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Consider the random Dirichlet partition of the interval intofragments at
temperature@ > 0. Explicit results on the law of its size-biased permutation are
first supplied Using thesgnew results on the comparative search cost distribu-
tions from Dirichlet partition and from its size-biased permutation are obtained

1. INTRODUCTION AND DESCRIPTION OF MAIN RESULTS

Basic facts on the random Dirichlet partition of the interval imtéragments at
temperatur® > 0 are first recalled in Section & Section 3explicit results on the

law of its size-biased permutation are suppliddsize-biased permutation of the
fragments sizes is the one obtained in a size-biased sampling process without
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replacement from a Dirichlet partitiomhe main points that we develop are the
following: In Proposition 1it is recalled that the length of an interval containing a
random sample is stochastically larger than the typical fragment size from a Dirichlet
distribution Its law is computed and the stochastic domination result is made more
explicit in Corollary 2 In Theorem 3the law of the length of th&th fragment in
the size-biased permutation is suppliédds also shown there that the consecutive
fragments in the size-biased permutation are arranged in stochastic descending order
In Corollary 4 the expected length of tHeh fragment in the size-biased permuta-
tion is suppliedIn Theorem Swe give the joint law of the size-biased permutation
fragments sizes explicitlyor, rather its joint moment function

Size-biased permutations of random discrete distributions are known to be the
random equilibrium distributions of the heaps process consisting in moving sequen-
tially sampled fragments to the frgrstarting from the original partitiarusing the
computations from Section Bew results on the comparative search-cost distribu-
tions from Dirichlet partition and from its size-biased permutation are obtained in
Section 4 The search cost of an item in a library is the number of items above it in
the heapaveraging over the items gives the search cost of a typical ifamsearch
cost when the library has reached the equilibrium state is expected to be smaller
than the search cost in the original Dirichlet partition its@liie results that we
describe confirm this intuitiorin Proposition 6the limiting search cost per item in
a Dirichlet partition is first shown to be uniformly distributeth Lemma 7 we
compute explicitly the law of the search cost in the size-biased permutation of a
Dirichlet partition using Corollary 4First and second moments are also obtained
differently from the techniques usually employed to dolsorheorem 8the lim-
iting search cost per item in a size-biased permutation of the Dirichlet partition is
shown to be betd, 1 + 1/6) distributed Finally, in Proposition 9considering the
asymptotic introduced by Kingman T o0, 8 L 0, nd = y > 0, we find the limiting
size-biased permutation search cost to be geometrically distributed

2. PRELIMINARIES: THE DIRICHLET DISTRIBUTION D, (8)

We will consider the following random partition intofragments of the unit inter-

val: Let# > 0 be some parameter that we will interpret as temperature or disorder

of the partition Assume that the random fragments’ sif&s= (S, ...,S,) (with
m—1Syn=1) is distributed according to thexchangeab)eDirichlet D,,(6) density

function on the simplexthat is to say

rme) -
f = 0-1.8/ n . 1
S - o nglsm (Eﬁ“‘l) (1)
Alternatively the law of S, := (S,,...,S,) is characterized by its joint moment
function
n r'(no) " T(6+ gm)
E| T S| = - I . 2)
m=1 m=1 r(a)
r(ne+ > an
m=1
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In this caseS, 4 S, m=1,...,n, independently omand the individual fragment
sizes are all identically distributd@d.). Their common density on the interv@, 1)
is given by

fe (s) = __Tmo) s71(1 — g)(n~Vo-1L (3)
Sh ()T ((n—1)0) ’

which is a betés, (n — 1)6) density with mean valueE(S,) = 1/n and variance
o?(S) = (n—1)/[n*(nd + 1)].

We recall that a random variableayB, ,, with By j, < betd a, b), has density
functionfg_,(x) := [I'(a+ b)/T ()T (b)]x**(1 - x)?~1 a,b > 0, x € [0,1] and
moment functiorE[Bg ,] =[I'(a+ )T (a+ b)]/[T(a)T'(a+ b+ g)], with I'(a) the
Euler's Gamma function

We also recall that whe#él = 1, the partition mode[Eqs (1) and(2)] corre-
sponds to the standard uniform partition model of the interval

From Eq (3), asn T oo, we next have

6

r o)

nS -5 1, with densityf, ,(t) = tf-le=%t {0, (4)

showing that the sizes of fragments are asymptotically all of order 1

Consider next the sequengg, := (Sm);m=1,...,n) obtained while ranking
the fragment sizeS, according to descending sizé®nce withSy) > --- > §,) >
-+« > §y). The§y, distribution can hardly be derived in closed farifowever one
could prove that aa T oo,

1
na+0/0g 45w, and ne (S(l) ~ log(n(log n)”l)> < G,, (%)

whereW, is a Weibull random variable an@, is a Gumbel random variable such
thatP(W, > t) = exp[—t%sy], t > 0, andP(G, = t) = exp[—s, texp(—t)],t E R,
Sy :=T(1+60)0"? > 0is a scale parameter

In the random division of the interval as in E@) at disordem, although all
fragments are identically distributed with sizes of ordet, the smallest fragment’s
size grows liken(“*Y/¢ and the largest is of ordéf/nd)log(n(logn)?~1). The
smallerd is, the larger(smalle) the largestsmallest fragment’s size ishencethe
smaller disorde# is, the more the values of tHg,, are with high probability dis-
parate At low disorder the size of the largest fragme§, tends to dominate the
other ones and the ran@), — S, increases whe#fl decreases

To the contrarylarge values o correspond to situations in which the range of
fragments’ sizes is lowethe fragments’ sizes look more homogeneous and distri-
bution equatior(1) concentrates on its centét high disorderthe diversity of the
partition is large
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3. SAMPLING WITHOUT REPLACEMENT AND SIZE-BIASED
PERMUTATION OF THE FRAGMENTS

Assume some observer is sampling such an interval as fallbngp at random
points onto this randomly broken interval and record the corresponding numbers of
visited fragmentsConsider the problem of determining the order in which the var-
ious fragments will be discovered in such a sampling pracesavoid revisiting
many times the same fragment once it has been discovereedeed to remove it
from the population as soon as it has been met in the sampling prétmssver to
do that an estimation of its size is needéd/e first do that for the first visited
fragment Once this is dongafter renormalizing the remaining fragments’ siage
are left with a population af — 1 fragmentsthe sampling of which will necessarily
supply a so far undiscovered fragmeitd size can be estimated and so forénor-
malizing againuntil the whole available fragments’ population has been visited
this way not only can the visiting order of the different fragments be understood
but also their sized'he purpose of this section is to describe the statistical structure
of the size-biased permutation of the fragments’ sizes as those obtained while avoid-
ing the ones previously encountered in a sampling process

LetS, := (S,...,S,) be the random partition of the intervid, 1] considered
here with S, = S, < betad,(n—1)0), m=1,...,n, >,S, =1

Let U be a uniformly distributed random throw §@,1] and let¥,,:= £,(U) be
the length of the interval of the random partition containhgr he distribution of
¥, is characterized by the conditional probability

P(¥n = SnlSh) = Sn. (6)

In this size-biased picking proceduideng intervals are favored and one expects
that¥, > S, in the usual stochastic sense tiat(s) = Fg (s), Os € [0,1].

Let us first check that the size of the interval containltids stochastically
larger than the typical fragment’s length of the original partition

3.1. Length of the First Size-Biased Sample

From the size-biased picking constructidrfollows (see e.g., [6]) that for all non-
negative measurable functiogpson[0,1],

E[QD(Qn)/gn] = E[E[¢(8n)/8n|sn]]

= E[ Ezlso(Sn)/SnP(ﬂn = Sm|sn):|

= E[E @(Sm):|~ (7)

Taking in particularp (x) = xI (x > s) in Eq. (7), we get

Fe,(s) = E{ glsnl (Sn> S)],
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. . d
which, sinceS, =S, m=1,...,n,is
1

Fe (s) = 21 tdrs (t) = nf tdFs (). (8)

ProposITION 1: ¥, b3 beta(1 + 6,(n — 1)6) and it holds that
L, =S, 9)

Proor: The conditiorifﬁn(s) = Ifsq(s) holds for allsin [0,1] because this is equiv-
alent toflt dFSﬂ(t)/Iqu(s) = E(S,), which is always true because the left-hand side
is the condltlonal expectation &, givenS, > s, certainly larger thaE(S,) itself.
Becauses, ~ beta(e (n — 1)0), one can check directly that, h3 beta1l + 0,
(n—1)0), with E(¥,,)) = (1 + 6)/(nd + 1). u

This apparent paradgdiscussed wheé = 1 in Feller[8, pp. 22—23 and sub-
sequently worked out in Hawké&2, pp. 294—-299) may be understood by observ-
ing that in the size-biased picking proceduosg intervals are favoredt constitutes
the version on the interval of the standard waiting-time paradox on the halfAine
a corollary the following decomposition holds

COROdLLARY 2: Let B, be a Bernoulli random variable with parametéyn and
By.1 ~ beta(d,1) on[0,1], independent of B Define a[0,1]-valued random vari-
able R, with distribution

Ry 2B, + (1-B,)-Bya. (10)

Then, the following decomposition holds:

Ry %, = S, (11)
where R and ¥,, are independent.
Proor: SinceP(B,=1) =1/n, we have
1 1\ o0
E[RY] = (1 - —) —
0+q
Taking ¢ (x) = x4 in Eq. (7), the moment function of, reads(q > —(1 + 6))

nrC(n@)r(® +q+1)
r@rme+g+1°

E[ed] = E{ » S%] — (S =

m=1

recalling thatE[SY] = [T(n0)T (0 + q)]/[T(#)T(nd + g)] is the common moment
function of S, m=1,...,n, with E(S,) = 1/n. Sq,

ne + q
ne +q)

E[SV] = E[LR] = E[RA]E[LA]. u
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3.2. Size-Biased Permutation of the Fragments
Consider the random partitidsy,. Let L, := &, be the length of the first randomly
chosen fragmeril, := M, so withL, := S, andP(M;=m,|S,) = S, . Astandard
problem is to iterate the size-biased picking procegdoyeavoiding the fragments
already encountere®y doing sg a size-biased permutatiqi$BP of the frag-
ments is obtainedNVe study here this process in some detail

In the first step of this size-biased picking procedure

Sn = S§‘|O) - (Ll’ S_I.""vs\lll—lﬁ S\A1+1,~-,Sn),
which can be written aS,, — (L, (1 — L,)S%,), with

a new random partition of the unit interval into— 1 random fragments

GivenlL, < beta1+ 6, (n—1)6), the conditional joint distribution of the remain-

ing components 08, is the same as that ¢f — Ll)S,(ql)l, where the(n — 1)-vector
(1)1 ~ D,,_1(0) has the distribution of a Dirichlet random partition inte- 1 frag-

ments Next, pick at random an interval i, and callV, its length now with
distribution bet&l + 6, (n — 2)#), and iterate until all fragments have been exhausted

With V; := L4, the length of the second fragment by avoiding the first reads
L, = (1 — V) V.. lterating the final size-biased permutati@8BP) of S, isL, :=
(Lq,...,Ln). We will setL,, = SBP(Sn)

From th|s constructionf (Vy,...,Va— 1) is an independent sample with distri-
butlond ~ betad1+ 0,(n—k)0), k 1,...,n—1 then
k—1
Le= [T (A—- V)V, k=1...,n—1, (22)
i=1
n—1 n—1
Ln=1—ZLk=H(1—Vi) (13)

is the stick- breaklng scheme construction of the size-biased permutaqanidte

thatV, :==1-V, ~ beta((n —i)6,1+ 0) and thatV,, should be set to on&rom this

well-known construction and propertiesee Kingmani16, Chap 9, 9.6], Patil and

Taillie [17], and Donnelly{4]) we obtain that thé,’'s, k=1,...,n, are arranged in
stochastically decreasing ordé&fore preciselywe have the following

THEOREM 3:
(i) The law of L, for k= 1,...,n, is characterized by
k—1
E[L] = [T EIVTIEIW]

B KIp(n—i)0+qgTr((n—i+1)6+1)

CEIT((n—D)e)r((n—i+1)6+1+q)
rA+0+qgqr@d+n—-k+196)
rA+e)r@ad+mn-k+160+q)’

(14)
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(i) Let By 101 ~ beta((n — k + 1)6,1). Then,

d
Lk = Bk po1- i1, k=2,...,n, (15)
where pairs B,_x+1),1 and L, are mutually independent fork2,...,n.
(i) Ly = - =Lg= - =L,
PrOOF:

Part (i) is a direct consequence of the constructisimceV, := 1 — V, 2
beta(n — i)6,1 + ), i = 1,...,k — 1, andV, < betal + 6,(n — k)) are
mutually independentRecalling the expression of the moment function for
beta distributionsthe corresponding expressionBFL}] follows.

Part(iii ) being clearly a consequence (@f), it remains to proveii).

Regrouping terms directly from Eq14), we haveE[L}] = E[L}_,]E[B{],

with

Fr(n—k+1)0+q T@A+(n—k+1)0)
I'(n—k+16) TI'l+(n—-k+1o+0q)

This is the moment function of a beéta — k + 1)60,1)-distributed random
variable u

E[B(] =

Result(ii) is also in Collet Huillet, and MartineZ 3], with a slightly different
proof.

CoroLLARY 4: With 8 := 1/, we have

(B+1)I'(n) T(B+n—k+1)
r(g+n+1 rnh-k+1) ’

E(Ly) = k=1,...,n, (16)

with X ¢_; E(L,) = 1.

Proor: Puttingq =1 in the expression d[L}] and if 3 = 1/6, we get

_k,l n—i)6 1+6
E(Lk)—i:l_ll(n_i+1)g+1'(n—k+1)o+1
(n—1)! 1

=B+ —F i1
(n k>!1:[(5+n—i)

I'(n) r(B+n—k+1)
(n—k+1) T(B+n+1)

= (B+1) -

From normalizationit holds by construction that,_, E(L,) = 1. |
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Let us now compute the joint distribution of the size- blased permutatjcof
S,. We WI|| say in the sequel thaif L , = SBF(S,), thenL , ~ SBQ(@) assuming
thatS, < D,(0).

3.3. Joint Law of the SBP

Let us first discuss the visiting order of the fragments in the SBP proEessany
permutation(my,..., m,) of (1,...,n), with M4,...,M,, k=1,...,n, the firstk dis-
tinct fragments’ numbers that have been visited in the SBP sampling preeess

have
k—1 Sﬂ,
P(My=my,...,M=m|S,) = H — S, 17)
t1- Sh
I1=1
so that
S,
P(My=m|Sp,My=my,..., M 1 =m,_;) = Y (18)
1- Sh
=1
As a result
k—1 Sn
PMc=m[S) =S, X H (19)
(m#...#m_)#mi=1 E

is the probability that thé&th visited fragment is fragment numb@rfrom D,(6). If
K is the random position of fragment numbreywe then clearly have

P(Km = k|Sn) = P(Mk = m‘Sn)’ (20)
translating the fact th&,, andM, are inverses of one anothéence withKy, =k
andM,_=m.

Let us now compute the Jomt distribution of the size-biased permutétjcof
S,with L, ~ SBQ(Q) andS, ~ D,(6). First, we have

(Ll’“'v Ln) = (Svll,-u,Swn), (21)
and consequently
n—1 S'nk
P(L1:Sn1»---aLn:S'nn|Sn): H —kS‘hn’ (22)
k=1 1— 2 Sm
I=1

the average of which oves, gives the joint law ol , := (L4,...,L,).
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We will now consider the joint moment function of the random size-biased
permutatiorL , = (L4,...,L,). Indeed we observe from Eq$12) and(13) and the
independence of the’s that

n—1

E[ﬁ Lﬁkj| = E|:ﬁ 1:[ qu :| H E[VKQkVKQk+1+~"+Qn], (23)
k=1 k=1i=1 k=1

with Vi < beta1 + 6, (n — k)#) and Vi < beta(n — k)0,1+ 6), k=1,...,n — 1.
Putting all of this togetheme obtain the following result

THEOREM 5: The joint moment function of the SRR = (L4,...,L,) < SBD,(0)

reads
i)
H ra+(n—k+210) TA+0+g)T(n—KO+ Qs+ --- +0n)
1| TA+0)T(n—k)6) ra+mn—-k+10+qgc+ - +0a,
(24)
Proor: LetV < betaa,b). Then with V:= 1 —V, it holds that
_ I'(a+b) (*
E[lVaWVWV%2]| = ——— Ua+q171 1—v b+qg,—1 dU
V= T J, Y

_ T(a+b) T(a+aq)r(b+q,)
 T(aT(b) T(a+b+o+ )"

Adapting this computatigrrecalling thatV, L betal + 6, (n — k)0), the quantity
E[V kY2t *9-1] has the expression displayed inside the product froniZ3y.
[ |

Remark: Letting g, = g/n, k = 1,...,n, in Eq. (24), the moment function of the
geometric average df,,, which isIIy_, L¥", follows.

4. COMPARATIVE SEARCH COST IN DIRICHLET PARTITION
AND IN THE SIZE-BIASED PERMUTATION OF IT

We now show how these results can be used when considering an arcane problem
from applied probability

A collection ofn books with random popularities,, m=1,...,n, is arranged
on a shelf (If instead of a collection of books population oh species were con-
sidered popularities verbatim interpret as species abundasee Kingmar{15]
and Eweng7] for such interpretations

Books’ popularities are assumed to sat|§y~ D,(6). When a book is
demandedit is removed and replaceefore a next demando the top of the
shelf other books being shifted accordingBuccessive demands are independent
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Iterating this heaps procesas a recurrent positive Markov chain over the set of
permutationy there is intuitively a tendency when the system has reached equilib-
rium, to find more popular books to the top of the heaApequilibrium indeed see
Donnelly[5] and references therein to the works of Dielendricks and Letag,
books’ popularities are given ly,, = SBF(S,) < SBD,(#) and resul{iii ) in Theo-
rem 3 stating that,; > --- > L,, confirms and gives some flesh to this intuition
Note from this that., = SBP(L ,,) (L, is invariant under size-biased permutagion
and that_, = SBR(S,)) sinceSy, is simply obtained frons, while rearranging its
components in descending order

Next, define the search cost of an item in a library to be the number of items
above it in the hegpa weighted sum over the items yields the search cost of a
typical item The search cost when the library has reached the equilibriumlstate
is, of coursg expected to be smaller than the search co&,iitself. We would like
to revisit these ancient questions in the light of our preceding results erfSBR(S,)
whens, 4 D,(0).

4.1. Search Costin S, < D,(6)

We start with computing the search c@ts assuming popularities to be Dirichlet
distributed Herg C, s is the discrete random variable taking the vahue- 1 with
probability E(S;,) = 1/n, m=1,...,n. The moment generating function 6§, s is
expressed as

11—

n
Serm == —— (25)
m=1

Ble o] = nl—-e*

Sl

As aresultE(C,s) = (n—1)/2, E(C25) = (n—1)(2n — 1)/6, anda?(C,, s) =
(n—=1)(n+1)/12, and we have the following proposition

ProrosiTioN 6: With U a uniformly distributed random variable @8,1), it holds
that

Cn, S
n

4 U asnT . (26)

Proor: From the expression of the moment generating functio@.0f, we have

1-e*
A b

E[e *Cns/m] 4,

which is the Laplace-Stieltjes transform of a uniformly distributed random variable
U on (0,1), with mean values. Although in a different(deterministi¢ partition
context a similar result can be found in F{lB, Thm. 4.2, p. 198]. u
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4.2. Search Cost in L, = SBP(S,) < SBD,(8)

From its definition the search cost ih, is the mixtureC,, | = Ky — 1 (the number
of fragments above fragmeM in the lisf). Consequentlygivens,, C, | will take
the valueK,, — 1 with probabilityS,. Its conditional distribution is

P(Cn,L:k_]-'Sn): 2 P(Km:k|sn)3’m k:]-,---’n’
m=1

whereP(K,, = k|S,) is given by Eqs(19) and(20). Let us first recall some well-
known results on conditional search cosLif as a functional of,.
WhenP(K,, = k|S,) takes the more usual form

k=1 n—1-1I
PKy=KS) =S, S D (1 0 ) S a-s)t @)
=) K=1—-1/55mes

with S§; = X, S, the average position of original fragmemtin the limiting par-
tition SB,(0) is known to be

S

E(K,IS,) = >, kP(K,,=k|S,) =1 28
(KnlSy) = 2 (Kn=KIS) =1+ 3 e, (28)
so that the expected search cost iBBD,(0) partition is
E(C.. IS, = E(K,|S,) —1}=2 29
(CorlS) = 3 SulE(KnlS) ~ 1 g§+% (29)

The result§Egs (27)—(29)] were obtained by Burville and Kingmd@]. They are
valid for any random{or not partition S,,. Using Poisson embedding technigues
Fill and Holst[10], following combinatorial results of FlajoleGardy and Thimo-
nier[11], also found the full conditional generating function@f, under the form

— ” —t S i : t—
E(uS ISn)—f0 e LElH(esnt_l)anﬂl(lJr(esﬂ Du)|dt (30)

See also Hildebranfl3] for related problems

Averaging overS, gives the search-cost distribution in the random partition
caseThisis not so simple a matteas itinvolves complicated Dirichlet integrals as
it standsin generalWhenS,, ~ D »(0), averaging oves,, Kingman[14] obtained
E(ChL) =(n—1)6/(26 + 1). RecentlyBarrera and Paroiss[d, Thm. 1] gave the
full generating functiorE (Ut ) under the form of a not so explicit double integral
even in the particular Dirichlet example

Using the results of the preceding sectioe WI|| now show that the full Iaw
of C, L can be computed more explicitly whé&h ~ Dn(a) andL, = SBP(Sn) ~
SBD,(#). Several conclusions can next be drawn in this particular.case

Stated differentlyindeed C,, | takes the valu& — 1 with probabilityL, = S,
k=1,...,n, recalling thatM, andK,, are inverses of one anothéweraging over
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L, C,. therefore takes the value— 1 with probability E(Ly). As a result with
B := 1/6 the inverse of temperatufer disorde), we obtain the following lemma

LEMMA 7:

(i) The law of G| is given by
(B+1r(n) T(B+n—-KkK)
r(g+n+1 T1(n—k °’
it is unimodal, with mode at k O.

P(CoL = k) = k=0,...,n—1; (31)

(i) The first and second moments are

B, )= 1Y and Efoz - V@ EAD o)
"2+ (B+2(B+3)

PrOOF:
(i) The first part is a consequence of the explicit expressiorEdf,),
k=1,...,n, appearing in Corollary ANote thatP(C,, =0) = (B8 + 1)/
(B+n)=(1+06)/(1+nd), whichisE(L,). Next foreachk=0,...,n—1,

we have
P(C,.=k+1)  n—-k-1 -1
P(C,L =k) ﬁ+n—k 1
and the mode of this distribution,ithus atk = 0.
(i) Equivalently the moment function o€, | is
o (B+1r(n) ' T(B+n—Kk)
E[CI 1= D KIE(Lgsq) = K
[Cll= 3 KE(Lin) Trn 2 3k
_ (BT * 2 n_pa P
F(B+n+1) I'(p

Putting A := T'(B + n + 1)/[(B + 1)I'(n)], the normalization
-1 E(Ly) =1 (with g = 0) reads
_ S T(BtP
p=1 F(p) '
Let B be obtained fronA while substituting3 + 1 to 8 andn — 1 ton. We
get
r(g+n+1)  (n-1H(B+1)
(,8+2)F(n—1) B+2
_ IT(B+p+1) ”§pr(3+p+1)
= T(p S5 T(p+1)
: Nﬂ+m L T(B+p
; T'(p) pgl I'(p)
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Puttingg =1 in E[C ], we obtain

Y ST R N SR T A
E(Cn,L) - A<np21 I‘(p) pglp r(p) >

Hafa- HEE0) (npogLEEN)

A r'(n) rn)
- Hon-afa B2E DY)

A B+2
B n—-1
2+ B

Using similar argumenishe second-order momefq = 2) can be
computedin more detailif Cis obtained fromA while substituting3 + 2
to B andn — 2 ton, we get

_(-DO-2(85D G TB+D

—3B—A
B+3 p=1 F(p)

C

Puttingg = 2 in E[C, ], we obtain

1
E(C2.) = " (nPA—2n(A+B)+C+3B+A)

_(h=1)@2n+p-1)
 (B+2(B+3)

The result on the mean value was obtained by Kingfdah, with differ-
ent techniquesNote thatE(C, s) = E(C,, ), as expectedThe result on
the variancéwith a different prooj is also in Barrera and Paroissin’s exam-
ple 2[1]. In fact, the full preasymptotic law o€, | is available from part
(i), which seems to be new u

From our approactwe also obtain the asymptotic result
THEOREM 8 As nT oo,

Cn, L
n

% Byrive (33)

where B 141/ < beta(1,1+ 1/6).

Proor: From the expression of the moment function@f,_, we have

Co V0] _ (B+DI(n) T pYT(B+p
EKT) ] S T(B+n+1) pzl<1 n) r(p
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For largen, this can be approximated by

Co o] (B+DT() g
EKT” TG+ f(l_ ) o

From Stirling’s formulawith a > 0, I'(a + 2)/T'(2) ~ . z2 This shows that for

largen,
EK&)(}] ~ ('Bn; Y fo (1 —x)9(nx)# dx

n

= (,8+1)J0 (1 — x)9%” dx

- <B+1>f0 Xa(1— x)P dx,

which is the moment function of a befial + B) random variable with mean value
1/2+B8)=0/(26 +1) < 3. [

Remark: The limiting search cost per item ln, = SBR(S,,) < SBD,(0) is distrib-
uted like By 1:1/9, Whereas its law is the one of a uniform random varigbléen

S, ~ Dn(e) Clearly we haveU > B, ;. 19, €Xpressing the fact that search-cost per
item from the random partitioB,(0) is asymptotically larger than from tI&BD,(0)
one which is more organizedrThis result differs from the well-known one that
E(C,s) = E(C, ) for eachn.

4.3. Search Cost in the Kingman Limit

Consider the situation whereT oo, # | 0 whilend = y > 0. Such an asymptotics
was first considered by ngmarWhen k = o(n), recalling Vi L beta1l + 6,
(n—Kk)60), we haveV N U, ~ beta1, y) and theSBD,(6) distribution converges
weakly to a GEMy) distribution(GEM = Griffiths-Engen-McCloskey Namely
(Lg,...,Lp) N (L3,...,L%,...) =:L*, where

Herg (Uy, k= 1) are independent and identically distributed with layvg« beta1,y)
andU; :=1—- U, < betay,1). Note thatLj > --- = Ly > --- and thatL* is
invariant under size-biased permutatitmthe Kingman limit (S, m=1,...,n)
converges in law to a Poisson-Dirichlet distributidrj,,, k = 1) 2 PD(y) with
L(l) - > L{y > ---. The size-biased permutation @ff,,, k = 1) is (L, k=1)
~ GEM(y) (see ngmarﬁlG Chap 9], Tavaré and Ewen{4d 8], and references to
Pitman’s work therein for a reviewAs a resultwe have the following
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ProposITION 9: AsnT oo, 8 L 0 while 9 =y > 0,

Cor 5 CL- < geom(y). (35)

Proor: In particular we haveE(L}) = [y/(1+ y)]* *[1/(1 + v)]. The moment
generating function of the search cost in the Kingman limit is thus

E[efx\cl_*] — E ef/\(kfl)E(Lik() —

k=1 1+y(l—ef)‘)’
which is the one of a geometric distribution with megan
Note thatP(C_- = 0) = 1/(1 + y), which is the average length &f. |
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