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Consider the random Dirichlet partition of the interval inton fragments at
temperatureu . 0+ Explicit results on the law of its size-biased permutation are
first supplied+ Using these, new results on the comparative search cost distribu-
tions from Dirichlet partition and from its size-biased permutation are obtained+

1. INTRODUCTION AND DESCRIPTION OF MAIN RESULTS

Basic facts on the random Dirichlet partition of the interval inton fragments at
temperatureu . 0 are first recalled in Section 2+ In Section 3, explicit results on the
law of its size-biased permutation are supplied+ A size-biased permutation of the
fragments sizes is the one obtained in a size-biased sampling process without
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replacement from a Dirichlet partition+ The main points that we develop are the
following: In Proposition 1, it is recalled that the length of an interval containing a
random sample is stochastically larger than the typical fragment size from a Dirichlet
distribution+ Its law is computed and the stochastic domination result is made more
explicit in Corollary 2+ In Theorem 3, the law of the length of thekth fragment in
the size-biased permutation is supplied+ It is also shown there that the consecutive
fragments in the size-biased permutation are arranged in stochastic descending order+
In Corollary 4, the expected length of thekth fragment in the size-biased permuta-
tion is supplied+ In Theorem 5, we give the joint law of the size-biased permutation
fragments sizes explicitly~or, rather, its joint moment function!+

Size-biased permutations of random discrete distributions are known to be the
random equilibrium distributions of the heaps process consisting in moving sequen-
tially sampled fragments to the front, starting from the original partition+ Using the
computations from Section 3, new results on the comparative search-cost distribu-
tions from Dirichlet partition and from its size-biased permutation are obtained in
Section 4+ The search cost of an item in a library is the number of items above it in
the heap; averaging over the items gives the search cost of a typical item+ The search
cost when the library has reached the equilibrium state is expected to be smaller
than the search cost in the original Dirichlet partition itself+ The results that we
describe confirm this intuition+ In Proposition 6, the limiting search cost per item in
a Dirichlet partition is first shown to be uniformly distributed+ In Lemma 7, we
compute explicitly the law of the search cost in the size-biased permutation of a
Dirichlet partition, using Corollary 4+ First and second moments are also obtained
differently from the techniques usually employed to do so+ In Theorem 8, the lim-
iting search cost per item in a size-biased permutation of the Dirichlet partition is
shown to be beta~1,11 10u! distributed+ Finally, in Proposition 9, considering the
asymptotic introduced by Kingman, n F `, u f 0, nu 5 g . 0, we find the limiting
size-biased permutation search cost to be geometrically distributed+

2. PRELIMINARIES: THE DIRICHLET DISTRIBUTION Dn(u)

We will consider the following random partition inton fragments of the unit inter-
val: Let u . 0 be some parameter that we will interpret as temperature or disorder
of the partition+ Assume that the random fragments’ sizesSn :5 ~S1, + + + ,Sn! ~with
(m51

n Sm51! is distributed according to the~exchangeable! Dirichlet Dn~u! density
function on the simplex; that is to say,

fS1, + + + ,Sn
~s1, + + + ,sn! 5

G~nu!

G~u!n )
m51

n

sm
u21{dS (

m51

n

sm21D + (1)

Alternatively, the law of Sn :5 ~S1, + + + ,Sn! is characterized by its joint moment
function

EF)
m51

n

Sm
qmG 5

G~nu!

GSnu 1 (
m51

n

qmD )
m51

n G~u 1 qm!

G~u!
+ (2)
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In this case, Sm 5
d

Sn, m5 1, + + + , n, independently ofm and the individual fragment
sizes are all identically distributed~i+d+!+ Their common density on the interval~0,1!
is given by

fSn
~s! 5

G~nu!

G~u!G~~n 2 1!u!
su21~12 s!~n21!u21, (3)

which is a beta~u, ~n 2 1!u! density, with mean valueE~Sn! 5 10n and variance
s2~Sn! 5 ~n 2 1!0@n2~nu 1 1!#+

We recall that a random variable, sayBa,b, with Ba,b ;
d

beta~a,b!, has density
function fBa,b

~x! :5 @G~a 1 b!0G~a!G~b!#xa21~1 2 x!b21, a,b . 0, x [ @0,1# and
moment functionE@Ba,b

q # 5 @G~a1 q!G~a1 b!#0@G~a!G~a1 b1 q!#, with G~a! the
Euler’s Gamma function+

We also recall that whenu 5 1, the partition model@Eqs+ ~1! and ~2!# corre-
sponds to the standard uniform partition model of the interval+

From Eq+ ~3!, asn F `, we next have

nSn
d
&& Gu, u , with densityfGu,u

~t ! 5
uu

G~u!
t u21e2ut, t . 0, (4)

showing that the sizes of fragments are asymptotically all of order 10n+
Consider next the sequenceS~n! :5 ~S~m!;m5 1, + + + , n! obtained while ranking

the fragment sizesSn according to descending sizes, hence withS~1! . {{{ . S~m! .
{{{ . S~n!+ TheS~m! distribution can hardly be derived in closed form+However, one
could prove that asn F `,

n~11u!0uS~n!
d
&& Wu and nuSS~1! 2

1

nu
log~n~ log n!u21!D d

&& Gu , (5)

whereWu is a Weibull random variable andGu is a Gumbel random variable such
thatP~Wu . t ! 5 exp@2t u0su# , t . 0, andP~Gu # t ! 5 exp@2su

21 exp~2t !# , t [ R,
su :5 G~11 u!u2u . 0 is a scale parameter+

In the random division of the interval as in Eq+ ~1! at disorderu, although all
fragments are identically distributed with sizes of ordern21, the smallest fragment’s
size grows liken2~u11!0u and the largest is of order~10nu! log~n~ log n!u21!+ The
smalleru is, the larger~smaller! the largest~smallest! fragment’s size is; hence, the
smaller disorderu is, the more the values of theSm are, with high probability, dis-
parate+ At low disorder, the size of the largest fragmentS~1! tends to dominate the
other ones and the rangeS~1! 2 S~n! increases whenu decreases+

To the contrary, large values ofu correspond to situations in which the range of
fragments’ sizes is lower: the fragments’ sizes look more homogeneous and distri-
bution equation~1! concentrates on its center+ At high disorder, the diversity of the
partition is large+
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3. SAMPLING WITHOUT REPLACEMENT AND SIZE-BIASED
PERMUTATION OF THE FRAGMENTS

Assume some observer is sampling such an interval as follows: Drop at random
points onto this randomly broken interval and record the corresponding numbers of
visited fragments+ Consider the problem of determining the order in which the var-
ious fragments will be discovered in such a sampling process+ To avoid revisiting
many times the same fragment once it has been discovered, we need to remove it
from the population as soon as it has been met in the sampling process+ However, to
do that, an estimation of its size is needed+ We first do that for the first visited
fragment+Once this is done, after renormalizing the remaining fragments’ sizes, we
are left with a population ofn21 fragments, the sampling of which will necessarily
supply a so far undiscovered fragment+ Its size can be estimated and so forth, renor-
malizing again, until the whole available fragments’ population has been visited+ In
this way, not only can the visiting order of the different fragments be understood
but also their sizes+ The purpose of this section is to describe the statistical structure
of the size-biased permutation of the fragments’ sizes as those obtained while avoid-
ing the ones previously encountered in a sampling process+

Let Sn :5 ~S1, + + + ,Sn! be the random partition of the interval@0,1# considered
here, with Sm 5

d
Sn ;

d
beta~u, ~n 2 1!u!, m5 1, + + + , n, (mSm 5 1+

Let U be a uniformly distributed random throw on@0,1# and letLn :5 Ln~U ! be
the length of the interval of the random partition containingU+ The distribution of
Ln is characterized by the conditional probability

P~Ln 5 Sm6Sn! 5 Sm+ (6)

In this size-biased picking procedure, long intervals are favored and one expects
thatLn f Sn in the usual stochastic sense thatOFLn

~s! $ OFSn
~s!, ∀s [ @0,1# +

Let us first check that the size of the interval containingU is stochastically
larger than the typical fragment’s length of the original partition+

3.1. Length of the First Size-Biased Sample

From the size-biased picking construction, it follows ~see, e+g+, @6# ! that for all non-
negative measurable functionsw on @0,1# ,

E@w~Ln!0Ln# 5 E@E@w~Ln!0Ln6Sn##

5 EF(
m51

n

w~Sm!0SmP~Ln 5 Sm6Sn!G
5 EF(

m51

n

w~Sm!G + (7)

Taking in particularw~x! 5 xI ~x . s! in Eq+ ~7!, we get

OFLn
~s! 5 EF(

m51

n

SmI ~Sm . s!G ,
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which, sinceSm 5
d

Sn, m5 1, + + + , n, is

OFLn
~s! 5 (

m51

n E
s

1

t dFSm
~t ! 5 nE

s

1

t dFSn
~t !+ (8)

Proposition 1: Ln ;
d

beta~1 1 u, ~n 2 1!u! and it holds that

Ln f Sn+ (9)

Proof: The condition OFLn
~s! $ OFSn

~s! holds for alls in @0,1# because this is equiv-
alent to*s

1 t dFSn
~t !0 OFSn

~s! $ E~Sn!, which is always true because the left-hand side
is the conditional expectation ofSn givenSn . s, certainly larger thanE~Sn! itself+
BecauseSn ;

d
beta~u, ~n 2 1!u!, one can check directly thatLn ;

d
beta~1 1 u,

~n 2 1!u!, with E~Ln! 5 ~11 u!0~nu 1 1!+ n

This apparent paradox~discussed whenu 51 in Feller@8, pp+ 22–23# and sub-
sequently worked out in Hawkes@12, pp+ 294–295# ! may be understood by observ-
ing that in the size-biased picking procedure, long intervals are favored+ It constitutes
the version on the interval of the standard waiting-time paradox on the half-line+As
a corollary, the following decomposition holds+

Corollary 2: Let Bn be a Bernoulli random variable with parameter10n and
Bu,1 ;

d
beta~u,1! on @0,1# , independent of Bn. Define a@0,1#-valued random vari-

able Rn with distribution

Rn 5
d

Bn 1 ~12 Bn!{Bu,1+ (10)

Then, the following decomposition holds:

Rn{Ln 5
d

Sn, (11)

where Rn andLn are independent.

Proof: SinceP~Bn 5 1! 5 10n, we have

E@Rn
q# 5

1

n
1 S12

1

n
D u

u 1 q
+

Takingw~x! 5 xq11 in Eq+ ~7!, the moment function ofLn reads~q . 2~1 1 u!!

E@Ln
q# 5 EF(

m51

n

Sm
q11G5 nE@Sn

q11# 5
nG~nu!G~u 1 q 1 1!

G~u!G~nu 1 q 1 1!
,

recalling thatE@Sn
q# 5 @G~nu!G~u 1 q!#0@G~u!G~nu 1 q!# is the common moment

function ofSm, m5 1, + + + , n, with E~Sn! 5 10n+ So,

E@Sn
q# 5

nu 1 q

n~u 1 q!
E@Ln

q# 5 E@Rn
q#E@Ln

q# + n
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3.2. Size-Biased Permutation of the Fragments

Consider the random partitionSn+ Let L1 :5 Ln be the length of the first randomly
chosen fragmentM1 :5 M, so withL1 :5 SM1

andP~M1 5 m16Sn! 5 Sm1
+ A standard

problem is to iterate the size-biased picking procedure, by avoiding the fragments
already encountered: By doing so, a size-biased permutation~SBP! of the frag-
ments is obtained+We study here this process in some detail+

In the first step of this size-biased picking procedure,

Sn :5 Sn
~0! r ~L1,S1, + + + ,SM121,SM111, + + + ,Sn!,

which can be written asSn r ~L1, ~12 L1!Sn21
~1! !, with

Sn21
~1! :5 ~S1

~1! , + + + ,SM121
~1! ,SM111

~1! , + + + ,Sn
~1! !,

a new random partition of the unit interval inton 2 1 random fragments+
GivenL1 ;

d
beta~11u, ~n21!u!, the conditional joint distribution of the remain-

ing components ofSn is the same as that of~12 L1!Sn21
~1! , where the~n21!-vector

Sn21
~1! ;

d
Dn21~u! has the distribution of a Dirichlet random partition inton21 frag-

ments+ Next, pick at random an interval inSn21
~1! and callV2 its length, now with

distribution beta~11u, ~n22!u!, and iterate until all fragments have been exhausted+
With V1 :5 L1, the length of the second fragment by avoiding the first reads

L2 5 ~1 2 V1!V2+ Iterating, the final size-biased permutation~SBP! of Sn is L n :5
~L1, + + + , Ln!+We will setL n 5 SBP~Sn!+

From this construction, if ~V1, + + + ,Vn21! is an independent sample with distri-
butionVk ;

d
beta~11 u, ~n 2 k!u!, k 5 1, + + + , n 2 1, then,

Lk 5 )
i51

k21

~12 Vi !Vk, k 5 1, + + + , n 2 1, (12)

Ln 5 12 (
k51

n21

Lk 5 )
k51

n21

~12 Vi ! (13)

is the stick-breaking scheme construction of the size-biased permutation ofSn+Note
that PVi :5 12 Vi ;

d
beta~~n2 i !u,11 u! and thatVn should be set to one+ From this

well-known construction and properties~see Kingman@16, Chap+ 9, 9+6# , Patil and
Taillie @17# , and Donnelly@4# ! we obtain that theLk’s, k 5 1, + + + , n, are arranged in
stochastically decreasing order+ More precisely, we have the following:

Theorem 3:

(i) The law of Lk, for k 5 1, + + + , n, is characterized by

E@Lk
q# 5 )

i51

k21

E@ PVi
q#E@Vk

q#

5 )
i51

k21 G~~n 2 i !u 1 q!G~~n 2 i 1 1!u 1 1!

G~~n 2 i !u!G~~n 2 i 1 1!u 1 1 1 q!

3
G~11 u 1 q!G~11 ~n 2 k 1 1!u!

G~11 u!G~11 ~n 2 k 1 1!u 1 q!
+ (14)
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(ii) Let B~n2k11!u,1 ;
d

beta~~n 2 k 1 1!u,1!. Then,

Lk 5
d

B~n2k11!u,1{Lk21, k 5 2, + + + , n, (15)

where pairs B~n2k11!u,1 and Lk21 are mutually independent for k5 2, + + + ,n.
(iii) L 1 f {{{ f Lk f {{{ f Ln.

Proof:

Part ~i! is a direct consequence of the construction, since PVi :5 1 2 Vi ;
d

beta~~n 2 i !u,1 1 u!, i 5 1, + + + , k 2 1, and Vk ;
d

beta~1 1 u, ~n 2 k!u! are
mutually independent+ Recalling the expression of the moment function for
beta distributions, the corresponding expression ofE@Lk

q# follows+

Part~iii ! being clearly a consequence of~ii !, it remains to prove~ii !+

Regrouping terms directly from Eq+ ~14!, we haveE@Lk
q# 5 E@Lk21

q #E@Bk
q# ,

with

E@Bk
q# 5

G~~n 2 k 1 1!u 1 q!

G~~n 2 k 1 1!u!

G~11 ~n 2 k 1 1!u!

G~11 ~n 2 k 1 1!u 1 q!
+

This is the moment function of a beta~~n 2 k 1 1!u,1!-distributed random
variable+ n

Result~ii ! is also in Collet, Huillet, and Martinez@3# , with a slightly different
proof+

Corollary 4: With b :5 10u, we have

E~Lk! 5
~b 1 1!G~n!

G~b 1 n 1 1!

G~b 1 n 2 k 1 1!

G~n 2 k 1 1!
, k 5 1, + + + , n, (16)

with (k51
n E~Lk! 5 1.

Proof: Puttingq 5 1 in the expression ofE@Lk
q# and if b 5 10u, we get

E~Lk! 5 )
i51

k21 ~n 2 i !u

~n 2 i 1 1!u 1 1
{

11 u

~n 2 k 1 1!u 1 1

5 ~b 1 1!
~n 2 1!!

~n 2 k!!

1

)
i50

k21

~b 1 n 2 i !

5 ~b 1 1!
G~n!

G~n 2 k 1 1!

G~b 1 n 2 k 1 1!

G~b 1 n 1 1!
+

From normalization, it holds by construction that(k51
n E~Lk! 5 1+ n
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Let us now compute the joint distribution of the size-biased permutationL n of
Sn+We will say in the sequel that, if L n 5 SBP~Sn!, thenL n ;

d
SBDn~u! assuming

thatSn ;
d

Dn~u!+

3.3. Joint Law of the SBP

Let us first discuss the visiting order of the fragments in the SBP process+ For any
permutation~m1, + + + ,mn! of ~1, + + + , n!, with M1, + + + ,Mk, k 5 1, + + + , n, the firstk dis-
tinct fragments’ numbers that have been visited in the SBP sampling process, we
have

P~M1 5 m1, + + + ,Mk 5 mk6Sn! 5 )
i51

k21 Smi

12 (
l51

i

Sml

Smk
(17)

so that

P~Mk 5 mk6Sn,M1 5 m1, + + + ,Mk21 5 mk21! 5
Smk

12 (
l51

k21

Sml

+ (18)

As a result,

P~Mk 5 m6Sn! 5 Sm (
~m1Þ + + +Þmk21!Þm

)
i51

k21 Smi

12 (
l51

i

Sml

(19)

is the probability that thekth visited fragment is fragment numberm from Dn~u!+ If
Km is the random position of fragment numberm, we then clearly have

P~Km 5 k6Sn! 5 P~Mk 5 m6Sn!, (20)

translating the fact thatKm andMk are inverses of one another, hence withKMk
5 k

andMKm
5 m+

Let us now compute the joint distribution of the size-biased permutationL n of
Sn with L n ;

d
SBDn~u! andSn ;

d
Dn~u!+ First, we have

~L1, + + + , Ln! 5 ~SM1
, + + + ,SMn

!, (21)

and, consequently,

P~L1 5 Sm1
, + + + , Ln 5 Smn

6Sn! 5 )
k51

n21 Smk

12 (
l51

k

Sml

Smn
, (22)

the average of which overSn gives the joint law ofL n :5 ~L1, + + + , Ln!+
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We will now consider the joint moment function of the random size-biased
permutationL n 5 ~L1, + + + , Ln!+ Indeed, we observe from Eqs+ ~12! and~13! and the
independence of theVk’s that

EF)
k51

n

Lk
qkG 5 EF)

k51

n

)
i51

k21

PVi
qkVk

qkG5 )
k51

n21

E@Vk
qk PVk

qk111 + + +1qn# , (23)

with Vk ;
d

beta~11 u, ~n 2 k!u! and PVk ;
d

beta~~n 2 k!u,11 u!, k 5 1, + + + , n 2 1+
Putting all of this together, we obtain the following result+

Theorem 5: The joint moment function of the SBPL n 5 ~L1, + + + , Ln! ;
d

SBDn~u!
reads

EF)
k51

n

Lk
qkG

5 )
k51

n21H G~11 ~n 2 k 1 1!u!

G~11 u!G~~n 2 k!u!

G~11 u 1 qk!G~~n 2 k!u 1 qk11 1 {{{ 1 qn!

G~11 ~n 2 k 1 1!u 1 qk 1 {{{ 1 qn! J +
(24)

Proof: Let V ;
d

beta~a,b!+ Then, with PV :5 12 V, it holds that

E@V q1 PV q2 # 5
G~a 1 b!

G~a!G~b!
E

0

1

va1q121~12 v!b1q221 dv

5
G~a 1 b!

G~a!G~b!

G~a 1 q1!G~b 1 q2!

G~a 1 b 1 q1 1 q2!
+

Adapting this computation, recalling thatVk ;
d

beta~11 u, ~n 2 k!u!, the quantity
E@Vk

qk PVk
qk111 + + +1qn21# has the expression displayed inside the product from Eq+ ~23!+

n

Remark: Letting qk 5 q0n, k 5 1, + + + , n, in Eq+ ~24!, the moment function of the
geometric average ofL n, which is)k51

n Lk
10n, follows+

4. COMPARATIVE SEARCH COST IN DIRICHLET PARTITION
AND IN THE SIZE-BIASED PERMUTATION OF IT

We now show how these results can be used when considering an arcane problem
from applied probability+

A collection ofn books with random popularitiesSm, m5 1, + + + , n, is arranged
on a shelf+ ~If instead of a collection of books, a population ofn species were con-
sidered, popularities verbatim interpret as species abundance; see Kingman@15#
and Ewens@7# for such interpretations!+

Books’ popularities are assumed to satisfySn ;
d

Dn~u!+ When a book is
demanded, it is removed and replaced~before a next demand! to the top of the
shelf, other books being shifted accordingly; successive demands are independent+
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Iterating this heaps process~as a recurrent positive Markov chain over the set of
permutations!, there is intuitively a tendency when the system has reached equilib-
rium, to find more popular books to the top of the heap+At equilibrium indeed~see
Donnelly @5# and references therein to the works of Dies, Hendricks, and Letac!,
books’ popularities are given byL n 5 SBP~Sn! ;

d
SBDn~u! and result~iii ! in Theo-

rem 3 stating thatL1 f {{{ f Ln confirms and gives some flesh to this intuition+
Note from this thatL n 5 SBP~L n! ~L n is invariant under size-biased permutation!
and thatL n 5 SBP~S~n!! sinceS~n! is simply obtained fromSn while rearranging its
components in descending order+

Next, define the search cost of an item in a library to be the number of items
above it in the heap; a weighted sum over the items yields the search cost of a
typical item+ The search cost when the library has reached the equilibrium stateL n

is, of course, expected to be smaller than the search cost inSn itself+We would like
to revisit these ancient questions in the light of our preceding results onL n5SBP~Sn!
whenSn ;

d
Dn~u!+

4.1. Search Cost in Sn ;
d

Dn(u)

We start with computing the search costCn,S assuming popularities to be Dirichlet
distributed+ Here, Cn,S is the discrete random variable taking the valuem2 1 with
probabilityE~Sm! 5 10n, m5 1, + + + , n+ The moment generating function ofCn,S is
expressed as

E@e2lCn,S# 5
1

n (
m51

n

e2l~m21! 5
1

n

12 e2ln

12 e2l
+ (25)

As a result, E~Cn,S! 5 ~n 2 1!02, E~Cn,S
2 ! 5 ~n 2 1!~2n 2 1!06, ands2~Cn,S! 5

~n 2 1!~n 1 1!012, and we have the following proposition+

Proposition 6: With U a uniformly distributed random variable on~0,1!, it holds
that

Cn,S

n
d
&& U as nF `+ (26)

Proof: From the expression of the moment generating function ofCn,S, we have

E@e2l~Cn,S0n! # d
&&

12 e2l

l
,

which is the Laplace-Stieltjes transform of a uniformly distributed random variable
U on ~0,1!, with mean value1

2
_ + Although in a different~deterministic! partition

context, a similar result can be found in Fill@9, Thm+ 4+2, p+ 198# + n
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4.2. Search Cost in Ln 5 SBP(Sn) ;
d

SBDn(u)

From its definition, the search cost inL n is the mixtureCn,L 5 KM 21 ~the number
of fragments above fragmentM in the list!+ Consequently, givenSn, Cn,L will take
the valueKm 2 1 with probabilitySm+ Its conditional distribution is

P~Cn,L 5 k 2 16Sn! 5 (
m51

n

P~Km 5 k6Sn!Sm, k 5 1, + + + , n,

whereP~Km 5 k6Sn! is given by Eqs+ ~19! and~20!+ Let us first recall some well-
known results on conditional search cost inL n, as a functional ofSn+

WhenP~Km 5 k6Sn! takes the more usual form

P~Km 5 k6Sn! 5 Sm (
l50

k21

~21!k212lSn 2 1 2 l

k 2 1 2 lD (
6J65l;mÓJ

~12 SJ !21 (27)

with SJ 5 (j[J Sj , the average position of original fragmentm in the limiting par-
tition SBDn~u! is known to be

E~Km6Sn! 5 (
k51

n

kP~Km 5 k6Sn! 5 1 1 (
lÞm

Sl

Sl 1 Sm

, (28)

so that the expected search cost in aSBDn~u! partition is

E~Cn,L 6Sn! :5 (
m51

n

Sm$E~Km6Sn! 2 1% 5 2 (
l,m

Sl Sm

Sl 1 Sm

+ (29)

The results@Eqs+ ~27!–~29!# were obtained by Burville and Kingman@2# + They are
valid for any random~or not! partition Sn+ Using Poisson embedding techniques,
Fill and Holst@10# , following combinatorial results of Flajolet, Gardy, and Thimo-
nier @11# , also found the full conditional generating function ofCn,L under the form

E~uCn,L 6Sn! 5E
0

`

e2tF(
m51

n Sm
2

11 ~eSmt 2 1!uGF)
m51

n

~11 ~eSmt 2 1!u!G dt+ (30)

See also Hildebrand@13# for related problems+
Averaging overSn gives the search-cost distribution in the random partition

case+ This is not so simple a matter, as it involves complicated Dirichlet integrals as
it stands, in general+WhenSn ;

d
Dn~u!, averaging overSn, Kingman@14# obtained

E~Cn,L ! 5 ~n21!u0~2u 11!+ Recently, Barrera and Paroissin@1, Thm+ 1# gave the
full generating functionE~uCn,L ! under the form of a not so explicit double integral,
even in the particular Dirichlet example+

Using the results of the preceding section, we will now show that the full law
of Cn,L can be computed more explicitly whenSn ;

d
Dn~u! andL n 5 SBP~Sn! ;

d

SBDn~u!+ Several conclusions can next be drawn in this particular case+
Stated differently, indeed, Cn,L takes the valuek21 with probabilityLk 5 SMk

,
k 5 1, + + + , n, recalling thatMk andKm are inverses of one another+ Averaging over
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L n, Cn,L therefore takes the valuek 2 1 with probabilityE~Lk!+ As a result, with
b :5 10u the inverse of temperature~or disorder!, we obtain the following lemma+

Lemma 7:

(i) The law of Cn,L is given by

P~Cn,L 5 k! 5
~b 1 1!G~n!

G~b 1 n 1 1!

G~b 1 n 2 k!

G~n 2 k!
, k 5 0, + + + , n 2 1; (31)

it is unimodal, with mode at k5 0.

(ii) The first and second moments are

E~Cn,L ! 5
n 2 1

2 1 b
and E@Cn,L

2 # 5
~n 2 1!~2n 1 b 2 1!

~b 1 2!~b 1 3!
+ (32)

Proof:

~i! The first part is a consequence of the explicit expression ofE~Lk!,
k 5 1, + + + , n, appearing in Corollary 4+ Note thatP~Cn,L 5 0! 5 ~b 1 1!0
~b 1 n! 5 ~11 u!0~11 nu!,which isE~L1!+Next, for eachk5 0, + + + , n21,
we have

P~Cn,L 5 k 1 1!

P~Cn,L 5 k!
5

n 2 k 2 1

b 1 n 2 k 2 1
, 1

and the mode of this distribution is, thus, at k 5 0+
~ii ! Equivalently, the moment function ofCn,L is

E@Cn,L
q # 5 (

k51

n21

kqE~Lk11! 5
~b 1 1!G~n!

G~b 1 n 1 1! (
k51

n21

kq
G~b 1 n 2 k!

G~n 2 k!

5
~b 1 1!G~n!

G~b 1 n 1 1! (
p51

n21

~n 2 p!q
G~b 1 p!

G~ p!
+

Putting A :5 G~b 1 n 1 1!0@~b 1 1!G~n!#, the normalization
(k51

n E~Lk! 5 1 ~with q 5 0! reads

A 5 (
p51

n G~b 1 p!

G~ p!
+

Let B be obtained fromA while substitutingb 11 to b andn 21 to n+We
get

B 5
G~b 1 n 1 1!

~b 1 2!G~n 2 1!
5

~n 2 1!~b 1 1!

b 1 2
A

5 (
p51

n21 G~b 1 p 1 1!

G~ p!
5 (

p51

n21

p
G~b 1 p 1 1!

G~ p 1 1!

5 (
p52

n

~ p 2 1!
G~b 1 p!

G~ p!
5 (

p51

n

p
G~b 1 p!

G~ p!
2 A+
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Puttingq 5 1 in E@Cn,L
q # , we obtain

E~Cn,L ! 5
1

ASn (
p51

n21 G~b 1 p!

G~ p!
2 (

p51

n21

p
G~b 1 p!

G~ p! D
5

1

A FnSA 2
G~b 1 n!

G~n!
D2 SA 1 B 2 n

G~b 1 n!

G~n!
DG

5
1

A FnA2 AS11
~n 2 1!~b 1 1!

b 1 2 DG
5

n 2 1

2 1 b
+

Using similar arguments, the second-order moment~q 5 2! can be
computed+ In more detail, if C is obtained fromA while substitutingb 1 2
to b andn 2 2 to n, we get

C 5
~n 2 1!~n 2 2!~b 1 1!

b 1 3
A 5 (

p51

n

p2
G~b 1 p!

G~ p!
2 3B 2 A+

Puttingq 5 2 in E@Cn,L
q # , we obtain

E~Cn,L
2 ! 5

1

A
~n2A 2 2n~A 1 B! 1 C 1 3B 1 A!

5
~n 2 1!~2n 1 b 2 1!

~b 1 2!~b 1 3!
+

The result on the mean value was obtained by Kingman@14# , with differ-
ent techniques+ Note thatE~Cn,S! $ E~Cn,L !, as expected+ The result on
the variance~with a different proof! is also in Barrera and Paroissin’s exam-
ple 2@1# + In fact, the full preasymptotic law ofCn,L is available from part
~i!, which seems to be new+ n

From our approach, we also obtain the asymptotic result+

Theorem 8: As nF `,

Cn,L

n
d
&& B1,1110u , (33)

where B1,1110u ;
d

beta~1,11 10u!.

Proof: From the expression of the moment function ofCn,L , we have

EFSCn,L

n
DqG 5

~b 1 1!G~n!

G~b 1 n 1 1! (
p51

n21S12
p

n
Dq G~b 1 p!

G~ p!
+
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For largen, this can be approximated by

EFSCn,L

n
DqG ;

~b 1 1!G~n!

G~b 1 n!
E

0

1

~12 x!q
G~b 1 nx!

G~nx!
dx+

From Stirling’s formula, with a . 0, G~a 1 z!0G~z! ;zF` za+ This shows that for
largen,

EFSCn,L

n
DqG ;

~b 1 1!

nb E
0

1

~12 x!q~nx!b dx

5 ~b 1 1!E
0

1

~12 x!qxb dx

5 ~b 1 1!E
0

1

xq~12 x!b dx,

which is the moment function of a beta~1,11 b! random variable with mean value
10~2 1 b! 5 u0~2u 1 1! , 1

2
_ + n

Remark: The limiting search cost per item inL n 5 SBP~Sn! ;
d

SBDn~u! is distrib-
uted likeB1,1110u, whereas its law is the one of a uniform random variableU in
Sn ;

d
Dn~u!+ Clearly, we haveU f B1,1110u, expressing the fact that search-cost per

item from the random partitionDn~u! is asymptotically larger than from theSBDn~u!
one, which is more organized+ This result differs from the well-known one that
E~Cn,S! $ E~Cn,L ! for eachn+

4.3. Search Cost in the Kingman Limit

Consider the situation wheren F `, u f 0 while nu 5 g . 0+ Such an asymptotics
was first considered by Kingman+ When k 5 o~n!, recalling Vk ;

d
beta~1 1 u,

~n 2 k!u!, we haveVk
d
&& Uk ;

d
beta~1,g! and theSBDn~u! distribution converges

weakly to a GEM~g! distribution~GEM 5 Griffiths-Engen-McCloskey!+ Namely,
~L1, + + + , Ln! d

&& ~L1
* , + + + , Lk

* , + + + ! 5: L *, where

Lk
* 5 )

i51

k21

PUi Uk, k $ 1+ (34)

Here, ~Uk, k$1! are independent and identically distributed with lawU1 ;
d

beta~1,g!
and PU1 :5 1 2 U1 ;

d
beta~g,1!+ Note thatL1

* f {{{ f Lk
* f {{{ and thatL * is

invariant under size-biased permutation+ In the Kingman limit, ~S~m!,m5 1, + + + , n!
converges in law to a Poisson–Dirichlet distribution~L~k!

* , k $ 1! ;
d

PD~g! with
L~1!
* . {{{ . L~k!

* . {{{+ The size-biased permutation of~L~k!
* , k $ 1! is ~Lk

* , k $ 1!
;
d

GEM~g! ~see Kingman@16, Chap+ 9# , Tavaré and Ewens@18# , and references to
Pitman’s work therein for a review!+ As a result, we have the following:
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Proposition 9: As nF `, u f 0 while nu 5 g . 0,

Cn,L
d
&& CL * ;

d
geom~g!+ (35)

Proof: In particular, we haveE~Lk
* ! 5 @g0~1 1 g!# k21@10~1 1 g!# + The moment

generating function of the search cost in the Kingman limit is thus

E@e2lCL * # 5 (
k$1

e2l~k21!E~Lk
* ! 5

1

11 g~12 e2l !
,

which is the one of a geometric distribution with meang+
Note thatP~CL * 5 0! 5 10~11 g!, which is the average length ofL1

* + n
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