to α+ and hence from their result to Silver’s.
Had they done so in 1965, it would have been a fitting correlative to Erdős’
attention to and interest in singular cardinals. The impact would have been
dramatic, even more so than the near miss by two years in connection
with inaccessibility vs. measurability (Section 6). Presumably, the very next

45cf. Shelah (1994).
46cf. (Hajnal, 1997, p.374) and [52, thm.6].
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move after Silver’s would have been made then: Fred Galvin and Hajnal
independently, using the idea of linearly ranking functions and Hajnal his
Set Mapping Theorem, established in Galvin and Hajnal (1975): If ℵα is a
singular strong limit cardinal of uncountable cofinality, then 2ℵα < ℵ(2|α|)+ .

§11. Compactness of Chromatic Number. In a continuing study of infi-
nite graphs, Erdős and Hajnal in their [50] established focal results about
compactness of chromatic number. This theme so forwarded as having an
immediacy about the transfinite, [50] would have the distinction of raising
questions that would be addressed the most extensively and with methods
of the most depth, not only of the theory of infinite graphs, but of all Erdős’
work in combinatorial analysis.
Erdős considered infinite graphs from the beginning (Section 1) and
engaged with the basic concept of graph coloring through compactness
(Section 4). In his 1961 article [22] with Hajnal (Section 7), he came to
transfinitely parametrized graph compactness. A graph has chromatic num-
ber κ iff κ is the least number of colors with which its vertices can labeled so
that no adjacent vertices get the same color. In this language, if r < � and
every subgraph of a graph has chromatic number at most r, then so does the
entire graph (Section 4). [22, p.118] asked about countably many colors: If a
graph has size ℵ2 and every subgraph of smaller size has chromatic number
at most ℵ0, then does the entire graph?47
In 1966, building on previous work Erdős andHajnal [50] answered this in
the negative if one assumes CH: There is a size (2ℵ0)+ graph with chromatic
number at least ℵ1 all of whose subgraphs of smaller size have chromatic
number at most ℵ0. They asked forthwith in [50], and in the 1967 problem
list and elsewhere, whether withGCH there is a size ℵ2 graph with chromatic
number ℵ2 such that every graph of smaller size has chromatic number at
most ℵ0.
In the fullness of time, Baumgartner (1984) established that this proposi-
tion is consistentwith forcing.On the other hand, Foreman andLaver (1988)
showed that if there is a huge cardinal, a strong large cardinal hypothesis,
then in a forcing extension GCH holds and there is no ℵ2 size graph as
above. Then Shelah (1990b) effected the Baumgartner consistency direction
with combinatorial principles instead of forcing to establish: If V = L, then
for regular, nonweakly compact κ, there is a κ size graph with chromatic
number κ all of whose subgraphs of smaller size had chromatic number at
most ℵ0. Very recently, Shelah (2013) provided general constructions, under
combinatorial assumptions, of graphs with uncountable chromatic number
all of whose subgraphs have chromatic number at most ℵ0.
Erdős and Hajnal in [50] also offered a compelling universal graph for
chromatic consideration. In the first significant case, theErdős–Hajnal graph
G(�2, �) consists of the functions �2 → � with f and g connected iff
|{α < �2 |f(α) = g(α)}| < ℵ2. They proved two simple yet striking results:
47It is immediate that if ℵ2 is replaced by ℵ1 here, then the complete graph on ℵ1 vertices

is a counterexample.
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(a) G(�2, �) has the property that every subgraph of size ℵ1 has chromatic
number at most ℵ0, and (b) any graph of size ℵ2 with this property is
embeddable intoG(�2, �). What is the chromatic number ofG(�2, �)? The
answer with CH is that it is at least ℵ1 because of the first graph construction
in [50], and the results of Baumgartner and Shelah above consistently got the
chromatic number to be ℵ2. Nevertheless, the situation remainedmysterious
for three decades.
Into the 1990s, Péter Komjáth (1991) observed that 2ℵ0 ≤ ℵ2 still implies
that the chromatic number of G(�2, �) is at least ℵ1 and showed that it is
consistent with GCH that it is the largest possible value ℵ3. Then Foreman
(1998) established that if there is a huge cardinal, then in a forcing extension
ultrapowers of form��2/U can have size ℵ1 and so the chromatic number of
G(�2, �) is (exactly) ℵ1. (In particular, the Foreman–Laver result above is
subsumed.) Finally, any lingering speculations about the chromatic number
being possiblyℵ0 were put to rest by (Todorcevic, 1997, prop.4), who showed
that even if 2ℵ0 > ℵ2, the chromatic number of G(�2, �) is at least ℵ1.

§12. Envoi. Having cast a net far and wide across Erdős’ work of signif-
icance for and having impact on modern set theory and its development,
we bring matters to a close here as well as venture a few panoptic remarks.
Into the 1970s and beyond, Erdős continued to work across a broad range of
“combinatorial analysis”, addressing both new and old issues and problems.
It would be that Erdős’ last work with reverberations into modern set theory
would notably be kindred to his early successes with singular cardinals.
Erdős and Hechler [81] considered maximal almost disjoint (MAD) fam-
ilies of sets at κ, i.e., families F of κ size subsets of κ such that for distinct
X,Y ∈ F , |X ∩ Y | < κ and moreover for any κ size subset A of κ there is
a Z ∈ F such that |A ∩Z| = κ. With the simple observation that no MAD
family at κ can have size cf(κ) because of a diagonalization argument, let
MAD(κ) be the set of cardinals 
 > cf(κ) such that 
 is the size of a MAD
family at κ. With arguments akin to Erdős’ from his early days, [81] showed
thatMAD(κ) is closed under singular limits, i.e., if
α ∈MAD(κ) for α < �
and � < 
0, then supα 
α ∈ MAD(κ), and with this, that if κ is singular
and � < κ implies �cfκ < κ, then κ ∈ MAD(κ). κ itself can be the size
of a MAD family at κ! But then [81] could not come up with a singular κ
not inMAD(κ), and even conjectured that 2ℵ0 > ℵ� together withMartin’s
Axiom would imply ℵ� /∈MAD(ℵ�).
Three decades later, Menachem Kojman, Wiesław Kubiś and Shelah in
their Kojman et al. (2004) newly approachedMAD(κ) in light of the latter’s
pcf theory. They affirmed the [81] conjecture above; generalized its closure
result to show that if κ is singular and (just) 2cf(κ) < κ, then κ ∈MAD(κ);
and with pcf showed that for singular κ, all the cardinals from the minimum
element of MAD(κ) up to a “bounding” cardinal larger than κ belong
to MAD(κ). Erdős and Hechler’s [81] was a fitting coda to Erdős’ study
of singular cardinal phenomena, and the Kojman–Kubiś–Shelah Kojman
et al. (2004), a fitting response invoking pcf theory to extend the analysis.
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In the last two decades of his life, Erdős published fully one-third of
his articles with collaborators that would make up his set-theoretic cor-
pus. There was episodic elaboration of themes from earlier years, but also
a substantial development of structural Ramsey theory, a partition calcu-
lus for infinite graphs. While this work certainly falls under the umbrella
of set theory, it would remain self-fueling and autonomously internal.
Komjáth (2013) provides a detailed account of Erdős’ work on infinite
graphs, to which we defer. During this period, the main initiatives of modern
set theory would be elsewhere, in the direction of the investigation of strong
large cardinal hypotheses, inner models, and advanced forcing techniques,
axioms, and results. While there would be continuing attention to issues
emerging from “combinatorial analysis”, the increasing preoccupation has
been on consistency results and models of set theory.
For putting Erdős’ set-theoretic work and initiatives into a large perspec-
tive, it is worth looking to Felix Hausdorff, rather than Cantor himself, for
historical antecedence and affinity. Hausdorff was the first developer of the
transfinite after Cantor, the one whose work first suggested the rich pos-
sibilities for a mathematical investigation of the higher transfinite. He first
formulated the distinction between regular and singular cardinals, and even
considered the possibility of a regular limit cardinal.He routinely carried out
transfinite recursion and induction both with ordinal numbers and cardinal
numbers. And he first formulated the Generalized Continuum Hypothesis
(GCH), and assumed it to get uniform existence results for all infinite cardi-
nals. With all this to become integral and conspicuous in Erdős’ work, one
sees “the spirit of Hausdorff” very much at work, with a particular hallmark
being Erdős’ attention to and grasp of singular cardinals in inductive argu-
ments. Moreover, with Hausdorff’s broad context including linear ordering
and order types, the Erdős–Hajnal study [33] of countable scattered order
types was actually a point of intersection with studies of the old master
(Section 8).
Particular to Erdős would be his modus operandi of proceeding through
cycles of problem, proof, and conjecture with collaborators, and particular
to his work in set theory would be his combinatorial attitude, of sets provid-
ing an expansive playing field for raising and solving problems about infinite
complexes and counting. In all this Erdős evinced an anti-foundationalist
attitude about set theory, much as Hausdorff did. Erdős’ work on inacces-
sible cardinals (Sections 3 and 6) turned out to be important for theory of
large cardinals and questions of the consistency, but for Erdős it was evident
that he was considering direct generalizations of properties of ℵ0 and the
play of possible implications.
Erdős’ work the most consequential for and having the most impact on
set theory occurred in the late 1950s and through the 1960s, all in collab-
oration with András Hajnal. There was the work leading to Ramsey and
Erdős cardinals, including the near miss on inaccessibility vs. measurability
(Section 6); the work on Property B (Section 7); the development of square
brackets partition relations, including Jónsson’s problem and the κ−→/ [κ]�κ
pivotal for large cardinals (Section 8); and the near miss for Silver’s
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Theorem (Section 10). In all this the hand of Hajnal is evident, and they
would continue their collaboration for two more decades.
When set theory was transformed in the mid-1960s by the advent of forc-
ing, Erdős’ cycles of problem, proof, and conjecture were newly modulated
by the possibility of consistency. A range of propositions which for Erdős
had remained as problems were “solved”, as we have documented, by estab-
lishing their consistency in forcing extensions in interesting ways. In thus
inspiring new mathematical activity of a high order, the work achieved a
new prominence for richly populating the landscape of set theory.
For Erdős himself, however, the new consistency results were antitheti-
cal to his combinatorial incentives and initiatives. When Prikry in the early
1970s established the consistency of a negative partition relation with forc-
ing (Section 8), Erdős rued the situation. A basic, simple question about
the transfinite cannot be directly decided? Especially with so much more
to do in number theory and combinatorics, Erdős would not follow the
new set-theoretic work involving forcing, and remain on the firmament of
“combinatorial analysis”.
In several ways, the baton would pass to Saharon Shelah for mod-
ern set theory. Starting in model theory, Shelah saw the importance and
applicability of a couple of Erdős’ combinatorial results (Section 9). His
joint paper [68] with Erdős on some combinatorics of Property B was a
direct handshake, and his notable work on singular cardinal compactness
(Shelah (1975a)) had inspirations from Erdős’ questions about compact-
ness of chromatic number. Subsequently, as we have partially documented,
Shelah variously appealed to large cardinal hypotheses or used forcing to
establish the relative consistency of a range of propositions put forth by
Erdős. Finally, Shelah’s pcf theory has resonances with Erdős’ early atten-
tion to singular cardinals and can be seen as a vast combinatorial edifice
that emerged on the fertile ground that Erdős first broke and tilled.
Returning to Erdős, his contributions to and impact on set theory had
to do mainly with a fortunate timeliness, an engaging concreteness, and an
accessible simplicity. Early in his long career, Erdős lifted into set theory
themes and results that would play important roles at a formative stage.
Variegating the transfinite, Erdős’ concrete approach with problems and
proofs set in motion a continuing engagement with the specifics of the
backdrop. And increasingly, the relative simplicity of his conceptualizations
allowed for their easy assimilation to become part of the basic furniture of
set theory. As across mathematics, Erdős brought in a certain way of doing
and thinking about set theory.

Publications of Paul Erdős in Set Theory
Set theory is rather arbitrarily construed here as having to do with
the interactions of various infinite sets, e.g., in the study of infinite
graphs. A list of Erdős’ publications appears in (Graham et al., 2013b,
p.497–604). Almost all of Erdős’ papers to 1989 are available at http://www.
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renyi.hu/˜p erdos/Erdos.html, and for such papers listed below, their labels
at the website are provided in square brackets.

[1] (with Tibor Grünwald (Gallai) and Endre Weiszfeld (Vázsonyi))
Végtelen gráfok Euler-vonalairól. Matematikai és Fizikai Lapok,
43:129–140, 1936. [1936-11]

[2] (with Tibor Grünwald (Gallai) and Endre Vázsonyi) Über Euler-
Linen unendlicher Graphen. Journal of Mathematics and Physics,
17:59–75, 1938. German translation of [1]. [1938-15]

[3] Some set-theoretical properties of graphs. Revista, Universidad
Nacional de Tucumán, Serie A, 3:363–367, 1942. [1942-06]

[4] (with Alfred Tarski) On families of mutually exclusive sets. Annals of
Mathematics, 44:315–329, 1943. [1943-04]

[5] (with Shizuo Kakutani) On non-denumerable graphs. Bulletin of the
American Mathematical Society, 49:457–461, 1943. [1943-05]

[6] Some remarks on set theory. Annals of Mathematics, 44:643–646,
1943. [1943-08]

[7] Some remarks on connected sets. Bulletin of the American Mathemat-
ical Society, 50:442–446, 1944. [1944-06]

[8] On the Hausdorff dimension of some sets in Euclidean space. Bulletin
of the American Mathematical Society, 52:107–109, 1946. [1946-07]

[9] (with Nicolaas G. de Bruijn) On a combinatorial problem. Koninkli-
jke Nederlandse Akademie van Wetenschappen, 51:1277–1279, 1948.
[1948-01]

[10] (with Richard Rado) A combinatorial theorem. Journal of the London
Mathematical Society, 25:249–255, 1950. [1950-01]

[11] Some remarks on set theory. Proceedings of the American Mathemat-
ical Society, 1:127–151, 1950. [1950-13]

[12] (with Nicolaas G. de Bruijn) A colour problem for infinite graphs
and a problem in the theory of relations. Koninklijke Nederlandse
Akademie van Wetenschappen, 54:369–373, 1951. [1951-01]

[13] (with Richard Rado) Combinatorial theorems on classifications of
subsets of a given set. Proceedings of the London Mathematical
Society, 2:417–439, 1952. [1952-02]

[14] (withRichardRado)Aproblemonordered sets. Journal of theLondon
Mathematical Society, 28:426–438, 1953. [1953-01]

[15] Some remarks on set theory, III. Michigan Mathematical Journal,
2:51–57, 1954. [1954-08]

[16] (with Leonard Gillman andMelvin Henriksen) An isomorphism the-
orem for real-closed fields. Annals of Mathematics, 61:542–554, 1955.
[1955-01]

[17] (with John C. Oxtoby) Partitions of the plane into sets having positive
measure in every non-null measurable product set. Transactions of the
American Mathematical Society, 79:91–102, 1955. [1955-10]

[18] Some remarks on set theory, IV. Michigan Mathematical Journal,
2:169–173, 1955. [1955-14]
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[19] (with Richard Rado) A partition calculus in set theory. Bulletin of the
American Mathematical Society, 62:427–489, 1956. [1956–02]

[20] (with Géza Fodor) Some remarks on set theory, V. Acta Scientiarum
Mathematicarum (Szeged), 17:250–260, 1956. [1956-18]

[21] (with Géza Fodor) Some remarks on set theory, VI. Acta Scientiarum
Mathematicarum (Szeged), 18:243–260, 1957. [1957-12]

[22] (with András Hajnal) On the structure of set-mappings. Acta Math-
ematica Academiae Scientiarum Hungaricae, 9:111–131, 1958.
[1958-12]

[23] (with Richard Rado) A theorem on partial well-ordering of sets of
vectors. Journal of the London Mathematical Society, 34:222–224,
1959. [1959-02]

[24] (with Géza Fodor and András Hajnal) On the structure of inner set
mappings. Acta Scientiarum Mathematicarum (Szeged), 20:81–90,
1959. [1959-18]

[25] (withRichardRado) Partition relations connected with the chromatic
number of graphs. Journal of the London Mathematical Society, 34:
63–72, 1959. [1959-19]

[26] (with Richard Rado) A construction of graphs without triangles hav-
ing pre-assigned order and chromatic number. Journal of the London
Mathematical Society, 35:445–448, 1960. [1960-01]

[27] (withRichardRado) Intersection theorems for systemsof sets. Journal
of the London Mathematical Society, 35:85–90, 1960. [1960-04]

[28] (with András Hajnal) Some remarks on set theory, VII. Acta Scien-
tiarum Mathematicarum (Szeged), 21:154–163, 1960. [1960-18]

[29] (with András Hajnal) Some remarks on set theory, VIII. Michigan
Mathematical Journal, 7:187–191, 1960. [1960-19]

[30] (with András Hajnal) On a property of families of sets. Acta
Mathematica Academiae Scientiarum Hungaricae, 12:87–123, 1961.
[1961-11]

[31] (with Ernst Specker) On a theorem in the theory of relations and
a solution of a problem of Knaster. Colloquium Mathematicum,
8:19–21, 1961. [1961-12]

[32] (with Alfred Tarski) On some problems involving inaccessible car-
dinals. In Bar-Hillel et al., editors, Essays on the Foundations of
Mathematics, pages 50–82. Magnes Press, Jerusalem, 1961. [1961-14]

[33] (with András Hajnal) On a classification of denumerable order types
and an application to the partition calculus. Fundamenta Mathemati-
cae, 51:117–129, 1962. [1962-06]

[34] (with András Hajnal) On the topological product of discrete
�-compact spaces. In Josef Novák, editor, General Topology and
its Relations to Modern Analysis and Algebra (Prague, 1961), pages
148–151. Academic Press, New York, 1962. [1962-15]

[35] (with János Czipszer and András Hajnal) Some extremal problems
on infinite graphs. Publications of the Mathematical Institute of the
Hungarian Academy of Sciences, 7:441–457, 1962. [1962-19]
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[36] (with András Hajnal) Some remarks concerning our paper “On the
structure of set-mappings”. Non-existence of a two-valued �-measure
for the first uncountable inaccessible cardinal. Acta Mathematica
Academiae Scientiarum Hungaricae, 13:223–226, 1962. [1962-20]

[37] On some properties of Hamel bases. Colloquium Mathematicum,
10:267–269, 1963. [1963-09]

[38] (with Samuel J. Taylor) The Hausdorff measure of the intersection
of sets of positive Lebesgue measure. Mathematika 10:1–9, 1963.
[1963-19]

[39] An interpolation problem associated with the continuum hypothesis.
Michigan Mathematical Journal, 11:9–10, 1964. [1964-04]

[40] (with András Hajnal) On complete topological subgraphs of cer-
tain graphs.AnnalesUniversitatis ScientiarumBudapestinensis Eötvös,
Sectio Mathematica 7:143–149, 1964. [1964-12]

[41] (with András Hajnal) Some remarks on set theory, IX. Michigan
Mathematical Journal, 11:107–127, 1964. [1964-28]

[42] (with András Hajnal and Richard Rado) Partition relations for cardi-
nal numbers. Acta Mathematica Academiae Scientiarum Hungaricae,
16:93–196, 1965. [1965-14]

[43] (with András Hajnal) On a problem of B. Jónsson. Bulletin de
l’Académie Polonaise des Sciences, Série des Sciences Mathématiques,
Astronomiques et Physiques, 14:19–23, 1966. [1966-05]

[44] (with András Hajnal) On chromatic number of graphs and set-
systems. Acta Mathematica Academiae Scientiarum Hungaricae,
17:61–99, 1966. [1966-07]

[45] (with András Hajnal and Eric C. Milner) On the complete subgraphs
of graphs defined by systems of sets. Acta Mathematica Academiae
Scientiarum Hungaricae, 17:159–229, 1966. [1966-12]

[46] (with Michael Makkai) Some remarks on set theory, X. Studia Scien-
tiarum Mathematicarum Hungarica 1:157–159, 1966. [1966-19]

[47] (with András Hajnal) On decomposition of graphs. Acta Mathemat-
ica Academiae Scientiarum Hungaricae, 18:359–377, 1967. [1967-11]

[48] (with Richard Rado) Partition relations and transitivity domains of
binary relations. Journal of the London Mathematical Society, 42:
624–633, 1967. [1967-19]

[49] Hilbert térben levõ ponthalmazok néhány geometriai és hal-
mazelméleti tulajdonságárol.Matematikai Lapok, 19:255–258, 1968.
[1968-2]

[50] (withAndrás Hajnal)On chromatic number of infinite graphs. In Paul
Erdős and Gyula Katona, editors, Theory of Graphs, Proceedings of
the Colloquiumheld at Tihany,Hungary, September 1966, pages 83–98.
Academic Press, New York, 1968. [1968-04]

[51] (with Stanislaw Ulam) On equations with sets as unknowns. Proceed-
ings of the National Academy of Sciences U.S.A., 60:1189–1195, 1968.
[1968-06]

[52] (with András Hajnal and Eric C. Milner) On sets of almost disjoint
subsets of a set. Acta Mathematica Academiae Scientiarum Hungari-
cae, 19:209–218, 1968. [1968-08]
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[53] (with András Hajnal and Eric C. Milner) A problem on well ordered
sets. Acta Mathematica Academiae Scientiarum Hungaricae, 20:
323–329, 1969. [1969-01]

[54] (with Richard Rado) Intersection theorems for systems of sets (II).
Journal of the London Mathematical Society, 44:467–479, 1969.
[1969-02]

[55] (with Arthur H. Stone) On the sum of two Borel sets. Proceedings of
the American Mathematical Society, 25:304–306, 1970. [1970-15]

[56] (with András Hajnal) Problems and results in finite and infinite com-
binatorial analysis. Annals of the New York Academy of Sciences,
175:115–124, 1970. [1970-16]

[57] Problems in combinatorial set theory. In Richard Guy et al., editors,
Combinatorial Structures and their Applications. Proceedings of the
Calgary International Conference, pages 97–100. Gordon and Breach,
New York, 1970. [1970-17]

[58] (with András Hajnal and Eric C.Milner) Set mappings and polarized
partition relations. In Paul Erdős, Alfred Rényi, and Vera T. Sós, edi-
tors, Combinatorial Theory and its Applications, Balatonfüred, 1969,
volume 4 of Colloquia Mathematica Societatis János Bolyai, pages
327–363. North-Holland, Amsterdam, 1970. [1970-19]

[59] (with András Hajnal) Some results and problems on certain polarized
partitions. Acta Mathematica Academiae Scientiarum Hungaricae,
21:369–392, 1970. [1970-25]

[60] (with András Hajnal) Ordinary partition relations for ordinal num-
bers. Periodica Mathematica Hungarica, 1:171–185, 1971. [1971-15]

[61] (with András Hajnal and Eric C.Milner) Polarized partition relations
for ordinal numbers. In Leon Mirsky, editor, Studies in Pure Math-
ematics (Presented to Richard Rado), pages 63–87. Academic Press,
London, 1971. [1971-17]

[62] (with András Hajnal and Eric C. Milner) Partition relations for �α
sets. Journal of the London Mathematical Society, 3:193–204, 1971.
[1971-16]

[63] (with András Hajnal) Unsolved problems in set theory. In Dana
S. Scott, editor, Axiomatic Set Theory, volume 13, part 1 of Proceed-
ings of Symposia in Pure Mathematics, pages 17–48. AmericanMath-
ematical Society, Providence, 1971. [1971-28]

[64] (with Eric C. Milner) A theorem in the partition calculus. Canadian
Mathematical Bulletin, 15:501–505, 1972. [1972-03]

[65] (with Saharon Shelah) On problems of Moser and Hanson. In Yousef
Alavi, Don R. Lick, and Alexander T. White, editors, Graph Theory
and Applications (Western Michigan University, Kalamazoo, 1971),
volume 303 of Lecture Notes in Mathematics, pages 75–79. Springer,
Berlin, 1972. [1972-09]

[66] (withAndrásHajnal)OnRamsey like theorems, problems and results.
In Dominic J. A. Welsh and Douglas R. Woodall, editors, Com-
binatorics: Being the Proceedings of the Conference on Combinato-
rial Mathematics held at the Mathematical Institute, Oxford, pages
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123–140. Institute of Mathematics and Its Applications, Southend-
on-Sea, 1972. [1972-10]

[67] (with András Hajnal and Eric C. Milner) Partition relations for �α
and for ℵα-saturated models. In Günter Asser, Jürgen Flachsmeyer
and Willi Rinow, editors, Theory of Sets and Topology: In Honor of
Felix Hausdorff, 1868–1942, pages 95–108. VEB Deutscher Verlag,
Berlin, 1972. [1972-19]

[68] (with Saharon Shelah) Separability properties of almost-disjoint
families of sets. Israel Journal of Mathematics, 12:207–214, 1972.
[1972-21]

[69] (withAndrás Hajnal and Eric C.Milner) Simple one-point extensions
of tournaments.Mathematika, 19:57–62, 1972. [1972-22]

[70] (with Ervin Fried, András Hajnal and Eric C. Milner) Some
remarks on simple tournaments.AlgebraUniversalis, 2:238–245, 1972.
[1972-24]

[71] (with András Hajnal and Attila Máté) Chain conditions on set map-
pings and free sets. Acta Scientiarum Mathematicarum (Szeged),
34:69–79, 1973. [1973-03]

[72] (with András Hajnal and Bruce L. Rothschild) On chromatic number
of graphs and set systems. InAdrianR.D.Mathias, editor,Cambridge
Summer School in Mathematical Logic, volume 337 of Lecture Notes
in Mathematics, pages 531–538. Springer, Berlin, 1973. [1973-13]

[73] (with Eric C. Milner) A theorem in the partition calculus. Corrigen-
dum. Canadian Mathematical Bulletin, 17:305, 1974. [1974-07]

[74] (with Eric C. Milner and Richard Rado) Intersection theorems for
systems of sets (III). Journal of the Australian Mathematical Society,
18:22–40, 1974. [1974-11]

[75] (withAndrásHajnal andSaharonShelah)On some general properties
of chromatic numbers. In Ákos Császár, editor, Topics in Topol-
ogy, Keszthely (Hungary), 1972, volume 8 of Colloquia Mathematica
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Paul Erdős andGyörgy Szekeres (1935).A combinatorial problem in geometry.Compositio
Mathematica, 2:463–470.

Matthew Foreman (1998). An ℵ1-dense ideal on ℵ2. Israel Journal ofMathematics, 108:253–
290.

Matthew Foreman and Richard Laver (1988). Some downwards transfer properties for ℵ2.
Advances in Mathematics, 67:230–238.

Chris Freiling (1986). Axioms of symmetry: Throwing darts at the real number line. The
Journal of Symbolic Logic, 51:190–200.

Fred Galvin and András Hajnal (1975). Inequalities for cardinal powers. Annals of
Mathematics, 101:491–498.
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, (2013b).TheMathematics of Paul Erdős II. Springer, Berlin, 2013. Second, expanded

edition; first edition 1997.

https://doi.org/10.1017/bsl.2014.38 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2014.38


488 REFERENCES

András Hajnal (1961). Proof of a conjecture of S. Ruziewicz. Fundamenta Mathematicae,
50:123–128.
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, (2013). Erdős’s work on infinite graphs. In Lázló Lovász, Imre Z. Ruzsa, and Vera T.
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ERDŐS AND SET THEORY 489

, (2013). The impact of Paul Erdős on set theory. In Lázló Lovász, Imre Z. Ruzsa,
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