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Texture-driven elastohydrodynamic bouncing
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We investigate in detail the dynamics of bouncing of a fluid-immersed solid sphere
onto a textured wall at moderate Reynolds and Stokes numbers. Using high-frequency
interferometric measurements, the dynamics of the sphere is resolved in time and
space, before, during and after collision with the wall. The critical Stokes number for
bouncing is shown to be significantly influenced by the geometry of the texture, i.e.
the surface fraction and the height of the micro-pillars. A modified Hertz model is
developed to take into account the influence of this texture geometry on the collision
dynamics. The predicted scaling for the collision time and penetration depth of the
sphere into the textured wall is found to be in good agreement with the experimental
measurements.
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1. Introduction
The collision process of grains in a fluid is a key phenomenon for a good

understanding of the complex dynamics of numerous industrial and natural multiphase
flows, such as particle-laden flows, fluidised beds or submarine avalanches (Courrech
du Pont et al. 2003; Cassar, Nicolas & Pouliquen 2005). The immersed collision
of grains is an elastohydrodynamic problem, first introduced by Davis, Serayssol
& Hinch (1986) and later considered by Lian, Adams & Thornton (1996) and
Marshall (2011), which combines the fluid forces and the elastic deformation of
the bodies. The theory in these articles predicted that bouncing can occur between
smooth grains, even without physical contact, due to their elastic deformation from
lubrication fluid pressure. In this problem, the dimensionless Stokes number, St,
defined as the ratio of grain inertia relative to fluid viscous forces, was expected to
be a key parameter governing the collision process. Barnocky & Davis (1988) first
demonstrated experimentally, by dropping small spheres in air onto a wall covered
by a thin layer of viscous liquid, that no bouncing is observed below a critical
Stokes number, Stc. Above this critical value, bouncing occurs and the coefficient
of restitution of the collision, which is defined as the velocity modulus after the
collision relative to its value prior to the collision, is non-zero. With the use of
high-speed video cameras, Gondret et al. (1999), Joseph et al. (2001) and Gondret,

† Email address for correspondence: anne.mongruel@upmc.fr
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578 T. Chastel, P. Gondret and A. Mongruel

Lance & Petit (2002) measured this coefficient of restitution in the case where the
sphere in normal collision with the wall is fully immersed in a fluid. The coefficient
of restitution was found to be an increasing function of the Stokes number above
a critical value Stc ∼ 10. However, this critical value for bouncing and also the
coefficient of restitution were shown by Joseph et al. (2001) to have non-negligible
fluctuations generated by asperities of the solid surfaces. Thus, surface roughness
has been considered by Yang & Hunt (2008) using analytical modelling and in the
numerical simulations by Ardekany & Rangel (2008), Simeonov & Calantoni (2012),
Izard, Bonometti & Lacaze (2014) and Costa et al. (2015).

The present work investigates how the collisional process of a solid sphere onto
a wall in a viscous liquid is influenced by a wall texture, with special attention
given to the bouncing transition. The texture considered here consists of a network
of square micro-pillars at the wall surface, whose geometrical parameters can be
easily controlled and varied. To resolve the sphere motion not only before and after
the collision but also during the collision, we use a high-frequency interferometric
technique where the sphere acts as a moving mirror. Such an interferometric technique
was already used by Mongruel et al. (2010) to investigate the near-wall dynamics
of a sphere settling towards a smooth wall at finite Stokes and Reynolds numbers,
just below the bouncing transition (1 < St < Stc). Recently, the influence of a wall
texture on the near-wall dynamics of a sphere was studied with the same device for
Reynolds and Stokes numbers ranging from very low (Chastel & Mongruel 2016)
to finite values (Chastel 2015), and it was found that the velocity of the sphere
at a given distance from the top of the texture is larger than the corresponding
value near a smooth wall. Here, we present new results for the collision dynamics
of an immersed sphere onto a micro-textured wall around the bouncing transition.
We first describe the experimental set-up and present the experimental data showing
the dynamics of approach, of contact with the textured wall and of micro-rebounds.
From these data, the time duration of the collision and the maximal penetration depth
of the sphere into the wall texture can be measured, together with the impact and
rebound velocities. A modified Hertz contact model is derived to take into account
the geometry of the wall texture and then to predict the scaling laws for the collision
time and penetration depth, which differ from the classical Hertz theory (see Johnson
1985). These predictions compare favourably with the experimental measurements.

2. Experimental set-up

The experiments have been made with a high-frequency interferometric device,
sketched in figure 1(a), originally designed by Lecoq et al. (1993). A solid sphere of
density ρs and radius R settles under gravity in a silicon oil 47V1000 (from Bluestar
silicons) of density ρ = 978 kg m−3 and kinematic viscosity ν = 10−3 m2 s−1, at
25 ◦C, towards the horizontal bottom wall of a cylindrical container with a 50 mm
diameter and a 40 mm height. This bottom wall can be either a smooth glass
wall or a textured surface made of a thiolen resin (Norland Optical Adhesive NOA
81 of elastic modulus Ew ' 1.4 GPa) obtained by photolithography and comprised
of a forest of pillars with a height e and a square base of side 2b (figure 1b).
These pillars are organised in a periodic square pattern of wavelength L, thus with
the surface fraction φ = (2b/L)2. Different textures are prepared by varying the
geometrical parameters within the ranges 20 6 e 6 130 µm, 50 6 2b 6 100 µm and
1406 L6 240 µm, leading to an aspect ratio and surface fraction of the pillars in the
range 0.1< e/2b< 2.5 and 0.05 6 φ 6 0.3, respectively. The sphere radius has been
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FIGURE 1. (Colour online) (a) Sketch of the experimental set-up, (b) geometrical
parameters involved in the sphere/textured wall collision, (c) example of interferometric
signal in a bouncing case.

varied in the range 4 6 R < 8 mm so that the relative texture roughness lies in the
range 10−3 . e/R . 10−2. The sphere material is either steel (ρs = 7.8× 103 kg m−3,
Es = 240 GPa) or carbide tungsten (ρs = 15.6 × 103 kg m−3, Es = 550 GPa) of
roughness ε ' 0.1 µm and ε ' 0.03 µm, respectively, which values are negligible
when compared to the pillar height (ε/e < 10−3) and also smaller than the light
wavelength, leading to a mirror polish surface for the sphere.

The cylindrical container is filled with oil (no free surface) and inserted in an
interferometric device, where the immersed sphere is used as a reflector (figure 1a).
Before each experiment the sphere is held with a magnet at the centre of the top
plane window (made of glass of optical quality) of the fixed container. Removing
this magnet initiates the sphere settling and enables the pathway for the upper laser
beam which reflects on the top of the settling sphere. This laser beam interferes with
the other beam reflecting onto a plane mirror that is fixed under the bottom wall of
the container. As the sphere moves, the interference fringes move accordingly. The
light intensity of the fringes is then converted into an electric signal by a photodiode,
and recorded with an oscilloscope at a sampling frequency of 25 MHz (figure 1c).
Detection of the successive maxima of this electric signal gives access to the sphere
displacement dh with a resolution of λ/2n ' 0.23 µm, where λ = 0.633 µm is the
wavelength of the He–Ne laser beam, and n= 1.4 is the optical index of the silicon
oil. In practice, the maximum signal frequency that can be detected by the set-up is
0.5 MHz, yielding a time resolution of 0.002 ms. The instantaneous sphere velocity
V(t) = −dh/dt can thus be measured in the range 10−4 . V . 10−1 m s−1, with a
relative error smaller than 1 % in the approach phase and that does not exceed 5 %
in the collision and contact phase. The instantaneous position, h(t), is obtained by
integration, with the reference h= 0 determined a posteriori as the final sphere rest
position on the wall when V = 0. It should be noted that when the sphere is resting
on the surface, compressive stresses due to the apparent weight of the sphere deform
the surface. For a glass wall, this deformation can be neglected. However, for a
compliant material such as the NOA resin textures, we anticipate that the penetration
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Material 2R (mm) VT (m s−1) Re St

Stainless steel 10.5 0.27 2.8 2.5
12.7 0.34 4.3 3.8
14 0.38 5.3 4.7
15 0.40 6.0 5.4
15.9 0.42 6.6 5.8

Carbide tungsten 8 0.34 2.8 4.9

TABLE 1. Parameter values for the different used spheres, of different materials and
diameter 2R, settling in 47V1000 silicon oil. The Reynolds and Stokes numbers are based
on the calculated terminal velocity VT of the sphere in the corresponding unbounded fluid.

of the sphere into the surface is non-negligible compared to the scale of observation.
The static penetration depth of the sphere in the pillars is denoted δs (see figure 1b),
and its value will be discussed in § 4.1. As the sphere slows down on approach to the
wall, the recorded light modulation slows down accordingly until its complete arrest
in the case of a ‘sticking’ collision. In the bouncing case, the time modulation of the
signal first displays a slowing down before an acceleration, which is the signature of
the change of direction of the sphere (figure 1c).

In the present experiments, we investigate the elastohydrodynamic regime close to
the bouncing transition in the range 2.5 6 St 6 5.8 (see table 1), where the Stokes
number is defined as St = (2/9)ρsRVT/η, with η = ρν the dynamic viscosity of the
oil. Note that the present definition of St is based on VT , the terminal velocity of
the sphere in the corresponding unbounded fluid, in contrast to other studies that
used the velocity of the sphere just prior to impact. Here, VT can be inferred from
the viscous ‘Stokes’ drag force corrected from the small inertial effect known as
Oseen’s correction (see Mongruel et al. 2010). The corresponding Reynolds number
Re= (2R)VT/ν = 9(ρ/ρs)St is indeed in the range 2.8 6 Re 6 6.6 for the two density
ratios used here (ρs/ρ ' 8 and 16).

3. Critical Stokes number for bouncing
Figure 2 shows the evolution of the sphere velocity, V , as a function of the sphere

position, h, for a given sphere settling towards three different wall textures at the same
Stokes number St = 4.7. As stated before, the Stokes number is defined using the
terminal velocity of the sphere, and hence is fixed by the physical properties of the
sphere (ρs,R) and of the oil (ρ, ν). Thus, at a given Stokes number, the dynamics of
the sphere far from the wall, i.e. at a distance from the wall larger than one sphere
radius, is the same for the three experiments. By contrast, the near-wall dynamics of
the sphere is dramatically influenced by the type of texture. In the case of a smooth
wall, (e = 0, φ = 0), the sphere velocity drops towards zero for vanishing distance,
with a linear terminal regime that results from the lubrication flow in between the
smaller and smaller gap, eventually dissipating all of the kinetic energy of the sphere
(see Mongruel et al. 2010). This observation is consistent with the Stokes number here
being subcritical (St . 10). In the case of a textured wall (e 6= 0, φ 6= 0), the velocity
of the sphere is significantly larger, for a given distance h, than the corresponding
velocity for a smooth wall. This is a consequence of the fluid flow in between the
pillars, which decreases the pressure in the gap and thus the resisting lubrication force
on the sphere. The velocity in figure 2 appears to be shifted along the horizontal axis,
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FIGURE 2. (Colour online) Velocity V as a function of position h (with h = 0 for the
sphere at rest on the wall) for a steel sphere (2R= 14 mm) settling in 47V1000 silicon
oil (St = 4.7, Re = 5.3, VT = 380 mm s−1) towards an horizontal wall: smooth wall
(s (magenta)), textured wall with surface fraction φ=0.05 and height of pillars e=21 µm
(p (cyan)) or e= 89 µm (u (yellow)).

with a shift length that is proportional to the pillar height, e, but also depends on φ
and b/L (Chastel 2015). When the height of the textures is small enough (e.g. e =
21 µm for φ = 0.05 in figure 2), and despite this near-wall enhancement of velocity,
the sphere velocity still drops towards zero at vanishing distance h, but with a new
ultimate regime which corresponds now to the lubrication flow in between the sphere
and the top surface of the closest pillar (see Chastel & Mongruel 2016). Strikingly,
when the height of the texture is large enough (e.g. e= 89 µm for φ= 0.05), the local
velocity enhancement of the sphere is such that the contact with the top of the pillars
arises with a non-zero impact velocity Vi' 5 cm s−1. Note that this impact velocity is
significantly smaller than the terminal velocity VT ' 38 cm s−1 due to the lubrication
forces acting during the wall approach. In that case of non-zero impact velocity, the
sphere rebounds, whereas bouncing was precluded in the two previous cases. Indeed,
negative h values observed in figure 2 correspond to the dynamical extra compression
of the pillars during the collision.

As the elastic modulus of the sphere is much larger than the elastic modulus of
the textures, the elastic deformation of the sphere is negligible when compared to
the elastic deformation of the textures. The non-zero kinetic energy of the sphere
when touching the textured wall is stored by the elastic deformation of the textures.
The dynamic deformation is maximum (here h ' −0.01 mm) when the sphere
velocity vanishes. The stored elastic energy turns back into kinetic energy as the
sphere velocity becomes increasingly negative and the sphere takes off the wall with
a non-zero rebound velocity: Vr ' −2 cm s−1 at h ' 0. The impact and rebound
velocity measurements lead to the restitution coefficient |Vr/Vi| ' 0.4, which is
significantly smaller than one. The height of the micro-rebound of the sphere in the
fluid is h ' 8 µm. The sphere then returns to the wall with a vanishing velocity at
contact so that no subsequent rebound is possible: the sphere comes to rest at the
‘attractor’ point (h= 0,V = 0). Note that the V(h) curve in the bouncing case has the
same spiral shape as predicted from the calculations of Lian et al. (1996).
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FIGURE 3. (Colour online) Bouncing (q (blue),A (blue)) or sticking (u (red),E (red))
collision in the (e/2b, St) plane for the settling of a steel (filled symbols) or tungsten
carbide (open symbols) sphere of different diameters and thus different Stokes numbers
St in 47V1000 silicon oil towards a wall with micro-pillars of different aspect ratio e/2b
and different surface fraction (a) φ = 0.30, (b) φ = 0.15, (c) φ = 0.05. The dashed lines
are only a guide for the eye.

Figure 2 shows that bouncing is observed when the impact velocity is non-zero.
Hence, the bouncing of a given sphere in a given fluid (i.e. at a given Stokes number)
can be triggered by the wall texture as a result of the local velocity enhancement,
e.g. here, beyond a critical value of the pillar height e for a given pillar fraction φ.
Moreover, for a given e, bouncing occurs at Stokes number values decreasing with
decreasing φ, as a result of the local velocity enhancement being more pronounced for
smaller φ values. The different cases are summarized in figure 3 where the bouncing
and non-bouncing (‘sticking’) domains are reported in the (e/2b, St) plane for three
φ values ranging from 0.3 down to 0.05. The critical Stokes number for bouncing,
Stc, is thus situated at the boundary between those two domains and appears as a
dashed line in figure 3. The results show that Stc depends both on e/2b and φ with
measured values ranging typically from 3 to 5 for the texture geometries investigated
here. These values are significantly smaller than the value Stc' 10 reported previously
in the case of smooth surfaces (Joseph et al. 2001; Gondret et al. 2002). This shows
quantitatively that the wall texture influences the rebound of particles on a wall in a
fluid. This influence is a direct consequence of the modification brought by the wall
texture to the dynamics of approach of the sphere just prior to touching the wall.

Let us discuss two phenomena that may arise in the present sphere/wall collisions:
non-Newtonian behaviour of the oil and cavitation. Indeed, the high viscosity oil
used here is known to be shear thinning for high shear rates γ̇ (Marston, Yong &
Thoroddsen 2010). It has a Newtonian behaviour with a constant viscosity for low
enough shear rates (γ̇ . 2500 s−1) but exhibits a viscosity decrease beyond and, e.g.
for γ̇ ∼ 104 s−1, the viscosity value is approximately 85 % of the low shear viscosity.
The shear rate γ̇ in the lubricated squeezed flow of thickness h between the sphere
and the wall can be estimated to be maximum at a distance r0 = (2Rh)1/2 from the
axis of the sphere, where the tangential flow velocity is equal, from mass conservation,
to Vr0/2h. The highest value of the shear rate, γ̇ ∼Vr0/2h2, can be estimated for the
minimum gap thickness h= e in the case of a textured wall, and h= ε in the case of
a ‘smooth’ wall. For typical values of sphere impact (e.g. 2R= 14 mm), γ̇ ∼ 2400 s−1

for a typical textured wall (e = 100 µm, V = 40 mm s−1) and γ̇ ∼ 7000 s−1 for a
typical ‘smooth’ plane (ε = 1 µm, V = 0.2 mm s−1). We thus conclude that the
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FIGURE 4. (Colour online) (a) Time evolution of the velocity V(t) of a steel sphere
(2R= 14 mm) settling in 47V1000 silicon oil (St= 4.7, Re= 5.3, VT = 380 mm s−1) and
colliding with a textured wall (φ = 0.05, e = 89 µm). (b) Corresponding time evolution
of the sphere position h(t) with h= 0 for the sphere at final rest and top of the textures
at h= δs ' 2.5 µm. Vi ' 48 mm s−1, Vr '−13 mm s−1, δmax ' 10 µm, τc ' 1 ms.

variation of the oil viscosity during impact is negligible in our case. Concerning
cavitation, this phenomenon was observed during the rebound of a sphere from a
wetted surface by Marston et al. (2011). According to the criterion of Joseph (1998),
cavitation is only expected when the tensile stress that can be estimated to be 2ηγ̇
exceeds an atmospheric pressure of approximately 105 Pa, which is not the case in
our impact experiments, given the above values of γ̇ . Thus, the present experiments
are not affected by non-Newtonian behaviour or cavitation.

In the next section, we focus on the influence of the texture on the collision
dynamics.

4. Collision dynamics
In the bouncing case of figure 2, the time evolution of the sphere velocity, V(t),

and of the sphere position, h(t), are displayed in figure 4. As already mentioned
in § 2, the sphere position is defined with a reference origin h = 0 taken from the
final position of the sphere at rest. The top position of the textures thus corresponds
to a small positive value h = δs calculated from the model presented below. The
maximal deformation of the texture δmax during the sphere/wall collision is measured
in figure 4(b) from the minimum of the sphere position h = δs − δmax when the
sphere velocity vanishes (figure 4a). The corresponding time appears as the vertical
middle dashed line in figure 4. The time ti (respectively tr) at which the sphere
touches (respectively takes off) the top of the texture at h = δs can be determined
from figure 4(b) as the intersection of the h(t) experimental curve with the estimated
h = δs line. The collision duration τc is measured as τc = tr − ti and the impact
and rebound velocity are measured from figure 4(a) as Vi = V(ti) and Vr = V(tr),
respectively. In the typical bouncing of figure 4, the maximal sphere penetration is
δmax ' 10 µm, the collision duration is τc ' 1 ms, the impact and rebound velocities
are Vi ' 48 mm s−1 and Vr '−13 mm s−1, leading to a restitution coefficient value
of approximately 0.27.
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FIGURE 5. (Colour online) Sketch of the sphere penetrating into the pillars and definition
of the geometrical parameters used in the modelling.

These plots enable the quantitative measurements of both the maximal penetration
depth, δmax, and the collision duration, τc. The collision duration of a sphere with a
wall has been already measured with a force transducer by Falcon et al. (1998) in the
dry case and by Legendre et al. (2006) in the fully immersed case, but this technique
did not give access to the penetration depth. Falcon et al. (1998) also discussed in
detail the influence of gravity during the collision and presented a gravity-modified
Hertz interaction law. Before presenting our measured values of δmax and τc with
varying ρs, R, V , e and φ, we first describe our modelling of the static and dynamic
penetration of a sphere into a textured wall, taking into account the gravity effect.

4.1. Modelling the collision of the sphere with a textured wall
Given the materials used here for the sphere and the textured wall (Ew�Es), we will
consider in the modelling that only the wall is deformable whereas the sphere can be
considered as perfectly rigid. The model developed in the following is very close to
the original one developed by Hertz for the force contact law and collision dynamics
of a sphere of radius R and mass m = (4/3)πρsR3 with a smooth wall (Johnson
1985). Let δ0(t) be the penetration of the bottom apex of the sphere in the pillars
(figure 5). For a given penetration δ0, the sphere/wall contact exists within a disk area
of radius a' (2Rδ0)

1/2 and the local sphere penetration is δ(r)= δ0[1− (r/a)2] at the
radial distance r from the bottom apex of the sphere (figure 5). By assuming that the
deformation of the pillars remains in the elastic regime, the pillar deformation δ(r)/e
generates the normal stress σ(r) such that σ(r) = Ewδ(r)/e. By taking into account
the surface fraction of pillars, φ, the total force exerted by the pillars onto the sphere
is thus given by F= ∫ a

0 φσ(r)2πr dr, which leads to the normal force

F=πφEw
R
e
δ2

0 . (4.1)

Note that this force contact law is nonlinear with the sphere penetration δ0 due to
the increasing contact area, but it differs from the nonlinear Hertz scaling F ∼ δ3/2

0 .
This force contact law can be first used in the case of a static contact to calculate
the penetration δ0 = δs for a sphere at rest. In that case, the normal force F exerted
by the compressed pillars on the sphere balances the apparent gravity forces of the
sphere (4/3)πR3(ρs − ρ)g, which leads to

δs = R
[

4e(ρs − ρ)g
3φEw

]1/2

. (4.2)
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Depending on the different spheres and the textures used in the present experiments,
the static sphere penetration varies in the range 0.8 6 δs 6 3 µm.

Next, we consider a settling sphere impacting a horizontal textured wall at a
velocity Vi, as measured in the experiments (figure 4). Before contacting the wall,
the deceleration of the sphere is solely due to its hydrodynamic interaction with the
wall, i.e. by the resistance of the lubricated interstitial fluid to be squeezed out of
the gap between the sphere and the wall. During the contact, a fluid flow between
the pillars still occurs, but for simplicity we assume here that the main contribution
to the further deceleration of the sphere comes from the resistance of the pillars
to elastic compression. We also neglect any other source of dissipation during the
collision, such as vibrations. Under these assumptions, the conservation equation for
the sphere energy can be written as

1
2

mV(t)2 + π

3
φEw

R
e
δ0(t)3 − 4

3
πR3(ρs − ρ)gδ0(t)= 1

2
mV2

i . (4.3)

In (4.3), the first term is the instantaneous kinetic energy of the sphere with velocity
V(t) = dδ/dt, the second term is the instantaneous elastic energy corresponding to∫ δ(t)

0 F dδ and the third term is the instantaneous reduced gravitational energy. If we
neglect any source of dissipation during collision, the sum of these three terms must
be equal to the initial kinetic energy (1/2)mV2

i of the sphere when just touching
the textures. The maximal penetration depth of the sphere is reached at the time at
which the sphere velocity V(t) is zero. At that time, the elastic energy is maximal
and corresponds to the initial kinetic energy plus the additional gravitational energy.

Let us first consider the case where the gravitational energy is zero or negligible
compared to the initial kinetic energy. Hence, the corresponding value of the maximal
penetration, δm0, reads as

δm0 =
(

2ρseR2V2
i

φEw

)1/3

. (4.4)

The corresponding time of collision, τc0 , can be calculated from (4.3) without the
gravity term, as τc0 = 2τ

∫ 1
0 (1− t̃3)−1/2 dt̃ where t̃= t/τ and τ = δm0/Vi is the leading-

order time scale. The integral term, denoted I0, can be expressed with Γ functions as
I0 =π1/2Γ (4/3)/Γ (5/6)' 1.4 so that the time of collision can be written as

τc0 ' 2I0

(
2ρseR2

φEwVi

)1/3

. (4.5)

When the static penetration δs is of the same order of magnitude as δm0 , the apparent
weight of the sphere cannot be neglected during the collision. In that case, the
maximal penetration depth of the sphere δmax is given from the complete equation
(4.3) by

δm0 = δmax

[
1− 3

(
δs

δmax

)2
]1/3

. (4.6)

For δs = 0 (no gravity), one recovers δmax = δm0 , whereas δmax > δm0 for δs 6= 0.
In the gravity case, the time of collision, τc, can be calculated from the complete

equation (4.3) as τc = 2τ
∫ 1

0 [1− t̃3 + 3(δs/δm0)
2 t̃]−1/2dt̃. The integral term, denoted Ig,
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FIGURE 6. (Colour online) Sphere velocity V as a function of the sphere position h (with
h= 0 for the sphere at final rest) for settling in 47V1000 silicon oil towards textured walls
with different surface fractions φ and heights e of pillars. (a) Steel sphere (2R= 14 mm
and St = 4.7) with φ = 0.05 and e = 57 µm (f (magenta)) or e = 89 µm (u (yellow)),
(b) tungsten carbide sphere (2R = 8 mm and St = 4.9), with φ = 0.15, and e = 60 µm
(q (red)) or e= 117 µm (t (blue)).

can be calculated numerically for each value of the ratio δs/δm0 . Finally, the time of
collision reads as

τc ' τc0

Ig

I0
. (4.7)

Note that the above analysis is restricted to low enough impact velocities, i.e. Vi�
c∗ where c∗= (Ew/ρs)

1/2 is a mixed characteristic velocity which does not correspond
to the sound speed either in the sphere or in the pillars. As (Ew/ρs)

1/2 > 400 m s−1

for the present experiments, this condition is largely fulfilled.
Note also that the predicted scalings given for the maximal penetration depth and

time of collision without gravity effect by (4.4) and (4.5) are significantly different
from the classical Hertz scalings δm0 ∼ (ρs/Ew)

5/2RV4/5 and τc0 ∼ (ρs/Ew)
5/2RV−1/5. The

present model predicts in particular the scaling with the texture characteristics, i.e. the
texture height e and the surface density φ, which are not embedded in the theory
of Hertz. In addition, the influence of gravity on this scaling is described by (4.6)
and (4.7).

4.2. Comparison with experiments
To test the prediction of the model relative to the collision duration, τc, and penetration
depth, δmax, with the different parameters, we have performed a large number of
experiments with different spheres and different texture geometries, thus varying ρs,
R, e and φ. Figure 6 shows four typical experiments with either a steel or tungsten
carbide sphere colliding onto textures of different heights e and different φ. In each
bouncing case, we observed the same characteristic spiral curve as in the bouncing
case of figure 2. These curves can been glimpsed from the experimental data of
Marston et al. (2010) obtained with a high-speed video camera but the present
interferometric technique gives much more detail during the collision, particularly in
the h . 0 domain of compression. Note that in all the present experiments, the pillar
deformation is smaller than approximately 10−1, thus remaining essentially in the
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FIGURE 7. (Colour online) (a) Dimensionless maximal penetration depth δm0(φ/eR2)1/3 as
a function of the dimensionless impact sphere velocity Vi/c∗. Experimental values from
δmax measurements and (4.5) for steel and tungsten carbide spheres onto different textures
(data symbols) together with model (4.3) (——). (b) Corresponding dimensionless collision
duration τc0 c∗(φ/eR2)1/3. Experimental values from τc measurements and (4.6) (same data
symbols) together with model equation (4.4) (——).

elastic regime. By repeating several impacts on the same texture, we did not observe
any significant changes in the resulting curves. This corroborates the fact that the
pillars remain in their elastic regime of deformation and that no significant plastic
deformation occurs. In addition, considering the pillar aspect ratio, the dynamical
contact force induced by the collision always remains smaller than the critical value,
Fc =π2Ew(2b)4/3e2, given by the Euler criterion for the buckling instability (Landau
& Lifshitz 1986). Indeed, this criterion leads to the condition δm0/e< (π

2/3)(2b/e)2
which is less restrictive than the elastic condition mentioned above for the textures
investigated here (2b/e > 0.4). The order of magnitude of the viscous drag force
on the sphere during the solid contact is negligible when compared to the order of
magnitude of the elastic force. Indeed a rough estimate scaling 6πηViR2/e for this
viscous force is smaller than the elastic force scaling πφEwδ

2
m0

R/e at the condition
Sti > 12η2/(φEwρse2), where Sti is here the Stokes number based on the impact
velocity Vi. In the present experiments, this condition implies typically Sti > 3.10−3,
which is largely fulfilled considering the experimental Sti range 0.23 . Sti . 1.3. The
assumptions, under which the above model has been derived, are thus properly met.
The number of pillars implied in the solid contact is N 'πa2/L2, which varies in the
range 2 . N . 30 in the present experiments.

To test the scaling laws predicted by the model, we show in figure 7 the results of
the maximal penetration depth and collision duration in the case of zero gravity. The
experimental values δm0 and τc0 are calculated by (4.6) and (4.7) from the measured
values δmax and τc. When normalized with the length scale (eR2/φ)1/3, δm0 is plotted
in figure 7(a) as a function of the impact velocity Vi normalized by the mixed
‘sound’ velocity c∗ = (Ew/ρs)

1/2. Note that, as the ρs value for tungsten carbide is
approximately twice of that for steel, the corresponding c∗ values do not differ much
for the two materials. Hence, the experimental variations of the velocity ratio Vi/c∗
(approximately one decade) come from Vi variations. The experimental error bars
mainly arise from the determination of the final sphere position at rest (h = 0). In
most cases, this determination is done with an error much smaller than 1 µm, leading
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to small error bars, except when some residual motion of the sphere is present, in
which case the error can reach up to approximately 3 µm, leading to large error bars.
We observe in the log–log plot of figure 7(a) that all the experimental data gather
and align well along a straight line of slope 2/3 as predicted by model equation
(4.4). This means that the scaling predicted by the model captures the essential of the
physical processes with the different physical parameters, Vi, e, b, φ, R, ρs and Ew,
with scaling laws that differ from the classical Hertz model. However we observe that
the experimental data are systematically and significantly below the model prediction
as shown by the continuous line without any fitting parameter. This may come from
fluid dissipation which has been neglected in the present modelling.

In figure 7(b), the collision duration τc0 normalized by the time scale (eR2/φ)1/3/c∗

is plotted as a function of the normalized impact velocity Vi/c∗. We also observe
here that all the experimental data gather and align well along a straight line of slope
−1/3, as predicted by model equation (4.5). The data for time collision are here above
the model prediction, in relation to the data for penetration observed to be below the
model predictions. This may again be attributed to dissipation.

Let us now look at the importance of gravity in the present experiments. In (4.6),
the effect of gravity on the maximal penetration can be interpreted as increasing the
zero gravity penetration δm0 by the correction factor (1− 3(δs/δmax)

2)−1/3 > 1. In the
present experiments, the ratio δs/δmax increases from 0.11 to 0.37 with decreasing
values of Vi/c∗ so that the correction factor thus varies from 1.02 at high impact
velocities up to 1.2 at low impact velocities. Concerning the collision duration, (4.7)
shows that the effect of gravity is to decrease the values of τc0 , by the correction
factor Ig/I0 < 1, which decreases in the present experiments from 0.87 to 0.75 with
decreasing values of Vi/c∗.

5. Conclusions

We have measured precisely, using a high-frequency interferometric technique, the
dynamics of collision of a liquid-immersed sphere onto a textured wall comprised of
an array of square micro-pillars. With this interferometric technique, micro-rebounds
of the sphere down to a few µm can be detected. The results show that the critical
Stokes number for bouncing depends on both the aspect ratio and surface density of
the pillars, and that its values are smaller than the critical value of 10 reported
for a smooth wall. In the bouncing case, the interferometric technique allows
us to accurately measure the maximal penetration depth and the duration of the
sphere/pillars collision. These measurements have been found in good agreement with
the predictions of a collisional model, which is based on the elastic deformation of
the pillars and is thus somewhat different from the classical Hertz scalings valid for a
smooth wall. The viscous dissipation during the collision has been neglected in a first
step in the present modelling, but there is evidence of such a dissipation during the
collision. The analysis of the viscous dissipation by the squeezing flow through the
network of pillars during the collisional process is ongoing. The interferometric
technique that gives access to the dynamics during the collision contact could
determine if unsteady forces, such as added mass and history integral, considered
recently by Simeonov (2015) are indeed important to consider for the characterization
of immersed collision processes. A precise criterion for bouncing may also be inferred
from a detailed knowledge of the texture-modified dynamics of approach.
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